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Using a one-dimensional model, we explore the ability of machine learning to approximate the
non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation be-
tween Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be system-
atically improved with increased reference data and (iii) generate accurate self-consistent densities
via a projection method that avoids directions with no data. With relatively few densities, the error
due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4834075]

I. INTRODUCTION

Kohn-Sham density functional theory (KS DFT)1, 2 is a
widely used electronic structure method, striking a balance
between accuracy and computational efficiency.3 KS DFT re-
quires solving a self-consistent set of orbital equations, yield-
ing the exact non-interacting kinetic energy.4 In return, only
a small fraction of the total energy, the exchange-correlation
(XC) energy, needs to be approximated as a functional of the
electronic spin densities. This produces far greater accuracy
than obtained with the original, Thomas-Fermi-based, orbital-
free DFT,5 thus motivating the search for better kinetic energy
approximations.6, 7

The computational bottleneck in KS DFT calculations
is the need to solve the KS equations, which formally scale
as N3, where N is the number of electrons. Thus there is
strong interest in constructing an orbital-free DFT which
would avoid this step.8 A sufficiently accurate approximation
to TS[n], the kinetic energy (KE) of KS electrons, would pro-
duce an orbital-free scheme, greatly reducing the computa-
tional cost of DFT without sacrificing accuracy. Sufficient ac-
curacy would be that the error made in approximating TS be
less than that made by current approximations for XC; accu-
racy beyond this is practically irrelevant.

Several research efforts have recently focused in this
direction.6, 7 Unfortunately, the relative accuracy require-
ments of a KE functional are much stricter than those of an
XC functional because TS is typically comparable to the to-
tal energy of the system.5, 9, 10 Worse, one also needs accurate
functional derivatives, since ultimately the density must be
determined by solving an Euler equation instead of the KS

a)Present address: Institute of Physical Chemistry, Department of Chemistry,
University of Basel, Klingelbergstr. 80, 4056 Basel, Switzerland.

equations. The standard XC approximations, which use local
and semi-local forms, do not have accurate derivatives,11 but
this is unimportant for obtaining accurate energies in most
present calculations,12 again because only a small part of the
Kohn-Sham potential comes from XC. The solution of an ef-
fective one-body potential, albeit mildly inaccurate, usually
produces extremely accurate densities. As we discuss within,
local and semi-local approximations to TS also have poor
functional derivatives, which, in orbital-free DFT, can lead to
highly inaccurate densities.

Approximating TS has proven to be a difficult task for
both extended and finite systems.8 Some approaches build
on Thomas-Fermi theory with gradient expansions or the
von Weizsäcker KE.6, 7, 13 Others use generalized gradient
approximations (GGAs),9, 10 some with enhancement factors
based on “conjointness.”14 An alternative approach is to use
non-local KE functionals15–19 based on linear response the-
ory. These can produce accuracy comparable to KS DFT
for main group metals, but mostly cannot describe cova-
lently bonded materials (although some have not been broadly
tested on these materials). For multiple bonds, virtually no
KE functional can accurately describe stretched molecules or
dissociate diatomics via optimized orbital-free DFT calcula-
tions. In general, achieving self-consistent results with an all-
electron calculation proves difficult because standard orbital-
free KE functionals exhibit poor functional derivatives near
the nuclei.8 Such difficulties can be circumvented through
the use of pseudopotentials, effectively softening the singu-
larity at the nuclei.8, 20 In the present work, we use soft-
Coulomb interactions (the Coulomb interaction gives a di-
vergent KE in 1d) in analogy to this softening. Thus, we do
not test the ability of our method to handle cusps in the den-
sity (this will be explored in future work). Only local pseu-
dopotentials can be used in OF DFT, which are less accu-
rate than their non-local counterparts available in KS DFT.

0021-9606/2013/139(22)/224104/10/$30.00 © 2013 AIP Publishing LLC139, 224104-1
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Introducing KS-derived basis functions and a density matrix
in the atomic core region in angular-momentum-dependent
OF DFT can recover some of the error introduced by lo-
cal pseudopotentials.21 For covalently bonded semiconduc-
tor materials, original work of Huang and Carter22 yielded
good results, and a recent extension20 for covalently bonded
molecules achieves moderately accurate optimized dissocia-
tion energies and bond lengths for various dimers. Still, self-
consistent densities are not very accurate within the bond-
ing region, and it is not clear how the tunable parameters
in such approximations would accommodate different, larger
molecules.

Dissociating a chemical bond correctly is a particularly
difficult problem. Any locally-based approximation has dif-
ficulties when the bond length is stretched to large dis-
tances. The fragments often contain fractional electron num-
bers, for which local approximations to XC yield very wrong
answers.23 Similar difficulties beset local and semi-local ap-
proximations to TS. In Sec. II C, we demonstrate this for the
KE of a single bond in one dimension, where a local approx-
imation yields fragment energies that are much worse in the
stretched limit.

