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Orbital optimization in the density matrix renormalization group,
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In previous work we have shown that the density matrix renormalization group �DMRG� enables
near-exact calculations in active spaces much larger than are possible with traditional complete
active space algorithms. Here, we implement orbital optimization with the DMRG to further allow
the self-consistent improvement of the active orbitals, as is done in the complete active space
self-consistent field �CASSCF� method. We use our resulting DMRG-CASSCF method to study the
low-lying excited states of the all-trans polyenes up to C24H26 as well as �-carotene, correlating
with near-exact accuracy the optimized complete �-valence space with up to 24 active electrons and
orbitals, and analyze our results in the light of the recent discovery from resonance Raman
experiments of new optically dark states in the spectrum. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2883976�

I. INTRODUCTION

The density matrix renormalization group �DMRG� is an
electronic structure method that has recently been applied to
ab initio quantum chemistry. The method originated in the
condensed matter community with the pioneering work of
White.1,2 Although the earliest quantum chemistry imple-
mentations are only a few years old, the DMRG has already
enabled the solution of many problems that would be intrac-
table with any other method.3–7 For example, we have shown
that the DMRG can obtain near-exact solutions to multiref-
erence problems with active spaces much larger than are pos-
sible with traditional active space techniques. Such problems
have ranged from molecular potential energy curves,8,9 to the
ground and excited states of large conjugated polymers,10–12

and to metal-insulator transitions in hydrogen chains.10 In
each of these cases, we obtained DMRG energies within
0.001–0.1 mEh of the �estimated� exact full configuration
interaction energies in the active space, but for active spaces
that, in some problems, have been as large as 100 active
electrons in 100 orbitals.10 The development of the DMRG
in quantum chemistry has proceeded through the efforts of
several groups, and we mention here the work of White
and co-workers,3,13,14 Mitrushenkov et al.,4,15,16 our
contributions,5,8–12,17,18 the work of Legeza, Hess, and
co-workers,6,19–21 the work of Reiher and co-workers,7,22–24

and most recently the work of Zgid and Nooijen.25 Also re-
lated, but too numerous to cite in full here, are earlier devel-
opments of the method for semiempirical Hamiltonians;
some representative contributions are those in Refs. 26–32.

The heart of the DMRG is a wavefunction ansatz and the
DMRG “algorithm” is simply an efficient variational optimi-
zation procedure for this ansatz. Unlike most wavefunctions

in quantum chemistry, the DMRG wavefunction is not pa-
rametrized by excitations from an underlying reference state.
Rather, it is built directly from local variational objects
�which we shall later call site functions� that are associated
with the active orbitals in the system, and that describe how
the orbitals are correlated with each other. Each site function
is characterized by a rank M that measures the number of
variational parameters, and as this rank increases, the ansatz
becomes exact. For an incomplete rank M, correlations be-
tween orbitals that are widely separated in the ansatz are
truncated. Thus, the DMRG is a naturally local theory, but,
since the ansatz is not constructed from a reference, it is a
local multireference theory. This may be seen as the basic
reason why the DMRG can describe very large multirefer-
ence problems so easily. We should note that the structure of
the DMRG wavefunction means that it is a local theory only
in the number of correlating orbitals along one of the physi-
cal dimensions of the problem. However, generalizations of
the ansatz to a local theory along all physical dimensions are
now known and are under active development.33–38

In most applications of the DMRG to quantum chemistry
so far, the active space of interest has been easy to identify,
i.e., there is a good core-valence and valence-Rydberg sepa-
rations, either for energetic or for symmetry reasons, allow-
ing the DMRG to be used with such an active space as a
direct substitute for complete active space configuration in-
teraction �CASCI�. In general, however, we cannot always
identify the active orbitals in a simple way, and thus there is
a need for an orbital optimized DMRG, where the active
space is determined self-consistently by energy minimiza-
tion, in much the same way as in the complete active space
self-consistent field �CASSCF� method.39,40 The purpose of
the current work is to describe how this may be done. The
resulting orbital optimized DMRG we shall refer to as the
DMRG-CASSCF method.a�Electronic mail: gc238@cornell.edu.
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While the general idea of orbital optimization is straight-
forward, in practice, an efficient implementation must be tai-
lored to the underlying many-body wavefunction ansatz. In
Sec. II, we describe such an algorithm for the DMRG wave-
function. We start with an overview of orbital optimization in
Sec. II A that recalls how the procedure may naturally be
divided into two tasks, the evaluation of the one- and two-
particle density matrices, and the orbital rotation and integral
transformation steps. In Sec. II B, we present an efficient
method to evaluate the one- and two-particle density matri-
ces in the DMRG. Our current implementation benefits from
the observation of Zgid and Nooijen that the one-site DMRG
algorithm is more suitable than the two-site DMRG algo-
rithm for this purpose.41 To facilitate the large-scale calcula-
tions for our applications to long polyenes and �-carotene in
this work, we have fully parallelized not only the evaluation
of the reduced density matrices in the DMRG but also the
orbital rotation and integral transformation steps. These
implementation aspects are discussed in Sec. II C. Finally,
the complete DMRG-CASSCF macroiteration is summarized
in Sec. II D.

In Sec. III, we apply the DMRG-CASSCF method to the
problem of the low-lying excitations in polyenes and
�-carotene. The conjugated �-system in the polyenes and
substituted species such as �-carotene gives rise to an un-
usual excitation spectrum, with “dark” electronic states lying
beneath the optically allowed highest occupied molecular
orbital–lowest unoccupied molecular orbital �HOMO-
LUMO� transition. The electronic structure of these low-
lying states lies at the heart of energy transport in systems
ranging from conjugated organic semiconductors to the bio-
logical centers of light harvesting and vision. While the rel-
evant active space on these systems clearly consists of the
conjugated �-valence orbitals, to the best of our knowledge,
previous calculations on these systems have not correlated
complete �-valence spaces with more than five double bonds
�corresponding to a �10,10� complete active space42,43�. In
the current study, we use our DMRG-CASSCF method to
perform calculations correlating the complete �-valence
space in polyenes up to C24H26 �with 12 conjugated bonds�
and �-carotene �with 11 conjugated bonds� and analyze our
results in relation to recent resonance Raman measurements,
which have detected previously unidentified dark states in
the low-lying spectrum.

II. THEORY

A. Overview of orbital optimization

We begin with some general remarks on orbital optimi-
zation in ab initio quantum chemistry. Starting from the elec-
tronic Hamiltonian, specified by the one- and two-electron
integral matrix elements tij and vijkl,

H = �
ij

tijai
†
a j + �

ijkl

vijklai
†
a j

†
akal, �1�

an ab initio quantum chemical method provides a wavefunc-
tion � that approximates a target eigenstate of H. From �,
we define the one- and two-particle density matrix elements
�ij and �ijkl,

�ij = ���ai
†
a j��� , �2�

�ijkl = ���ai
†
a j

†
akal��� , �3�

and the energy expectation value ���H��� can be written as

E = �
ij

tij�ij + �
ijkl

vijkl�ijkl. �4�

Orbital rotation corresponds to a unitary transformation
of the wavefunction effected by an operator eA, where A has
the single-particle operator form,

A = �
ij

Aijai
†
a j , �5�

and Aij =−A
ji
*. After orbital rotation, the transformed wave-

function �̄ and energy Ē are

�̄ = eA� ,

�6�

Ē = ��e−A�H�eA�� .

