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ABSTRACT

We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter
HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets
span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve
observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2.
We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data
at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux
occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the
planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and
8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%,
0.071%+0.029%

−0.013%, and 0.1392%±0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet
cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We
compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model,
which suggests the possible presence of a transient day side inversion in HAT-P-2b’s atmosphere near periapse. We
also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our
simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity
(e = 0.50910 ± 0.00048) and argument of periapse (ω = 188.◦09 ± 0.◦39) of HAT-P-2b’s orbit with a greater
precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term
linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the
HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai
mechanism.

Key words: atmospheric effects – methods: numerical – planets and satellites: general – planets and satellites:
individual (HAT-P-2b) – techniques: photometric

Online-only material: color figures

1. INTRODUCTION

The supermassive (Mp = 9MJ ) Jupiter sized (Rp = 1RJ )
planet HAT-P-2b (aka HD 147506b) was first discovered from
transit observations by Bakos et al. (2007a) using the HATNet
(Bakos et al. 2002, 2004) network of ground-based telescopes.
Follow-up radial velocity (RV) measurements of the HAT-P-2
system revealed that the orbit of HAT-P-2b is highly eccentric
(e = 0.5; Bakos et al. 2007a; Loeillet et al. 2008). Only a handful

17 Sagan Postdoctoral Fellow.

of transiting exoplanets have been shown to posses eccentricities
in excess of that of Mercury (e = 0.2), which has made
HAT-P-2b an interesting target for many theoretical studies
concerning the evolution of the HAT-P-2 system (Jackson et al.
2008; Fabrycky 2008; Matsumura et al. 2008; Baraffe et al.
2008). Because of its mass, HAT-P-2b represents a class of
exoplanets that provides an important link between extrasolar
giant planets and low-mass brown dwarfs (Baraffe et al. 2008).
Observational constraints on the basic atmospheric properties of
HAT-P-2b will provide an important probe into the structure and
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evolution of not only HAT-P-2b, but an entire class of massive
extrasolar planets.

Atmospheric circulation models for planets on eccentric or-
bits show significant variations in atmospheric temperature and
wind speeds that provide an important probe into atmospheric
radiative and dynamical timescales (Langton & Laughlin 2008;
Lewis et al. 2010; Cowan & Agol 2011; Kataria et al. 2013).
The incident flux on HAT-P-2b from its stellar host at periapse
is 10 times that at apoapse, which should cause large varia-
tions in atmospheric temperature, wind speeds, and chemistry.
Heating and cooling rates for HAT-P-2b can be constrained by
measuring planetary brightness as a function of time. Such ob-
servations are analogous to previous phase curve observations of
HD 189733b using the Spitzer Space Telescope, which provided
the first clear observational evidence for atmospheric circulation
in an exoplanet atmosphere (Knutson et al. 2007, 2009a, 2012).

HAT-P-2b’s large orbital eccentricity makes it an ideal target
for investigating hot Jupiter migration mechanisms. Gas giant
planets such as HAT-P-2b are expected to form beyond the ice
line in their protoplanetary disk far from their stellar hosts.
HAT-P-2b currently resides at a semi-major axis of 0.07 AU
from its host star, indicating that it must have migrated in-
ward via a process such as gas disk migration (Lin et al.
1996), planet–planet scattering (Rasio & Ford 1996), secu-
lar interactions (Wu & Lithwick 2011), or Kozai migration
(Weidenschilling & Marzari 1996; Naoz et al. 2013). HAT-P-
2b’s close-in and highly eccentric orbit favors one of the latter
three mechanisms since disk migration tends to damp out orbital
eccentricities. For Kozai migration, the presence of a third body
with at least as much mass as HAT-P-2b is needed. In this study
we present six years of RV measurements for this system, which
allow us to search for the presence of a massive third body in
the HAT-P-2 system.

