ORBITAL ELEMENTS OF SIX SPECTROSCOPIC

 BINARY STARSBernard W. Bopp, David S. Evans and F. D. Laing
with an appendix by
T. F. Deeming

(Received 1969 October 27)

Abstract

SUMMARY Orbital elements of the spectroscopic binary stars, HD 1273, 148704, 167954, 194215, 202940 and 217792 are presented. HD 148704 shows double lines on a few plates and a somewhat uncertain mass ratio is determined. For HD 217792 elements have been previously published by Buscombe and Morris. The present solution uses a period almost exactly half theirs. The method described in the Appendix has been used to investigate thoroughly large ranges of trial periods and to eliminate some alternative cases, including, in the case cited, the period adopted by Buscombe and Morris.

The present investigation is a continuation of the series of determinations of elements of spectroscopic binaries published in previous papers (e.g. Barker, Evans \& Laing 1967). The observations are mainly from the spectroscopic programme of the Royal Observatory at the Cape of Good Hope undertaken over many years with the Radcliffe 74 -inch reflector at Pretoria. The timing of the observations in recent years has been mainly controlled by one of us (J. D. L.), who was also responsible for much of the preliminary arrangement of the data and for proposing some of the preliminary elements used in the final machine reduction. For the latter, the data were completely reviewed and period analyses undertaken by the methods described in the Appendix. The final reduction was undertaken by one of us (B. W. B.) using an iterative computer program (SPINORB) employed for the paper mentioned above. In most cases this worked satisfactorily, though it required some modification in the cases of small eccentricity to secure convergence of the iterations. Stars HD 148704 and 217792 have been mentioned in the summary above. We are in no doubt that the shorter period adopted for the latter is the correct one. This is a situation of especial difficulty because of the closeness of the periods proposed by the two sets of authors to one year and to six months respectively. Systematic deviations of the old Lick and Cape measures from the computed curve may indicate the presence of a third body in the system. As a matter of policy all measures from other observatories, e.g. Lick, old Cape, Stromlo and Mount Wilson have been assigned a weight of 50 . The new Cape measures have been assigned weights according to the system adopted in previous papers, and these are only exceptionally as large as 50 . In spite of this the residuals shown by the Cape-Radcliffe measures are almost always rather small, the principal exception being some of the plates of HD 148704, where it is thought that the trouble is due to line blending. The terminology used for the Radcliffe Cassegrain spectrograph denotes as b-dispersion, the camera giving $29 \AA \mathrm{~mm}^{-1}$, and as c-dispersion, that
giving $49 \AA \mathrm{~mm}^{-1}$. Except where noted the plates are b-dispersion. One plate, DY 1147 of HD 217792, was obtained with the Radcliffe coudé on a dispersion of $6.8 \AA \mathrm{~mm}^{-1}$. In addition to two of us, (J. D. L. and D. S. E.) initials of plate measurers are A.M. $=\mathrm{Mr}$ Alexander Menzies, and I.M. $=$ Mrs Irene Malin. Source identifications of other material are $\mathrm{L}=$ Lick: $\mathrm{MW}=$ Mount Wilson: $\mathrm{S}=$ Stromlo: $\mathrm{C}=$ Cape. We are indebted, particularly to the Mount Wilson Observatory, for making available details of some early measures of these stars. All six stars have considerable parallaxes, the first two being nearer than 20 parsecs, while HD 202940 is at almost exactly this distance, ($\pi=0^{\prime \prime} \cdot 049$).

We are indebted to Professor R. H. Stoy, formerly H. M. Astronomer at the Cape for permission to wind up the discussion of these stars which had been outstanding for some time, to Professor Harlan J. Smith for time on the University of Texas Computer, and to colleagues at the Cape, Pretoria and Austin.

Royal Observatory, Cape of Good Hope.
Department of Astronomy, University of Texas, Austin, Texas.

REFERENCES

Barker, Edwin S., Evans, David S. \& Laing, J. D., 1967. R. Obs. Bull., No. 130. Buscombe, William \& Morris, Pamela M., 1961. Mon. Not. R. astr. Soc., 123, 183. Lafler, J. \& Kinman, T. D., 1965. Astrophys. F. Supp., 1I, 199.

$$
\begin{gathered}
\mathrm{HD} 1273 \\
0^{\circ \mathrm{h}^{\mathrm{h}} 14^{\mathrm{m} \cdot 4,}-52^{\circ} 5^{\prime \prime}(\mathrm{I} 950)} \\
V=6.84 \quad B-V=+0.64 \quad \text { G2 } V \\
\mu_{\alpha}=+o^{\prime \prime} \cdot 292 \quad \mu_{\delta}=+0^{\prime \prime} \cdot 206 \quad \pi=0^{\prime \prime} \cdot 063
\end{gathered}
$$