A different approach to this problem is to use machine
learning (ML), a powerful tool for learning high-dimensional
patterns via induction that has been successful in many
applications,24 including some in quantum chemistry.25–30

Some of us recently suggested using ML to approximate den-
sity functionals.31 Arbitrary accuracy was achieved by adding
enough training data, difficulties with functional derivatives
were circumvented, and the predictive variance was used to
indicate where the ML approximation to TS would be accu-
rate. But in that work, all particles were confined to a box, so
the difficulties of stretching and even breaking bonds did not
arise.

We are interested in applying ML to construct approx-
imations to TS for general use in electronic structure calcu-
lations. This is a totally different way to think about approxi-
mating density functionals than the traditional paths described
above. ML is a sophisticated interpolation scheme that shines
in very high-dimensional spaces. Instead of using exact con-
ditions or starting from local approximations, ML takes re-
sults from known examples to predict previously unknown
(but similar) cases. Thus, ML cannot produce a transferable
approximation satisfying many exact conditions, and is not
applicable in totally novel circumstances. Instead, an ML ap-
proximation requires examples where the answer is known,
and then can only be applied to similar examples where the
answer is desired. Since every KS calculation ever run (and
each iteration in the self-consistent cycle of every KS calcu-
lation) produces a density and its exact TS, this seems like an
ideal situation for attempting to apply ML to density func-
tional construction.

ML approximations are conceptually very different from
the usual approach. Superficially, they may appear similar to
the popular practice (for XC functionals) of fitting approxi-
mate forms to multiple data sets.32, 33 However, the difference
in our approach is that ML fits the shape of the functional
itself, not any human-constructed approximate form, such as
a local or semi-local form, or a two-point response function.

The resulting approximate ML functional may contain 106 pa-
rameters, which will change depending on the training data.
It may be impossible to prove that even the most basic exact
condition for TS, namely, that it should always be positive, is
always satisfied by such a functional. In fact, there is no rea-
son that it must, as the functional need only be accurate on the
space of densities that it is designed to be accurate for. Under-
standing and evaluating ML approximations to density func-
tionals will require developing an entirely new set of tools.

The present paper is again a proof of principle, but one
aimed at chemical rather than physical problems. Perhaps the
most outstanding failure of explicit density functionals has
always been the stretching and breaking of chemical bonds.
This failure has been highlighted for XC approximations,34

but is even more of a problem for KE approximations. In
fact, it is worse in our 1d examples than in 3d. Thus, here
we are not testing our ML approximation for general use in
real molecules. We are testing to see if ML approximations
show any particular difficulty in breaking bonds, the bane of
the usual approaches.

In this work, we construct an orbital-free KE functional
based on ML that is capable of accurately describing 1d di-
atomics from the united atom limit to complete nuclear sep-
aration. Moreover, we obtain accurate ground-state densities
and molecular forces, and accuracy is systematically improv-
able with more training densities. The culmination of this
work is shown in Fig. 9, where we apply ML algorithms self-
consistently to fermions in two wells as they are separated:
ML appears to have no difficulty in reproducing the KS DFT
result for a situation that is very challenging with traditional
orbital-free KE functional approximations.

II. THEORY AND BACKGROUND

Throughout this paper, we use atomic units (e2 = � = μ

= 1). Unless labeled otherwise, energies are given in Hartrees
and lengths are given in Bohr radii. All equations are written
for 1d systems, and n(x) is assumed to be a spin-unpolarized
electron density.

A. KS DFT

The Hohenberg-Kohn theorems1 allow writing the total
ground-state energy of the system as a minimum of a func-
tional of the electron density n,

Ev[n] = TS[n] + V [n] + U [n] + EXC[n], (1)

where TS[n] is the non-interacting KE, V [n] is the energy as-
sociated with the one-body potential v(x) (e.g., the interac-
tion of the electron with external fields such as nuclei), U[n]
is the Hartree electron-electron repulsion energy, and EXC[n]
is the XC energy. In KS DFT, TS is computed by solving an
auxiliary non-interacting system (the KS system).5 The KS
equations for a 1d system are

{
−1

2

∂2

∂x2
+ vS[n](x)

}
φj (x) = εjφj (x), (2)
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where εj and φj are the KS energy levels and orbitals. The KS
potential is

vS[n](x) = v(x) + vH[n](x) + vXC[n](x), (3)

where vH[n](x) is the Hartree potential, and

vXC[n](x) = δEXC[n]

δn(x)
. (4)

For ease, we consider only doubly occupied orbitals, so the
electron density is given by

n(x) = 2
N/2∑
j=1

|φj (x)|2. (5)

Given some approximation for EXC[n], this is a closed set
of equations that must be solved self-consistently to give the
ground-state density which, inserted in (1), yields an approx-
imation to the ground-state energy.

