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Orbital-free density functional theory (OFDFT) is both grounded in quantum physics and suitable
for direct simulation of thousands of atoms. This article describes the application of OFDFT for
materials research over roughly the past two decades, highlighting computational studies that
would have been impractical (or impossible) to perform with other techniques. In particular,
we review the growing body of simulations of solids and liquids that have been conducted with
planewave-pseudopotential (or related) techniques. We also provide an updated account of
the fundamentals of OFDFT, emphasizing aspects—such as nonlocal density functionals for
computing the kinetic energy of noninteracting electrons—that enabled much of the application
work. The article concludes with a discussion of the OFDFT frontier, which contains brief
descriptions of other topics at the forefront of OFDFT research.

I. INTRODUCTION

Some of the most challenging problems in materials
science—and many ordinary ones too—require a theory
and computing strategy that is grounded in quantum
physics and suitable for simultaneous study of thousands
of atoms. Crystalline alloys with motifs of tens or
hundreds of atoms are one straightforward example; for
these solids, supercells of several repeated unit cells can
quickly cross the thousand-atom threshold. Dislocations
in metals are another example; these defects are charac-
terized both by local disruptions in periodicity and by
a long-ranged elastic strain field that can interact with
other dislocations or grain boundaries. Finally, it is well
known that ab initio molecular dynamics (MD) simula-
tions are useful for probing the structure of liquids but
only if a sufficient number of atoms are included to
prevent spurious correlations.

Orbital-free (OF)1–4 density functional theory (DFT),5–7

rooted in quantum mechanics, is an especially promising
tool for the materials community. Its principal advantages
over standard Kohn–Sham (KS)8 DFT are speed and
computational scaling: as the number of atoms in a simu-
lation increases, the computational effort required for
OFDFT can be made to scale linearly [or quasi-linearly,
O(N log N)] with a small prefactor. The chief aim of this

article is to review the application of OFDFT for materials
research over roughly the past two decades, highlighting
examples where OFDFT was, and remains, perhaps the
only tool available. Before doing so, we give an updated
overview of the fundamentals, emphasizing the aspects of
the theory that enabled most of the application work. We
conclude with a short discussion of the OFDFT frontier,
along with some additional remarks.
Before proceeding, we note a few important avenues of

inquiry that fall within the broader OFDFT field but are
not discussed in detail in this article. The first is the study
of warm dense matter,9 in which OF methods are finding
increasing use. We do discuss a very small number of
examples in this category, but do not give a detailed
account of the field, nor of functionals with explicit
temperature dependence. Second, we do not discuss
subsystem DFT nor the OF functionals designed specif-
ically with this purpose in mind. Instead, we refer readers
to several review articles on this topic10,11 and to the
second part of a recent volume on OFDFT.3 Finally, our
discussion of OF functionals for the noninteracting
kinetic energy is limited to the subset of nonlocal func-
tionals most directly connected to the application work
that is our primary focus. However, we do reference
recent advances in the design of single-point functionals
in Sec. IV on the OFDFT frontier.

II. THEORY AND IMPLEMENTATION

The fundamentals of OFDFT1–4 and DFT more gen-
erally5–8 are described in a great number of references.
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For completeness, we review the most salient points here.
In principle, for a system of electrons subject to an
external potential v(r), one may find its ground-state
energy by varying the electron distribution n(r) to
minimize an energy functional

E n½ � ¼ Ts n½ � þ EH n½ � þ Exc n½ � þ
Z

dr v rð Þn rð Þ ; ð1Þ

all while requiring n(r) $ 0 and maintaining the proper
number of electrons, N, with the normalization constraintR
dr n rð Þ ¼ N. The first three terms on the right-hand

side of Eq. (1) are the noninteracting electron kinetic
energy Ts[n], the electrostatic repulsion between electrons
EH[n], and the energy attributed to the quantum-
mechanical exchange and correlation Exc[n] (which
includes the difference between the interacting kinetic
energy and Ts[n]). These terms together comprise the
universal functional first identified in the landmark paper
by Hohenberg and Kohn,7 whose work undergirds the
vast enterprise of DFT research. The final term in Eq. (1)
describes the interaction between the electrons and the
external potential v(r).

For a system composed of atoms, v(r) is generated as
a superposition of individual atomic potentials. All-
electron calculations employ Coulombic nuclear poten-
tials, while valence-electron-only calculations utilize
pseudopotentials that model the combined effect of core
electrons and the nuclear charge (the latter combination is
referred to as an ion). The total system energy, then, is
obtained by adding the appropriate ion–ion interaction
energy to Eq. (1). In addition, one can use DFT to
determine the forces exerted on individual atoms and the
state of stress in a crystal. These properties are computed,
in short, by probing the change in system energy induced
by infinitesimal displacements of atoms (for forces) or
infinitesimal adjustments to the crystal lattice (for
stresses).

The usual approach to DFT—and also the particular
decomposition of terms given in Eq. (1)—is attributable to
Kohn and Sham,8 who devised an implicit strategy for
computing the exact value of Ts[n]. To accomplish this
task, KSDFT relies on self-consistently determined one-
electron wave functions for a reference system of non-
interacting electrons with an electron density that is
identical to that of the fully interacting system. Therefore,
because the classical electrostatic repulsion term is known
explicitly, EH n½ � ¼ 1=2

R
dr
R
dr0n rð Þn r0ð Þ= r� r0j j, only

the exchange-correlation energy Exc[n] must be approxi-
mated, and this term is expected to be relatively smaller in
magnitude than the others. A downside of the one-particle
wave function approach is that wave function operations
give rise to cubic computational scaling: a doubling of the
number of electrons in a simulation tends to increase the
computational effort by a factor of eight. This feature of

standard KSDFT renders it unappealing, and frequently
prohibitive, for simulations involving many hundreds or
thousands of atoms. Finally, while KSDFT is not the focus
of this article, it is appropriate at this stage to mention
the burgeoning field of (quasi-)linear-scaling KSDFT.
Although a certain level of maturity has been reached
for insulating systems, this topic remains an active area of
research.12–14

In OFDFT, Ts[n] is computed directly from the
electron density rather than indirectly from single-
particle wave functions. This original formulation
bypasses wave functions entirely, and the simplification
in formalism enables DFT simulations with (quasi-)linear
computational scaling and a small prefactor. However, an
approximation is required because, as with the case of
Exc[n], no exact, easily evaluated form for Ts[n] is
known. (Importantly, OFDFT formulated in this way
makes use of the same exchange-correlation functionals
that have propelled KSDFT to prominence.) In the
following subsection, we introduce a series of approx-
imations for Ts[n] that have been applied in materials
science research. Subsequently, because many OFDFT
studies utilize pseudopotentials to reduce computational
expense, we describe the theory of local pseudopotentials
(LPSs). Finally, in the concluding subsection, we discuss
computational strategies and algorithmic best practices
that enable efficient OFDFT calculations.

A. Kinetic energy density functionals

The discussion on kinetic energy density functionals
(KEDFs) is divided into three parts. First, we present
three relatively simple approximations for Ts[n], each of
which yields the exact result for a certain special case,
and then use these examples to develop a preliminary
understanding of the philosophy that underlies the non-
local functionals used in most of the application work
described later. Second, we describe two paradigms that
began to emerge during the period between 1985 and
2000. Most of the OFDFT studies chronicled in the latter
half of this article rely on approximations for Ts[n] that
fall within these two categories. Finally, we discuss
a series of more recent attempts to improve on the
performance of earlier nonlocal functionals.