HJD $2430000+$	Phase	RV	PE	Lines	Wt	O-C	Measurer
4259.4725	0.0636	- I•5	$\pm \mathrm{I} 3$	13	13	3•3	AM
4297.3631	-.1557	$-16 \cdot 5$	$1 \cdot 4$	14	12	- I. 5	AM
$5307 \cdot 6183$	0.6110	$-18 \cdot 7$	0.6	23	46	$0 \cdot 9$	AM
5441-2713	-. 9359	- $1 \cdot 7$	$0 \cdot 5$	24	52	I.0	DSE
7873.5583	-0.8474	-12.9	$0 \cdot 7$	23	41	$0 \cdot 0$	JDL
7875 55548	0.8522	- $11 \cdot 6$	0.6	22	46	1.0	JDL
7882. 5932	0.8693	-13.1	0.8	21	36	- 1.8	JDL
7884.5460	0.8741	$-\mathrm{II} \cdot \mathrm{I}$	$0 \cdot 7$	22	4 I	-0.3	JDL
$7886 \cdot 5737$	-. 8790	-9.6	$0 \cdot 7$	22	4 I	$0 \cdot 8$	JDL
$7888 \cdot 4946$	0.8837	$-9 \cdot 8$	0.5	23	52	$0 \cdot 1$	JDL
7891.5550	0.8911	$-5 \cdot 7$	0.6	23	46	3.5	JDL
7901.5713	-.9155	$-6 \cdot 9$	$0 \cdot 7$	19	41	-0.8	JDL
7930.4541	-. 9857	$7 \cdot 6$	$0 \cdot 6$	23	46	$0 \cdot 8$	AM
8009 24770	$0 \cdot 1772$	$-17 \cdot 6$	0.7	23	41	- I. 5	JDL
$8032 \cdot 2652$	0.2331	$-16 \cdot 2$	0.8	23	36	$1 \cdot 9$	JDL
$822 \mathrm{I} \cdot 6777$	0.6935	- 15.4	0.8	23	36	3.1	JDL
$8236 \cdot 5477$	$0 \cdot 7296$	-17.5	$0 \cdot 5$	22	52	$0 \cdot 2$	JDL
$8249 \cdot 5869$	0.7613	-17.0	0.7	23	41	-0.1	JDL
$8270 \cdot 4678$	0.8120	-17.0	0.8	23	36	-2.1	JDL
$8303 \cdot 3699$	0.8920	$-10 \cdot 5$	0.6	23	46	-I.4	AM
8311.3279	-.9114	$-7 \cdot 5$	0.9	23	32	-0.8	AM
$8326 \cdot 3431$	-. 9478	- I 9	$0 \cdot 5$	23	52	- I. 6	AM
$8351 \cdot 2721$	0.0084	8-1	0.6	23	46	1.4	JDL
$835 \mathrm{I} \cdot 6675$	0.4955	$-21 \cdot 6$	0.6	23	46	- I•3	JDL
$8568 \cdot 6729$	- . 5368	-19.5	0.7	23	41	$0 \cdot 7$	JDL
8629*4954	-0.6846	$-21 \cdot 6$	$0 \cdot 7$	23	41	$-2 \cdot 9$	AM

Continued

HJD 2430000+	Phase	RV	PE	Lines	Wt	O-C	Measurer
8707.2645	0.8737	-10.7	0.5	23	52	0.2	AM
8765.2553	0.0146	4.0	0.5	23	52	-1.9	AM

First two plates, c-dispersion; remainder, b-dispersion.
Sum of weighted residuals squared is 2749 .
Solution

```
\(\gamma=-14.32 \pm 0.08 \mathrm{~km} \mathrm{~s}^{-1}: K=13.88 \pm 0.10 \mathrm{~km} \mathrm{~s}^{-1}: e=0.567 \mathrm{I} \pm 0.004 \mathrm{I}\)
\(\omega=4^{\circ} \cdot 68 \pm 0^{\circ} \cdot 79: T_{o}=2434233^{\mathrm{d}} \cdot 3 \mathrm{I} \pm 0^{\mathrm{d} \cdot} 77\)
\(P=41 I^{\mathrm{d}} \cdot 449 \pm 0^{\mathrm{d}} \cdot 076\)
```

RMS for solution is r 8394
$a \sin i=64.7 \times 10^{6} \mathrm{~km}$ Mass function $=0.0639$

