
 Open access  Journal Article  DOI:10.1109/JLT.2015.2506461

Orbital-Angular-Momentum Polarization Mode Dispersion in Optical Fibers
— Source link 

Lixian Wang, Pravin Vaity, Stephane Chatigny, Younes Messaddeq ...+2 more authors

Institutions: Laval University

Published on: 15 Apr 2016 - Journal of Lightwave Technology (IEEE)

Topics: Polarization mode dispersion, Single-mode optical fiber, Zero-dispersion wavelength,
Polarization-maintaining optical fiber and Photonic-crystal fiber

Related papers:

 Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers

 Design, fabrication and validation of an OAM fiber supporting 36 states

 Optical communications using orbital angular momentum beams

 Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber

 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.

Share this paper:    

View more about this paper here: https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-
2qf0p0cz7e

https://typeset.io/
https://www.doi.org/10.1109/JLT.2015.2506461
https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-2qf0p0cz7e
https://typeset.io/authors/lixian-wang-ok0n1k8rcx
https://typeset.io/authors/pravin-vaity-361pszm6sa
https://typeset.io/authors/stephane-chatigny-25k2d0a6t9
https://typeset.io/authors/younes-messaddeq-1bqpa7t1a0
https://typeset.io/institutions/laval-university-31n2xkov
https://typeset.io/journals/journal-of-lightwave-technology-2bblnh4o
https://typeset.io/topics/polarization-mode-dispersion-1kxxg82r
https://typeset.io/topics/single-mode-optical-fiber-2335rqmb
https://typeset.io/topics/zero-dispersion-wavelength-3vqb8bmu
https://typeset.io/topics/polarization-maintaining-optical-fiber-3stcpr1u
https://typeset.io/topics/photonic-crystal-fiber-2tzxtcs3
https://typeset.io/papers/terabit-scale-orbital-angular-momentum-mode-division-20ulh7cv72
https://typeset.io/papers/design-fabrication-and-validation-of-an-oam-fiber-supporting-11ev35mwd3
https://typeset.io/papers/optical-communications-using-orbital-angular-momentum-beams-2vgyitht8d
https://typeset.io/papers/mode-properties-and-propagation-effects-of-optical-orbital-2ln7m474gx
https://typeset.io/papers/orbital-angular-momentum-of-light-and-the-transformation-of-1ys86dovjf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-2qf0p0cz7e
https://twitter.com/intent/tweet?text=Orbital-Angular-Momentum%20Polarization%20Mode%20Dispersion%20in%20Optical%20Fibers&url=https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-2qf0p0cz7e
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-2qf0p0cz7e
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-2qf0p0cz7e
https://typeset.io/papers/orbital-angular-momentum-polarization-mode-dispersion-in-2qf0p0cz7e


 

 

 

 

 

Orbital-Angular-Momentum Polarization Mode 

Dispersion in Optical Fibers  

Lixian Wang, Pravin Vaity, Stéphane Chatigny, Younés Messaddeq, Leslie A. Rusch, 

and Sophie LaRochelle 

Journal of Lightwave Technology, (Volume 34, Issue 8) (2016) 

Doi: 10.1109/JLT.2015.2506461 

http://ieeexplore.ieee.org/document/7348637/?arnumber=7348637&tag=1 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE 

must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

  



0733-8724 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2015.2506461, Journal of

Lightwave Technology

1 

 
Abstract— The orbital-angular-momentum (OAM) modes in 

optical fibers have polarization-mode dispersion (PMD) 
properties similar to those of single mode fibers (SMFs). The +l 
and –l order OAM modes supported by the same fiber vector 
modes undergo random cross-coupling and exhibit a frequency 
dependent time delay. We name this effect “OAM-PMD” and 
extend the formalism developed for PMD in SMFs to describe 
OAM-PMD. The characteristics of the modal beat lengths, 
birefringence correlation lengths and the mean-value of 
OAM-PMD are investigated. A fixed-analyzer technique is 
proposed and demonstrated to characterize this phenomenon in 
OAM fibers. Two different types of OAM fiber are examined. The 
measured results are compared with the theoretical calculations. 

Index Terms—optical fibers, optical fiber polarization, optical 
fiber communication, optical fiber testing  

I. INTRODUCTION 

RBITAL angular momentum (OAM) of light is associated
with the helical phase front proportional to exp(ilφ) where 

l is the topological charge (l=0, ±1, ±2, …) and φ is the 
azimuthal angle [1]. The orthogonal OAM mode set provides a 
new degree of freedom to increase the optical communication 
capacity in addition to other freedoms that have already been 
widely used such as the wavelength, time and polarization [2]. 
OAM-division multiplexing have been demonstrated in both 
optical free-space [3]–[5] and fiber optic communications [6].  

Optical fiber that can support stable transmission of OAM 
modes is the key component in OAM-based fiber optical 
communication systems. Generally, in cylindrical optical 
fibers, a linear combination of the degenerate even and odd HE 
(EH) vector modes has a helical phase front, i.e. carrying OAM. 
The existence of near-degeneracy of the vector modes inside a 
given mode group would cause strong mode coupling and 
consequently make OAM modes unstable during propagation. 
As in the case of polarization-maintaining fibers (PMFs), the 
first step for stabilizing OAM modes in fibers is to lift the mode 
degeneracy [7].  