This treatment is not intended to be a comprehensive
review of the full canon of KEDFs. Instead, we empha-
size the subset of predominantly nonlocal functionals that
provide near-KSDFT accuracy for a limited portion of the
periodic table; these functionals enabled most of the
research on solid and liquid materials described sub-
sequently. Interested readers will find more information
in several review articles that cover KEDFs more
broadly1,6,15,16 and, in addition, we provide an extremely
brief discussion on recent advances in single-point KEDF
development later in Sec. IV.
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1. Three simple approximations for Ts[n]

a. Single-orbital systems and the von Weizsäcker
functional

For a single, isolated electron in a static external
potential, one can infer a ground-state wave function by
computing the square root of the ground-state electron
density, and thereby obtain from elementary quantum
mechanics the exact Ts[n] for this simple system. The
result was first published by von Weizsäcker17 (vW) in
1935 and may be written as

TvW n½ � ¼ � 1
2

Z
drn1=2 rð Þ=2n1=2 rð Þ

¼ 1
2

Z
dr=n1=2 rð Þ � =n1=2 rð Þ : ð2Þ

The vW functional also provides the exact non-
interacting kinetic energy for other single-orbital systems
in their ground state, such as two spin-unpolarized
electrons or any number of bosons. When applied to
systems of many fermions, TvW[n] returns a rigorous
lower bound to the full Ts[n] and therefore the following
expression is general: Ts[n] $ TvW[n]. The two forms of
TvW[n] given in Eq. (2) are related by the divergence
theorem and they are equivalent for isolated systems and
for systems described with periodic boundary conditions.

b. The free-electron gas and the Thomas–Fermi
functional

The free-electron gas is so-named because its members
traverse freely across a perfectly flat potential landscape,
encumbered only by the Pauli Exclusion Principle. It is
generally regarded as the simplest many-fermion system,
and its electron density and other properties are constant
throughout space; that is, n(r) ! n0. The relationship
between the kinetic energy (per unit volume)
and the electron density is given by t0 ¼ c0n

5=3
0 , where

c0 5 (3/10) (3p2)2/3 is the appropriate constant for spin-
unpolarized electrons.

For more general systems with slowly varying electron
densities, a reasonable approximation to the kinetic
energy is obtained if one applies the free-electron-gas
expression locally, and integrates. This functional,

TTF n½ � ¼ c0

Z
dr n5=3 rð Þ ; ð3Þ

was proposed independently by Thomas18 and Fermi19

(TF) in 1927 and it represents the earliest approximation
for Ts[n] from a historical perspective. Because TTF[n]
encodes the Pauli Exclusion Principle, it may also serve
as a crude approximation to the excess kinetic energy not
accounted for by TvW[n]. The combination TvW[n]1 TTF[n]

remains exact for a uniform electron gas but introduces
error for any single-orbital system.

c. Weakly perturbed free-electron gas

When n(r) deviates only modestly from uniformity—
more precisely, when n(r) 5 n0 1 D(r) with jD(r)j � n0
and

R
drD rð Þ ¼ 0—the kinetic energy Ts[n] may be

obtained with high accuracy from the second-order
perturbation expansion for a free-electron gas

T2 n½ � ¼ TTF n0½ � þ 1
2

Z
dr

Z
dr0D rð Þ d2Ts

dn rð Þdn r0ð Þ
����
n0

D r0ð Þ :

ð4Þ

The second functional derivative in Eq. (4) is known
exactly and is closely associated with the Lindhard20

density–density response function, v0(k). The exact
relationship is given by

F
d2Ts

dn rð Þdn r0ð Þ
����
n0

" #
¼ � 1

v0 kð Þ ; ð5Þ

where F[�] indicates a Fourier transform. For spin-
unpolarized electrons, v0(k) has the analytical form
v0(k) 5 �(k0/p2)f(k/2k0), where k 5 jkj, k0 5 (3p2n0)

1/3,
and

f xð Þ ¼ 1
2
þ 1� x2

4x
ln

1þ x

1� x

����
���� : ð6Þ

d. Combining the three approximations

Each of these elementary approximations for Ts[n] is
exact in a certain limit and becomes accurate as an
electron density approaches that limit. Consider now the
composite functional that one would obtain by starting
with T2[n]—which is correct to second order for a per-
turbed free-electron gas—and then adding estimated
contributions for the third and higher order terms using
corrections derived from, say, TvW[n] 1 TTF[n]. Such
a functional would remain accurate for a weakly per-
turbed electron gas but would potentially be more
accurate than T2[n] by itself for other systems. In fact,
this functional, considered by Perrot,21 is emblematic of
a category of functionals initiated by Wang and Teter,22

which is one of the two categories discussed in the
following subsection.

2. Nonlocal functionals based on the Lindhard
response function

Most of the materials science studies described in this
review were enabled by two classes of approximations
for Ts[n] that both incorporate the Lindhard response
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function, v0(k). The connection between Ts[n] and
v0(r)—namely, Eq. (5)—was apparent even during the
earliest stages of DFT research.7 The functionals de-
scribed in this section all satisfy Eq. (5) by construction
and, as a result, are able to predict expected quantum-
mechanical features such as shell structure in atoms and
Friedel oscillations in metals. Moreover, a sizable subset
of these functionals may be evaluated with (quasi-)linear-
scaling computational effort.

a. The Chacón–Alvarellos–Tarazona functional and
generalizations

The Chacón–Alvarellos–Tarazona (CAT) functional23

was introduced in 1985, and its key ingredient has the
form

Tnl
CAT n½ � ¼ c0

Z
dr n rð Þ�n2=3 rð Þ ; ð7Þ

in which �n rð Þ refers to a yet unspecified average density,
where the averaging procedure probes the fluctuations in
n(r) near the point r. The expression in Eq. (7) clearly
resembles the TF functional—and it is identical to TTF[n]
for the limiting case of a free-electron gas—but it also
incorporates the extra, nonlocal information that is
encoded in �n rð Þ. In the original CAT functional, �n rð Þ
is obtained from a spherical average
�n rð Þ ¼ R

dr0w k0 rð Þ; r� r0j jð Þn r0ð Þ, where k0(r) is the
local Fermi wave vector, k0(r)5 (3p2n(r))1/3. The weight
function w(k0(r), jr � r9j) is chosen such that the overall
functional satisfies Eq. (5), thereby ensuring that it
returns the correct result for a weakly perturbed electron
gas.

Over time, a variety of modifications to the CAT
functional have appeared;16,24–29 however, the original
spirit is preserved in each case cited. One prominent
generalization involves the introduction of a symmetrized,
two-point Fermi wave vector, k0 rð Þ ! kc0 r; r0ð Þ, which
transforms the spherical average used initially to obtain
�n rð Þ into a nonspherical average to better incorporate
nonlocal effects.25 Another more recent modification
attempts to improve the accuracy of CAT-like functionals
for localized systems.27 Finally, while the most natural
implementations of the CAT functional incurs quadratic
computational scaling, several simplifications that are
appropriate for extended systems may be evaluated with
(quasi-)linear scaling.16,27–29

b. The Wang–Teter, Perrot, Smargiassi–Madden,
and Wang–Govind–Carter functionals

A second category of nonlocal approximations for
Ts[n] is composed of contributions from a variety of
authors, each published between 1992 and 1999. The

earliest was put forth by Wang and Teter22 and may be
written as

TWT n½ � ¼ TvW n½ � þ TTF n½ �
þ
Z

dr

Z
dr0n5=6 rð Þw k0; r� r0j jð Þn5=6 r0ð Þ :

ð8Þ
In Eq. (8), k0 refers to the Fermi-wave vector associ-

ated with a fixed reference density n0, and the integral
kernel w(k0, jr � r9j) is determined from the requirement
that the overall functional must satisfy Eq. (5). The
modifications proposed by Perrot,21 Smargiassi and
Madden,30 and Wang et al.,31 are similar to Eq. (8) in
spirit and differ from Eq. (8) only in the explicitly
nonlocal third term. One potential point of concern for
functionals of this type comes from an upper bound for
Ts[n] first conjectured by Lieb:

32 Ts[n]# TvW[n]1 TTF[n].
If the third term in Eq. (8) evaluates to a positive number,
the bound is violated. Like TWT[n], each of these func-
tionals depends on a fixed reference density, which is
usually chosen to be the average density of the system.
For this reason, the functionals in this category are most
applicable for extended systems and their respective
nonlocal terms may be evaluated with (quasi-)linear-
scaling computational effort. However, if applied to
systems with strongly varying electron densities, these
functionals may become variationally unstable.33 Finally,
Wang and Teter,22 as well as Foley and Madden,34

developed generalizations of the same basic approach
that return the exact result up to an additional order in
perturbation theory for a weakly varying free-electron
gas.