			14870				
		$6^{\text {h }} 28^{\text {m.I }}$	-38°	(1950)			
	$V=7.25$	$B-V=$	- 087	$)_{c}=$	d		
	$\mu_{\alpha}=$	".416	$=-0$	π	. 051		
HJD $2420000+$	Phase	RV	PE	Lines	Wt	O-C	Measurer
$4364 \cdot 6780$	- 89990	$-56 \cdot 8$			50	$6 \cdot 0$	MW
$4628 \cdot 9729$	-.1982	$-58 \cdot 8$			50	$0 \cdot 0$	MW
4744*6614	0.8309	$-59 \cdot 0$			50	$-6 \cdot 3$	MW
HJD $2430000+$							
5926.5629	$0 \cdot 9550$	$-67 \cdot 2$	$\pm 2 \cdot 7$	11	5	$2 \cdot 8$	AM
6296.5798	-. 5740 *	$-33 \cdot 4$	I. 2	22	22	0.2	DSE
$6350 \cdot 4659$	$0 \cdot 2661$	-49.9	0.6	23	46	$0 \cdot 5$	DSE
$6802 \cdot 2770$	- $0.4534 *$	-29.2	1.7	22	13	$6 \cdot 5$	AM
6805 1983	- ${ }^{\text {. } 5452 *}$	-25.6	$0 \cdot 9$	22	32	$8 \cdot 0$	AM
$8147 \cdot 5323$	-. 6959	-40.8	I. 0	23	28	-2.5	DSE
$8476 \cdot 6373$	-0.0302*	$-83 \cdot 6$	I• 1	20	25	-9.6	JDL
$8479 \cdot 6181$	- $\cdot 1238$	$-56 \cdot 2$	$2 \cdot 5$	18	7	II• 8	JDL
$8482 \cdot 6113$	0.2178	-52.4	0.8	25	36	$3 \cdot 9$	JDL

Continued

HJD $2430000{ }^{+}$	Phase	RV	PE	Lines	Wt	O-C	Measurer
$8483 \cdot 5907$	0.2485	$-53 \cdot 2$	I•O	25	28	-0.7	JDL
$8489 \cdot 5842$	0.4367	$-35 \cdot 8$	I•I	23	25	$0 \cdot 6$	JDL
$8517 \cdot 4380$	$0 \cdot 3114$	$-48 \cdot 9$	0.6	25	46	$-3 \cdot 3$	JDL
8517.5915	$0 \cdot 3162$	$-48 \cdot 0$	$0 \cdot 7$	25	41	$-2 \cdot 9$	JDL
8519.4979	- $\cdot 3761$	-44.5	I•O	25	28	$-4 \cdot 4$	JDL
$8538 \cdot 3415$	$0 \cdot 9678$	$-69 \cdot 9$	I. 6	24	14	I•4	JDL
8538.5929	- $\cdot 9757$	$-74 \cdot 8$	I-8	23	12	$-2 \cdot 9$	JDL
$8545 \cdot 4576$	-.1912	$-57 \cdot 0$	0.6	22	46	$2 \cdot 7$	JDL
$855 \mathrm{I} \cdot 463 \mathrm{I}$	-. 3798	$-4 \mathrm{I} \cdot 3$	$0 \cdot 7$	24	41	-I. 5	JDL
8559.3380	0.6271	$-36 \cdot 1$	I-2	23	22	-1.4	JDL
8591.2689	0.6297	$-36 \cdot 9$	0.8	24	36	$-2 \cdot 1$	AM
8598-2372	-. 8486	$-53 \cdot 0$	0.5	23	52	$2 \cdot 3$	AM
8870.5186	- $\cdot 3985$	$-39 \cdot 2$	0.7	24	41	-0.6	AM
8905.5576	-.4988*	-3I•9	0.8	23	36	$2 \cdot 3$	AM
8937.3812	- $\cdot 498 \mathrm{I}$	$-34 \cdot 2$	0.9	24	32	$0 \cdot 0$	AM

The first Radcliffe observation is on c-dispersion: all following are on b-dispersion. Plates marked * show double lines. There are evidently difficulties with line blending on some of the plates leading to diminished accuracy.
Sum of weighted residuals squared $=12928$.
Solution

$$
\begin{aligned}
& \gamma=-50 \cdot 59 \pm 0 \cdot 20 \mathrm{~km} \mathrm{~s}^{-1}: K=20 \cdot 26 \pm 0 \cdot 35 \mathrm{~km} \mathrm{~s}^{-1}: e=0 \cdot 1638 \pm 0 \cdot 0142 \\
& \omega=165^{\circ} \cdot 8 \pm 5^{\circ} \cdot 4: T_{o}=2424336 \cdot 05 \pm 0 \cdot 44 \\
& P=3 \mathrm{I}^{\mathrm{d} \cdot} 846010 \pm 0^{\mathrm{d} \cdot 000308}
\end{aligned}
$$