Here we present our analysis of the 3.6 and 4.5 μm full-
orbit phase curves of the HAT-P-2 system, which include two
secondary eclipses and one transit at each wavelength. These
full-orbit phase curves represent the longest continuous phase
observations ever obtained by the Spitzer Space Telescope. The
orbital period of HAT-P-2b (5.6334729 d) is more than 2.5 times
that of other exoplanets with published full-orbit phase curve
observations: WASP-12b (Cowan et al. 2012a) and HD 189733b
(Knutson et al. 2012). Additionally, we present an analysis
of previous partial orbit phase curve and secondary eclipse
Spitzer observations at 8.0 and 5.8 μm, respectively. We use
these observations to characterize the changes in the planet’s
emission spectrum as a function of orbital phase and to probe the
atmospheric chemistry and circulation regime of HAT-P-2b. The
following sections describe our observations and data reduction
methods (Section 2) and the results of our analysis (Section 3).
Section 4 discusses the results from our analysis of the Spitzer
data and compares them to predictions from atmospheric models
for HAT-P-2b. Additionally, we discuss trends in our RV data
that indicate the presence of an additional body in HAT-P-2
system in Section 4. Section 5 overviews the main conclusions
from our analysis and presents ideas for future work.

2. OBSERVATIONS

We analyze nearly 300 hr of observation of HAT-P-2 at
3.6 μm and 4.5 μm obtained during the post-cryogenic mission
of the Spitzer Space Telescope (Werner et al. 2004) using the
IRAC instrument (Fazio et al. 2004) in subarray mode. The
observation periods were UT 2010 March 28 to UT 2010 April
3 and UT 2011 July 9 to UT 2011 July 15 for the 3.6 and

4.5 μm bandpasses, respectively. Both observations cover a
period just over 149 hr with two approximately 2 hr breaks
for data downlink, corresponding to ∼1.2 million images in
each bandpass. Each observation begins a few hours before the
secondary eclipse of the planet, continues through planetary
transit, and ends a few hours after the subsequent planetary
secondary eclipse.

We also analyze observations of the HAT-P-2 system at
5.8 μm and 8.0 μm obtained during the cryogenic phase of
the Spitzer Space Telescope mission. The 5.8 μm observations
cover a single secondary eclipse of the planet that occurs on
UT 2009 March 16. The 8.0 μm observations cover a portion
of the planet’s orbit that includes transit, periapse passage, and
secondary eclipse on UT 2007 September 10–11. The 5.8 μm
observations were obtained using subarray mode, while the
8.0 μm observations were obtained using the full IRAC array.
We obtain our 3.6, 4.5, 5.8, and 8.0 μm photometry from the
Basic Calibrated (BCD) files produced by version 18.18.0 of the
Spitzer analysis pipeline.

In subarray mode, 32 × 32 pixel images are stored in sets
of 64 as a single FITS file with a single header. We calculate
the BJD_UTC at mid-exposure for each image from time stamp
stored in the MBJD_OBS keyword of the FITS header, which
corresponds to the start of the first image in each set of 64.
We assume uniform spacing of the images over the time period
defined by the AINTBEG and ATIMMEEND header keywords.
The image spacing is roughly equal to the 0.4 s exposure time
selected for the 3.6, 4.5, and 5.8 μm observations of HAT-P-2
(Kmag = 7.60). For the 8.0 μm full array observations, the
MBJD_OBS, AINTBEG, and ATIMMEEND header keywords
are used to calculate the BJD_UTC at mid-exposure for each
image, which are spaced by roughly the 12.0 s exposure time. In
order to convert from UTC to TT timing standards as suggested
by Eastman et al. (2010), 66.184 s would be added to our
BJD_UTC values. We report all of our timing measurements
using BJD_UTC for consistency with other studies.

2.1. 3.6 and 4.5 μm Photometry

We determine the background level in each image from the
region outside of a 10 pixel radius from the central pixel.
This minimizes contributions from the wings of the star’s
point-spread function (PSF) while still retaining a substantial
statistical sample. We iteratively trim 3σ outliers from the
background pixels then fit a Gaussian to a histogram of the
remaining pixel values to estimate a sky value. The background
flux is 0.6% and 0.2% of the total flux in the science aperture
for 3.6 and 4.5 μm observations, respectively. We correct for
transient hot pixels by flagging pixels more than 4.5σ away
from the median flux at a given pixel position across each set of
64 images then replacing flagged pixels by their corresponding
position median value.