However, one can also consider the unitary operator to act on
the Hamiltonian rather than the wavefunction, and from this

equivalent point of view, we have the transformed H̄ and
energy expressions,

H̄ = e−AHeA,

�7�

Ē = ���H̄��� .

The transformed Hamiltonian H̄ has the same form as the
original Hamiltonian �1� but with modified integrals t̄ij and
v̄ijkl that reflect the rotated orbitals,

t̄ij = �
i�j�

U
ii�

* U j j�
ti�j�

,

�8�

v̄ijkl = �
i�j�k�l�

U
ii�

* U
j j�

* Ukk�
Ull�

vi�j�k�l�
,

where U is the coefficient matrix eA. Thus, we can rewrite
the energy after orbital rotation in terms of the original one-
and two-particle density matrices and the modified integrals,

Ē = �
ij

t̄ij�ij + �
ijkl

v̄ijkl�ijkl. �9�

We include this elementary discussion because it leads
directly to the following familiar procedure to optimize the
orbitals in an ab initio wavefunction:

�1� From the ab initio method, obtain � corresponding to
the given H and form the density matrices �ij and �ijkl.

�2� Determine an orbital rotation step eA and form the new

Hamiltonian H̄=e−AHeA from the transformed inte-
grals.

�3� Go to �1� and loop until convergence in �.

Note that in the above, the orbital degrees of freedom and the
other ansatz degrees of freedom in � are alternately opti-
mized in steps �1� and �2�. While more sophisticated ap-
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proaches that couple orbital rotations with changes in the
other ansatz degrees of freedom can be envisaged �as are
employed in multiconfigurational self-consistent field
methods44,45�, we shall adopt the above simple strategy to
optimize the orbitals in the DMRG wavefunction. The con-
ceptual task is then twofold. First, how do we calculate the
one- and two-particle density matrices in the DMRG? Sec-
ond, what method should we use to select our orbital rotation
steps and to construct the transformed Hamiltonian?

B. Evaluation of the one- and two-particle density
matrices in the DMRG

While the algorithm to calculate the one- and two-
particle density matrices could, in principle, be described
entirely in the traditional renormalization group language of
the DMRG, we believe that it is beneficial to understand the
method in a more modern language that focuses on the struc-
ture of the DMRG wavefunction. Thus, we begin with a brief
review of the general properties of the DMRG wavefunction
before proceeding to the method of reduced density matrix
evaluation. For an expanded introduction to the wavefunc-
tion perspective in DMRG, we refer the reader to our intro-
ductory article �Ref. 46� as well as other recent reviews in
the field.47

1. The DMRG wavefunction

The DMRG algorithm corresponds to a variational mini-
mization of the energy within the space of a wavefunction
ansatz. To specify this ansatz, we first define an ordering of
the orbitals, thereby mapping them onto sites on a one-
dimensional lattice. Then, the “one-site” DMRG ansatz is
given by

��DMRG� = �
n1n2n3¯nk
i1i2i3¯ik−1

�i1

n1�i1i2

n2 �i2i3

n3
¯ �ik−1

nk �n1n2n3 ¯ nk� ,

�10�

where �n1¯nk� denotes a Slater determinant in occupation
number form, i.e., ni is the occupation of orbital i, and the
total number of orbitals is k. The � “site functions” are three-
index quantities and are the variational parameters of the
wavefunction. The dimension of each n1¯nk index is 4,
corresponding to the four occupancies for each orbital ���,
����, ����, and ������, while the dimension of each auxiliary
index i1¯ ik−1 is some specified size M, thus making each
site function a tensor of dimension 4	M 	M, except for the
first and last, which only have two indices and are of dimen-
sion 4	M and M 	4. As M increases, the wavefunction
ansatz becomes increasingly exact. If we interpret a site
function with indices np, ip−1, and ip as a matrix array �np,
where ip−1 and ip are the matrix indices and np is the third
array index, then the ansatz is written compactly as a matrix
product,

��DMRG� = �
n1n2n3¯nk

�n1�n2�n3
¯ �nk�n1n2n3 ¯ nk� .

�11�

Because of this matrix product structure, the DMRG ansatz
is also known as the matrix product state.48–50

Now the above form of the DMRG ansatz is invariant to
transformations of the site functions of the form ��np

→�npU, �np+1→U†�np+1� and thus it is useful to define a
canonical form of the DMRG wavefunction that eliminates
this freedom. In practice, this canonical representation is
used in all DMRG calculations, and it is also the representa-
tion in which the link between the DMRG wavefunction and
the traditional renormalization group language is most direct.
In essence, the canonical form of the wavefunction at a given
site corresponds to the familiar expression for the DMRG
wavefunction where it is expanded in the product basis of the
left and right blocks separated by the site.3,46

To obtain the canonical form, we choose a specific site,
say, p, around which to canonicalize. Then, the site p canoni-
cal form is given as

��� = �
n1¯np¯nk

L
n1

¯ L
np−1C

npR
np+1

¯ R
nk�n1 ¯ np ¯ nk� .

�12�

We label the site functions to the left of p by L, and those to
the right by R. The L and R site functions are orthogonal
projection matrices in the following sense;

�
lnq

L
ll�

nqL
ll�

nq = 
l�ll�
, �13�

�
rnq

R
r�r

nq R
r�r

nq = 
r�r�
, �14�

i.e., by grouping together the lnq indices to form the row
index of a 4M 	M matrix, each L site function is orthogonal
with respect to its M columns, while by grouping together,
the rnq indices to form the column index of a M 	4M ma-
trix, each R site function is orthogonal with respect to its M

rows.
The link between the canonical form and the original RG

formulation appears when we combine the L site functions
L

n1
¯L

np−1 with the basis states �n1¯np−1�, and the R site
functions R

np+1
¯R

nk with the basis states �np+1¯nk�, to de-
fine renormalized left and right many-body spaces 	lp−1
 and
	rp
,

�lp−1� = �
n1¯np−1

l1¯lp−2

Ll1

n1
¯ Llp−2lp−1

np−1 �n1 ¯ np−1� , �15�

�rp� = �
np+1¯nk

rp+1¯rk−1

Rrprp+1

np+1
¯ Rrk−1

nk �np+1 ¯ nk� . �16�

Since the dimension of the left basis in Eq. �15� is M �i.e.,
the dimension of the auxiliary index lp−1� and similarly for
the right basis, the site functions L

n1
¯L

np−1 and R
np+1

¯R
nk

define a projective transformation or renormalization from
the many-body spaces 	n1
 � ¯ � 	np−1
 and 	np+1
 � ¯
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� 	nk
 to the left and right spaces 	lp−1
 and 	rp
, respectively.
Then, in the renormalized representation, Clp−1rp

np gives the

coefficients of expansion of the wavefunction ���, i.e.,

��� = �
lp−1nprp

Clp−1rp

np �lp−1nprp� . �17�

This is just the RG expression for the one-site DMRG wave-
function, in the product space of a renormalized left “block”
a site p, and a renormalized right “block.” Thus, in the usual
DMRG language, the site p canonical form corresponds to
the DMRG wavefunction in the basis associated with the
block configuration .