RMS for solution is 4.9503
$a \sin i=8.75 \times 10^{6} \mathrm{~km}$ Mass function $=0.0264$.
The observations of the secondary spectrum are of rather small weight. They are as follows Phase

HJD 2430000	(primary)	RV	PE	Lines
$6296 \cdot 5798$	0.5740	-87		3
$6802 \cdot 2770$	0.4534	$-7 \mathrm{I} \cdot 4$	$\pm 3 \cdot 8$	1I
$6805 \cdot 1983$	0.5452	$-74 \cdot 2$	$2 \cdot 1$	16
$8476 \cdot 6373$	0.0302	$4 \cdot 5$		4
8905.5576	0.4988	-82		5

Weighting the second and third observations at three times the weight of the others we arrive at a tentative mass-ratio of $1 \cdot 61 \pm 0 \cdot 12$ (p.e.). The deduced values of $m \sin ^{3} i$ for the two components are then 0.29 and 0.18 solar masses.

$$
\begin{gathered}
\mathrm{HD} \mathrm{167954} \\
\mathrm{I} 8^{\mathrm{h}} \mathrm{I} 6^{\mathrm{m} \cdot 0,}-45^{\circ} 43^{\prime}(\mathrm{I} 950) \\
V=6.85 \quad B-V=0.54 \quad(U-B)_{c}=\mathrm{I} \cdot 68 \quad d F 8 \\
\mu_{\alpha}=-0^{\prime \prime} \cdot 054 \quad \mu_{\delta}=-0^{\prime \prime} \cdot \mathrm{IIO} \pi=0^{\prime \prime} \cdot 039
\end{gathered}
$$

HJD 2430000+	Phase	RV	PE	Lines	Wt	O-C	Measurer
$6720 \cdot 5271$	0.9736	$16 \cdot 4$	± 0.4	20	58	$0 \cdot 8$	AM
$6797 \cdot 2610$	0.6130	$32 \cdot 4$	0.8	22	36	$-1 \cdot 9$	AM
$6805 \cdot 2418$	0.6795	$35 \cdot 2$	0.6	22	46	-0.3	AM

Continued

HJD $2430000+$	Phase	RV	RE	Lines	Wt	O-C	Measurer
7064-5525	0.8403	$33^{1} 1$	0.6	22	46	- I•3	JDL
7119.3852	0. 2972	25^{1} I	0.5	22	52	2.1	JDL
7136-3681	0.4387	$27 \cdot 5$	0.5	21	52	- I. 8	AM
7413.6000	$0 \cdot 7488$	$36 \cdot 6$	0.6	22	46	0.6	DSE
7416•6259	- . 7741	$36 \cdot 6$	0.6	24	46	$0 \cdot 7$	DSE
7441 5261	0.9815	$12 \cdot 8$	$0 \cdot 4$	21	58	-0.9	DSE
$8479 \cdot 6566$	0.6321	$37 \cdot 7$	I 4	18	18	$3 \cdot 0$	JDL
$8517 \cdot 5429$	- . 9478	$21 \cdot 3$	$0 \cdot 7$	22	4 I	-0.3	JDL
8519.6125	0.9650	$17 \cdot 4$	0.5	22	52	-0.3	JDL
$8538 \cdot 4775$	0.1222	$10 \cdot 3$	0.6	22	46	0.4	JDL
$8545 \cdot 4917$	-0.1807	15.5	0.6	21	46	0.4	JDL
8551.4919	0.2307	19.4	0.4	22	58	0.5	JDL
8559.4060	$0 \cdot 2966$	$22 \cdot 2$	$0 \cdot 3$	22	64	-0.8	JDL
8568-3978	$0 \cdot 3716$	$26 \cdot 9$	0.5	22	52	$0 \cdot 2$	JDL
$8576 \cdot 4867$	0.4390	28-1	0.4	22	58	- 1.3	JDL
8629-2600	-. 8787	31•9	$0 \cdot 6$	22	46	$0 \cdot 0$	JDL
8656-1945	- $\cdot 1032$	$6 \cdot 0$	0.5	22	52	$-2 \cdot 2$	JDL
$8857 \cdot 6243$	0.7816	$36 \cdot 2$	$0 \cdot 9$	22	32	$0 \cdot 3$	AM
$8870 \cdot 5574$	0.8894	30•1	0.7	22	4 I	-0.8	AM
$8886 \cdot 5557$	0.0227	$7 \cdot 4$	0.4	22	58	I. I	AM
8902.5942	-. 1564	13.5	0.6	22	46	$0 \cdot 5$	AM
8916.5350	0.2725	2I-8	0.6	22	46	$0 \cdot 2$	AM
8937.5082	0.4473	$30 \cdot 9$	$0 \cdot 6$	22	46	$1 \cdot 3$	AM
8984*4.537	0.8385	$36 \cdot 4$	$0 \cdot 7$	22	41	I 9	AM