A more significant modification was proposed by
Wang, Govind, and Carter (WGC).35 The WGC func-
tional is given by

TWGC n½ � ¼ TvW n½ � þ TTF n½ �
þ
Z

dr

Z
dr0na rð Þw kc0 r; r0ð Þ; r� r0j j� �

nb rð Þ ;

ð9Þ

where {a, b} 5 {5/6 6
ffiffiffi
5
p

/6} and, importantly, k0 is
replaced with the two-point Fermi-wave vector kc0 r; r0ð Þ
that injects additional density dependence into the nonlocal
term. This change is intended to improve the treatment of
systems with more rapidly varying densities but does
complicate the implementation of the functional. To regain
quasi-linear scaling, WGC developed an approximate
implementation of their nonlocal term that relies on
a Taylor expansion about a fixed reference density. Sub-
sequent work examined the WGC integral kernel in more
detail36 and also attempted to improve the performance of
the WGC functional for nonmetallic systems.37
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3. Additional nonlocal kinetic energy density
functionals

a. Nonlocal functionals for the kinetic potential

The term kinetic potential refers to the functional
derivative of the KEDF, vTs rð Þ ¼ dTs n½ �=dn rð Þ. There is
some evidence for the contention that vTs rð Þ is less
severely nonlocal as a functional of the electron density
than Ts[n], and therefore more amenable to approxima-
tion. Moreover, for a given vTs rð Þ, there exist a variety of
integration techniques for regaining the full kinetic
energy. Motivated by these considerations, Chai and
Weeks38,39 developed a series of functionals for the
kinetic potential, including two nonlocal functionals that
are similar in spirit to those discussed in the previous
section. Chai and Weeks initially tested their nonlocal
functionals for atoms and ions. Later, in conjunction with
coauthors,40 they applied (quasi-)linear-scaling versions
of their functionals to solid-state systems, obtaining very
good results for Al and medium-quality results for Si.

b. The Huang–Carter functional

Electrons in a metal may conceivably be excited into
states with energies infinitesimally higher than the Fermi
level, whereas electrons in insulators must surmount
a finite energy gap to access higher-energy states. This
fact fundamentally alters the character of the density–
density response function for insulators. The Lindhard
response function discussed above, v0(k), has the limiting
behavior of a metal. In view of these observations, Huang
and Carter (HC) developed a KEDF that incorporates the
expected limiting form of the response function for
insulators.41 Specifically, HC devised a modified version
of the Wang–Teter functional22 to increase its applica-
bility for gapped materials. These modifications increase
the computational prefactor for the HC functional by one
or two orders of magnitude over the Wang–Teter and
WGC functionals. The resulting KEDF requires specifi-
cation of two adjustable parameters; however, by com-
paring OFDFT results with KSDFT data, HC determined
a single pair of values for these parameters for computing
the bulk properties of a range of tetrahedrally bonded
semiconductors. Subsequent work explored the feasibility
of studying molecules with the HC functional.42

c. Nonlocal functionals based on density
decomposition

This subsection introduces a strategy for improving the
calculation of Ts[n] when n(r) has localized features
arising from, for example, covalent bonds or d electrons
in transition metals. Each of the relevant studies employs
a density decomposition of the form n(r)5 ndel(r)1 nloc(r),
where ndel(r) and nloc(r) refer to, respectively, delocalized

and localized contributions to the total electron density.
The density—decomposition technique involves (re-)
writing Ts[n] as

Ts n½ � ¼ Ts ndel½ � þ Ts nloc½ �
þ Ts n½ � � Ts ndel½ � � Ts nloc½ �ð Þ ; ð10Þ

where the term in parentheses represents an interaction
energy that is frequently referred to as the nonadditive
kinetic energy.43 The nonlocal functionals discussed
above are appropriate for computing Ts[ndel] but less
satisfactory for terms involving the localized density.
Finally, it is clear from Eq. (10) that the density de-
composition philosophy shares much in common with
various embedding theories.43–46

The first attempt at density-decomposition-based
OFDFT was made by Huang and Carter,47 who used
the HC functional41 for Ts[ndel]; subsequent work by Xia
and Carter48,49 used the WGC functional35 for Ts[ndel], in
part to improve computational efficiency. In all cases,
simpler functionals of the form aTTF[n] 1 bTvW[n] were
used for terms involving the localized density, in the
absence of better choices. In addition, Huang and Carter
took the simplifying step of fixing nloc(r) after making an
initial decomposition based on the character of n(r) for
a single atom. Xia and Carter generalized this approach by
allowing nloc(r) to vary self consistently over the course of
a calculation, employing a simple probe to assess the
degree of localization at any given point. The initial Xia-
Carter strategy required an external self consistency
loop,48 while a more recent version does not.49

d. The enhanced-vW functional

As discussed above, the vW functional returns the
exact kinetic energy for single-orbital systems. For this
reason, it is reasonable to expect that TvW[n] will play an
especially important role in the analysis of more general
systems with localized electrons—especially when the
localized features are dominated by a single orbital. This
observation motivates the enhanced-vW (EvW) func-
tional proposed by Shin and Carter,50 which is based
on the earlier WGC functional35 and retains the compu-
tational efficiency of the latter. The EvW functional
assesses the degree of localization present in an electron
density and, when n(r) is dominated by localized
features, enhances the relative contribution of the vW
term within the overall WGC functional. Specifically, the
EvW functional has the following structure

TEvW n½ � ¼ 1þ Að ÞTvW n½ � þ 1� A

2

� �
TTF n½ � þ Tnl

WGC n½ �� �
;

ð11Þ
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where Tnl
WGC n½ � refers to the nonlocal term from the WGC

functional. The enhancement factor A is given the simple
form

A ¼ k
nmax � navg

navg

� �2

; ð12Þ

where k is an adjustable, material-dependent parameter,
and nmax and navg refer to, respectively, characteristic
maximum and average densities for the system under
study. The strategy for choosing nmax and navg is
somewhat subtle but is described in the original paper.
This overall philosophy, along with suitable choices for
the parameter k, allows EvW to achieve reasonable
agreement with KSDFT for III–V semiconductors and
to properly describe both the metallic and semiconduct-
ing bulk phases of Si.

B. Local pseudopotentials

While all-electron OFDFT rests on a solid theoretical
foundation, it is generally not the most expeditious choice
from a computational perspective. In practice, a great
majority of OFDFT calculations are conducted with the
valence electron density alone, and rely on LPSs to
represent the combined effect of core electrons and the
nuclear potential. Common KSDFT techniques, such as
nonlocal pseudopotentials (NLPSs) or the projector-
augmented-wave51 (PAW) approach, are inapplicable
because the standard OFDFT lacks orbital information
(although we refer the reader to Sec. IV for more
discussion on this point).