B. Model system

In the present work, we consider a one-dimensional
model of a diatomic molecule, where we replace the true
Coulomb potential by a soft form,35 so that the electron re-
pulsion is

vee(|x − x ′|) = 1√
1 + |x − x ′|2

, (6)

while the attraction to the nuclei of charges Zα and Zβ is

v(x) = − Zα√
1 + |x + R/2|2

− Zβ√
1 + |x − R/2|2

(7)

and the internuclear repulsion is VNN(R) = ZαZβ/
√

1 + R2,
where R is the distance between the two nuclei. For example,
H2 is modeled by Zα = Zβ = 1 and N = 2, and LiH is given
by Zα = 3, Zβ = 1, and N = 4.

We perform KS DFT calculations using the local density
approximation (LDA) for XC. For the 1d gas of soft-Coulomb
interacting electrons, the LDA exchange energy is given in
Ref. 35 and an accurate parametrization of the correlation en-
ergy is given in Ref. 36. As mentioned above, the local ap-
proximation causes the well-known failure of the molecule to
dissociate into the correct fragments, as the symmetry is re-
stricted to a singlet. This is irrelevant to our purposes here,
except to make our 1d calculation more realistic. Our ML KE
functional is designed to reproduce the KS LDA results, not
correct the failure of LDA XC. A perfect model for TS would
reproduce KS LDA exactly (if the exact XC functional were
readily available,35 then a perfect model for TS would repro-
duce the exact binding curve).

Numerically, we solve the KS equations in a discrete vari-
able representation (DVR)37 generated by a unitary transfor-
mation of the eigenfunctions ξ j of the 1d (non-interacting)
harmonic oscillator (with ω = 1), chosen for its simplicity.
The transformation is found by diagonalizing the position op-
erator,

XDVR = UXU †, (8)

where Xij = 〈ξi |x̂|ξj 〉 for i, j = 1, . . . , NG, where NG is the
number of basis functions used. The DVR basis is

θα(x) =
NG∑
j=1

Uαjξj (x) (9)

for α = 1, . . . , NG. This method is closely related to a
Hermite-Gaussian quadrature, as the quadrature points xα are
given by the diagonal of XDVR. The DVR basis has the special
property θα(xβ) = δαβ/

√
wβ , so the quadrature weights are

given by wα = 1/θα(xα)2. The expansion of any function f (x)
in the DVR basis is given by the values of f at the quadrature
points,

f (x) ≈
∑

α

√
wαf (xα)θα(x), (10)

and the integral of f(x) on the interval (−∞, ∞) can be ap-
proximated by ∫ ∞

−∞
f (x) dx ≈

∑
α

wαf (xα). (11)

For a more thorough discussion of DVR, see Ref. 37. To find
the KS energies and orbitals, we diagonalize the Hamiltonian
of the KS system in the DVR basis,

H DVR = UT U † + V DVR
S , (12)

where V DVR
S,αβ = vS[n](xα)δαβ , and the matrix elements of the

kinetic energy operator, Tij = 〈ξi | − 1
2

∂2

∂x2 |ξj 〉, are computed
analytically. The electron density is given by

n(x) =
∑

α

√
wαn(xα)θα(x). (13)

Note that only the value of the densities at the quadrature
points xα need be computed and stored,

n(xα) = 2
N/2∑
j=1

|φj (xα)|2. (14)

We compute reference KS LDA energies and densities
for 1d H2, He2, Li2, Be2, and LiH, for nuclear separation R
between 0 and 10. The range of kinetic energies for all sys-
tems are shown in Fig. 1. With NG = 100, the errors in all

FIG. 1. KS kinetic energies (in Hartrees) for 1d soft-Coulomb models of H2,
He2, Li2, Be2, and LiH, for nuclear separations between 0 and 10.
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(a)

(b)

FIG. 2. The 1d soft-Coulomb model for (a) H2 (Zα = Zβ = 1, N = 2) and
(b) LiH (Zα = 3, Zβ = 1, N = 4). The KS electronic density n(x) and the
corresponding KS potential vS[n](x) are shown at R = 0 (dashed), equilib-
rium bond length Re (solid), and nearly dissociated R = 10 (dotted dashed).
Re values are given in Table I. Values given in atomic units.

reference energies are less than 10−7. Fig. 2 shows the den-
sities and potentials for the united atom, equilibrium bond
length, and stretched diatomic for H2 and LiH. Fig. 9 shows
the LDA binding curve of H2 and LiH. Additionally, we
extract equilibrium bond lengths Re, vibrational frequencies
ωe, and dissociation energies D0 (which we calculate as
the difference in molecular energies between R = 10 and
R = Re, minus the zero-point vibrational energy), listed in
Table I.

C. Orbital-free DFT

In orbital-free DFT, TS is approximated directly as a func-
tional of n. The ground-state density is found by the con-

TABLE I. Reference dissociation energies (in kcal/mol), equilibrium bond
lengths (in Bohr radii), and vibrational frequencies (in cm−1) for our 1d di-
atomic models, computed with LDA. Note that He2 and Be2 are unbound.