A variety of OAM fibers have been proposed with either 
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solid [8]–[10] or hollow cores [11], [12]. Most of them feature a 
ring-shaped refractive index profile and a large index contrast 
between the core and cladding. A properly designed OAM fiber 
should provide a large separation of the effective indices 
between the adjacent EH and HE modes (Δneff>10-4), which is a
phenomenological rule that favors the stable propagation of the 
orthogonal polarizations of the LP01 modes in conventional 
PMFs [13].  

Ideally the even and odd HE (EH) modes that constitute an 
OAM mode should have the same propagation constant, i.e. no 
walk-off, so that the OAM mode maintains its mode profile and 
topological charge. Fiber imperfections such as core ellipticity 
and internal stress, and external perturbations, such as twists 
and bends, can induce δneff between the nominally degenerate 
even and odd vector modes, namely the modal birefringence. 
Note that δneff represents the modal birefringence while Δneff is 
the effective index separation between the modes of the 
unperturbed fiber design. The modal birefringence together 
with a random variation of the birefringence orientation would 
give rise to a random coupling between +l and -l order OAM 
states during propagation. This effect is similar to polarization 
mode dispersion (PMD) in single mode fibers (SMFs). We call 
it “OAM-PMD”.   

The impact of an elliptical core on the modal birefringence 
was simulated in [14] and the birefringence-induced 
deterioration of the OAM DeMUX efficiency was investigated. 
However the authors did not consider the random variation of 
the orientation of the modal birefringence. In an experimental 
demonstration of OAM-division multiplexing [6], a 
polarization controller was inserted at the transmitter end of 
each OAM channel to compensate for the OAM-PMD, but the 
OAM-PMD was not discussed in detail.  

Recently Antonelli et al. generalized the concept of PMD to 
mode dispersion (MD) in multimode fibers [15]. A MD vector 
was defined in a D-dimensional extended Stokes space. When 
there is mode coupling, the MD vector undertakes a 
D-dimensional isotropic random walk. In OAM fibers, the 
situation could be largely simplified. This is because the vector 
modes are separated in the effective index space and they rarely 
couple to each other over a relatively long length of fiber. 
Therefore, each vector mode in an OAM fiber can be described 
separately in its own 3D Stokes space in a similar way as that 
for SMFs. Starting from this idea, we extend in this paper the 
formalism developed for PMD in SMFs. In section II, we 
discuss the polarization states of OAM modes in fibers and 
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their representation on the Poincaré sphere. In section III, we 
develop an OAM-PMD model based on the concatenation of 
fixed-birefringence fiber sections with random orientation 
(well-known fixed birefringence model). In section IV, a 
fixed-analyzer technique is then proposed and demonstrated to 
measure the mean value of OAM-PMD in OAM fibers. Two 
different types of OAM fibers designed and fabricated in our 
lab are tested and compared for various orders of OAM-modes. 
We also present through numerical simulations and 
measurements an investigation of the local birefringence of 
both fibers. This is followed, in section V, by a discussion 
comparing theoretical predictions and experimental results. 
This paper is a full-length extension of our recent publication in 
European Conference on Optical Communications (ECOC 
2015) [16]. 

II. POLARIZATION STATES OF OAM MODES IN OPTICAL 

FIBERS 

In cylindrical optical fibers, the solution of the Maxwell’s 
vector wave equations is a set of vector modes, i.e. HE, EH, TE 
and TM modes. Fig. 1 (a) to (d) shows a few examples of the 
states of polarization (SOPs) of vector modes. Their electrical 
fields are spirally polarized, analogous to the so-called vectorial 
vortex (VV) beams in free space [17] (the SOP of the 
fundamental HE11 mode is spatially homogeneous but it can be 
considered as the 0-order VV). At each point on the cross 
section of a vector mode, the orientation angle θ of the 
electrical field (with respect to the x-axis of the (x, y) 
coordinate system as shown in Fig. 1 (f)) is a function of the 
azimuthal angle ϕ: 
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where l=0, ±1, ±2, ±3… is the topological charge indicating the 
order of OAM that a vector mode can support and m is the 
radial order. If we define a local Cartesian coordinate system 
(x’, y’) in which the angle between the x’-axis and the x-axis 
equals the azimuthal angle ϕ in (x, y) coordinate system (Fig. 1 
(f)), the local orientation angle θ’, defined as the angle between 
the modal electrical and the x’-axis, can be expressed as:  
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  (2) 

 In optical fibers, an OAM mode is a linear combination of 
the degenerate even and odd HE(EH) modes with a relative 
phase difference of ±π/2; an OAM mode must be circularly 
polarized. TE01 and TM01 modes can combine to form an OAM 
mode, but the OAM mode is usually considered to be “unstable” 
due to the large effective index separation, Δneff, between the 
TE01 and TM01 modes. For example, the Δneff between TE01 and 
TM01 modes is measured to be ~6.6×10-4 in the OAM fiber

which has an inverse parabolic graded index profile [18]. The 
±1 order OAM modes supported by TE01 and TM01 modes 
periodically couple to each other during propagation as will be 
shown in the following sections. The OAM modes in optical 
fibers can be expressed as: 
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The superscript “±” over the term “OAM” in (3) represents the 
handedness of the circular polarization (CP), “+” means right 
circularly polarized (RCP) and “-” is left circularly polarized 
(LCP). Here LCP/RCP is defined to be 
clockwise/counter-clockwise circularly polarized if viewed by 
the transmitter. For OAM modes formed by HE modes, the 
handedness of the CP and the OAM are anti-aligned, i.e. LCP 
corresponds to +|l| order OAM and RCP corresponds to -|l| 
order OAM, while for those formed by EH modes the 
handedness is aligned. TE01/TM01 modes are the same as EH 
modes. In OAM fibers, since the large effective index 
separation (>10-4) guarantees negligible cross coupling 
between HE and EH modes, it is reasonable to assume that the 
HE and EH supported OAM modes are independent from each 
other and they can be treated separately as will be done 
throughout this paper. 