Over time, the construction of LPSs has evolved in
complexity and accuracy. Early OFDFT studies used
LPSs with simple analytic forms that were parameterized
based on data from experiments or from more accurate
electronic structure calculations.22,52 While this approach
is marked by concerns regarding transferability, it
remains in use today, sometimes with great success.53,54

In principle, LPSs obtained from first principles are
applicable in a much wider range of environments, and
several protocols have appeared in the literature. Each of
the methods for constructing first-principles LPSs has the
same goal—to match the electron density (or other
properties) obtained with an LPS calculation to that of
a KSDFT-NLPS/PAW benchmark—but the methods
differ in the choice of reference environment.

1. Atomic local pseudopotentials

Atomic LPSs are based on the KSDFT valence
electron density for free atoms and have been success-
fully applied to the group IV elements Si, Ge, and Sn.55

However, even when used in KSDFT calculations,
atomic LPS results can be insufficiently accurate for the

calculation of atomic excitation energies, as well as the
band structures of solids. A major drawback is a lack of
transferability and insufficient accuracy for crystal appli-
cations.56 Finally, Mi et al. recently proposed a related
strategy that develops LPSs directly from first principles
norm-conserving pseudopotentials.56

2. Bulk-derived local pseudopotentials

Bulk-derived LPSs (BLPSs) are based on KSDFT
valence electron densities derived from one or more bulk
crystalline environments. The first BLPSs were obtained
by requiring that an OFDFT calculation (performed with
a particular KEDF) reproduces exactly a reference density
from a KSDFT calculation; as a result, these BLPSs were
KEDF dependent.57 More recent work has emphasized
KEDF-independent BLPSs, which are constructed from
KSDFT calculations alone and are therefore expected to be
more transferable.56,58,59 BLPSs have been successfully
applied to numerous solid-state calculations on a variety of
materials,42,56,59 including Li, Mg, Al, Ga, In, P, As, Sb,
and Si, as well as the III–V semiconductors41,48,50 GaP,
GaAs, GaSb, InP, InAs, and InSb. Additionally, liquid Li
and the Li melting temperature have been successfully
investigated with a BLPS.60,61 However, inaccuracies arise
for liquid phases of more complex systems.

3. Neutral pseudoatom method

The neutral pseudoatom (NPA) method was first in-
troduced by Ziman62 in 1964 and later developed by
Dagens63 for the study of metallic Li and Na. It is based
on a representation of the valence-electron density of an
atom in a positive background of a uniform electron gas.
Anta and Madden64 used this reference system to develop
KEDF-dependent ab initio LPSs, and such LPSs have
proven useful for OFDFT studies of liquid metals.65

However, because the NPA is constructed from the discrete
environment of an isolated atom, inaccuracies can appear
for liquids, where the atom is surrounded by others in
a disordered array. One successful modification that
involves a force-matching procedure was introduced by
del Rio and González.66 In this procedure, the initial NPA
LPS is modified by the addition of Gaussian functions to
minimize the difference in the forces calculated with
a NLPS-KSDFT calculation and the NPA LPS-OFDFT
calculation for a given liquid configuration. The liquid
sample used for the NLPS-KSDFT benchmark calculation
must be small (;100 atoms) and simulated for a short time
(;10 ps). The force-matching modification has been
applied successfully to the study of Be, Ca, and Ba.

4. Globally-optimized local pseudopotentials

Recently introduced by three of the authors,67 the
globally-optimized LPS (goLPS) method is the first
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construction procedure explicitly designed to represent
both solid and liquid phases correctly, and therefore will
be especially useful for multi-phase simulations. The
goLPS strategy can also be used to improve a given solid
or liquid LPS and, thus far, goLPSs have been con-
structed successfully for Li, Ca, and Ga.

C. Algorithms and implementation details

Several OFDFT codes have been described in detail in
the literature.68–75 In this section, we seek to answer the
following questions: (i) what capabilities and level of
performance can a researcher expect from an OFDFT
code; (ii) how have the major algorithmic hurdles been
overcome thus far; and (iii) what future algorithmic
challenges require attention? The objective and capabil-
ities of OFDFT are very similar to those of KSDFT: both
theories endeavor to find, for a given arrangement of
atoms and boundary conditions, the ground-state energy
and the self-consistent solution for the electron density.
While there are technical differences between OFDFT
and KSDFT implementations—and, in fact, within the
two paradigms separately—the actual computation of
static and dynamic properties is typically conducted in
a similar fashion. Physical properties are computed from,
say, converged electron densities or perhaps extracted
from repeated simulations of the same system, each with
a slightly modified arrangement of atoms. Because
OFDFT codes can be made to scale with (quasi-)linear
computational complexity as additional atoms are in-
cluded in a simulation,68,76 they are especially appealing
for study of phenomena involving large numbers of
atoms and/or long time scales. In what follows, we first
establish what is required to achieve (quasi-)linear scaling
for a single iteration of a self-consistency cycle. Sub-
sequently, we discuss the reduction of absolute evalua-
tion times.

The most basic feature that differentiates OFDFT
implementations is the choice of basis set for representing
the electron density. Planewave representations (or,
almost equivalently, Cartesian grids in real space with
equidistant spacing) have been used traditionally in
conjunction with judicious use of Fast Fourier Trans-
forms (FFT)s.68–71,77 Specifically, FFT-assisted convolu-
tions are useful for evaluating many nonlocal KEDF
terms, reducing the quadratic scaling of naïve implemen-
tations to quasi-linear scaling. Similarly, the electron–
electron repulsion energy EH[n] may be obtained almost
trivially with a pair of FFTs. The local density approx-
imation for the exchange-correlation term, Exc[n] is
straightforward to evaluate without FFTs, and the extra
gradient information required by generalized gradient
approximations for Exc[n] may also be computed with
efficient, FFT-assisted techniques. More care is required
for the electron-ion and ion–ion terms, which scale
quadratically in naïve implementations. For the ion–ion

term, an Ewald summation is frequently required; our
code, PROFESS,69–71 achieves quasi-linear scaling with
a cardinal B-spline implementation78 of the particle mesh
Ewald method. The ion—electron term may also be
evaluated with quasi-linear scaling using a B-spline
approach for computing the structure factor.77,79

FFT-based implementations are known to exhibit
limited parallel scalability with standard FFT libraries.80

Because FFTs incur the majority of the communications
overhead in an FFT-based OFDFT code—by contrast,
integrations over the full grid are nondemanding and
occur less often—FFT scalability determines the overall
scalability of such codes. However, for many systems of
interest, the absolute speed of FFT-based implementa-
tions is sufficient even with a limited number of process-
ors; FFTs become a bottleneck only for extremely large
systems also requiring very fast (and hence massively
parallel) evaluations. A recent demonstration of petascal-
ing OFDFT81 overcomes parallelization limitations by
partitioning energy functionals into short- and long-
ranged contributions and then employing a multi-grid
approach where smooth contributions are evaluated on
a coarse global grid while more rapidly varying contri-
butions are evaluated with local “small-box” FFTs. Such
techniques can be used for the explicit quantum-
mechanical study of millions of atoms. Another approach
that is applicable for simulations of medium to large
systems (presently, up to tens of thousands of atoms) is to
make use of compute accelerators such as GPUs. Even
though FFTs are a task not ideally suited for GPUs and
hence currently unable to extract even close to theoretical
peak performance out of GPU hardware, we find the
absolute performance of accelerated KEDF implementa-
tions to be excellent.82 Currently, constraints for GPU-
accelerated OFDFT arise because of memory limitations
on the accelerators; these limitations begin to appear in
the realm of hundreds of grid points per Cartesian
dimension.