Several different methods exist to determine the stellar
centroid on the Spitzer array such as flux-weighted centroiding
(e.g., Knutson et al. 2008), Gaussian centroiding, and least
asymmetry methods (e.g., Stevenson et al. 2010; Agol et al.
2010). We compare photometry calculated using both Gaussian
and flux-weighted centroiding estimates and find that for the
HAT-P-2 data flux-weighted centroiding produces the smallest
scatter in the final light curve solutions. This is in contrast with
the work by Stevenson et al. (2010) and Agol et al. (2010),
which advocate Gaussian fits and least asymmetry methods
to determine the stellar centroid for observations lasting less
than 10 hr. We find that flux-weighted centroids give more
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Figure 1. Measured x (a), y (b), noise pixels (c), and raw photometry (d) as
a function of time from the start of observation for the 3.6 μm phase curve
observations. Data have been binned into three minute intervals. In panels (a)
and (b) solid horizontal lines indicate the pixel center while dashed horizontal
lines indicate a pixel edge. Gaps in the data are due to spacecraft downlinks.
Jumps in position, noise pixels, and relative flux after each downlink period are
the result of stellar reacquisition. The pointing oscillations and long-term drift
in the y direction are due to well-known instrumental effects, and are present in
all Spitzer observations.

stable position estimates over long periods, especially if the
stellar centroid crosses a pixel boundary during the duration of
the observation. For these data, we calculate the flux-weighted
centroid for each background subtracted image using a range
of aperture sizes from 2.0 to 5.0 pixels in 0.5 pixel increments.
We find that the stellar centroid aperture sizes that best reduce
the scatter in the final time series are 4.5 and 3.5 pixels for the
3.6 μm and 4.5 μm observations, respectively.

We estimate the stellar flux from each background subtracted
image using circular aperture photometry. A range of aperture
sizes from 2.0 to 5.0 pixels in 0.25 pixel increments were tested
to determine the optimal aperture size for each observation.
Additionally, we tested time-varying aperture sizes based on the
noise pixel parameter described in Appendix A. We find that
we obtain the lowest standard deviation of the residuals from
our best-fit solution at 3.6 μm using a variable aperture size
given by the square-root of the measured noise pixel value for
each image (median aperture size of 2.4 pixels). For the 4.5 μm
observations we find that a fixed 2.25 pixel aperture gives the
lowest scatter in the final solution. We remove outliers from our
final photometric data sets by discarding points more than 4.5σ
away from a moving boxcar median 16 points wide. We find
that using a narrower median filter or larger value for the outlier
cutoff will miss some of the significant outliers. We also find
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Figure 2. Measured x (a), y (b), noise pixels (c), and raw photometry (d) as
a function of time from the start of observation for the 4.5 μm phase curve
observations. Data have been binned into three-minute intervals. In panels (a)
and (b) solid horizontal lines indicate the pixel center while dashed horizontal
lines indicate a pixel edge; see Figure 1 for a complete description.

that using a wider median filter or smaller value for the outlier
cutoff will often selectively trim the points at the top and bottom
of the “saw-tooth” pattern seen in the resulting photometry
for the 3.6 and 4.5 μm observations (Figures 1 and 2), which
is the result of intrapixel sensitivity variations discussed in
Appendix B.

2.2. 5.8 μm Photometry

For our 5.8 μm data set, we determine the background level
in each image using the same methodology as presented for
the 3.6 and 4.5 μm data sets (Section 2.1). The background
flux is 0.6% of the total flux in the science aperture. We tested
both flux-weighted and Gaussian fits to the image methods of
determining the stellar centroid. For the Gaussian fits to the
image we first fit the image allowing both the x and y width of
the Gaussian to vary. We then refit the same data set using a
symmetric fixed width for the Gaussian that is the mean of the
previous x and y widths. We find that Gaussian fits to the image
give a lower standard deviation of the residuals in the final fits
compared with flux-weighted centroids. This preference for the
Gaussian centroiding method is likely the result of the short-time
scale of these observations compared with the 3.6 and 4.5 μm
observations and the less than 0.1 pixel change in the stellar
centroid position over the course of the observation.