(a)  (b) 

(c)  (d) 

(e)                                           (f) 
Fig. 1. Schematic diagram of the SOPs of even (blue arrows) and odd (red 
arrows) vector modes, (a) HE11, (b) HE21, (c) TE01 (blue) and TM01 (red), (d) 
EH11 and (e) HE31; (f) the Cartesian coordinate system (x, y) and the local 
coordinate system (x’, y’). 
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 The SOP of the fundamental modes (HE11) can be described 
in either Jones or Stokes space. In Jones space, the 2D Jones ket 

vector s  is a superposition of the orthogonal x- and y- 

polarized states, xs  and ys , respectively [19]: 

x ys a s b s    (4) 

where xa s s  and yb s s  are complex quantities, 

1s s  . The bra-ket notation is used to distinguish Jones 

vectors from Stokes vectors. The bra vector, e.g. s , indicates 

the corresponding complex conjugate row vector. The Stokes 
parameters are: 
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(5) 

 0 0 0 0
1 2 3

ˆ , ,s s s s is defined as the Stokes vector for the 

fundamental modes and * denotes complex conjugation. Fig. 2 
plots the corresponding Poincaré sphere. Here the superscript 
“0” means the topological charge of the OAM carried by the 
fundamental modes is 0.  

Fig. 2. Poincaré sphere for the fundamental HE11 mode. 

 A higher-order vector mode with a non-zero topological 
charge |l| is formed from a linear combination of the degenerate 
even and odd modes, resulting in a complex SOP, denoted by 

l
s


 in Jones space. The superscript “±” here denotes the 

handedness between CP and OAM, “+” means aligned (EH or 
TE01/TM01 modes) and “-” represents anti-aligned (HE modes). 
Equation (4) then can be extended to higher orders: 

l l l l l
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l
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

 and 
l
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are the SOPs of even (subscript “e”) and odd 

(subscript “o”) modes (or, TE01 and TM01 modes) respectively. 
l l l

e ea s s
   ,  

l l l

e ob s s
    and 1

l l
s s
   . 

Higher-order Stokes parameters and higher-order Poincaré 

spheres [20] are then built for each higher-order vector mode in 
the same way as that of the fundamental HE11 mode: 
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 1 2 3
ˆ , ,

l l l l
s s s s
     is the high-order Stokes vector, ˆ l

s


 is the 

Stokes vector for the HE|l|+1,m modes and ˆ l
s


is for the EH|l|-1,m

modes. When |l|=1, 1ŝ  represents the Stokes vector for TE01 

and TM01 modes. When |l|=0, Equation (7) converges to (5). On 
the Poincaré sphere described by (7), the North Pole is always 
RCP and the south Pole is always LCP. For HE modes, the 
North Pole has an OAM with topological charge of -|l| and the 
south Pole carries +|l|; while for EH modes, the case is inversed. 
The intersection between the s1

±|l|-axis and the sphere represents
the even fiber mode; the intersection between the s2

±|l|-axis and
the Sphere means a linear combination of the degenerate even 
and odd fiber modes with the same phase and intensity. Fig. 3 

gives an example of the Poincaré sphere for the HE21 mode.
Equations (6) and (7) are established based on the orthogonal 
even and odd vector modes basis so as to make them 
compatible with that of the fundamental mode ((4) and (5)). It is 
equivalent to the definition of the higher-order Stokes 
parameters in [20], which is based on the CP basis. 

Fig. 3. Higher-order Poincaré sphere for the HE21 mode. 

III. MODELING OF OAM-PMD

PMD is a well-known phenomenon in SMFs. It originates 
from the birefringence of the fiber and the random variation of 
its orientation along the fiber length. When the fiber core is not 
perfectly circular, or when external perturbations such as stress, 
bending or twisting, are applied on the fiber, the propagation 
constants of the even and odd fundamental modes separate, 
giving rise to PMD.  

In OAM fibers, the fiber imperfections can also induce 
modal birefringence to the degenerate even and odd 
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higher-order HE or EH modes which constitute the OAM 
modes. Since the stable propagation of an OAM mode requires 
a fixed ±π/2 phase difference as indicated by (3), the 
higher-order modal birefringence together with the random 
variation of the birefringence orientation will result in a random 
coupling between the +l and –l order OAM modes along the 
fiber. Note that this cross coupling only happens between OAM 
modes supported by the same vector modes, i.e., the CP-OAM 
handedness should be either aligned or anti-aligned. This is 
because the HE and EH modes are assumed to be isolated in 
OAM fibers as discussed in Section II. The OAM-PMD here is 
a special case of the MD in  [15], where the 3N-dimentional 
Stokes space (MD) is simplified into N independent 
3-dimentional Stokes spaces (OAM-PMD). 