A one-site DMRG wavefunction expressed in the ca-
nonical form of a given site p can always be expressed in the
canonical form for any other site �or using the traditional
DMRG language, the DMRG wavefunction for a given one-
site block configuration can always be expressed in the basis
of any other one-site block configuration along a sweep�.
Since we are simply re-expressing the same wavefunction in
a different basis, the coefficients C and site functions L and R

at different sites are related. To see the link explicitly, we
compare the canonical forms at adjacent sites p and p+1,

��� = �
n1¯np¯nk

L
n1

¯ L
np−1C

npR
np+1R

np+2
¯ R

nk

	�n1 ¯ np ¯ nk� �18�

= �
n1¯np¯nk

L
n1

¯ L
np−1L

npC
np+1R

np+2
¯ R

nk

	�n1 ¯ np ¯ nk� , �19�

which yields the relation

L
npC

np+1 = C
npR

np+1. �20�

Now say, we are given C
npR

np+1 from the site p canonical
form, and we wish to determine L

npC
np+1 for the site p+1

canonical form, where L
np satisfies the orthogonality condi-

tions �Eq. �13��. We can obtain such a L
np solution of Eq.

�20� together with C
np+1 from the singular value decomposi-

tion of C
np, viewed as the 4M 	M matrix with row indices

lp−1np, column indices rp, and M singular values �lp
,

Clp−1,rp

np = �
lp

Llp−1,lp

np �lp
Vlprp

, �21�

Clp,rp+1

np+1 = �
rp+1

�lp
Vlprp

Rrp,rp+1

np+1 . �22�

The above transformation between canonical forms at adja-
cent sites corresponds directly to the transformation between
block configurations during the sweep algorithm in the
DMRG. In particular, Eq. �21� corresponds to the determina-
tion of the basis of the renormalized block

from the density matrix eigenvectors of the superblock
, while Eq. �22� corresponds to the wavefunc-

tion transformation used to generate the guess at a given

block configuration from that at the previous configuration.
We note in passing that an exact transformation between ca-
nonical forms at different sites is only possible with the one-

site DMRG ansatz. Most DMRG calculations use the two-
site DMRG ansatz with the block configuration

and a corresponding

canonical form at site p,

��� = �
n1¯np¯nk

L
n1

¯ L
np−1C

npnp+1R
np+2

¯ R
nk

	�n1 ¯ npnp+1 ¯ nk� �23�

= �
lp−1npnp+1rp+1

Clp−1rp+1

npnp+1 �lp−1npnp+1rp+1� . �24�

Unlike in the one-site ansatz, the coefficient matrix C
npnp+1

has a different shape from the L and R site functions and has
4M �as opposed to M in the one-site case� singular values.
Thus, it can only be approximately represented by the sum
over M singular values in Eq. �22�, and the resulting trunca-
tion corresponds to “discarding states” in the DMRG algo-
rithm. The primary benefit of the two-site DMRG ansatz is
the greater robustness of convergence in the DMRG sweeps
but for the purposes of orbital optimization, the one-site
DMRG ansatz provides a single consistent DMRG wave-
function in all canonical forms and block configurations and
is to be preferred.

2. Reduced density matrix evaluation

Our task now is, given a DMRG wavefunction written
explicitly as Eq. �12� or equivalently in the renormalized
expansion �Eq. �17��, to find an efficient algorithm to evalu-
ate the one- and two-particle density matrices. From the
renormalized form, we see that we will need matrix repre-
sentations of operators in each of the three spaces 	lp−1
, 	np
,

and 	rp
, i.e., matrix elements �lp−1�Ô�lp−1� �, , and

�rp+1�Ô�rp+1� �. Matrix representations in the left and right
spaces are in general of dimension M 	M since there are M

left and right states. While the direct evaluation of the one-
particle density matrix would require k2 operator representa-
tions and thus O�M2k2� storage �presenting no particular dif-
ficulties as the memory requirement for the usual DMRG
algorithm is also O�M2k2��, the two-particle density matrix
would require O�M2k4� storage that is prohibitively expen-
sive. �It might appear that when solving the Schrödinger
equation, the action H��� would also involve O�k4� opera-
tors and O�M2k4� storage. However, there we do not need the
action of the operators ai

†a j
†akal individually, but only the

total �ijklvijklai
†a j

†akal, so we can form intermediates where
operators are precontracted with two-electron integrals to
save memory, and the efficient arrangement of such interme-
diates lies at the heart of the quantum chemical DMRG
algorithm.�
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The way forward is to observe that we are not tied to
using a single canonical form/block configuration for the
DMRG wavefunction, but rather can evaluate a density ma-
trix element �ijkl at any canonical form/block configuration
that is convenient. As we have described above, a given
DMRG wavefunction can be expressed in the canonical
form/block configuration associated with any site. By taking
advantage of this flexibility, we can reduce the memory re-
quirements once again back to O�M2k2�, i.e., the same as in
the standard quantum chemical DMRG algorithm. Given a
two-particle density matrix element �ai

†a j
†akal�, where, say,

i� j�k� l, we choose a block configuration such that i and
j lie in the left block and sites k and l lie in the right block,
i.e., . The corre-

sponding matrix element may then be evaluated using ai
†a j

†

on the left block and akal on the right block, and thus no
operator matrices with more than two orbital indices appear
on either block �see Fig. 1�. By the appropriate choice of
partitioning between the left and right blocks, we can arrange
things such that we never manipulate operators with more
than two orbital labels on either the left or right blocks for
any ijkl. During a DMRG sweep, we iterate through all
block configurations where the dividing site ranges from
site 2 to site k−1. At each block configuration, we then
evaluate all the two-particle density matrix elements that do
not require more than two-index operators on either the left
or right blocks and assemble the contributions of all the
block configurations at the end of the DMRG sweep.

Along these lines, we can formulate an efficient algo-
rithm to evaluate the two-particle density matrix with a total
per-sweep computational cost of O�M3k4� and a memory
cost of O�M2k2�. The pseudocode is given in Algorithms 1
and 2. Algorithm 1 describes how to partition the evaluation
of different density matrix elements amongst the block con-
figurations as we traverse a DMRG sweep. The actual calcu-
lation of the density matrix elements is carried out by the
function COMPUTE in Algorithm 2, which computes all den-
sity matrix elements that may be assembled from nl index
operators on the left block, np index operators on site p, and
nr index operators on the right block.