Sum of weighted residuals squared is 1638
Solution

$$
\begin{aligned}
& \gamma=+25 \cdot 19 \pm 0.04 \mathrm{~km} \mathrm{~s}^{-1}: K=15 \cdot 48 \pm 0.08 \mathrm{~km} \mathrm{~s}^{-1}: e=0.4282 \pm 0.0042 \\
& \omega=134^{\circ} \cdot 4 \mathrm{I} \pm 0^{\circ} \cdot 53: T_{o}=2430003 \cdot 28 \pm 0.44 \\
& P=120^{\mathrm{d}} \cdot 0074 \pm 0^{\mathrm{d} .0066}
\end{aligned}
$$

RMS for solution is $\mathrm{r} \cdot 3686$.
$a \sin i=23.1 \times 10^{6} \mathrm{~km}$. Mass function $=0.034 \mathrm{I}$.

$$
\begin{gathered}
\mathrm{HD} 194215 \\
20^{\mathrm{h}} 22^{\mathrm{m} \cdot 4}, \quad-28^{\circ} 5^{\prime}(1950) \\
V=5 \cdot 84 \quad B-V=+1 \cdot 10 \quad(U-B)_{c}=2 \cdot 15 \quad K_{3} V \\
\mu_{\alpha}=+0^{\prime \prime} \cdot 016 \quad \mu_{\delta}=+0^{\prime \prime} \cdot 01 \mathrm{II} \quad \pi=0^{\prime \prime} \cdot 03 \mathrm{I}
\end{gathered}
$$

HJD $2430000+$	Phase	RV	PE	Lines	Wt	O-C	Measurer
$6720 \cdot 5867$	0.0569	$4 \cdot 4$	± 0.6	23	46	0.6	AM
$6772 \cdot 3772$	- 1940	$1 \cdot 4$	$0 \cdot 6$	24	46	$2 \cdot 7$	AM
6805.2868	0.2812	$-5 \cdot 3$	0.4	23	58	$4 \cdot 8$	AM
6827.3312	-. 3396	- 11.8	$0 \cdot 4$	23	58	I.7	AM
7057.6395	$\bigcirc \cdot 9495$	$6 \cdot 6$	0.6	23	46	$2 \cdot 6$	AM
7093.5292	0.0445	$8 \cdot 5$	$0 \cdot 7$	23	41	$4 \cdot 4$	JDL
7103.4999	0.0709	0.6	$0 \cdot 6$	24	46	$-2 \cdot 7$	JDL
8517.6401	0.8160	$-5 \cdot 2$	$0 \cdot 4$	23	58	- I.9	JDL
$8519 \cdot 6597$	0.8214	$-3 \cdot 1$	$0 \cdot 5$	23	52	-0.1	JDL
$8538 \cdot 6398$	0.8716	0.4	$0 \cdot 7$	23	41	$0 \cdot 0$	JDL
$8545 \cdot 5335$	- 0.8899	$2 \cdot 8$	0.4	23	58	1.4	JDL
8551.5215	0.9057	$1 \cdot 0$	$0 \cdot 4$	23	58	- $1 \cdot 3$	JDL
$8562 \cdot 5540$	0.9350	$2 \cdot 8$	$0 \cdot 4$	23	58	-0.7	JDL
$8565 \cdot 5431$	0.9429	$0 \cdot 9$	$0 \cdot 7$	23	41	-2.9	JDL
8568.5154	0.9507	$4 \cdot 2$	0.5	23	52	0.2	JDL
$8576 \cdot 5421$	- 0.9720	$3 \cdot 4$	$0 \cdot 7$	23	41	- I. I	JDL
$8595 \cdot 4632$	0.0221	$3 \cdot 8$	$0 \cdot 3$	23	64	-0.8	JDL
$8598 \cdot 4036$	0.0299	$4 \cdot 4$	0.5	23	52	$0 \cdot 0$	JDL
$8599 \cdot 4328$	0.0326	$2 \cdot 2$	$0 \cdot 4$	23	58	-2.2	JDL
$860 \mathrm{I} \cdot 4148$	-0.0379	$2 \cdot 0$	- 5	23	52	$-2 \cdot 3$	JDL
$8629 \cdot 3015$	$0 \cdot 1117$	- 8	$0 \cdot 5$	22	52	-0.5	JDL
$8656 \cdot 2568$	$0 \cdot 1831$	-4.3	0.4	23	58	-1.0	AM
$8692 \cdot 2889$	0.2785	$-9 \cdot 0$	$0 \cdot 5$	23	52	$0 \cdot 9$	AM
$8857 \cdot 6369$	0.7164	-10.7	$0 \cdot 9$	23	32	-0.5	AM
8916.5637	0.8725	$3 \cdot 8$	0.7	23	41	3.4	AM
$8979 \cdot 4972$	-0.0391	$5 \cdot 9$	0.7	23	41	I. 6	AM
$8984 \cdot 4846$	0.0524	9.0	0.6	23	46	$5 \cdot 1$	AM
9048-2474	0.2212	-5.9	0.5	23	52	O.I	AM