A. Fixed-Birefringence Model 

Similar to SMFs, the OAM-PMD in OAM-fibers can be 
modeled in two ways. The fiber is considered to be a 
concatenation of a large number of birefringence fiber sections 
[21]–[23]. In the first model, the birefringence magnitude is a 
constant for all the sections, but the orientation angle ϕ of the 
fiber sections is random (Fig. 4). In the second model both the 
magnitude and angle are random. Since the two models give 
similar statistical results, we use the first one in this paper for 
simplicity. 

Fig. 4. Schematic diagram for the fixed-birefringence model, where τC is the 
differential group delay of one single fiber section. 

The evolution of the Stokes vector with respect to length and 
optical frequency corresponding to a specific vector mode 
obeys the precession rules: 
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where 
l 
 is the cumulative OAM-PMD vector up to position 

z and  1 2 3, ,
l l l l        is the local birefringence vector at 

position z, which has a magnitude of 
l 

. Here we assume 

that there is no circular birefringence, i.e.  3 0
l   , and l   is 

always in the plane defined by the equator of the Poincaré 

sphere. The orientation of l   can then be defined by the angle 

between l  and the 1

l
s
 -axis in the Stokes space, θC. l   is

different for different vector modes in terms of both the 

magnitude and the orientation. 2 /
l l

BL   , LB
±|l| is the

local modal beat length. θC is related to the modal birefringence 
correlation length LC

±|l| which will be discussed in detail below.

B. Birefringence Correlation Length 

In the fixed-birefringence model, θC is assumed to be a 
Brownian motion [24]: 
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gθ(z) is a white-noise stochastic process. The autocorrelation of 
θC is calculated to be exp(-σθ

2z/2). The birefringence correlation
length LC is defined as the length at which the autocorrelation of 
θC falls to e-1, i.e. LC

±|l|=2/σθ
2. Considering two cascaded

birefringent fiber sections, the first section is set to be the 
reference; in Stokes space its birefringence vector 
superimposes the s1

±|l|-axis. In the local Cartesian coordinate
system (x’, y’), the orientations of the modal electrical fields of 
the first section, θ1’, is described by (2). Assuming the second 
fiber section is rotated clockwise (viewed by the transmitter) by 
an angle of ∆ϕ with respect to the first section, the orientation of 
its modal electrical fields becomes θ2

’= θ1
’(ϕ+∆ϕ) and θC can be

calculated as: 
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For the fundamental mode, |l|=1, θC =-2∆ϕ. For the other modes, 
there is a scaling factor |l|±1. According to (10), this scaling 
factor would also be transferred to gθ(z). As a result, the modal 
birefringence correlation length is dependent on the topological 
charge l: 

     
0

2 22 0

1

01 011

2

11

+ sign for HE

- sign for EH  and TE /TM ( 1)

l C
C

l

l

L
L

ll

l







 


 
 
  

(12) 

where LC
0 is the birefringence correlation length of the

fundamental HE11 mode. The superscript “±” over the term LC 

accounts for the CP-OAM handedness, the same as that for ˆ l
s


. 
A special case exists for the TE01/TM01 mode. As shown by Fig. 
1 (c) the polarization states of TE01 and TM01 modes are 
independent of the azimuthal angle. The random orientation of 
the fiber sections shown in Fig. 4 will not induce any mode 
coupling between the TE01 and TM01 modes. Therefore the 
TE01 and TM01 modes of an OAM fiber will have infinite 
correlation length as indicated by (12) (the denominator 
becomes zero). The l and –l order OAM modes supported by 
TE01/TM01 modes periodically couple to each other. The scaling 
effect of the modal birefringence correlation length can be 
explained physically as follows: the “strength” of the 
white-noise gθ, σθ

2, generally increases with the increase of the
topological charge l under the same random variation of the 
fiber section’s orientation; the stronger the noise the shorter the 
fiber length necessary to reach a nearly uniform angular 
distribution of θC between −π/2 and π/2. 
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C. Mean value of OAM-PMD 

To find the mean value of OAM-PMD, we first take the 
frequency derivative of (8) and the position derivative of (9). 

Due to the continuity of the function  ˆ ,s z  , the two

derivatives should be equal. Using the identity

     ˆ ˆ ˆl l l l l l l l l
s s s                     , the 

differential equation determining the motion of the OAM-PMD 
vector   is derived as: 

ˆ
l

l l l
s

z


  


  
  


(13) 

The solution of (13) is the mean value of OAM-PMD, <τ±|l|>, 
which is a function of the modal beat length LB

±|l| and the modal
birefringence correlation length LC

±|l|:

  
2

2 16
exp / / 1

3

l
l l lC

C Cl

B

L
z L z L

cL







  



 
     

 
(14) 

The detailed derivation of (14) based on the fixed-birefringence 
model can be found on Chapter 9 (pp.399) in [24]. From (14) 
we can see that <τ±|l|> is approximately proportional to LC

±|l| and
is inversely proportional to LB

±|l|. Considering the scaling effect
of LC

±|l|, higher order OAM modes should show smaller
OAM-PMD. Furthermore recent research has found that the 
external perturbations such as bending affect mostly lower 
order OAM modes [11]. In other words, LB

±|l| is intrinsically
smaller for higher order OAM modes. Therefore, higher order 
OAMs modes should be more stable in OAM fibers. 