We estimate the stellar flux from each background subtracted
image using circular aperture photometry for a range of aper-
tures sizes from 2.0 to 5.0 pixels in 0.25 pixel increments. We
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Figure 3. Raw photometry as a function of time from the start of observation
for the 5.8 μm secondary eclipse observation. Data have been binned into three-
minute intervals. Note the downward slope in the relative flux values as a
function of time.

find that an aperture size of 2.5 pixels gives the lowest standard
deviation of the residuals in the final fits. We remove outliers in
our data set more than 3.0σ away from a moving boxcar median
50 points wide. Figure 3 show our resulting photometry for the
5.8 μm observations. We test for possible intrapixel sensitiv-
ity variations using the methodology discussed in Appendix B,
but find that including intrapixel sensitivity corrections actually
degraded the precision of the final solution.

2.3. 8.0 μm Photometry

Unlike the 3.6, 4.5, and 5.8 μm data, the 8.0 μm data were
observed in the full-array (256 × 256 pixels) mode of the IRAC
instrument. Our photometry determines the flux from the star in
a circular aperture of variable radius, as well as the background
thermal emission surrounding the star. We calculate two values
of the background, using different spatial regions of the frame.
First, we calculate the background that applies to the entire
frame. Second, we isolate an annulus between 6 and 35 pixels
from the star. In each region (entire frame, or annulus) we
calculate the histogram of intensity values from the pixels within
the region, and we fit a Gaussian to that histogram. We use the
centroid of that Gaussian as the adopted background value.
This method has the advantage of being insensitive to “hot” or
otherwise discrepant values. We find that using the background
values calculated from the region near the star, as opposed to
the entire frame, produces a lower scatter in the residuals in our
final solution.

We locate the center of the star by fitting a two-dimensional
Gaussian to a 3 × 3 pixel median filtered version of the frame;
we find that this method produces slightly better photometric
precision than using a center-of-light algorithm. We estimate
the stellar flux from each background subtracted image using
circular aperture photometry for a range of apertures sizes from
2.0 to 5.0 pixels in 0.25 pixel increments. We find that an
aperture size of 3.5 pixels gives the lowest standard deviation
of the residuals in the final fits. We remove outliers in our data
set more than 3.0σ away from a moving boxcar median 50
points wide. Figure 4 show our resulting photometry for the
8.0 μm observations. We test for possible intrapixel sensitivity
variations using the methodology discussed in Appendix B,
but find that including intrapixel sensitivity corrections actually
degraded the precision of the final solution.
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Figure 4. Raw photometry as a function of time from the start of observation
for the 8.0 μm partial orbit phase curve observation. Data have been binned into
three-minute intervals. Note the strong exponential growth of the relative flux
values as a function of time.

2.4. Flux Ramp Correction

Our data exhibit a ramp-like increase, or decrease, in the
flux values at the start of each observation and after each
break in the 3.6 and 4.5 μm data for downlink. This ramp in
the flux values has been previously noted for IRAC 8.0 μm
observations (e.g., Knutson et al. 2007, 2009b; Agol et al. 2010)
as well as 3.6 and 4.5 μm observations (e.g., Beerer et al. 2011;
Todorov et al. 2012). While the precise nature of this ramp is not
well-understood, it can be at least partially attributed to thermal
settling of the telescope at a new pointing, which contributes an
additional drift in position. However, we see that the ramp often
persists beyond this initial drift in position, and we therefore
speculate that there is an additional component analogous to the
effect observed at long wavelengths due to charge-trapping in the
array. We tested several functional forms to describe this ramp,
including quadratic, logarithmic, and linear functions of time,
but find that functional form that gives us the best correction is
given by the formulation presented in Agol et al. (2010):

F ′/F = 1 ± a1e
−t/a2 ± a3e

−t/a4 (1)

where F ′ is the measured flux, F is the stellar flux incident on
the array, t is the time from the start of the observation in days,
and a1–a4 are free parameters in the fit.

We find that in the 3.6 and 4.5 μm data the asymptotic shape
of the ramp converges on timescales less than an hour for most
of the data segments. Instead of including parameters in our fits
for this ramp behavior, we instead elect to simply trim the first
hour at the start of each observation and subsequent downlinks.
This reduces the complexity of our fits while avoiding possible
correlations between the shape of the underlying phase curve of
HAT-P-2b and the ramp function. We find that the ramp persists
beyond the one hour mark at the start of the 3.6 μm observations,
which affects the shape of the first observed secondary eclipse
and therefore include a ramp correction for that data segment.
For the 5.8 μm data, we find that the flux asymptotically decays
from the start of the observation (Figure 3). This decrease in
the 5.8 μm flux is also apparent in the derived background
flux values and has been previously noted by studies such as
Stevenson et al. (2012). As seen in Figure 4, the 8.0 μm data
exhibit the well know asymptotic increase in flux (e.g., Knutson
et al. 2007, 2009b; Agol et al. 2010).