Purely real-space representations of the electron den-
sity, in contrast with FFT-based implementations, trade
a small complexity prefactor and code simplicity for
better fundamental parallel scalability. Large improve-
ments have been made in recent years to reduce the high
prefactor of real-space implementatons.75,83–85 An im-
portant first step is to develop an evaluation strategy for
nonlocal terms that does not depend on operations in the
reciprocal space. In particular, long-range electrostatic
interactions, including Poisson terms,85 can be computed
from a local variational problem. Similarly, the nonlocal
integral kernels appearing in the WGC KEDF can be
reformulated as a series of Helmholtz equations in real
space.86 Results discussed in the literature show that such
real-space algorithms can be used to simulate tens of
thousands of atoms with full atomic resolution, and
millions using coarse-graining techniques.87
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Next, we note one important implementation detail
pertaining to the use of preconditioners and electron
density optimization approaches in OFDFT. The compu-
tational prefactor for OFDFT calculations depends on the
number of iterations required to obtain a converged total
energy and electron density. Some insight has been
gained on preconditioning strategies for bulk systems;88

however, possibilities for development remain, particu-
larly regarding transferable preconditioners and local
optimization procedures applicable to finite systems.

While we emphasize OFDFT in this review, other
algorithmic ingredients such as techniques for geometry
optimization and MD propagators are shared with
KSDFT approaches. The typical performance of OFDFT
codes allows one to study systems with dynamic explo-
ration methods such as MD and also makes OFDFT an
attractive ingredient for multi-scale and quasi-continuum
simulations.89–91 Future integration of OFDFT with
techniques beyond these, such as advanced sampling
and exploration techniques, will be straightforward and
should prove to be scientifically beneficial.

III. MATERIALS RESEARCH WITH OFDFT

This section reviews contributions of OFDFT to the
understanding of a diverse range of materials, including
solids, liquids, and multi-phase systems. Each of the
studies described below was conducted with OFDFT
calculations, sometimes in conjunction with other meth-
ods. We eschew discussion of most computational details
but provide references for the interested reader. Un-
fortunately, quantitative agreement between OFDFT
and standard KSDFT varies on a case-by-case basis
and, for any given material, one must verify that the
two theories give the same result for small systems before
proceeding to larger systems accessible only with
OFDFT. For this reason, the studies that we discuss
typically include such a validation step to promote
confidence in the results. In general—at least with the
nonlocal functionals described above—quantitative
agreement between OFDFT and KSDFT (and/or exper-
imental data) is achieved for light metals and their alloys.
Useful quantitative results may also be obtained for other
materials but, at present, more caution is warranted.

A. Solids

Bulk crystalline solids, particularly those without
strongly correlated electrons, were among the earliest
successes of both KSDFT and OFDFT.92 For simple
cases, such as a defect-free solid composed of a single
element, simulations involving a few or tens of atoms
subject to periodic boundary conditions are sufficient for
determining physical properties such as equilibrium
volumes, elastic behavior, and relative energies of

various crystalline phases—and the computational effi-
ciency of OFDFT is generally unnecessary for such
cases. However, analysis of alloy phases (e.g., high
entropy alloys93) may require hundreds or even
thousands of atoms. Moreover, the behavior of real solids
is altered by defects and defect-driven phenomena, some
of which—such as the nucleation and motion of disloca-
tions, or diffusion along grain boundaries in a polycrystal
—may affect thousands of atoms. Finally, other defects
involve only a few atoms but occur in tiny concentrations,
meaning that many-atom simulations are required for
a realistic treatment. The following subsections explore
these topics more in detail.

1. Solid alloys

The majority of OFDFT studies on crystalline alloys
thus far have considered Mg–Al compounds. Both Al and
Mg are abundant metals, and Mg–Al intermetallic com-
pounds have high strength-to-weight ratios and other
favorable mechanical properties. Moreover, one expects
that OFDFT will be reasonably accurate for Mg–Al
compounds of a wide range of compositions because
the valence electrons are delocalized in both bulk Al and
bulk Mg. Several roles for OFDFT calculations are
illustrated below using examples drawn from a series of
studies on Mg–Al alloys.73,94–96 Perhaps the most im-
portant task is to assess the stability (or meta-stability) of
a candidate compound, which is a multipart endeavor. A
thorough stability analysis involves consideration of
a compound’s formation energy, elastic behavior (me-
chanical stability), and phonon spectra (dynamical
stability).

The formation energy, Ef, is a useful first descriptor of
structural stability: a negative Ef provides evidence for
stability, whereas a positive Ef suggests that the com-
pound is energetically unfavorable and may even de-
compose into secondary phases. Formation energies at
zero Kelvin have been computed for a variety of Mg–Al
compounds. Table I summaries the results of some of
these calculations. For simplicity, Table I gives only
a plus sign if the computed value of Ef is positive and
a minus sign for negative Efs, reflecting either a consensus
in the literature or (in a few cases) the result that is
expected to be the most accurate. We note that while
most compounds presented in Table I have relatively
small unit cells, the b9-Mg2Al3 phase considered by Das,
Iyer, and Gavini73 requires an 879 atom simulation. The
three compounds in Table I listed in boldface type are
found in the experimental Mg–Al phase diagram, with
b9-Mg2Al3 among them.

The utility of OFDFT becomes more apparent for
assessment of mechanical and, especially, dynamical
stability. A compound’s mechanical stability is closely
related to its elastic behavior, and a mechanically stable
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compound in its ground state will resist any applied
strain. One verifies mechanical stability by ensuring that
a compound’s stiffness tensor is positive definite; if not,
the compound will be mechanically unstable. These
elastic properties are synthesized from many simulations
of the same cell, each perturbed by a small strain. Table I
indicates those compounds which pass the mechanical
stability test, when the data are available.

Dynamical stability is assessed from the crystal’s
phonon spectra: imaginary phonon modes, when ob-
served, imply that the compound is dynamically unstable.
The simulations that are used to generate phonon spectra
require more atoms than are in the simple unit cell; for
example, the phonon spectra calculations for Mg23Al30,
another compound in the experimental phase diagram,
involved simulations of 1431 atoms.95 Those compounds
which pass the dynamical stability test are also reported
in Table I. Phonon spectra, once computed, enable
determination of thermodynamic properties such as the
temperature-dependent formation energy, heat capacity,
and thermal expansion coefficient.

A recent study by Zhuang, Chen, and Carter95 illus-
trates an additional use for OFDFT in the study of alloys:
computational discovery of new materials. This study
used OFDFT to rapidly screen 101 Mg–Al compounds
and used these results in conjunction with a cluster
expansion model to explore 5675 additional compounds.
After narrowing the field to three compounds, each with
composition Mg3Al, Zhuang, Chen, and Carter then used
KSDFT calculations to predict a new meta-stable com-
pound (D019 Mg3Al) that is expected to exhibit greater
stability and superior ductility when compared with other
candidate structures of the same composition.