IV. MEASUREMENT AND CHARACTERIZATION OF OAM FIBERS 

The PMD is characterized by the PMD vector   which 

varies randomly with respect to the optical frequency. The 
mean value of PMD, <τ±|l|>, is the PMD feature that is of the 
most interest to measure, as it is a very useful predictor of 
performance that does not change from day to day or from fiber 
to fiber. For SMFs, the fixed-analyzer technique is the simplest 
and widely-used technique for measuring the mean value of 
PMD [25]. As discussed in Section III, the OAM-PMD in 
OAM fibers obeys the same precession rules ((8) and (9)) as 
those for the fundamental modes in SMFs, thus the 
fixed-analyzer technique can in principle be applied for the 
measurement of <τ±|l|>. In this section, we characterize the 
OAM-PMD of two different types of OAM-fibers, namely a 
graded index fiber with an inverse parabolic profile and a 
ring-core fiber with a step index profile. We perform the 
measurement for different orders of OAM modes. To explain 
the differences observed in OAM-PMD, we further investigate 
the birefringence of OAM fibers, first through numerical 
simulations and then through measurement of the local 
birefringence using optical backscattering reflectometry. 

A. Measurement principle and experimental setup 

As shown in Fig. 5, a C-band ASE (amplified spontaneous 
emission) light from an EDFA was used as the broadband laser 
source. The light was polarized by passing through a polarizer 
and was converted to an l order OAM beam after reflection by 
an appropriately programmed spatial light modulator (SLM1). 
Before being coupled into the OAM fiber, the light is converted 

to CP via a quarter-wave plate (Q1). By programing SLM1 and 
rotating Q1, an OAM mode with a topological charge l and a 
specific CP-OAM handedness can be selectively excited in the 
OAM fiber under test. After propagating through the OAM 
fiber, the OAM mode is subjected to OAM-PMD, i.e. the ±l 
order OAM modes with the same CP-OAM handedness 
(supported by the same vector modes) would randomly couple 
to each other resulting in a mixture of ±l order OAM modes and 
a complex SOP at the output of the fiber. As the optical 

frequency changes, the Stokes vector of the output light ˆ l
s
  

randomly moves on the corresponding higher-order Poincaré 
sphere.  

The receiver was set to only detect either RCP or LCP OAM 
mode, with the CP-OAM handedness kept the same as that of 
the input. The receiver in the experimental setup can be 

considered as an “OAM-polarizer” whose Stokes vector ˆ l
p


aligns with the s3
±|l|-axis pointing to either the north (RCP) or

south (LCP) pole. The spectrum recorded by the optical 
spectrum analyzer (OSA) is actually the projection of the 

output Stokes vector on ˆ l
p
 : 

   1 ˆ ˆ1
2

l l l
T s p         (15) 

Poole et al. proved that the mean value of the differential group 
delay (equivalent to <τ±|l|> in this paper) is proportional to the 
density of extrema in the spectrum T±|l|(ω) [26]: 

0.805

l

el
N

 




 


  (16) 

<Ne
±|l|>  is the mean value of the number of extrema and ∆ω is

the optical angular frequency range over which the 
measurement is taken. The coefficient 0.805 in (16) is reported 
by Williams [26] which is a correction to the original factor of 
0.824 reported in [25]. In the experiment, we use the measured 
number of extrema, Ne

±|l|, as an approximation to <Ne
±|l|>.

Because of the finite measurement frequency range ∆ω, there is 
an uncertainty of the measurement results. As derived in [25], 
the uncertainty η  

0.52

eN
  (17) 

is inversely proportional to the number of extrema. 

Fig. 5. Experimental setup for measuring of <τ±|l|>. SLM: spatial light 
modulator, Q: quarter-wave plate, ASE: amplified spontaneous emission 
source, OSA: optical spectrum analyzer. 

B. OAM fibers to be characterized 

We used the technique proposed above (as shown in Fig. 6) 
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to characterize two types of OAM fibers designed and 
fabricated in our lab. The first OAM fiber has an 
inverse-parabolic graded index profile, referred to as “IPGIF” 
[9]. Its refractive index profile is expressed as: 

   2 2
1

2

1 2 / ,     0  

,   

n N r a r a
n r

n r a

     
 

(18) 

N=(n1-na)/(n1-n2)=-4, which is the curvature parameter; 
na=1.494 is the maximal refractive index of the ring area; 
n1=1.454 is the refractive index at the fiber center; n2=1.444 is 
the refractive index of the cladding;  ∆=(n1

2-n2
2)/2n1

2 is the
relative permittivity contrast; a is the ring radius which equals 3 
µm. IPGIF supports up to the second order OAM modes (HE11, 
TE01, HE21, TM01, EH11 and HE31). However the second order 
OAM modes supported by EH11 and HE31 modes are close to 
cutoff [9]. Thus the zero and first order OAM mode supported 
by HE11 and HE21 modes respectively are of the most interest 
for data transmission.

The other OAM fiber to be measured has a ring-shaped 
step-index profile, referred to as “RCF” [27]. It has an 
inner-ring radius of 0.97 µm and an outer-ring radius of 2.44 
µm. The refractive index of the ring is 1.474 and that of the 
cladding is the same as IPGIF (pure silica). RCF supports up to 
the first order OAM modes (HE11, TE01, HE21 and TM01).  