In order to select the best functional form for the ramp
correction in each data set we use the Bayesian Information
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Criterion (BIC), defined as

BIC = χ2 + k ln(n) (2)

where k is the degrees of freedom in the fit and n is the
total number of points in the fit (Liddle 2007). This allows
us to determine if we are “over-fitting” the data by including
additional parameters to describe the ramp correction in our
fits. We find that for the 3.6 μm data set using only a single
exponential gives us the lowest BIC value. For the 8.0 μm
data, using all the terms (a1–a4) in Equation (1) with no
trimming of the data near the start of the observation gives
us the lowest BIC value. For the 5.8 μm data, we find using
a single decaying exponential gives the lowest BIC if we trim
data within 30 minutes of the start of the observation. Trimming
significantly more or less than this amount ether gives a higher
BIC or reduces the amount of out of eclipse data to less than the
eclipse duration.

2.5. Transit and Eclipse Fits

We model our transit and eclipse events using the equations
of Mandel & Agol (2002) modified to account for the orbital
eccentricity, e, and argument of periapse, ω, of the HAT-P-2
system. For an eccentric system the normalized separation of
the planet and star centers, z, is given by

z =
r(t)

R⋆

√

1 − (sin i × sin (ω + f (t)))2 (3)

where r(t) is the radial planet–star distance as a function of time,
R∗ is the stellar radius, i is the orbital inclination of the planet,
and f (t) is the true anomaly as a function of time. The r(t)/R⋆

term in Equation (3) is calculated as

r(t)

R⋆

=
a

R⋆

1 − e2

1 + e cos (f (t))
. (4)

The true anomaly angle (f) that appears in both Equations (3)
and (4) is determined using Kepler’s equation (Murray &
Dermott 1999) and is a function of e, ω, and the orbital period
of the planet, P. Because of the degeneracies that exist between
e, ω, and P in determining f (t) we elect not to use P as a free
parameter in our fits. Instead we fix P to the value reported in
Pál et al. (2010), 5.6334729 d. We further minimize correlations
in our solutions for e and ω by solving for the Lagrangian orbital
elements k ≡ e cos ω and h ≡ e sin ω.

In addition to the parameters that define the orbit of
HAT-P-2b, we solve for the fractional planetary radius, Rp/R⋆.
Because Rp/R⋆ < 0.1 for HAT-P-2b (Pál et al. 2010; Bakos
et al. 2007a), there exists a strong correlation between i and
a/R⋆ in the transit solution (Winn et al. 2007a; Pál 2008). We
instead solve for the parameters b2 and ζ/R⋆ as suggested by
Bakos et al. (2007b) and Pál et al. (2010) where

b =
a

R⋆

1 − e2

1 + h
cos i (5)

and
ζ

R⋆

=
a

R⋆

2π

P

1
√

1 − b2

1 + h
√

1 − e2
. (6)

For the transit portion of the light curves we use four-parameter
nonlinear limb-darkening coefficients for each bandpass calcu-
lated by Sing (2010), where we assume a stellar atmosphere

with Teff = 6290 K, log(g) = 4.138, and [Fe/H] = +0.14 (Pál
et al. 2010). For the secondary eclipse portion of the light curves
we treat the planet as a uniform disk and scale the ingress and
egress to match the amplitude of the phase curve (Section 2.6),
which varies significantly over the duration of the eclipse and
is therefore poorly approximated by a constant value. The sec-
ondary eclipse depth is defined by the average of the ingress and
egress amplitudes.