System D0 (kcal/mol) Re ωe (cm−1)

H2 131 1.63 2960
Li2 16.6 5.06 272
LiH 67.3 2.95 1460

strained minimization

δ

{
Ev[n] − μ

(∫
n(x) dx − N

)}
= 0, (15)

where the chemical potential μ is adjusted to produce the re-
quired particle number N. For the KS system, this becomes
simply

δTS[n]

δn(x)
= μ − vS[n](x). (16)

At self-consistency, the functional derivative of the KE is
negative the KS potential (up to a constant). This equation
can be solved directly for the ground state density ñ—no or-
bitals are required. Depending on the approximation to TS,
the functional derivative may be ill behaved at the nuclei for
real molecular systems, making it difficult or impossible to
solve self-consistently. This problem can be avoided by us-
ing pseudopotentials, ameliorating the 1/r divergence at the
nuclei.

Let T̃S be an approximate TS, yielding an approximate
Ẽv[n]. There are two tests of an approximate T̃S. The weaker
test is to evaluate T̃S on the KS density n and compute the er-
ror �EF ≡ Ẽv[n] − Ev[n] = T̃S[n] − TS[n] = �TS[n], where
Ẽv is given by inserting T̃S into Eq. (1). This is called the
functional-driven error, and is the error due to the approximate
functional. Note that, for N = 2, the exact non-interacting KE
is simply the von Weizsäcker,

T VW[n] =
∫

dx
n′(x)2

8n(x)
. (17)

The more stringent test is to insert T̃S into Eq. (16), find the
minimizing density ñ for the given potential, and compute
the error �E = Ẽv[ñ] − Ev[n]. The density-driven error,
defined by �ED = �E − �EF = Ẽv[ñ] − Ẽv[n], measures
how much additional error is introduced by self-consistency.
In general, we seek an approximation to TS that passes both
tests, producing accurate densities and small �ED and �EF.
For example, the simplest density functional approximation
to TS is the local approximation, which for spin-unpolarized
densities in 1d is

T loc
S [n] = π2

24

∫
dx n3(x), (18)

Fig. 3 shows the functional- and density-driven errors of T loc
S

for H2, highlighting the difficulty the local approximation has
as the diatomic is stretched. T loc

S overestimates the KE by 31%
at R = 0, but in the stretched limit gives a 67% underestimate.
This is because the density of H2 is spin-unpolarized, while
each isolated fragment should give the same result as a spin-
polarized calculation. Additionally, solving self-consistently
roughly doubles the error in the total energy. More sophisti-
cated approximations to TS, such as a GGA, are built on T loc

S

and thus suffer from the same problem.

D. Data topology and representation

In ML, the data typically have a finite representation. For
example, in predicting atomization energies from molecular
structures,27 each molecule was represented by its Coulomb
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FIG. 3. Errors in total energy (in kcal/mol) of H2 as a function of nuclear
separation R, using the local approximation to the KE T loc

S [n], split into the
functional- and density-driven components �Eloc

F and �Eloc
D .

matrix, derived from the charges and positions of the nuclei.
In contrast, the electronic density n is a continuous function
restricted to the domain

JN ≡
{
n

∣∣∣∣ n(x) ≥ 0, n1/2(x) ∈ H 1(R),
∫ ∞

−∞
n(x) dx = N

}
,

(19)

where H 1(R) is a Sobolev space.38 Although JN is infinite di-
mensional, in practice n is expanded in a finite basis (with NG

basis functions). In this work, the discrete variable represen-
tation is used, where in previous work31 we used a real space
grid. We use the L2 inner product and norm between densities
n, m,39

〈n,m〉 =
∫ ∞

−∞
dx n(x)m(x), ‖n‖ =

√
〈n, n〉. (20)

Since the ML method used is expressed in terms of this inner
product, the results are independent of the specific represen-
tation used as long as the basis is converged.

Even with a truncated basis, JN is still high-dimensional,
and applying ML to learn the KE of all densities in JN would
not be feasible. Fortunately, we are only interested in a spe-
cific class of potentials (e.g., soft-Coulomb), which greatly
reduces the variety of possible densities. In general, let the
potential v be parametrized by the variables {p1, . . . , pd}. We
define the density manifold MN ⊂ JN as the set of all den-
sities that come from these potentials with a given particle
number N. In general, MN is a d-dimensional manifold. The
training densities nj, for j = 1, . . . , NT, are sampled from MN .
For our diatomics, the nuclear separation R is the only vari-
able and thus d = 1 (where in previous work31 our potential
had nine variables).

E. Kernel ridge regression (KRR)

KRR is a nonlinear form of regression (i.e., least squares
fitting) with regularization to prevent overfitting.40–42 KRR is
a data driven method for interpolating nonlinear functions that
is capable of handling high-dimensional functions. As in pre-
vious work,31 our machine learning approximation (MLA) for

the KE is

T ML
S [n] =

NT∑
j=1

αjk[n, nj ], (21)

where αj are weights to be determined, nj are training densi-
ties, NT is the number of training densities, and k is the kernel,
which measures similarity between densities. We choose the
Gaussian kernel

k[ni, nj ] = exp

(
−‖ni − nj‖2

2σ 2

)
, (22)

where σ is called the length scale. The weights are found by
minimizing the cost of quadratic error plus regularization

C(α) =
NT∑
j=1

(
T ML

S [nj ] − TS[nj ]
)2 + λαT Kα, (23)

where α = (α1, . . . , αNT
) and K is the kernel matrix, K ij

= k[ni, nj ]. The second term penalizes large weights to pre-
vent overfitting. Minimizing C(α) gives

α = (K + λI)−1T , (24)

where I is the identity matrix and T = (TS[n1], . . . , TS[nNT
]).