Fig. 6. Refractive index profiles for the inverse-parabolic graded index fiber 
(IPGIF) and the ring-core step-index fiber (RCF). 

C. Measurement of mean value of OAM-PMD 

Before measuring the OAM-PMD of OAM fibers with long 
lengths, we measured the differential group delay between the 
TE01 and TM01 modes over short length of fibers (a few meters). 
As mentioned in Section III, OAM fibers perform like a 
conventional PMF for the TE01 and TM01 modes. To excite the 
TE01 and TM01 modes simultaneously, +/-1 order RCP/LCP 
OAM mode were generated and coupled into the OAM fiber. 
At the receiver end, SLM2 and Q2 were set to convert the +/-1 
order RCP/LCP OAM mode back into a linearly polarized 
fundamental Gaussian beam to be received by a SMF pigtail 
and recorded by the OSA. Because the two vector modes have a 
large index separation, the recorded transmission spectra show 
pure cosine shapes. The IPGIF under test is 4.6 m, while the 
RCF is 5.3 m. The measured spectra are shown in Fig. 7 and 
Fig. 8 respectively. The time delay TE01 and TM01 modes can be 
read from the period of the spectra. For IPGIF the delay is 1.4 
ps/m and for RCF it is 2.52 ps/m.  

Fig. 7. Measured transmission spectra for the TE01 and TM01 modes over IPGIF 
with a length of 4.6 m. 

Fig. 8. Measured transmission spectra for the TE01 and TM01 modes over RCF 
with a length of 5.3 m. 

 To verify the measurement results of TE01 and TM01 modes 
using the fixed-analyzer technique, a time of flight (ToF) 
measurement was taken for long fibers (1.09 km for IPGIF and 
1.59 km for RCF). A pulsed laser source with a pulse width ~ 
100ps and a repetition rate of ~19.5 MHz was generated by 
externally modulating a continuous-wave (CW) laser source 
(1550 nm) in a Mach-Zehnder optical intensity modular. The 
laser pulse train was coupled into the OAM fiber through 
free-space optics. The alignment was intentionally offset so as 
to excite all the vector modes in the fiber. At the receiver end, a 
high-speed photodetector together with an electrical sampling 
scope were used to detect the output optical pulses.  

The ToF measurement of IPGIF clearly shows four peaks 
(Fig. 9), corresponding to HE11, TE01, HE21 and TM01 modes. 
The peaks for EH11 and HE31 modes are too weak to be 
observed. The ToF measurement of RCF also shows four peaks 
(Fig. 10). The measured time delays between the TE01 and TM01 

modes after propagating through the OAM fibers are 1.57 ns for 
1.09 km IPGIF (1.44 ps/m) and 4.12 ns for 1.59 km RCF (2.59 
ps/m), matching with those obtained by the fixed-analyzer 
technique. This indicates that, in the setup shown in Fig. 5, the 
free space optics in both the transmitter and the receiver were 
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well aligned so that TE01 and TM01 modes were excited and 
detected with relatively high mode purity.  

Fig. 9. Time of flight measurement results for the TE01 and TM01 modes over 
IPGIF with a length of 1.09 km. 

Fig. 10. Time of flight measurement results for the TE01 and TM01 modes over 
RCF with a length of 1.59 km. 

Afterwards the SLMs and the quarter-wave plates were set to 
generate and detect other OAM modes supported by HE/EH 
modes over the short OAM fiber. The free space optics was 
finely adjusted until the curve shown on the screen of the OSA 
became as smooth as possible. This calibration process 
guarantees an optimized condition (high mode purity) for the 
excitation and detection of a specific OAM mode. Then the 
short fiber was cut in the center and the long length of fiber was 
inserted by fusion splicing. By doing so the already 
well-aligned free space optics was kept untouched. Fig. 11 
shows the measured transmission spectra for OAM modes with 
different orders and different directions of CP in 1.09 km 
IPGIF. The red and black curves are the spectra measured when 
the receiver was set to detect l order OAM modes with LCP and 
RCP respectively. The impact of the spectral shape of the ASE 
source has been removed from the raw data. The blue curve is 
the ratio between the LCP and RCP spectra. Fig. 12 shows the 
results for 1.59 km RCF. 

   (a)  (b) 

   (c)   (d) 
Fig. 11. Measured transmission spectra for OAM modes supported by (a) HE11, 
(b) HE21, (c) EH11 and (d) HE31 modes over IPGIF with a length of 1.09 km. 

    (a)  (b) 
Fig. 12. Measured transmission spectra for OAM modes supported by (a) HE11 

and (b) HE21 modes over RCF with a length of 1.59 km. 

TABLE 1 

Summary of the measurement results 
IPGIF 1.09 km RCF 1.59 km 

Modes Ne <τ±|l| > η Ne <τ±|l| > η  
HE11 10 0.80 ps 5.2% 1 0.08* 52%* 

HE21 104 8.34 ps 0.5% 3 0.24* 17%* 

EH11 6 0.48 ps 8.67% 

HE31 11 0.88 ps 4.73% 

TE01 

/TM01 
-- 1.4 ps/m 2.52 ps/m 

* For RCF, the values calculated from (16) and (17) provide only a rough 
estimation because the number of extrema over the measurement frequency 
range is too small to give accurate results.  