ALGORITHM 1. Two-particle density matrix evalua-
tion showing how the two-particle density matrix is as-
sembled across a DMRG sweep.

special treatment for first configuration

left=site 1, sitep=site 2, right=sites 3 . . .k

COMPUTE�4, 0, 0, left, sitep, right�

COMPUTE�3, 1, 0, left, sitep, right�

COMPUTE�3, 0, 1, left, sitep, right�

COMPUTE�2, 1, 1, left, sitep, right�

sweep through block configuration

for sitep=2 to k−1 do

left=sites 1 . . . p−1, right=sites p+1. . .k

COMPUTE�1, 2, 1, left, sitep, right�

COMPUTE�2, 1, 1, left, sitep, right�

COMPUTE�2, 2, 0, left, sitep, right�

COMPUTE�1, 3, 0, left, sitep, right�

COMPUTE�0, 3, 1, left, sitep, right�

COMPUTE�0, 4, 0, left, sitep, right�

end for

special treatment for final configuration

left=sites 1 . . .k−2, sitep=site k−1, right=site k

COMPUTE�0, 0, 4, left, sitep, right�

COMPUTE�0, 1, 3, left, sitep, right�

COMPUTE�1, 0, 3, left, sitep, right�

COMPUTE�0, 2, 2, left, sitep, right�

COMPUTE�2, 0, 2, left, sitep, right�

COMPUTE�1, 1, 2, left, sitep, right�

COMPUTE�1, 2, 1, left, sitep, right�

ALGORITHM 2. COMPUTE�nl, np, nr, left, sitep, right�
Note nl ,np ,nr�2 and nl+np+nr=4, i.e., the number of in-
dices in the two-particle density matrix �.
for all opl=operators with nl indices on block left do

�If, parallel, loop only over opl stored on current proc�
for all opp=operators with np indices on block sitep do

for all opr=operators with nr indices on block right

do

��np ,nl ,nr�=parity�opl ,opp ,opr�	 ���opl � opp

�opr���
end for

end for

end for

�If parallel, accumulate contributions from all procs to root

processor�

An attractive feature of the quantum chemical DMRG
algorithm is the high level of parallelizability, which we have
described in detail in Ref. 17. In our implementation, the
loops over operators in Algorithm 2 are trivially parallelized
because of how our operators are divided across processors
in our original formulation.17 For example, the dominant
computational cost of the two-particle density matrix evalu-
ation comes from COMPUTE�2,1,1, left, sitep, right� in Algo-
rithm 1, which costs O�M3k4� per DMRG sweep. Corrected
scaling should be O�M2k4�+O�M3k2� per sweep. �See note

FIG. 1. Evaluation of a two RDM element �4167. We can obtain this ele-
ment, e.g., at the block configuration where indices 4 and 1 are on the left
block and indices 6, 7 are on the right block �corresponding to calling
COMPUTE�2, 0, 2� in Algorithm 1�.
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added in proof.� However, in our parallel DMRG implemen-
tation, the two index operators opl on the left block, namely,
ai

†a j and aia j, are divided across the processors, while the
corresponding one index operators opp and opr are repli-
cated on all processors and thus, we can easily parallelize
over the first opl loop in Algorithm 2. This leads to a final
computational cost per sweep of O�M3k4

/np� with a commu-
nication cost of O�k4 ln np�, where np is the number of pro-
cessors. Corrected cost should be O�M2k4

/np�+O�M3k2
/np�.

�See note added in proof.�

C. Orbital step and integral transformation

As described earlier, the DMRG wavefunction is prima-
rily efficient at capturing static correlation and consequently
we employ an active space DMRG description of the elec-
tronic structure, the purpose of the orbital optimization then
being to obtain the best form of the active space. Recall that
the active space is defined by partitioning the orbitals into
three sets, closed-shell orbitals that remain doubly occupied
in all DMRG configurations, active orbitals that form the
product active space 	n1
 � ¯ � 	nk
 in the DMRG wave-
function expansion �Eq. �10��, and external orbitals, which
remain unoccupied in all DMRG configurations. With this
partitioning, the active space DMRG wavefunction is deter-
mined with respect to the active space Hamiltonian,

Hact = Eclosed + �
ij

tij
act

ai
†
a j + �

ijkl

vijklai
†
a j

†
akal, �25�

where the indices i and j are limited to the active orbitals and
the modified one-particle integrals tij

act and closed-shell en-
ergy are given, respectively, by

Eclosed = �
c

tcc + �
cc�

�vcc�c�c − vcc�cc�
� , �26�

tij
act = tij + 2�

c

�viccj − vicjc� , �27�

where c and c� denote the closed-shell indices.
Orbital optimization chooses the best form of the active

orbitals by minimizing the energy of the DMRG wavefunc-
tion with respect to the active and closed-shell orbitals. This
is the basic idea behind the CASSCF description of elec-
tronic structure. In CASSCF, the active space wavefunction
is the exact eigenfunction of the active space Hamiltonian
�25� and is thus invariant with respect to active-active orbital
rotations. In the corresponding orbital optimized DMRG-
CASSCF, the accuracy of our active space DMRG wave-
function depends on the size of M, but in this study, we will
use sufficiently large M so that our wavefunction is nearly an
exact eigenfunction of the active space Hamiltonian, and we
will similarly omit active-active rotations.

The algorithm we use for orbital optimization is an aug-
mented Hessian–Newton–Raphson scheme similar to that
used in modern CASSCF implementations.44,45,51 The orbital
rotations are parametrized by the anti-Hermitian amplitudes
A in Eq. �5�, and the derivative with respect to these ampli-
tudes is evaluated from the one- and two-particle density
matrices from the DMRG calculation. However, as the

DMRG enables the use of larger active spaces than in tradi-
tional CASSCF studies and consequently we can expect to
have a larger number of correlating external and closed-shell
orbitals, we have focused on an efficient parallel implemen-
tation of the orbital optimization. Here, the primary task is to
parallelize the four-index transformation that is performed
after each orbital rotation to generate the two-electron inte-
grals in the basis of the rotated orbitals. We now describe
how this is done.

Say we have a coefficient matrix U giving the expansion
coefficients for our rotated orbitals in terms of the starting
atomic orbitals. Then, the transformed integrals vpqrs are ob-
tained from the atomic orbital integrals v���

AO through �as-
suming real coefficients, for simplicity�

vpqrs = �
���

UpUq�Ur�Us�v���
AO . �28�

As is well known, the four-index transformation should be
carried out in four quarter-transformation steps correspond-
ing to the four contractions with the coefficient matrices
above. In our parallel transformation scheme, we consider
the four steps in two stages; in the first stage, we perform
two quarter transformations to construct half-transformed
Coulomb and exchange intermediates J and K,

Jab��,�� = �
�

UaUb�v���
AO , �29�

Kab��,�� = �
�

UaUb�v���
AO , �30�

while in the second stage, we perform the remaining quarter
transformations on the J and K intermediates to obtain the
final integrals,

�Jab�pq = vapqb = �
��

Jab��,��Up�Uq�, �31�

�Kab�pq = vapbq = �
��

Kab��,��Up�Uq�. �32�

Note that for the purposes of optimizing the active orbitals,
we only need the integrals that appear in the augmented Hes-
sian. Thus, the ab indices in Eqs. �29� and �30� only need to
run over the active orbitals, while the pq indices need to run
over all the closed-shell, active, and external orbitals.

In the first stage, we parallelize the construction of the J

and K intermediates by dividing up the intermediates accord-
ing to their untransformed AO indices. For example, the con-
struction of Jab�� ,�� is divided among the processors accord-
ing to the pair of indices �� ,��; each processor is then
responsible for constructing the J intermediates for all
��̄ , �̄��proc. This allows us to also partition the AO inte-
grals among the processors according to the same divided
pair of indices ��̄ , �̄�; e.g., to construct Jab��̄ , �̄� for ��̄ , �̄�
�proc, we only need AO integrals such as v�̄�̄�

AO for ��̄ , �̄�
�proc to be stored on that processor.