The global parameters σ and λ are determined through
leave-one-out cross validation. For each density ni in the
training set, the functional is trained on all other densities
nj (j 
= i) and σ and λ are optimized by minimizing the ab-
solute error on ni. Final values are chosen as the median over
all optimum values. To find each optimum, we search over
a coarse logarithmic grid in σ and λ. In general, there may
be local minima near the global minimum, but typically this
area is shallow and so the model is not particularly sensitive to
variation in the parameters. Thus we expect some slight varia-
tion in the performance of the model depending on the details
of the cross validation. To test performance, the functional is
evaluated on new densities not in the training set.

III. RESULTS AND DISCUSSION

A. Errors on KS densities

To construct an MLA for this problem, we choose NT

training densities at evenly spaced R between 0 and 10 (in-
clusive). Table II reports the functional driven error of the
MLA, �EF = T ML

S [n] − TS[n], evaluated on KS LDA den-
sities. The global parameters optimized via cross validation
are also listed. The performance of the MLA increases rapidly
and uniformly with training set size, for both H2 and LiH. For
NT = 20, all errors are much smaller than those due to the XC
approximation. In Table III, we fix NT to either 10 or 20 and
compare the performance of the MLA across a variety of sys-
tems (H2, He2, Li2, Be2, and LiH). Errors are roughly similar
across the board, independent of molecular size, number of
electrons, or bond type or lack thereof (the variation in errors
is most likely due to the cross validation not fully optimizing
the global parameters). Finally, we combine the training sets
for all 5 systems into one MLA, to demonstrate the ability of
ML to handle more than one kind of diatomic in the same ap-
proximation. Errors are roughly the average of the individual

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

169.234.207.139 On: Thu, 29 May 2014 02:43:48



224104-6 Snyder et al. J. Chem. Phys. 139, 224104 (2013)

TABLE II. Parameters and errors (in kcal/mol) for H2 and LiH with increasing number of training densities NT. Mean and max values taken over 199 test
densities evenly spaced from R = 0 to 10 (inclusive) (although the test densities at R = 0, 10 are also in the training set, they contribute negligibly to the errors).
�TSF is the pure functional-driven error of the MLA, evaluated on KS densities. �TS and �E represent errors on constrained optimal densities. The errors in
dissociation energy D0 (corrected for zero-point vibrational energy), equilibrium bond length Re, and zero-point vibrational frequency ωe are all calculated on
constrained optimal densities (�Re and �ωe are given as percentages). The global parameters σ and λ are calculated via cross validation. Note that although
Ts[n] is a universal functional, an interpolation of it is not. The length scale and noise level of the model depend on how closely the training densities are spaced.
a)Due to lack of training densities, we were unable to converge constrained optimal densities near R = 0 (see Fig. 9(a)), thus these are ignored for calculating
mean and max values.

|�TSF| |�TS| |�E|
(%) (%)

Mol. NT Mean Max Mean Max Mean Max �D0 �Re �ωe σ λ

H2 6a) 2.9 12 5.3 64 4.7 29 − 2.3 − 6.0 − 15 2.6 1.3 × 10−3

10 0.40 1.8 1.6 16 0.53 2.5 − 2.0 1.1 − 4.0 6.6 3.2 × 10−6

20 0.001 0.005 0.008 0.13 0.002 0.018 − 0.002 − 0.015 0.003 2.5 1.1 × 10−10

LiH 6 9.3 35 7.5 33 26 95 − 57 − 14 31 5.2 4.8 × 10−3

10 0.92 5.4 1.5 10 1.2 7.5 − 4.3 5.1 − 2.5 4.6 1.1 × 10−4

20 0.006 0.032 0.026 0.36 0.015 0.18 − 0.015 − 0.023 0.77 6.1 2.6 × 10−9

errors for each molecule (although max errors appear to be
slightly larger).

B. How much consistency is too much?

Thus far, we have only discussed results evaluating the
ML functional on exact densities. In real applications of
orbital-free DFT, these would not be available. It is a basic
tenet in DFT (and other areas of quantum mechanics) that
one should use the variational principle to find the “best” re-
sult. In DFT in general, practical calculations employ some
approximation to the functional, and then the density is found
self-consistently using the variational principle.5 For the non-
interacting KS problem, the minimizing density for a given v

is the one that satisfies the Euler equation (Eq. (16)), and we
call its solution the self-consistent density.