While the majority of OFDFT studies on solid alloys
have considered Al and Mg, there are a growing number
of examples involving other materials. For example, Shin
and Carter have explored plasticity in BCC Mg–Li
alloys.53 Improvements in KEDFs have also spurred
new applications, including studies of crystalline Li–Si
alloys97 and amorphous Li–Si alloys.49

2. Defects in solids

The existence and behavior of defects in a crystalline
solid can alter its properties dramatically, and OFDFT
enables realistic simulations of such defects that are
challenging or impossible to conduct with most other
methods. One can employ several distinct strategies for
modeling a defect within an extended system. Codes that
employ periodic boundary conditions model a periodic
array of defects, and the user increases the size of the
simulation cell until interactions between the defects
become negligible. Bulk Dirichlet boundary conditions
are another option, where the boundaries are fixed in
accordance with the electronic structure of the bulk
material. This choice models a true isolated defect but,
again, requires the user to increase the computational
domain until the property of interest reaches a converged
value.

a. Vacancies and vacancy clusters

A useful starting point is a single, isolated vacancy
within a face-centered cubic (FCC) Al lattice. The
formation energy Evf of this defect at zero Kelvin has
been computed with OFDFT by several
authors.31,35,73,98–100 When the defect is modeled with
periodic boundary conditions, the value of the formation
energy converges for simulations of 108–256 atoms.73,98

However, larger simulations of at least 864 atoms are
required for convergence of the electronic structure,73

which exhibits meaningful perturbations from its bulk
character over distances of at least five lattice units from
the defect. In contrast, when the isolated defect is studied
with bulk Dirichlet boundary conditions, neither Evf nor
the electronic structure converge until the cell size
reaches 864 atoms.73 In addition to the vacancy forma-
tion energy, Ho et al. also examine the diffusion kinetics
of vacancy motion.98 Finally, in part because the aggre-
gation of vacancies may lead to larger defects such as
voids, several authors have investigated the behavior
of vacancy clusters84,98,99 including di-vacancies,

TABLE I. Summary of stability analyses performed on a variety of Mg–Al compounds. Those compounds which pass all three stability tests
(described in the text) are expected to be at least meta-stable. The compounds listed in boldface type are present in the experimental phase diagram;
each of these compounds passes all three stability tests.

Composition Identifier Primitive cell atoms Formation energy (Ef) Mechanically stable? Dynamically stable? References

MgAl3 b0 4 � . . . . . . 73 and 94
MgAl2 . . . 12 1 y y 95
∼Mg2Al3 b0 879 � . . . . . . 73
Mg23Al30 . . . 53 � y y 73 and 95
Mg13Al14 . . . 27 1 n n 73 and 95
Mg17Al12 . . . 29 � y y 73 and 95

Mg3Al
D019 8 �a y y 96
L12 4 �a y y 96
D03 4 1 . . . n 96

aKSDFT calculations and evaluation of the zero point energy were required to resolve ambiguities in the formation energies for these compounds.
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tri-vacancies, tetra-vacancies, and one example involving
a 19-vacancy cluster.84

b. Dislocation nucleation, structure, and motion

Dislocations are among the most important many-atom
defects because dislocation nucleation, structure, and
motion, as well as interactions between dislocations and
other defects such as grain boundaries, strongly influence
the plastic deformation behavior of metals. In the
immediate neighborhood of a dislocation, the electronic
structure is disrupted rather severely from its bulk
character and so a simulation approach that adheres to
the appropriate physics is essential. Away from its core
region, a dislocation generates a long-ranged elastic strain
field that is also an important part of the overall effect.
A simulation tool for dislocations must be able to
faithfully capture both phenomena.

The initial series of OFDFT studies in this area
examined the onset of plasticity via dislocation nucle-
ation developing at surfaces during nanoindenta-
tion.89,101–103 (Strictly, the works described in this
paragraph were conducted by coupling OFDFT with
a local quasi-continuum method,104–106 but we will not
elaborate on the distinction here.107) The first papers in
this series89,101 used a simulated spherical indenter of
750 nm to probe Al surfaces, highlighting the importance
of using indenters with experimentally relevant sizes.
Subsequent studies made similar investigations for an
Al3Mg alloy102 and an Al thin film with Mg impuri-
ties.103 More force was required to indent the Al3Mg
alloy than was required to indent Al, which was an
expected result; however, in the Al thin film case, both
hardening and softening were observed, depending on the
local distribution of Mg impurities.

Multiphysics strategies that couple OFDFT with clas-
sical molecular mechanics simulations have also been
used for the study of dislocations. Choly et al. applied
such an approach to examine the core structure of a screw
dislocation in Al.90 Zhang and Lu, using a similar
method, investigated the diffusion of a Si atom along
an edge dislocation in Al.108

Finally, OFDFT has also enabled direct, atomic-scale
study of the structure of edge and screw dislocations in
both Al109–111 and Mg.112 These simulations generally
required at least 1500–3000 atoms, and the authors
observed perturbations in the electronic structure that
extend for tens of Ångstroms from the main defect, or
more. Follow-up studies considered the motion of dis-
locations in both Al113 and Mg,114 as well as in Mg–Li
alloys.53 Fig. 1 shows the energy barrier to motion for
both edge and screw dislocations in Al. Finally, a recent
study examined a possible originating mechanism for
dislocations in bulk Al, which involves the collapse of
a 19-atom cluster into a dislocation loop.84

c. Other large-scale defects

A few OFDFT studies have considered other large-
scale defects in solids. For example, Watson and Madden
used OFDFT-MD to simulate grain boundary migration
in crystalline sodium.115 Hung and Carter explored
ductile crack propagation in Al,116 contrasting predic-
tions made by OFDFT with predictions made using
a classical potential. Finally, a recent study by Chen et al.
determined the optimized structure for a polycrystalline
Li sample consisting of eight grains, each with a radius of
approximately 60 Å, and nearly 400,000 atoms.81

d. Nanoscale materials

The properties of nanostructured solids can differ
dramatically from their bulk counterparts and OFDFT
has been used to investigate several categories of nano-
scale materials. For example, Watson and Carter consid-
ered an array of Al quantum dots,68 investigating the
effect of separation distance on the decay of the electron
density in the vacuum region between adjacent quantum
dots. A number of studies—see Ref. 117 for a summary
—have considered alkali metal clusters and alkali metal
alloy clusters. OFDFT has also been used to study the
mechanical properties of Al nanowires,118,119 including
elastic properties and mechanisms for tensile yielding.

FIG. 1. Variation of dislocation core energies for screw and edge
dislocations in aluminum as a function of the normalized displacement
x traveled by the dislocation core. The energy unit is meV/b where b is
the Burgers vector. Insets show corresponding atomic configurations of
the screw (upper inset) and the edge (lower inset) dislocation cores
along the minimum energy path. Gray, blue, and red spheres indicate
atoms locally in face-centered cubic, hexagonal close-packed, and
unknown crystal structures, respectively. Reproduced figure with
permission from Shin and Carter, Phys. Rev. B 88, 064106 (2013).
Copyright 2017 by the American Physical Society.
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We expect studies of this kind to become increasingly
common as OFDFT advances in maturity.

B. Liquids

This section reviews the application of OFDFT-MD to
liquid metals and alloys. In principle, OFDFT allows for
a realistic treatment of liquids because large samples may
be considered for long simulation times. The most
success so far has been achieved for simple (s- and p-
bonded) metals because these systems may be treated
accurately by available KEDFs and LPSs due to their
nearly-free-electron-like nature.

1. Bulk liquid metals

Over the last fifteen years, the OFDFT-MD method has
been applied to describe a wide range of static, dynamic,
and electronic properties of simple liquid metals. The
study of time-dependent phenomena usually requires
long simulations involving thousands, or tens of thou-
sands, of configurations to avoid problems associated
with noise and limited correlation time. OFDFT-MD is
well suited for this task, while KSDFT-MD simulations
of liquids are usually restricted almost entirely to the
study of static properties.

s- and p-bonded liquid metals have been studied
extensively with OFDFT, beginning with the pioneering
work of Madden and coworkers on the static structure of
liquid Na, Mg, and Al.120,121 Others considered the
single-particle dynamic properties of liquid Li.60,64 In
addition, OFDFT-MD has been used to study the static
and dynamic properties of liquid Cs28 at several points
along the liquid–vapor coexistence line. The first study
on collective dynamic properties of liquid alkaline-earth
metals occurred in 2009; in this work, a special feature
was observed in the static structure factor, S(q), of liquid
Mg.122 This special feature is a shoulder on the second
peak of S(q), which is related to the capacity of the liquid
metal to undercool. Subsequent studies on Be, Ca, and
Ba66 revealed the same feature, making it a common
property of liquid alkaline-earth metals.