For the 3.6 and 4.5 μm data sets, we use nine free parameters
to constrain the properties of the planetary orbit, transit, and
secondary eclipse. The 8.0 μm observations only include one
secondary eclipse and therefore only require eight free parame-
ters to constrain the same system properties. The 5.6 μm data set
includes only the secondary eclipse portion of the light curve.
We therefore elect to only allow the secondary eclipse depth
and timing to vary for the 5.6 μm data and fix a/R⋆, i, e, ω, and
Rp/R⋆ to the average values from the 3.6, 4.5, and 8.0 μm data
sets.

2.6. Phase Curve Fits

The functional form of the phase curve for a planet on
an eccentric orbit is not well defined. Unlike close-in, tidally
locked planets on circular orbits, eccentric planets experience
time-variable heating and non-synchronous rotation rates. Pre-
vious studies by Langton & Laughlin (2008) and Cowan &
Agol (2011) have investigated theoretical light curves for plan-
ets on eccentric orbits using two-dimensional hydrodynamic
simulations and semi-analytic model atmospheres, respectively.
We also developed a three-dimensional atmospheric model for
HAT-P-2b that couples radiative and dynamical processes to
further investigate possible phase curve functional forms that
will be presented in a future paper. The functional forms for
the phase curves described here all provide a reasonable fit to
the theoretical light curves presented in Langton & Laughlin
(2008), Cowan & Agol (2011), and from our three-dimensional
atmospheric model.

To first order, the flux from the planet is proportional to
the inverse square of the distance between the planet and host
star, r(t). This assumes that the planet has a constant albedo
and responds instantaneously and uniformly to changes in the
incident stellar flux. We know that there must exist a lag in the
peak of the incident stellar flux and the peak of the planet’s
temperature since atmospheric radiative timescales are finite
(Langton & Laughlin 2008; Iro & Deming 2010; Lewis et al.
2010; Cowan & Agol 2011). Our first functional form for the
phase variation of HAT-P-2b is a simple 1/r(t)2 with a phase
lag:

F (f ) = F0 + c1(1 + cos(f − c2))2 (7)

where f is the true anomaly and c1–c2 are free parameters in the
fit. The 1 + cos(f −c2) is a simplified form of the denominator of
Equation (4) for r(t). We also test a simpler form of Equation (7)
given by

F (f ) = F0 + c1 cos(f − c2) (8)

where c1–c2 are free parameters in the fit. This functional form
of the phase curve is similar to a simple sine or cosine of the
orbital phase angle, λ or ξ , used in the case of a circular orbit.

We also find that a Lorentzian function of time provides a
reasonable representation of the expected shape of the orbital
phase curve for HAT-P-2b. This is not surprising given that we
expect the flux from the planet to vary as 1/r(t)2 with a time lag
between the minimum of the planetary distance and the peak
of the planetary flux. We test both symmetric and asymmetric

5
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Lorentzian functions of the time from periapse passage, t, given
by

F (t) = F0 +
c1

u(t)2 + 1
(9)

where
u(t) = (t − c2)/c3 (10)

in the symmetric case and

u(t) =
{

(t − c2)/c3 if t < c2;
(t − c2)/c4 if t > c2

(11)

in the asymmetric case. In Equations (9), (10), and (11), c1–c4

are free parameters in the fit. The Lorentzian functional form
for the phase curve is especially useful since the c2 parameter
gives the offset between the time of periapse passage and the
peak of the planet’s flux and the c3–c4 parameters gives an
estimate of relevant atmospheric timescales.

We also find that the preferred functional form for the phase
curve of planets on circular orbits described in Cowan & Agol
(2008) provides a reasonable fit to our theoretical light curves if
the orbital phase angle, ξ , is replaced by the true anomaly, f. In
this case

F (θ ) = F0 + c1 cos(θ ) + c2 sin(θ )

+ c3 cos(2θ ) + c4 sin(2θ ) (12)

where c1–c4 are free parameters in the fit and θ = f + ω + π
such that transit occurs at θ = −π/2 and secondary eclipse
occurs at θ = π/2.

In addition to the functional forms for the phase curve
presented above, we also test a flat phase curve, F (t) = F0,
to make sure that we are not over-fitting the data with the phase
curve parameters. In all cases we tie the F0 parameter to the
secondary eclipse depth to give the appropriate average value
of the phase curve during secondary eclipse. We also set any
portion of the phase curve that falls below the secondary eclipse
depth to zero. During secondary eclipse we no longer see flux
from the planet, only the star, therefore the combined star and
planetary flux should always be greater than or equal to the flux
at the bottom of the secondary eclipse.