Of course, the exact TS will produce the exact density (for
the given XC approximation), but any approximation to TS

yields only an approximate density. There are many computa-
tional and conceptual advantages to using this procedure, such

as extracting forces via the Hellmann-Feynman theorem. But
there is no guarantee that this procedure, applied to an approx-
imation, will yield either an accurate energy or density. One
might guess that applying an approximate functional to an ex-
act density would always yield a more accurate result, but this
is not typically the case for KS calculations with approximate
XC.12

In fact, inserting T ML
S into Eq. (16) and solving for the

self-consistent density yields a highly inaccurate energy and
density (just as we found in Ref. 31). Fig. 4 illustrates the
problem: a gradient descent quickly leaves the “interpolation”
region for which the MLA is accurate. Why is this the case?
The MLA only knows how the KE changes along the density
manifold MN . In all dimensions orthogonal to MN (which is
NG − d � 1), the MLA has no information, and thus produces
an inaccurate derivative. As shown in Fig. 5, the functional
derivative of the MLA in this case is very wrong!

In Fig. 4, a minimization with the exact KE functional
TS would yield the correct self-consistent density ñ, which
is also on the density manifold. Thus, one solution would
be to replace the minimization in Eq. (15) (over all densities

TABLE III. Same as Table. II, but for more molecules. “All” indicates that we have conglomerated the training data from all 5 systems into one model, with
NT training densities per molecule. Mean and max values are taken over the test data from all 5 systems as well.

|�TSF| |�TS| |�E|
NT Mol. Mean Max Mean Max Mean Max σ λ

10 H2 0.40 1.8 1.6 16 0.53 2.5 6.6 3.2 × 10−6

He2 0.95 3.9 2.7 26 1.5 5.8 4.9 5.5 × 10−5

Li2 2.0 10 8.6 100 3.4 19 4.5 7.4 × 10−5

Be2 0.61 3.3 3.6 53 1.2 9.6 10 1.4 × 10−6

LiH 0.92 5.4 1.5 10 1.2 7.5 4.6 1.1 × 10−4

All 1.2 5.5 1.8 41 1.5 17 13 1.4 × 10−8

20 H2 0.001 0.005 0.008 0.13 0.002 0.018 2.5 1.1 × 10−10

He2 0.012 0.042 0.037 0.45 0.015 0.12 6.4 1.1 × 10−10

Li2 0.005 0.031 0.036 0.61 0.016 0.34 9.3 1.1 × 10−9

Be2 0.019 0.054 0.085 1.3 0.023 0.16 11 5.0 × 10−10

LiH 0.006 0.032 0.026 0.36 0.015 0.18 6.1 2.6 × 10−9

All 0.003 0.072 0.039 8.3 0.008 0.43 7.1 1.2 × 10−13
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FIG. 4. A cartoon illustrating the difficulty in solving for the self-consistent
density with our MLA. Pictured are the density manifold MN (curved
solid line), the training densities nj ∈ MN (black circles), and the KS self-
consistent density ñ (red square). Here g is any function that is zero on MN

and positive elsewhere, so that MN is defined implicitly by g[n] = 0. The
shaded area shows the interpolation region for which the MLA is accurate.
The red dashed line shows the solution of Eq. (16) via gradient descent. Be-
cause the functional derivative of the MLA is inaccurate orthogonal to MN ,
the minimization soon leaves the interpolation region and becomes unstable.

normalized to N particles) by one over MN ,

δ {Ev[n] + ζg[n]} = 0, (25)

where ζ is a Lagrange multiplier, and g is any function that
is zero on MN and positive elsewhere (thus MN is defined
implicitly by g[n] = 0). Note that the original constraint of
normalization to N particles is additionally satisfied by den-
sities on MN . Assuming the self-consistent density to be on
the density manifold is valid, since we intend to apply our
MLA to systems similar to those trained on.43 We call the so-
lution of this equation a constrained optimal density, which is
analogous to the self-consistent solution of Eq. (15), and satis-
fies g[ñ] = 0. To see that this constraint can yield an accurate
minimizing density, we project the functional derivative onto
the tangent space of MN at n, which is given as all densities n′

satisfying 〈δg[n]/δn, n′ − n〉 = 0. From this we can construct
an orthogonal basis, uj[n](x) for j = 1, . . . , d, for the tangent

FIG. 5. The functional derivative of our MLA (green) cannot reproduce the
exact derivative vS[n] (blue dotted dashed) evaluated at the ground-state den-
sity, because this information is not contained in the data. However, both
agree when projected onto the tangent of the data manifold MN at n (black
and red dashed). Shown for H2 at equilibrium bond length Re = 1.63, in
atomic units.