The measured values of <τ±|l|> for IPGIF and RCF are 
summarized in TABLE 1. For the 1.59 km long RCF, the 
transmission spectra for the 0 order (HE11) and 1 order (HE21) 
OAM modes only show 1 and 3 extrema over the 40 nm 
wavelength range, which is too small to give an accurate 
estimation of the OAM-PMD. In comparison, IPGIF shows 
much larger OAM-PMDs. Fig. 13 shows the simulated modal 
birefringence of IPGIF and RCF as a function of core ellipticity 
using a finite element solver (COMSOL). The ellipticity is 
defined as the ratio of the major to the minor axes. The 
ellipticity-induced δneff are similar for IPGIF and RCF. Since 
<τ±|l|> is proportional to δneff ((14)), the large discrepancy of the
measured <τ±|l|> between IPGIF and RCF does not come from 
the fiber designs. It should be noted that, although the elliptical 
core induces modal birefringence to the originally degenerate 
even and odd modes, the Δneff between HE, EH, TE01 and TM01 
modes only change slightly and are always >10-4 throughout the 
parameter sweeping (the ellipticity sweeps from 1 to 1.04).  
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(a) 

(b) 
Fig. 13. Modal birefringence as a function of the core ellipticity (simulations). 
(a) IPGIF, which supports up to the ±2 order OAM modes, (b) RCF which 
supports up to ±1 order OAM modes.  

D. Measurement of beat lengths 

To further investigate the discrepancy between IPGIF and 
RCF, we next measured the local beat lengths of the 
fundamental HE11 modes (LB

0) using the optical backscatter
reflectometer (OBR 4400) from Luna Technologies [28]. The 
experimental setup is plotted in Fig. 14. The output SMF pigtail 
of the OBR was center-to-center fusion spliced with the OAM 
fiber so as to excite mostly the HE11 modes. The OAM fiber 
was then coiled for a few turns along a rod with a diameter of 
~2 cm to further remove the higher order modes. The Rayleigh 
scattering passed through a built-in polarizer and was mixed 
with the local tunable laser source (TLS) and detected by an 
optical coherent receiver. The other end of the OAM fiber was 
immersed in the index matching oil (IMO) for removing any 
facet reflection. The amplitude of the time-domain data of the 
OBR is equivalent to a traditional optical time domain 
reflectometry (OTDR) measurement. The measured Rayleigh 
backscattering intensity contains periods equal to the beat 
length LB

0 and to LB
0/2 [28]. By applying an FFT to the

backscattering intensity, the local beat length can be obtained. 
For IPGIF, the FFT was performed at each position with a step 
of 1 m and a FFT window of 10 m, while for RCF the window 
was set to 300 m wide. Fig. 15 (a) gives an example of the FFT 
spectrum of IPGIF at the position of 25 m. It shows clearly two 
peaks corresponding to LB

0 and LB
0/2 respectively. The FFT

spectrum of RCF is a bit noisy but the peak corresponding to 
LB

0/2 is still significant. Fig. 15 (b) shows the FFT spectrum of
RCF at the position of 100m. The measured local beat lengths 
along the fiber were averaged to obtain the mean-value of beat 
lengths, <LB

0>, For IPFIG, <LB
0>=0.34 m (<δneff

0>=4.6×10-6).
<LB

0> of RCF is 16.7 m (<δneff
0>=9.3×10-8), which is much

longer than that of IPGIF. This result explains the large 

discrepancy between the measured <τ±|l|> of IPGIF and RCF. 
The very short <LB

0> in IPGIF may come from the fiber
fabrication process and needs further investigations. 

Fig. 14. Experimental setup for measuring the local beat lengths of the 
fundamental mode (HE11) using optical frequency-domain reflectometry. TLS: 
tunable laser source, Pol.: polarizer, IMO: index matching oil.  

(a) 

(b) 
Fig. 15. FFT spectrum of the Rayleigh scattering of  (a) IPGIF at the position of 
25 m with a FFT window of 10 m; (b) RCF at the position of 100 m with a FFT 
window of 300 m. 

V. DISCUSSION 

As presented in section III, the value <τ±|l|> varies with 
respect to the topological charge l of OAM modes. 
Furthermore, it is determined by both the modal beat length 
LB

±|l| (LB
±|l| =λ/δneff

±|l|, λ is the wavelength and δneff
±|l| is the modal

birefringence) and the modal birefringence correlation length 
((14)). Based on the measured <LB

0> and <τ0> of the
fundamental mode (0 order OAM mode), the birefringence 
correlation length, LC

0, can be calculated using (14). Assuming
that the modal birefringence originates only from the core 
ellipticity, we can then find out the beat lengths of the 
higher-order OAM modes, LB