Of the p-bonded liquid metals, Al has been studied
most often because of its nearly-free-electron-like nature.
Work by González et al.29,123 considered the static and
dynamic properties of Al at various temperatures, and
warm dense Al was recently studied by White et al.124

and Sjostrom and Daligault.125 White et al. highlighted
the inability of classical MD to fully capture quantum
effects in cases where electron oscillations couple with
ion-acoustic modes, whereas OFDFT includes these
effects by continuously updating the electronic response.
Sjostrom and Daligault compared OFDFT results to
KSDFT results, obtaining excellent agreement for several
properties, and were able to use OFDFT to study much
higher temperatures than those accessible with KSDFT

because the computational cost of their method does not
increase with temperature.

OFDFT-MD studies on complex liquid metals have
been performed successfully for liquid Ga126 and liquid
Si under pressure.127,128 In both cases, a peculiar shoul-
der in the main peak of S(q) was observed at several
temperatures. In addition, covalent-like bonding present
in both liquid Ga and liquid Si was studied with OFDFT;
Fig. 2 shows a comparison between OFDFT- and
KSDFT-derived density profiles for liquid Ga, and
reasonable agreement is apparent.

2. Bulk liquid metal alloys

The field of liquid metal alloys was stimulated by the
results of a classical MD simulation of liquid Li4Pb by
Jacucci et al.,129 who observed a new, high-frequency
mode supported by the Li atoms only and named it the
fast-sound mode. The dispersion curve for pure liquid
metals, which contains information about the propagation
of collective density fluctuations, has only one branch
that begins in the hydrodynamic regime corresponding to
very small wave vectors (q) and extends to higher wave
vectors. (The slope of the dispersion curve for q ! 0 is
the adiabatic sound velocity.) In contrast, the dispersion
curve for liquid metal alloys has one branch in the
hydrodynamic regime and then splits into two branches
as the wave vector increases. The two branches corre-
spond to two separate modes, the fast-sound mode and
the slow-sound mode, and the bifurcation signals the
onset of a dynamic decoupling between the two types of
particles. Accordingly, the fast mode is expected to
resemble the individual dispersion relation of the corre-
sponding light particle fluid.130,131 The OFDFT-MD
method has been applied to several liquid metal alloys
(Na–Cs,132 Li–Na,133 and Ga–In117) to gain insight into
the existence and properties of the collective excitations
in these liquids as well as to study the fast-sound mode.
Homo-coordinating tendencies are observed for Na–Cs
and Li–Na, where each particle tends to be surrounded by
particles of the same type, but the segregating tendency
lessens as temperature increases.

3. Liquid metal surfaces

The study of the structure of free liquid surfaces has
attracted much theoretical and experimental attention,
with a strong emphasis on the possible existence of liquid
surface layers. It had long been believed that the change
in the ion density when crossing from the liquid into the
vapor is monotonic.134 X-ray measurements on several
nonmetallic liquids135 revealed density profiles that decay
smoothly and monotonically from the high-density bulk
liquid to the low-density vapor. However, oscillatory
density profiles extending several atomic diameters into
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the bulk liquid were observed with X-ray measurements
of several liquid metals (e.g., Ga136) and alloys (e.g., In–
Ga137). This feature, which suggests a layering parallel to
the interface, is of great interest. Given that metallic
bonding is very different from that of molecular fluids, it
is not surprising that nonmonotonic oscillations in the
density are observed for the former in contrast to the
latter.

In a metallic system, the nature of the interactions
between ions changes drastically across the liquid–vapor
interface. The computational demands of the KSDFT-
MD method have restricted its application to only two
systems, l-Si and l-Na,138,139 but OFDFT-MD has proven
capable of treating many more liquid metal and binary
alloy surfaces. Work on Li and Na liquid surfaces with
OFDFT-MD,140 for example, clearly revealed the surface
layering phenomenon. Subsequently, liquid surfaces of
more complex elements (K, Rb, Cs, Mg, Ba, Al, Tl, Si,
Ga, and In) were also studied, which led to the verifica-
tion of a scaling relationship between the wave length
of ionic oscillations and the radii of the associated
Wigner–Seitz spheres.141,142 In addition, OFDFT-
derived estimates for the reflectivity agreed well with
X-ray measurements.162,163

First-principles MD studies of liquid metal alloy surfa-
ces have only been possible with OFDFT-MD. So far, the
work has been restricted to the Ga–In alloy at the eutectic
point142 and several concentrations of the interalkali alloys
Na–K, Na–Cs, and Li–Na.143,144 An interesting segrega-
tion tendency has been observed and attributed to differing
surface tensions between the constituents of the alloy; the
result is a high concentration at the surface of the
compound with the lowest surface tension, as would be
expected thermodynamically. This phenomenon is clearly
seen in Fig. 3, which shows the density profile for a liquid

surface of GaIn, as well as profiles for the individual Ga
and In contributions. Specifically, the normalized contri-
bution of In increases dramatically at the surface on the
right hand side of Fig. 3.

C. Multi-phase systems

A great number of technological and physical pro-
cesses, such as soldering, lubrication, and crystal growth

FIG. 2. Electron density for a triplet of Ga atoms at 373 K obtained with OFDFT (left) and KSDFT (right). The contour lines are plotted for values
of the density equal to 0.010 electrons/a.u., which corresponds to the minimum inside the peanut-shaped line in the right part of the KSDFT data,
and then for increments of 0.005 electrons/a.u. Contour lines within the core radius (�0.75 Å) of each atom have been deleted because the
pseudodensity within the core has no physical meaning. Reproduced figure with permission from González, González, and Stott, Phys. Rev. B 77,
014207 (2008). Copyright 2017 by the American Physical Society.

FIG. 3. Total electron density, normalized to the bulk value of the
slab, for liquid Ga0.935In0.065 (thick continuous line). The dashed and
dash-dotted lines are the Ga and In contributions, respectively, to the
total electron density. Received by private communication from the
authors of Ref. 142, and used with permission.
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or melting, involve more than one phase of matter. Long
simulation times are required to model these systems,
along with accurate representations of all phases and
phase transitions. OFDFT-MD is an alternative to clas-
sical MD that provides (in principle) a more accurate
description of the system, while retaining manageable
computational expense.

1. Solid-liquid interfaces

Early studies of solid–liquid interfaces regarded the
solid as a continuous system and modeled its interaction
with the liquid using a potential that depended only on
the distance from the wall. However, a truly accurate
description of interfaces between phases requires an
atomic-scale description and, in particular, a proper de-
scription of the forces between atoms. We concentrate
first on studies related to the static and dynamic proper-
ties at solid–liquid interfaces and then comment more
extensively on melting temperature calculations in the
next subsection.

The solid–liquid interface most studied with OFDFT-
MD has been that of Al. The first such simulation was
reported in 2000 by Jesson and Madden,145 who studied
a solid Al surface in equilibrium with liquid Al. How-
ever, that study predicted a melting temperature that was
much lower than experiment, suggesting deficiencies in
the KEDF as well as in the LPS. Later work by González
and González146 examined liquid Al at 1000 K in contact
with three different orientations of FCC Al: the (100),
(110), and (111) surfaces. Interestingly, results differed
depending on orientation. While in contact with the (100)
surface, only the first layer in the liquid exhibited solid-
like ordering, whereas the (111) surface induced a full
solidification of the liquid which began to crystallize
layer by layer.