Sum of weighted residuals squared is 6565

Solution

$$
\begin{aligned}
& \gamma=-7 \cdot 25 \pm 0 \cdot 20 \mathrm{~km} \mathrm{~s}^{-1}: K=11 \cdot 19 \pm 0 \cdot 28 \mathrm{~km} \mathrm{~s}^{-1}: e=0.0687 \pm 0.0138 \\
& \omega=0^{\circ} \cdot 00 \pm 9^{\circ} \cdot 46: T_{o}=2430279^{\mathrm{d}} \cdot 9 \pm 10^{\mathrm{d} \cdot 8} \\
& P=377^{\mathrm{d} \cdot 60 \pm 0^{\mathrm{d}} \cdot 25}
\end{aligned}
$$

RMS for solution is 2.2594 .
$a \sin i=58.0 \times 10^{6} \mathrm{~km}$. Mass function $=0.0546$.
The radial velocity measures will also fit a pure sine curve having half the period, but with considerably greater scatter. This alternative was eliminated as less preferable on the basis of the period-finding analysis.

HD 202940							
$2 \mathrm{I}^{\mathrm{h}} \mathrm{I}^{\text {m}}{ }^{\text {. } 9}-26^{\circ} 34^{\prime}$ (1950)							
$V=6.55 \quad B-V=0.73 \quad(U-B)_{c}=\mathrm{I} .80 \quad G_{5} \mathrm{~V}$							
$\mu_{\alpha}=-0^{\prime \prime} \cdot 539 \quad \mu_{\delta}=-0^{\prime \prime} \cdot 352 \quad \pi=0 \prime \cdot 049$							
ADS 14847 A: 10, K 4, $3^{\prime \prime}$							
HJD 2410000 +	Phase	RV	PE	Lines	Wt	O-C	Measurer
9227.9259	-. 1787	-46.8			50	$-5 \cdot 7$	MW
$9633 \cdot 8392$	- 1944	$-39 \cdot 8$			50	I-I	MW
9699.6235	0.2762	-41.2			50	$-4 \cdot 4$	MW
HJD $2420000+$							
$4336 \cdot 9617$	- 0.5203	-11.3			50	$4 \cdot 2$	MW
$4394 \cdot 8058$	0.2301	$-36 \cdot 1$			50	$3 \cdot 5$	MW
4424•7040	0.6307	$-7 \cdot 3$			50	$-2 \cdot 0$	MW
HJD 2430000 +							
$6068 \cdot 3577$	$0 \cdot 0976$	$-36 \cdot 1$	± 0.7	24	41	I. 0	AM
$6078 \cdot 3484$	-. 5656	-11.2	$0 \cdot 6$	23	46	$0 \cdot 1$	AM