Once all J and K intermediates are constructed, we par-
allelize the second stage with respect to the transformed ab

indices of the J and K intermediates. Thus, ab is divided
among the processors, and each processor constructs the final
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integrals vāpqb̄ and vāpb̄q for all 	āb̄
�proc. Since the first
stage is parallelized over a pair of AO indices �� ,�� �and the
J and K intermediates are divided across the processors ac-
cordingly�, while the second stage is parallelized over the
two transformed indices �ab�, we need to redistribute the
intermediates J and K among the processors between the first
and second stages. This is the main communication step.

In addition to the above parallelization, further efficien-
cies can be gained by using the permutational and spatial
symmetries of the integrals. Our complete parallelized algo-
rithm, which uses these symmetries, is presented in
pseudocode in Algorithm 3. The cost of the four-index inte-
gral transformation as implemented is O��K4k+K3k2� /np� for
CPU, O��K4+K2k2� /np� for disk space, O�K2k2

/np� for
memory, and O�K2k2� for overall communication, where K is
the total number of orbitals, k is the number of active orbit-
als, and np is the number of processors.

ALGORITHM 3. Parallel four-index integral transfor-
mation algorithm.
Stage 1: Assemble J and K intermediates

Divide AO integrals v���
AO by a factor �2−
���2−
����2

−
�,���
for v̄ , �̄��̄� �̄�� proc do

for a , ,� s.t. ��, �� �̄�̄ do

M
a ��̄ , �̄�+ =v�̄�̄�

AO
Ua�; N�

a��̄ , �̄�+ =v�̄�̄�
AO

Ua

N
a ��̄ , �̄�+ =v�̄�̄�

AO
Ua�; N�

a��̄ , �̄�+ =v�̄�̄�
AO

Ua

end for

for a, � do

N�
a��̄ , �̄�+ =M�

a��̄ , �̄�
end for

for a , ,� s.t. ��, �̄�̄�� do

L
a ��̄ , �̄�+ =v�̄��̄

AO
Ua�

end for

for a ,b ,� s.t. a�b do

Jab��̄ , �̄�+ =M�
a��̄ , �̄�Ub�+M�

b��̄ , �̄�Ua�+L�
a��̄ , �̄�Ub�

+L�
b��̄ , �̄�Ua�

end for

for a ,b ,� do

Kab��̄ ,��+ =N�
a��̄ , �̄�Ub�̄

end for

end for

for a ,b s.t. a�b do

write Jab, Kab, and Kba on disk
end for

Stage 2: Redistribute J and K, transform to final inte-

grals

for a ,b�a�b� do

read Jab, Kab, Kba from disk and send to proc �a ,b�
end for

for ā , b̄�ā� b̄�� proc, � ,������ do

Jā,b̄�� ,��+ =Jāb̄�� ,��
end for

for ā , b̄�ā� b̄�� proc, � ,� do

Kāb̄�� ,��+ =Kb̄ā�� ,��
end for

for ā , b̄�ā� b̄�� proc, p ,q ,� ,� do

vāpqb̄+ =Jāb̄�� ,��Up�Uq� �Eq. �31��

vāpb̄q+ =Kāb̄�� ,��Up�Uq� �Eq. �32��
end for

To complete our efficient implementation of orbital op-
timization, we have also parallelized the remaining steps in
the augmented Hessian–Newton–Raphson solver. These ad-
ditional steps take up only a small part of the computational
time and have an overall cost O�K2k3

/np� for CPU time,
O�K2k2

/np� for memory, and O�Kk� for communication.

D. Complete orbital optimized DMRG-CASSCF
algorithm

With the description of the density matrix evaluation in
Sec. II B and the orbital optimization and integral transfor-
mation in Sec. II C, we now have the basic ingredients to
perform the DMRG-CASSCF algorithm, according to the
general outline in Sec. II A.

There is one final ingredient, however, the secret ingre-
dient. As the DMRG works best in a localized basis �particu-
larly in larger systems�, it is beneficial to localize the active
space after each orbital optimization. We have done this us-
ing the Pipek–Mezey procedure;52 the active-space integrals
are first transformed into this local basis before being input
into the DMRG calculation. In total therefore, the complete
DMRG-CASSCF algorithm is as follows:

�1� Localize the active space orbitals.
�2� Transform the AO integrals to the active space basis

and build the active space Hamiltonian.
�3� Perform the DMRG calculation using the active space

Hamiltonian.
�4� From the converged DMRG wavefunctions at each

block configuration, assemble the one- and two-particle
density matrices.

�5� Using the density matrices, obtain the orbital gradient
and orbital step from the augmented Hessian–Newton–
Raphson solver.

�6� From the orbital step, determine the new active space
orbitals.

�7� Go to �1� until convergence in the energy.

Steps �1�–�6� constitute a single DMRG-CASSCF
macroiteration.

III. APPLICATIONS

A. Long polyenes

1. Background

Polyenes are the simplest conjugated systems, consisting
of alternating singly and doubly bonded carbons arranged in
a chain. They are valuable models not only to understand
conjugated polymers of materials interest �e.g., polyacety-
lene is simply an infinite polyene� but also biological mol-
ecules such as the carotenoid and retinal families of pigments
involved in photosynthesis and vision. In these systems, the
functionality of the molecules relies on the low-lying �-�*

excited states of the conjugated backbone, which serve as the
conduits for energy transfer. The excited states are labeled by
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their symmetry under the C2h point group, giving rise to Ag,
Bg, Au, and Bu symmetry labels. Furthermore, they are usu-
ally given an additional �/� label to indicate their approxi-
mate particle-hole symmetry. In Hamiltonians �such as the
Hückel Hamiltonian�, which support symmetric sets of en-
ergy states around the Fermi level, this additional symmetry
is associated with rotating the molecular orbital diagram so
that the bonding and antibonding levels swap places.53 Al-
though particle-hole symmetry is not a true symmetry of the
ab initio electronic Hamiltonian, it is still customary to use
such labels for the polyenes, in particular, because the �/�
states have very different qualitative electronic structure; va-
lence bond studies of the Hubbard model54 show that the �

states consist mainly of ionic valence bond structures, while
the � states consist mainly of covalent valence bond
structures.43,55,56

In this study, we looked only at singlet states and hence-
forth we shall be considering singlet states only. The ground
state of the polyenes is known to always be of Ag

− symmetry.
The lowest dipole-allowed singlet transition, which has a
predominantly HOMO→LUMO excitation character, has a
Bu

+ symmetry. However, contrary to what one might expect,
this 1Ag

−
→1Bu

+ transition is not the lowest singlet
transition.57,58 Rather, as shown by Aoyagi et al. in
octa-tetraene,57 there is a lower dipole forbidden excitation,
later identified as the 2Ag

− state, which can be rationalized in
valence bond language as arising from a pair of singlet-
triplet excitations in the two separate double bonds that re-
couple to form a singlet state.59–67 Following the observation
of the 2Ag

− state in octa-tetraene, there has been much debate
over the correct ordering of the 2Ag

− and 1Bu
+ excited states in

the shorter polyenes, compounded both by experimental dif-
ficulties in observing the dipole-forbidden 2Ag

− state as well
as theoretical challenges in achieving a balanced description
of the two states, which are dominated by very different
kinds of correlation, namely, static correlation in the 2Ag

−

state and dynamic correlation in the 1Bu
+ state. In longer

polyenes and the biologically active carotenoid and retinal
pigments, questions about the low-lying spectrum are not
restricted simply to the 2Ag

− and 1Bu
+ state ordering. Recent

studies using resonance Raman excitation profiles and elec-
tronic absorption spectroscopy on substituted polyenes in the
carotenoid family have indicated the presence of additional
dark states below the 1Bu

+ state.68–72 In particular, for the
all-trans-carotenoids with �the number of double bonds� n

=9–11, Sashima et al.
67 and Cerullo et al.