We choose the optimal phase curve solution to be the
one that gives the lowest BIC value (Equation (2)) using a
Levenberg–Marquardt nonlinear least-squares fit to the data
(Markwardt 2009). For the 3.6 and 4.5 μm data sets, we also
compare the BIC values from each of the three data segments
separated by the downlink periods to make sure that the solution
is robust at all orbital phases. For the 3.6, 4.5, and 8.0 μm
data sets, we find that all of the functional forms presented
Section 2.6 provide a significant improvement in the BIC
values over the “flat” phase curve BIC values (BIC3.6 μm =
1,282,575; BIC4.5 μm = 1,459,141; BIC8.0 μm = 11,183). For the
3.6 μm data we obtain the lowest BIC value with a functional
form for the phase curve defined by either Equation (8) or
Equation (12) with c3–c4 fixed at zero (BIC = 1,278,521).
This is not surprising since basic trigonometric identities make
Equation (12) equivalent to Equation (8) if c3–c4 can be assumed
to be zero. For the 4.5 μm data we obtain the lowest BIC
value with a functional form for the phase curve given by
Equation (12) with the c1 and c3 terms fixed at zero (BIC =
1,458,842).

The phase curve model given by Equation (12) also gives us
a reasonable improvement in the BIC for our 8.0 μm data set.
However, we find that the second harmonic in Equation (12) is

highly degenerate with our ramp correction at 8.0 μm such that
we cannot reliably constrain the significance of this harmonic
in the fit. We instead use the phase curve functional form given
by Equation (7), which gives us the lowest BIC for the 8.0 μm
data set (BIC = 10,945). For the 5.8 μm data, which only span
10 hours, we find no statistical difference between solutions with
and without parameterizations for planetary phase variations.

2.7. Stellar Variability

HAT-P-2 is a rapidly rotating F star (v sin i = 20.7 km s−1).
Measurements of the Ca ii H and K lines of HAT-P-2 by Knutson
et al. (2010) do not detect any significant emission in the line
cores, which would suggest a chromospherically quiet stellar
host for HAT-P-2b. However, this indicator provides relatively
weak constraints on chromospheric activity for F stars, which
have strong continuum emission in the wavelengths of the Ca ii

H and K lines. Ground-based monitoring of HAT-P-2 in the
Strömgren b and y bands over a period of more than a year
indicates that it varies by less than 0.13% at visible wavelengths.
We would expect the star to vary by substantially less than this
amount in the infrared, where the flux contrast of spots and
other effects is correspondingly reduced. These observations
rule out both periodic variability that could be associated with
the rotation rate of HAT-P-2 or longer-term trends (G. Henry
2010, private communication). Previous observations find the
rotation rate of the star to be on the order of 3.8 d (Winn
et al. 2007b) based on the line-of-sight stellar rotation velocity
(v sin i⋆) and assuming sin i⋆ = 1, which is roughly 0.6 times the
orbital period of HAT-P-2b. We do not expect stellar variability
to be significant on the timescales of our observations, but for
the sake of completeness we also check this assumption directly
using our Spitzer data.

We employ two models for stellar variability. The first model
is a simple linear function of time given by

F0(t) = d1t (13)

where t is measured from the predicted center of transit in each
observation and d1 is a free parameter in the fit. The second
model we test has the form

F0(t) = d1 sin ((2π/d2)t − d3) (14)

where t is measured from the predicted center of transit in
each observation and d1 − d3 are free parameters in the fit.
Equation (14) attempts to capture stellar variability that is
associated with star spots that rotate in and out of view with
the d2 parameter representing the rotation rate of the star.