In 2013, Aguado et al.117 reported work on a solid–
liquid interface between two dissimilar metals: liquid Li
on solid Ca at a temperature of 470 K. Their periodic
simulation cell contained vacuum, 576 Ca atoms
arranged in 16 solid layers, and 2000 Li atoms in the
liquid phase. An interesting phenomenon developed in
the first liquid layer: the Li atoms in this layer followed
one-dimensional trajectories along the channels on the
exposed FCC (110) surface of Ca atoms.

2. Solid-liquid phase transitions

The calculation of a material’s melting curve (i.e., how
its melting temperature changes with pressure) is an
arduous task for which several methods can be used,
including the heat-until-melts scheme,147 the (solid–
liquid) coexistence approach,148 and the Z-method.149

The heat-until-melts method is subject to superheating;147

it therefore yields an upper bound to the true melting

temperature (the so-called mechanical melting tempera-
ture). OFDFT-MD simulations of the mechanical melting
temperature of Li explored the effect of simulation cell
size and concluded that at least 256 atoms must be
included to achieve property convergence. The coexis-
tence approach provides a more refined estimate of
a material’s melting temperature but requires a larger
sample to accommodate simultaneous representation of
both solid and liquid phases.60

The light alkali metals Li and Na undergo a series of
phase transitions when subjected to compression, and this
behavior is reflected in the associated melting line. In
both cases, the melting curve reaches a maximum, and
thereafter, as pressure is increased, the melting temper-
ature decreases to a minimum before increasing again
with a positive slope.150,151 Only the melting curve of Na
has been studied152 in this capacity with OFDFT-MD,
along with changes in the static, dynamic, and electronic
properties of the liquid as pressure is increased. Analysis
of the dynamic properties revealed that the increase in
density due to pressurization increased the importance of
interatomic collisions in controlling the dynamics of the
system.

IV. OUTPOSTS ON THE OFDFT FRONTIER

This section contains brief discussions of additional
topics that, while less directly connected to the applica-
tion studies reviewed in the previous section, are none-
theless at the forefront of OFDFT research. The range of
topics includes “new approaches to old ideas,”4 as well as
rather serious departures from the usual LPS approach.

A. Recent advances in single-point kinetic energy
density functionals

Single-point functionals of the electron density have
the general form F n½ � ¼ R

dr f n rð Þ;=n rð Þ; . . .ð Þ, and are
evaluated with one, single integral. In contrast, aside from
TTF[n] and TvW[n], the KEDFs discussed in Sec. II are
two-point, nonlocal functionals; their evaluation requires
two integrals. The relative simplicity of single-point
functionals makes them advantageous from a computa-
tional standpoint. While, historically, single-point
approximations for Ts[n] have been insufficiently accu-
rate for reliable, self-consistent OFDFT calculations on
solids and liquids, progress in this subfield has acceler-
ated recently.

There are at least three scenarios—aside from the self-
consistent OFDFT calculations at low temperatures that
we have emphasized thus far—in which single-point
functionals have flourished. First, at high temperatures,
such as those in the warm dense matter9 regime strad-
dling condensed matter physics and plasma physics, one
typically observes smoothing in sharp quantum features
that are present in the T ! 0 limit. This phenomenon
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eases in some ways (and complicates in others) the
challenge of determining OF approximations for the
noninteracting free energy functional. Second, subsystem
DFT10,11 and various embedding approaches employ OF
approximations for the non-additive kinetic energy;43,45

fortuitous error cancellation and the smaller magnitude of
the nonadditive contribution compared with the full Ts[n]
can again simplify the task somewhat. Finally, recent
advances in the design of exchange-correlation func-
tionals have incorporated the non-interacting kinetic
energy density as an ingredient, and OF approximations
for this quantity have proven useful.153,154

Single-point approximations for Ts[n] have a long history
that, for the sake of brevity, we do not discuss here and
instead refer to prior reviews.1,4,6,15,16,155 Our rather modest
aim is simply to direct the reader to a small number of the
very latest advances in this category. Generally, single-point
density functionals rely on the value of n(r) at each point
and a few other dimensionless ingredients such as the
reduced gradient j=nj/(2(3p2)1/3n4/3) and the reduced Lap-
lacian =2n/(4(3p2)2/3n5/3). Functional developers combine
these ingredients based on a variety of overlapping
philosophies. Perhaps the most fundamental approach
is to posit a functional form that accords with the
collection of exact constraints that the true functional
has been determined to obey.153,156–158 Investigations
that analyze the behavior of local kinetic energy density
are useful in this regard.159–164 A related series of studies
takes inspiration from the semiclassical limit of atoms as
Z ! ∞165–169 and another approach seeks to impose
proper representation of atomic shell structure.170 One
can also incorporate exact solutions for simplified model
systems such as the locally-linearized potential
model171,172 or the jellium-with-gap model173—or sim-
ply search for the best combination of ingredients with
a brute force scan.154 Lastly, we mention an intriguing
approach that makes use of a new ingredient, the reduced
Hartree potential, although this functional is not strictly
a single-point functional.174

B. Angular-momentum-dependent OFDFT

Angular-momentum-dependent (AMD) OFDFT was
conceived by Ke et al.175,176 Recalling that OFDFT
regards the electron density, n(r), as the sole quantity
to be varied, the primary innovation of AMD-OFDFT is
the introduction of single particle density matrices that
describe the system in regions of space immediately
surrounding each nucleus. This partitioning of the system
domain—atom-centered spheres stitched together by an
interstitial region—is commonly referred to as a muffin-
tin geometry. Outside any particular atom-centered
sphere, the AMD-OFDFT approach describes the system
with the electron density alone, as is the case for ordinary
OFDFT.

In principle, the extra information encoded in the
onsite density matrices provides a more complete de-
scription of the physical system and therefore should
enable more accurate calculation of the system energy.
Importantly, one anticipates improvements over regular
OFDFT for both kinetic energy and potential energy
terms. Improvement for the potential energy is possible
because the formalism is no longer restricted to LPSs and
may instead treat electrons with different angular mo-
menta differently, as is usually done with KSDFT.

The original articles by Ke et al.175,176 demonstrated
the validity of such an approach by showing that it could
be used to compute bulk properties of the transition metal
Ti. The localized d electrons in these materials typically
preclude any successful application of OFDFT. However,
this proof-of-principle work utilized a parameter fitting
step that simplifies the overall formalism but reduces
transferability. Efforts to overcome these limitations are
ongoing.

C. OFDFT implementation with the PAW method

The final example74 harnesses the PAW method,51

which is well-established for KSDFT, in an OFDFT
context. Applying the oft-used technique of interpreting
the square root of the electron density as a pseudo-orbital,
the authors reformulate the OFDFT problem so that it can
be described by an effective Schrödinger equation for
a model system. From there, they employ the PAW
decomposition to conduct efficient all-electron, frozen-
core calculations with OFDFT. When the same semi-
local OFDFT functionals are used in both cases, the
authors demonstrate their method agrees well with results
obtained from more expensive, explicitly all-electron
simulations. However, agreement with KSDFT is less
satisfactory unless a parameter fitting step is used.
Unfortunately, it is not immediately clear how to com-
bine this general approach with the more accurate,
nonlocal approximations for Ts[n].

V. CONCLUDING REMARKS

Over recent decades, OFDFT has contributed mean-
ingfully to the field of materials research by enabling
direct, quantum-mechanical simulations of many-atom
systems that would be otherwise impractical or impossi-
ble. Simulations involving thousands of atoms are now
routine, and million-atom simulations are achievable.
While early work emphasized main group metals with
nearly-free-electron-like character, more recent advances
provide satisfactory results for a wider portion of the
periodic table, including many semiconductors. Ongoing
efforts aim to overcome the challenges associated with
strongly localized electrons. Innovations in theory and
practice are occurring steadily, and we expect this trend
to continue.
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