73 observed a 1Bu
−

state between the 2Ag
− and 1Bu

+. More recently, Furuichi et al.

observed a 3Ag
− level between the 1Bu

− and 1Bu
+ states in

carotenoids with n=11–13, and assigned the tentative state
ordering of 1Ag

−�2Ag
−�1Bu

−�3Ag
−�1Bu

+.72 The assignment
was made by extrapolating from the earlier Pariser-Parr-
Pople multi-reference doubles configuration interaction cal-
culations by Tavan and Schulten on short polyenes �n
=2–8�, which had predicted the existence of these additional
states.56

To better understand the electronic structure of these
low-lying states, we would ideally like to be able to carry out
an ab initio multireference calculation using the complete
�-valence space. However, the large number of active � or-

bitals in the longer polyenes means that it is not possible to
perform such calculations with traditional CAS algorithms
for these systems. Hirao and co-workers42,43 carried out in-

complete valence CASSCF and CASCI-MRMP using a
�10,10� active space on the polyene series up to C28H30 and
observed reasonable agreement with experiment. However,
with our new orbital optimized DMRG-CASSCF procedure,
we can now reexamine the low-lying excitations in these
systems correlating the complete �-valence space even for
the longer polyenes and carotenoids.

2. Computational details

The polyene molecular geometries for C8H10, C12H14,
C16H18, C20H22, and C24H26 were optimized at the density
functional level using the B3LYP functional74,75 as imple-
mented in GAUSSIAN03.76 The polyene molecules were con-
strained to have C2h symmetry, with the C2 axis as the z-axis.
The cc-pVDZ basis77 was used for all calculations.

In our DMRG-CASSCF calculations, we used a com-
plete �-valence space, i.e., in C24H26, this was a �24,24�
active space. To generate this active space, we first per-
formed a restricted Hartree–Fock calculation in PSI3 �Refs.
78 and 79� to obtain canonical Hartree–Fock molecular or-
bitals. From these molecular orbitals, we could not trivially
identify appropriate � antibonding active orbitals because of
significant 2p-3p mixing. We constructed the antibonding
component of the active space as a set of projected atomic
orbitals by first projecting out the � bonding space from a set
of 2pz atomic orbitals. These projected atomic orbitals were
then symmetrically orthogonalized, then relocalized together
with the bonding molecular orbitals �using the Pipek–Mezey
procedure52� to yield the complete active space in our calcu-
lations. The final set of active orbitals generated in this way
resemble an orthogonal set of 2pz orbitals.

Note that our initial active space does not correspond
precisely to an active space obtained by selecting Hartree–
Fock canonical orbitals. Thus DMRG energies obtained be-

fore orbital optimization do not correspond to typical CASCI
energies, but instead to CASCI energies obtained in our
projected-atomic orbital �PAO� virtual space. This distinction
is noted in our tables with the abbreviation DMRG-PAO-
CASCI. After orbital optimization, however, our DMRG-
CASSCF energies do correspond to true CASSCF energies
up to the accuracy of the DMRG calculation.

We carried out state-averaged DMRG-CASSCF calcula-
tions in the above active space with the one-site DMRG al-
gorithm with M =250 and averaging over the four lowest
eigenstates. The DMRG sweeps were converged to 10−10 Eh

in the DMRG energy, which took roughly 30 DMRG sweeps
�Fig. 2�. The number of renormalized states was increased
smoothly from a starting value of M =50 to the final value of
M =250. To aid the convergence of the DMRG sweeps in the
one-site algorithm, we applied a system-environment pertur-
bation as described in Ref. 80, with a starting magnitude of
10−3 that smoothly decreased to 0 after 20 sweeps. We esti-
mate the remaining error in the DMRG energies at the M

=250 level from the exact full-configuration interaction en-
ergies in the same active space to be less than 0.1 mEh. Our
DMRG calculations were combined with orbital rotation in a

144117-8 Ghosh et al. J. Chem. Phys. 128, 144117 �2008�



macroiteration consisting of a converged DMRG calculation,
an augmented Hessian step based orbital rotation, integral
transformation, and orbital localization, as described in Sec.
II D. Typically 10–15 macroiterations of the complete
DMRG/orbital optimization cycle were necessary to con-
verge the energies to a tolerance of better than 10−6 Eh. The
convergence of the state energies with the number of mac-
roiterations is shown in Fig. 3.

The spatial and spin symmetries of excited states were
assigned as follows. First, all excited states were restricted to
be of singlet spin symmetry through the application of a shift

��Ŝ2− �S���S�+1��� with �=0.5.23 To obtain the spatial sym-
metry, the ground state was assumed to be 1Ag

− as established
by prior experimental and theoretical work. To determine
whether the excited states were of Ag or Bu symmetry, the
transition dipole matrices were calculated between the states.
Additionally, to determine the approximate particle-hole �

or � symmetry, we examined the magnitude of the transition
dipoles; large transition dipoles for an allowed transition in-
dicated that the transition involved a change of particle-hole
symmetry between the states.

3. Discussion

In Table I, we present the energies, symmetries, and os-
cillator strengths for the ground state and first three excita-
tions in the polyenes from C8H10 to C24H26. For comparison,
we also give the excitation energies obtained from the
CASCI-MRMP calculations of Kurashige et al.,43 as well as
the experimental energies where available. �Note that in
C20H22, the experimental excitation energies were obtained
from the carotenoid spheroidene, which has a C20 conjugated
backbone�.

We see that while our complete �-valence active space
DMRG-CASSCF calculations generally overestimate the ex-
citation energies, they reproduce the correct experimental or-
dering of the lowest excited states with the exception of the
missing 1Bu

+ state �the HOMO-LUMO excitation�, which
should lie below the 3Ag

− in the shorter polyenes such as
C8H10. If we perform a state-averaged DMRG-CASSCF with
five states in C8H10, we find that the 1Bu

+ state lies immedi-
ately above the 3Ag

−. This may seem strange given that
CASSCF is generally believed to yield qualitatively correct
electronic structure, but it reflects the wisdom from earlier
studies on butadiene that �-� correlation is very strong in
the 1Bu

+ state and must be included to obtain the correct
balance between Rydberg and valence characters.66,67,83,84

Comparing with the calculations of Kurashige et al.,43 which
despite having an incomplete valence active space include
dynamic �-� correlation through MRMP perturbation
theory,85 further indicates that �-� correlation would also
lower the excitation energies of our other excited states.