Continued

HJD 2430000 +	Phase	RV	PE	Lines	Wt	$\mathrm{O}-\mathrm{C}$	Measurer
$6386 \cdot 5354$	$0 \cdot 0032$	-18.6	0.8	26	36	-0.9	DSE
$6467 \cdot 2645$	$0 \cdot 7851$	$4 \cdot 7$	0.8	24	36	-I. ${ }^{\text {I }}$	AM
$6772 \cdot 3999$	-. 0796	$-35 \cdot 2$	0.7	26	41	-0.6	AM
8153.6417	$0 \cdot 7863$	$7 \cdot 9$	0.6	24	46	$2 \cdot 0$	DSE
$8538 \cdot 6338$	0.8219	$10 \cdot 1$	0.8	22	36	$3 \cdot 3$	JDL
$8545 \cdot 5831$	-. 1474	$-35 \cdot 6$	0.7	23	4 I	$5 \cdot 1$	JDL
$8551 \cdot 6099$	-. 4298	$-23 \cdot 1$	0.5	23	52	$0 \cdot 8$	JDL
$8562 \cdot 6469$	-. 9468	-4.5	0.7	23	41	-0.4	JDL
$8568 \cdot 6202$	0.2267	$-40 \cdot 0$	0.5	24	52	-0.3	JDL
$8576 \cdot 6553$	0.603 I	-7.6	0.4	23	58	0.2	JDL
$8595 \cdot 5722$	0.4893	-18.5	0.6	23	46	-0.2	JDL
$8598 \cdot 5013$	0.6265	$-6 \cdot 4$	0.5	24	52	-0.7	JDL
$8599 \cdot 5347$	0.6749	-2.6	0.4	23	58	-I. ${ }^{\text {I }}$	JDL
8601.5153	$0 \cdot 7677$	$2 \cdot 1$	0.7	23	41	-2.9	JDL

Sum of weighted residuals squared is 6582 . Solution

$$
\begin{aligned}
& \gamma=-17 \cdot 19 \pm 0 \cdot 1 \mathrm{Ikm} \mathrm{~s}-1: K=23 \cdot 98 \pm 0 \cdot 15 \mathrm{~km} \mathrm{~s}^{-1}: e=0.2514 \pm 0 \cdot 0068 \\
& \omega=89^{\circ} \cdot 48 \pm \mathrm{I}^{\circ} \cdot 34: T_{o}=2419224^{\mathrm{d} \cdot 1 \mathrm{I} \pm 0^{\mathrm{d} \cdot} \cdot \mathrm{I2}} \\
& P=2 \mathrm{I}^{\mathrm{d} \cdot} 34622 \pm \mathrm{o}^{\mathrm{d} \cdot 00010}
\end{aligned}
$$

RMS for solution is 2.9764

$$
a \sin i=6.8 \mathrm{I} \times 10^{6} \mathrm{~km} . \quad \text { Mass function }=0.0277
$$

Continued

HJD $2430000+$	Phase	RV	RE	Lines	Wt	O-C	Measurer
6035.2140	-0.0124	27.5			50	$2 \cdot 2$	S
$6036 \cdot 2140$	0.0180	$29 \cdot 6$			50	$5 \cdot 4$	S
$6038 \cdot 2170$	0.0293	$28 \cdot 2$			50	$6 \cdot 8$	S
$6067 \cdot 1440$	-.1915	$-7 \cdot 8$			50	I'I	S
6143.9260	0.6221	-14.1			50	$0 \cdot 7$	S
6175.9450	-. 8016	-14.1			50	$-6 \cdot 2$	S
$6410 \cdot 1880$	- 1153	$0 \cdot 1$			50	$0 \cdot 6$	S
6478-0100	0.4956	-10.1			50	$5 \cdot 9$	S
$6501 \cdot 9540$	-0.6299	-10.6			50	4.1	S
6503.9350	- 6.6410	-12.0			50	$2 \cdot 5$	S
6509.9220	0.6746	-12.0			50	$1 \cdot 7$	S
6718.2430	-0.8428	0.0			50	4.2	S
$6720 \cdot 3170$	-0.8544	-0.5			50	$2 \cdot 4$	S
$6737 \cdot 3100$	- 0.9497	15.5			50	-I. I	S
6759.4680	0.0740	$8 \cdot 9$	± 0.9	16	32	0.8	AM
$6778 \cdot 1960$	-.1790	$-7 \cdot 1$			50	- 0.8	S
6799 - 1500	- $\cdot 2965$	$-6 \cdot 9$			50	$6 \cdot 9$	S
6851.9900	0.5929	- 13.9			50	I. 4	S
7077.3330	- 0.8566	I. I			50	$3 \cdot 8$	S
7099.3250	- $\cdot 9799$	$20 \cdot 7$			50	$-4 \cdot 0$	S
7115-2800	0.0694	15.4			50	$6 \cdot 1$	S
7121.2540	- 1029	12.0			50	10.3	S
$7210 \cdot 9890$	0.6061	- II. 8			50	3•3	S
7578.3500	0.6663	- 15.1	$\pm \mathrm{I} \cdot 3$	13	20	- I. 2	DSE
$7580 \cdot 3430$	-0.6774	-14.4	I•I	16	25	-0.8	DSE
7588-3340	$0 \cdot 7223$	- 15.0	I. 6	13	14	-2.8	AM
7927-3060	0.6232	-14.6	I•2	15	22	$0 \cdot 2$	AM
$7930 \cdot 3620$	0.6403	- 12.8	I'I	16	25	1.7	AM
$8360 \cdot 2450$	0.0511	14.1	$0 \cdot 9$	15	32	-0.6	AM
$8360 \cdot 2540$	0.0512	19.5	$0 \cdot 7$	16	41	$4 \cdot 9$	AM
$8692 \cdot 3230$	-.9134	- I. 2	I. 2	16	22	$-8 \cdot 2$	IM
8700.2080	-. 9576	13.3	0.8	16	36	$-5 \cdot 6$	IM
$8707 \cdot 2120$	-. 9969	$24 \cdot 3$	0.8	16	36	$-2 \cdot 3$	IM
$8710 \cdot 4350$	-.0150	$26 \cdot 9$	I•1	15	25	$2 \cdot 0$	IM
$8710 \cdot 4510$	0.0151	$26 \cdot 5$	$0 \cdot 7$	15	41	1.6	IM