space at n, and form the projection operator

P̂ [n] =
d∑

j=1

uj [n] ⊗ uj [n], (26)

where ⊗ is the tensor product defined by (a ⊗ b)c
= 〈a, c〉b. For our diatomic model system, d = 1 and the ex-
act projection onto the tangent space is given by P[n] = u1[n]
⊗ u1[n], where u1[n] = (∂nR(x)/∂R)/‖∂nR(x)/∂R‖ and nR(x) is
the density that comes from the diatomic with nuclear sepa-
ration R. Fig. 5 shows excellent agreement between the pro-
jected functional derivatives, evaluated at the KS density. This
demonstrates that the MLA captures the correct derivative of
KE along MN . Thus a gradient descent constrained to MN

should give an accurate constrained optimal density.
However, we are not given g[n]. We must attempt to

reconstruct MN from the training densities, approximating
g[n]. In previous work,31 we used a local principal com-
ponent analysis (PCA) to approximate g[n]. In the present
work, however, the density manifold exhibits a higher curva-
ture, yielding inaccurate constrained optimal densities. Thus,
we use a more sophisticated approximation based on kernel
PCA,44 called nonlinear gradient denoising (NLGD). A brief
summary of NLGD is given in the Appendix. The full deriva-
tion is given in Ref. 45. In Section III C, we describe how to
solve Eq. (25) for constrained optimal densities.

C. Projected gradient descent algorithm

A schematic of the projected gradient descent is shown
in Fig. 6. Given an approximate g[n] and an initial guess for
the density ñ0 ∈ MN (e.g., one of the training densities), the
algorithm is as follows:

1. In a projection step, we first compute the projection op-
erator P̂ [n] onto the tangent space of MN at ñt . Next, a
step is taken to lower the energy,

ñ′
t (x) = ñt (x) − εP̂ [ñt ]

(
δT ML

S [n]

δn(x)

∣∣∣∣
n=ñt

+ vS[ñt ](x)

)
,

(27)

where ε is a small positive constant.

ñt

ñt

ñt+1 MN

g[n] = 0

FIG. 6. A schematic of the projected gradient descent. First, we project the
functional derivative onto the tangent space of the data manifold MN at ñt

(dashed line). Next, we take a step along the projected functional derivative
to ñ′

t to lower the energy. Finally, we minimize g[n] orthogonal to the tangent
space to ensure the minimization stays on MN .
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FIG. 7. Difference between the constrained optimal density ñ(x) and the KS
density n(x) for various numbers of training densities NT. The error decreases
uniformly for all x. The system is H2 at equilibrium bond length. The inset
shows the KS density.

2. In a correction step, we minimize g[n] orthogonal to the
tangent space of the previous step, starting from ñ′

t . Let
ñt+1 be the minimizing density.

We iterate these two steps until convergence is achieved
(the changes in energy and density are smaller than the desired
tolerance). Details are given in the Appendix.

D. Errors of constrained optimal densities

To illustrate how well this constrained minimization
(Eq. (25)) works, in Fig. 7 we plot the error in the con-
strained optimal densities for several values of NT, for H2 at
equilibrium bond length Re. Clearly, we approach an accu-
rate constrained optimal density rapidly with increasing train-
ing data. In Table II, we list mean and max errors (in both
KE and total energy), as well as errors in dissociation energy
D0 (corrected for zero-point vibrational energy), equilibrium
bond length Re and zero-point vibrational frequency ωe, of
the MLA evaluated on constrained optimal densities. To see
how these errors vary over R, in Fig. 8 we plot the error in
total energy for H2 and LiH, �E = EML[ñ] − E[n], where n
is the exact density and ñ is the constrained optimal density.
As we did for T loc

S in Fig. 3, this is split into the functional-
driven error, �EF = EML[n] − E[n], and the density-driven

(a)

(b)

FIG. 8. The total error of the model and the functional- and density-driven
errors �EF and �ED for H2 with (a) 10 and (b) 20 training densities.

error, �ED = EML[ñ] − EML[n].12 For smaller R, �EF is
largest because TS[n] is changing most rapidly with R, and
we train on data at fixed separations in R. As R grows,
�EF becomes much smaller. Once the MLA has achieved
high accuracy, density-driven errors become negligible. We
do not use the model between the last two training points be-
cause the density-driven error becomes much larger (an or-
der of magnitude), presumably due to lack of training data
beyond R = 10.

Finally, Fig. 9 shows the molecular binding curves for H2

(for various NT) and LiH, evaluated on constrained optimal
densities. The binding curve for H2 rapidly converges to the

(a) (b) (c)

FIG. 9. (a) The molecular binding curve for our 1d model of H2. The MLA curve is found on constrained optimal densities, for various number of KS densities
(spaced evenly from R = 0 to 10) for training. The MLA curve converges quickly to the KS curve, and is indistinguishable by NT = 15. The incorrect large
R limit is due to deficiencies in LDA XC, not our MLA KE. (b) The molecular binding curve for 1d LiH, for 10 training densities. (c) Molecular forces as a
function of R for H2 with 10 training densities. Derivatives are calculated via finite-difference. All values are in atomic units.
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KS curve. By NT = 15, the curves are indistinguishable to
the eye. The same is true for He2, Li2, and Be2 (not shown).
The figure also shows molecular forces, calculated via finite-
difference. The forces are very accurate and should be suitable
for, e.g., an ab initio molecular dynamics calculation.