To better understand the effect of using a complete �

valence space on the excitation energies, we have performed
some small benchmark CASSCF calculations on C12H14 with
4–12 active orbitals. These results are presented in Fig. 4. As
can be seen, there is a very strong dependence of the excita-
tion energies on the size of the active space, and even the
order of the excitations changes. Thus, while an incomplete
valence active space can yield an excited state ordering in
better agreement with experiment, one is tempted to argue
that it does not do so for the right reason.

FIG. 2. DMRG-CASSCF excitation energies in eV for the 2Ag
−, 1Bu

−, and
3Ag

− states in the conjugated polyenes C8H10 to C24H26.

FIG. 3. Converged DMRG sweep energies in Hartrees vs number of orbital
optimization macroiterations in C20H22.

FIG. 4. Change in CASSCF energies of the low-lying states of C12H14 as a
function of increasing the active space from �4,4� to �12,12� �i.e., complete
valence active space�.
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In Fig. 5, we plot our DMRG-CASSCF excitation ener-
gies as a function of the inverse chain length of the polyenes.
Also shown �as an inset� is the same plot for the excitation
energies obtained by Kurashige et al.

43 It is easy to show that
in a finite Hückel model with n sites, the excitation energies
have a sin�k� /2�2n+1�� chain length dependence, where k is
a quasimomentum number that labels the excitation. For long
chains, this implies an asymptotic linear dependence on the
inverse chain length 1 / �2n+1�. Tavan and Schulten conjec-
tured that this asymptotic behavior held also in interacting

systems and presented evidence from MRD-CI calculations
on short-chain Hubbard �n up to 7� and Pariser–Parr–Pople
models �n up to 8� to support the conjecture.86 The experi-
mental resonance Raman excitation profiles from Sashima et

al.
68 and Furuichi et al.

72 were also approximately fitted to
the same inverse chain length behavior, although only over a
small range of n=9–13. We see from our results that while
the 2Ag

− and 1Bu
− excitation energies fit the asymptotic

1 / �2n+1� behavior well, the 3Ag
− state shows curvature more

indicative of the sinusoidal dependence expected when k

�2n+1. This is consistent with interpreting the 3Ag
− as an

excitation labeled by a larger quasimomentum than 2Ag
−. In-

terestingly, the excitation energies of Kurashige et al. show
quite different chain-length dependence, with all three states

TABLE I. Energies, symmetries, and oscillator strengths for the lowest-lying singlet excited states in conju-
gated polyenes. The DMRG-PAO-CASCI and DMRG-CASSCF entries for the 1Ag

− ground states give the total
energy in Eh; the other entries give the excitation energy from the ground state in eV. The estimated error of the
DMRG-CASSCF energies from the exact CASSCF energies in the same active space is less than 0.1 m Eh. The
notation �n ,m� denotes the active space used in the DMRG-PAO-CASCI and DMRG-CASSCF calculations.
Oscillator strengths are in a.u. for the ground state, excited state transitions. The CASCI-MRMP excitation
energies are from Kurashige et al. �Ref. 43�; note that these used at most a �10,10� active space. The experi-
mental numbers in brackets are from measurements on the substituted polyene, spheroidene �Ref. 72�.

Polyenes Symmetry
DMRG

PAO-CASCI
DMRG

CASSCF
Oscillator
strength CASCI-MRMP Expt.

C8H10 1Ag
− −308.823 021 −308.825 879

�8,8� 2Ag
− 6.33 4.69 Forbidden 4.26 3.54a

1Bu
− 7.49 5.88 0.0565 5.30

3Ag
− 7.95 6.60 Forbidden 7.20

C12H14 1Ag
− −462.661 260 −462.670 591

�12,12� 2Ag
− 5.40 3.76 Forbidden 3.19

1Bu
− 6.30 4.74 0.0620 3.98

3Ag
− 7.01 5.59 Forbidden 5.12

C16H18 1Ag
− −616.499 262 −616.514 639

�16,16� 2Ag
− 4.90 3.25 Forbidden 2.50 2.21b

1Bu
− 5.60 4.03 0.0502 3.10

3Ag
− 6.28 4.78 Forbidden 3.99

C20H22 1Ag
− −770.337 112 −770.358 327

�20,20� 2Ag
− 4.60 2.93 Forbidden 2.04 �1.76�c

1Bu
− 5.15 3.57 0.0427 2.51 �2.18�c

3Ag
− 5.71 4.20 Forbidden 3.11 �2.47�c

C24H26 1Ag
− −924.174 795 −924.201 821

�24,24� 2Ag
− 4.42 2.73 Forbidden 1.70 �1.53�c

1Bu
− 4.85 3.25 0.0384 2.05 �1.80�c

3Ag
− 5.31 3.78 Forbidden 2.45 �2.02�c

aReference 81.
bReference 82.
cReference 72.

FIG. 5. DMRG-CASSCF excitation energies for the low-lying singlet ex-
cited states of polyenes ranging from C12H14 to C24H26. The excitation en-
ergies are plotted against 1 / �2n+1� where n is the number of double bonds.
The ratio of the slopes for the different states is found to be 2:3.0:3.8 as
compared to 2:3.1:3.8 experimentally. Inset: The same plot for the CASCI-
MRMP excitation energies from Kurashige et al. �Ref. 43�. As can be seen,
these show a different and less linear dependence on 1 / �2n+1�.
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showing much stronger curvature when their excitation en-
ergies are plotted against 1 / �2n+1� in Fig. 5 �inlay�. Fitting
our excitation energies for C16H20, C20H24, and C24H26 �n
=8–12� to the asymptotic dependence 1 / �2n+1�, we obtain
slopes of 27.67, 41.34, and 52.63 eV for the 2Ag

−, 1Bu
−, and

3Ag
− excitations, in reasonable agreement with the experi-

mental slopes of 31.39, 49.07, and 59.63 eV.
From the one particle transition density matrices, we can

analyze the single-particle character of our excitations. Given
the density matrix element wij = �g.s.�ai

†a j�excited�, where i

and j are natural orbitals in the ground state, we define the
weight of the i→ j excitation as wij

2 . The total single excita-
tion weight is then �ijwij

2 . In Table II, we give the largest
excitation weights and the total single excitation weights for
the low-lying polyene excited states as a function of the
number of conjugated bonds. We see the 2Ag

−, 1Bu
−, and 3Ag

−

states are dominated by many-particle excitations from the
ground state �i.e., they have small single-particle excitation
weights� and indeed the single-particle character of the exci-
tations decreases even more as the chain-length increases.
Remarkably, in C24H26 only �16% of the excitation charac-
ter of these states can be considered to be of a single-particle
nature! These results are consistent with the analysis by
Dreuw et al. using coupled cluster and propagator
techniques.87

B. �-carotene

Carotenoids, the family of substituted polyenes, are the
primary light-harvesting pigments in the LH2 complex.
Light harvesting proceeds by the transfer of energy from an
array of carotenoids to nearby bacteriochlorophylls and
thence to the photosynthetic center. Many essential questions
remain unanswered as to the precise mechanism of this en-
ergy transfer.87–92 While the absorption of light places the
carotenoid in the dipole-allowed excited state, there can be a
fast internal conversion to the aforementioned dark states of
the polyene backbone, and thus multiple pathways for energy

transfer to the bacteriochlorophyll. In carotenoids, the
dipole-allowed transition is usually labeled S2, while histori-
cally the dark state is labeled S1. However, with the discov-
ery, as previously described, of additional dark states below
S2 in these molecules,68–73 this nomenclature can be confus-
ing. An alternative nomenclature is to simply reuse the poly-
ene excited state labels, even though the carotenoids have a
lower point group symmetry. We will follow this practice
here.