Continued

HJD $2430000+$	Phase	RV	PE	Lines	Wt	O-C	Measurer
8722.3410*	-0.0817	I•9	$0 \cdot 5$	32	50	$-4 \cdot 3$	IM
8731.3260	$0 \cdot 1321$	$-4 \cdot 3$	I. 0	15	28	- I'3	IM
$8765 \cdot 2340$	$0 \cdot 3223$	- 14.1	$0 \cdot 7$	16	41	$0 \cdot 3$	IM
8782.2280	0.4176	$-16 \cdot 4$	I•O	16	28	-0.6	IM

Sum of weighted residuals squared is 59495

* Coudé plate, DY 1477

Solution

$$
\begin{aligned}
& \gamma=-5 \cdot 97 \pm 0 \cdot 1 \mathrm{I} \mathrm{~km} \mathrm{~s}^{-1}: K=2 \mathrm{I} \cdot 28 \pm 0.16 \mathrm{~km} \mathrm{~s}^{-1}: e=0.5286 \pm 0.004 \mathrm{I} \\
& \omega=2^{0} \cdot 62 \pm 0^{\circ} \cdot 8 \mathrm{I}: T_{o}=2435319^{\mathrm{d} .73 \pm 0^{\mathrm{d}} \cdot 25} \\
& P=178^{\mathrm{d}} \cdot 3 \mathrm{I} 77 \pm \mathrm{o}^{\mathrm{d} \cdot 0038}
\end{aligned}
$$

RMS for solution is 4.7397 .
$a \sin i=44.3 \times 10^{6} \mathrm{~km}$. Mass function $=0.1092$.
where v_{i} is the i th radial velocity, in the phase order for that particular trial period. A little reflection will show that if the period is correct, and if there are no observational errors the value of this sum will be exactly twice the total range in the observations. If the period chosen were, for instance, twice the correct one, the value of this sum would be four times the total range in the observations, while for a period which is simply wrong, so that the points scatter all over the phase diagram, the sum is many times the total range. If Q is the total range of the observations, we define a discriminant function, r, as

$$
r=\frac{S}{Q}-2 .
$$

Because there are observational errors present in the radial velocities, the value of r will generally not be zero, even if the correct period is chosen. Our procedure is to
input a discriminant level, ρ, to the program, along with the data, the minimum and maximum periods to be tried, and the period interval, ΔP, to be used between successive trials. The program then prints out those values of P which give a value of r less than ρ. The process is then repeated with a narrower range of period, and a smaller period interval, ΔP. In this way, we obtain an accurate period after two or three iterations. We have usually only carried this to four or five significant figures, which is normally sufficient for entering the formal solution for the elements of the binary orbit. We usually start with $\rho=2$, and lower this to I after the first trial. Good fits generally give $r \approx 0.5$, depending on the range of velocity variation. In this way, first trials for the period can be conducted over a wide range of period and with a relatively coarse ΔP. In the neighbourhood of the correct period, the value of r as a function of period shows a sharp minimum, with relatively broad ' wings ', so that we can locate the vicinity of the correct period quite well, even for rather large steps in the period.

The whole procedure is made very convenient and fast by the use of a partial time-sharing feature on the CDC 6600 computer of the University of Texas. We enter the data and the program from a Teletype machine in the offices of the Astronomy Department, and perform one iteration in about 20 seconds, most of that time being ' waiting time' in the input queue of the computer. The final result is obtained in a few minutes. For checking, we can also have the phase diagram plotted directly at the Teletype, for any given period.