IV. CONCLUSIONS

In the present work, we have shown how ML can produce
a kinetic energy functional that allows an orbital-free calcula-
tion of bond breaking for a simple model system. We have
also shown how highly accurate constrained optimal densi-
ties can be found with such a model, despite inaccurate func-
tional derivatives. The more training data are used, the more
accurate the results become. In this toy model of diatomic
molecules, 20 training points yielded chemical accuracy, even
on constrained optimal densities. The systematic improvabil-
ity of this method is sorely lacking in traditional density func-
tional approximations.

We expect results of a similar quality if several simple
real (3d) diatomics were stretched. But beyond this, i.e., for
large molecules with many bonds of different types and many
internal degrees of freedom, one needs to find a compact rep-
resentation of the density that is invariant with respect to sym-
metry operations, such as translation and rotation. Two im-
portant questions for future work are: how will the amount
of training data required to achieve chemical accuracy scale
with molecular size, and how can we ensure that the training
densities are sampled uniformly over the Born-Oppenheimer
surface and restricted to the region of interest. For example,
in an ab initio molecular dynamics simulation of a molecule,
we want to build a model that trains on ground-state densities
with energies up to a certain threshold. Such a model would be
useful in running long-time molecular dynamics simulations.
In scaling the method up to much larger systems (i.e., millions
of atoms), we envision taking advantage of near-sightedness,
i.e., combining our method with a partitioning scheme such
as partition DFT46 and using ML to learn the interaction en-
ergy between fragments. We are currently working on appli-
cations to simple atoms and ions, as well as to more complex
systems, and pursuing several approaches to answering these
questions. Ultimately, only realistic calculations in a quantum
chemical code can determine if ML provides a useful solution
to the orbital-free DFT problem. The results shown here are
both a necessary condition and a promising second step.
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APPENDIX: NONLINEAR GRADIENT DENOISING

When the training densities are not sampled densely
enough on MN , a local PCA approximation is not sufficient.

In this case, kernel PCA can provide a better reconstruction
of MN . We call this method NLGD.45, 47

In kernel-based methods in ML, the inputs are mapped to
a higher or infinite-dimensional vector space called “feature
space.”40 Let �[n] be the map to feature space associated with
the kernel k. Then, the kernel is equivalent to the inner product
in feature space:

k[n, n′] = 〈�[n],�[n′]〉. (A1)

� is given implicitly by the choice of kernel. Kernel PCA is
simply applying PCA to the data mapped into feature space.
Since PCA can be expressed solely in terms of the inner prod-
uct, �[n] is not needed explicitly in kernel PCA. There, one
performs an eigendecomposition of the kernel matrix K , with
elements K ij = k[ni, nj ],

K̃αj = NT λjαj , (A2)

where K̃ = (I − 1/NT )K (I − 1/NT ) is the centered ker-
nel matrix, αj are the eigenvectors normalized by ‖αj‖
= 1/

√
NT λj , λj are eigenvalues ordered from largest to

smallest magnitude for j = 1, . . . , NT, I is the NT × NT iden-
tity matrix and 1 is the NT × NT matrix whose entries are all
1. Kernel PCA is performed on all the given training densi-
ties. The kernel chosen is the same used throughout the pa-
per, given in Eq. (22), but the length scale used is different:
we choose 4 times the median over all nearest neighbor L2-
distances between training densities. The principal compo-
nents (PCs) in feature space are

vi =
NT∑
j=1

αi,j �̃[nj ], (A3)

where �̃[n] = �[n] − ∑NT

j=1 �[nj ]/NT . The projection in
feature space onto the first q PCs is

Q̂ =
q∑

i=1

viv
T
i . (A4)

We choose q such that we keep all nonzero eigenvalues λj in
this projection. The kernel PCA projection error is

p[n] = ‖(1 − Q̂)�̃[n]‖2. (A5)

Let H be the Hessian of p[n],

H [n](x, x ′) = δp[n]

δn(x)δn(x ′)
. (A6)

We find the eigenvalues and eigenfunctions of H,

〈H [n], uj [n]〉 = βjuj [n]. (A7)

If a given density n is on MN , then the eigenfunctions uj[n](x)
with small |β j| form a basis for the tangent space of MN at
n. There will be a sudden increase in β j after d eigenvalues,
where d is the dimensionality of MN . The projection operator
onto the tangent plane is given by

P̂ NLGD[n] =
d∑

j=1

uj [n] ⊗ uj [n], (A8)

where a ⊗ b denotes the tensor product defined by (a ⊗ b)c
= 〈a, c〉b. Finally, we define gNLGD[n] as the squared L2-norm
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of the functional derivative of p[n] orthogonal to the tangent
space of MN at n,

gNLGD[n] =
∥∥∥∥(1 − P̂ NLGD[n])

δp[n]

δn

∥∥∥∥
2

. (A9)

These approximations to g[n] and P̂ [n] are then used in the
projection algorithm of Sec. III C. The derivation of this ap-
proximation and further details are given in Ref. 45.
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