1. Discussion

We have chosen to study s-cis �-carotene �see Fig. 6� as
a representative carotenoid. It is the dominant natural con-
former although the all-trans form is also studied. Crystal-
line �-carotene has Ci symmetry with a conjugated backbone
that lies almost entirely on the xy plane except for end
groups that are twisted out of plane.93,94 �In the biological
setting, carotenoid pigments usually adopt a twisted configu-
ration in the conjugated backbone95,96�. There are 11 conju-
gated double bonds in the backbone. Our study employed the
same calculation procedure as described in Sec. III A 2 with
the exception that we used a 6-31G basis set in the DMRG-
CASSCF calculation due to the large size of the molecule.
State-averaged DMRG-CASSCF calculations were per-
formed with four states and a �22,22� complete �-valence

TABLE II. Single particle nature of the polyene excitations �in %�. For a given excited state �e.g., 2Ag
−�, the

excitation weight of the transition i→ j is given by ��1Ag
−�ai

†a j�2Ag
−��2. The total excitation weight is the sum of

weights for all transition; 100% indicates that the given excited state corresponds entirely to single excitations
from the ground state. The transition labels n→m� are interpreted as follows: 1, 2, 3,…denote HOMO,
HOMO−1, HOMO−2, etc., natural orbitals, while 1�, 2�, and 3� denote LUMO, LUMO+1, and LUMO+2
natural orbitals. As the polyenes increase in length, the total weight of the single excitations in the low-lying
states becomes very small, �16%.

State
Excitation

weight

No. of conjugated double bonds

4 6 8 10 12

2Ag
− 2→1� 10.9 8.6 6.6 5.3 4.3

1→2� 6.7 5.9 4.8 4.0 3.3

Total 20.0 18.0 15.4 13.5 12.1

1Bu
− 3→1� 14.5 10.2 7.9 6.3 5.2

1→3� 7.0 5.6 4.6 3.9 3.3

Total 25.3 21.8 18.6 16.3 14.7

3Ag
− 4→1� 21.3 12.8 9.3 7.1 5.6

1→4� 8.2 6.0 4.7 3.8 3.1

Total 32.9 25.0 20.9 18.0 15.9

FIG. 6. s-cis �-carotene.
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space, in the manner described in Sec. III A 2.
In Table III, we present the energies, symmetries, and

oscillator strengths for the ground state and first three exci-
tations in �-carotene. We reproduce the state ordering 1Ag

−

�2Ag
−�1Bu

−�3Ag
− as assigned by Furuichi et al.

72 �note that
the 1Bu

+, which does not appear in our calculation, indeed lies
above the 3Ag

− state in this molecule�. However, just as in the
polyenes, the excitation energies from the DMRG-CASSCF
procedure are generally overestimated in comparison with
experiment, most likely due to the lack of �-� dynamic
correlation.

A question that has received some attention in the litera-
ture is the effective conjugation length of carotenoids since
the presence of substituents and nonplanar geometries are
expected to modify this from the naive value deduced from
the Lewis structure.97 Formally, �-carotene has 11 double
bonds in the polyene backbone, but by comparing the exci-
tation energies of the polyenes with our �-carotene excita-
tion energies, we can estimate a reduced conjugation length
of 9.5–9.7 bonds, which is very close to the experimental
estimate of 9.7 of Onaka et al.

71 �Fig. 7�. This reduced con-
jugation length results from the twist in the carotene end
groups. In Fig. 8, we plot the DMRG-CASSCF natural or-

bitals corresponding to the HOMO, HOMO−1, LUMO, and
LUMO+1. As can be seen, there is very little density in
these orbitals on the carotene end groups, and this is consis-
tent with our reduced effective conjugation length.

IV. CONCLUSION

In this work, we described how to efficiently implement
orbital optimization using the DMRG wavefunction. We
have named the resulting method DMRG-CASSCF, and by
virtue of the compact nature of the DMRG wavefunction,
this now enables us to handle much larger active spaces than
are possible with the traditional CASSCF algorithm. As a
sample application, we have used our DMRG-CASSCF
implementation to study the low-lying excitations of poly-
enes from C8H10 to C24H26 as well as the light-harvesting
pigment �-carotene, with up to a �24,24� complete active
space. Our calculations reproduce the state ordering of the
dark states that have been recently observed by resonance
Raman studies. However, as expected from earlier CASSCF
studies, the energy of the optically allowed HOMO-LUMO

TABLE III. DMRG-CASSCF energies, symmetries, and oscillator strengths
for the lowest-lying singlet excited states in �-carotene with the complete
�-valence �22,22� active space. Total energies in Eh, excitation energies in
eV, and oscillator strengths in a.u. The estimated error of the DMRG-
CASSCF energies from the exact CASSCF energies in the same active
space is less than 0.1 m Eh. Oscillator strengths are for the ground state,
excited state transitions.

Symmetry
DMRG-CASSCF

total energy
Excitation

energy
Oscillator
strength Expt.

1Ag
− −1546.914 545

2Ag
− −1546.804 503 2.99 Forbidden 1.81a

1Bu
− −1546.781 125 3.63 0.2025 2.05a

3Ag
− −1546.755 822 4.31 Forbidden �2.22�b

aReference 69.
bExcitation measured for lycopene �Ref. 72�.

FIG. 7. Polyene and carotene excitation energies vs the number of double
bonds: The �-carotene excitation energies when fitted to the polyene exci-
tation energies give an effective conjugation length of 9.5–9.7.

FIG. 8. �Color online� Natural orbitals corresponding to the HOMO−1
through LUMO+1 states. These orbitals participate in the lowest-lying sin-
glet excitations in �-carotene and contain little density on the nonplanar end
groups.
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1Bu
+ transition is still overestimated, as a result of the lack of

dynamic �-� correlation in the DMRG-CASSCF method.
We therefore view the incorporation of dynamic correlation,
either via perturbation theory or via canonical
transformation98,99 into the DMRG-CASSCF method to
present an important next direction for development.

Note added in proof: Zgid and Nooijen have noted that
COMPUTE �Algorithm 2� can be made more efficient by
forming some simple intermediates. This lowers the overall
computational cost of evaluating the two-particle density ma-
trix to O�M2k4�+O�M3k2�. This computational scaling is
even lower than the DMRG energy evaluation. In our calcu-
lations, the formation of the two-particle reduced density ma-
trix was never a time-limiting component, but the simple
observation of Zgid and Nooijen shows that the two-particle
RDM can be obtained essentially for free within the DMRG
calculation.
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