±|l|, using the simulation results

shown in Fig. 13, and also find out the higher-order 

birefringence correlation, LC
±|l|, using the scaling rule as shown

by (12). Finally, using (14) again, <τ±|l|> for all the higher-order 
OAM modes can be calculated.  TABLE 2 lists the measured 
(bold) and calculated (italic) <τ±|l|> of IPGIF. For the ±1 order 
OAM modes supported by the HE21 modes, the measurement 
(<τ-1>=8.34 ps) and the theory (<τ-1> = 11.05 ps) match well. 
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Regarding the ±2 order OAM modes supported by the EH11

modes, the theoretical calculation (<τ+2> =1.2 ps) is about 2 
times the measurement (<τ+2>=0.48 ps) but they are still on the 
same order of magnitude. Theoretically, <τ-2>, which 
corresponds to the ±2 order OAM modes supported by the HE31 
modes, should be much smaller than <τ0>, <τ-1> and <τ+2> 
because 1) the numerical simulation shows the modal 
birefringence of HE31 modes the smallest (Fig. 13 (a)); 2) a 
scaling factor of 1/9 shortens its birefringence correlation 
length LC

-2 by 9 times compared to LC
0, consequently reducing

<τ-2> further. However, the measured value of <τ-2> is much 
larger (0.88 ps). Actually the 2nd order OAM mode was not 
optimized when we were designing IPGIF. The EH11 and HE31 
modes are close to cutoff [9] and are more lossy than other 
modes in IPGIF. Moreover, the 2nd mode group lies in the 
strongly normal chromatic dispersion region (<-100 ps/nm/km). 
After propagating through the fiber it is highly possible that 
there was mode coupling between the EH11 and HE31 modes 
considering that the length of the OAM fiber is relatively long 
~1.09 km. For the sake of comparison, RCF was also 
investigated in the same way as IPGIF (see TABLE 3). The 
discrepancy between the measured (0.24 ps) and calculated 
(0.05 ps) values of <τ-1> (OAM-PMD of the HE21 modes) is
acceptable considering that the measured values of OAM-PMD 
of RCF have restricted accuracy due to the limited 
measurement wavelength range (Fig. 12).   

The key advantage of using OAM modes is that it is able to 
simplify the multiple-input multiple-output (MIMO) 
processing in the receiver because the OAM channels 
supported by different fiber vector modes are non-degenerate 
and independent of one another. However, the effect of 
OAM-PMD would induce random coupling and time delay 
between the ±l order OAM modes supported by the same vector 
modes. In the experiment of OAM-division-multiplexing 
demonstrated in [6], this mode coupling was small enough to be 
compensated by fiber-based polarization controllers, thus no 
MIMO was implemented. But as the fiber becomes longer or if 
the OAM-PMD is large, polarization controllers will no longer 
be sufficient for compensation and N 2×2 MIMO will have to 
be used for 2N OAM channels. In addition, the complexity of 
MIMO processing increases as the OAM-PMD increases, 
which is similar to the case of polarization-division 
multiplexing in SMFs. Therefore, small values of OAM-PMD 
are highly desirable in the design and fabrication of OAM 
fibers.  

Multiplexing signals on higher order OAM modes may be a 
simple and intuitive solution for reducing OAM-PMD because, 
as discussed in Section III.C, when the OAM order increases, 
the birefringence correlation length LC shrinks dramatically 
while the beat length LB increases. For OAM modes located in 
the region of LC<<LB, the direction of the birefringence vector 
changes rapidly resulting in a very small OAM-PMD. It is 
similar to the effect exploited in the manufacture of ultra-low 
PMD SMFs: the fiber geometry and stresses are designed to 
lengthen the beat length and fiber spinning is intentionally 
induced during the fabrication process to shorten the 
birefringence correlation length [29].     

TABLE 2 
Comparison of the measurement and theoretical calculations for 1.09 km IPGIF 

IPGIF 1.09 km 

Modes LB /m <δneff> LC /m 
<τ±|l| > /ps 

Measured Calculated 

HE11 0.34 4.6×10-6 1.47 0.80 -- 

HE21 0.012 1.27×10-4 0.37 8.34 11.05 

EH11 0.22 6.94×10-6 1.47 0.48 1.2 

HE31 4.38 3.54×10-7 0.16 0.88 0.02 

* The bold are measurement results; the italic are the calculated values.

TABLE 3 

Comparison of the measurement and theoretical calculations for 1.59 km RCF 
RCF 1.59 km 

Modes LB /m <δneff> LC /m 
<τ±|l| > /ps 

Measured Calculated 

HE11 16.67 9.3×10-8 25.5 0.08 -- 

HE21 13.7 1.13×10-7 6.38 0.24 0.05 

* The bold are measurement results; the italic are the calculated values.

VI. CONCLUSION

In this paper, we generalize the concept of PMD in SMFs to 
OAM modes in OAM fibers. The OAM-PMD results from a 
random cross-coupling and frequency-dependent time delay 
between the +l and –l order OAM modes with the same 
CP-OAM handedness. It can be described in a number of 
independent 3D higher-order Stokes spaces. Moreover, we 
extend the fixed-analyzer technique, which has been widely 
used in SMFs, to measure the mean-value of OAM-PMD. Two 
different types of OAM fibers are characterized, IPGIF and 
RCF. The measurement is compared with the theoretical 
calculation showing generally good agreement.  

The OAM-PMD is a critical factor that indicates the stability 
of OAM modes in optical fibers, in addition to the effective 
index separation between HE and EH modes, which has already 
been accepted as a design target of OAM fibers. The 
OAM-PMD must be taken into account when developing novel 
OAM fibers. The measurement of OAM-PMD should provide 
both a valuable feedback for the optimization of the fiber 
design and fabrication, and a useful tool for predicting the 
performance of an OAM-division multiplexing system. 
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