We find that the linear model for stellar variability does not
improve the χ2 of the fits significantly and in fact increases
the BIC (Equation (2)). Inclusion of the stellar model given by
Equation (14) does improve both the χ2 and BIC in our fits.
However, we find that the solutions for the “sine-curve” model
for stellar variability are often degenerate with our models for
the phase curve and the residual ramp at the start of the 3.6 μm
observations. We also find that the stellar rotation rate predicted
by the d2 term in Equation (14) differs significantly between
the 3.6 and 4.5 μm observations with a rotation rate of 4.3 d
preferred for the 3.6 μm data and 3.9 d preferred for the 4.5 μm
data. Although these predicted rotation periods are near to the
expected 3.8 d rotation period of HAT-P-2, the amplitudes of the
predicted stellar variations in the mid-infrared seem spurious.
The amplitudes of the predicted stellar flux variations at 3.6 and
4.5 μm are on the order of ∼0.1%, which is comparable to our
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upper limit on stellar variability at visible wavelengths (0.13%).
We would expect star spots to display much larger variations
in the visible than at mid-infrared wavelengths. The amplitudes
of these stellar variations are also similar to the amplitudes
of our predicted phase variations. We therefore conclude that
our best-fit solutions for the stellar variability are physically
implausible, and likely the result from a degeneracy with the
other terms in our fits. As we have no convincing evidence for
stellar variability, we assume that the star’s flux is constant in
our final fits.

2.8. Radial Velocity Measurements

Since the discovery of HAT-P-2b by Bakos et al. (2007a),
the California Planet Search (CPS) team has continued to
obtain regular RV measurements of this system using the
HIRES instrument (Vogt et al. 1994) on Keck. We used
the CPS pipeline (see, e.g., Howard et al. 2009) to measure
precise RVs from the high-resolution spectra of HAT-P-2 using
a superposed molecular iodine spectrum as a Doppler refer-
ence and PSF calibrant. Previous studies of this system (Bakos
et al. 2007a; Winn et al. 2007b; Pál et al. 2010) have in-
cluded HIRES RV measurements through 2008 May (BJD =
2454603.932112). Here we present 16 additional RV measure-
ments from the HIRES instrument on Keck for a total of 71 data
points spanning six years (Table 1). We exclude measurements
obtained during transit (Winn et al. 2007b) from our fits in order
to avoid measurements affected by the Rossiter–McLaughlin
effect.

We simultaneously fit for the RV semi-amplitude (K),
zero-point (γ ), and long term velocity drift (γ̇ ) along with the
orbital, transit, eclipse, and phase parameters in the 3.6, 4.5, and
8.0 μm data sets separately. We also test for possible curvature
in the RV signal (γ̈ ), but find that our derived values for γ̈ were
consistent with zero. As discussed in Winn (2011), the transit to
secondary eclipse timing strongly constrains the e cos ω term in
our fits, but the e sin ω term is better constrained by the inclusion
of these RV data. Rapidly rotating stars are known to have an
increased scatter in their RV velocity distribution beyond the re-
ported internal errors (as discussed in Bakos et al. 2007a; Winn
et al. 2007b). We therefore estimate a stellar jitter term (σjitter)
as described in Section 3.

3. RESULTS

We perform a simultaneous fit and calculate uncertainties for
the relevant transit, secondary eclipse, phase curve, RV, flux
ramp, and intrapixel sensitivity correction parameters in our
data sets using a Markov Chain Monte Carlo (MCMC) method
(Ford 2005). For the 3.6, 4.5, and 8.0 μm data sets fit parameters
include b2, ζ/R⋆, e cos ω, e sin ω, Rp/R⋆, transit time, the
secondary eclipse depth(s), the phase function coefficients
c1–c4, a photometric noise term (σphot), and RV parameters K, γ ,
γ̇ , σjitter. For the 3.6 and 8.0 μm data sets we additionally fit for
the ramp correction coefficients a1–a4. The free parameters in
the fit to the 5.8 μm data set are the eclipse time, eclipse depth,
ramp correction coefficients a1–a4, and σphot. The value of the
stellar flux, F0, is inherently accounted for with our intrapixel
sensitivity correction method described in Appendix B. Because
we do not apply intrapixel sensitivity corrections to our 5.8 and
8.0 μm data sets we additionally fit for F0 in those cases.

The only parameter held fixed in our analysis is the orbital
period (P), the value for which we take from Pál et al. (2010).
All other orbital, planetary, phase, and ramp parameters are

Table 1
Radial Velocities for HAT-P-2b from Keck

BJD −2,400,000 RV Uncertainty

(days) (m s−1) (m s−1)

53981.777500 −19.17 7.46

53982.871700 −310.87 7.64

53983.814865 538.73 7.81

53984.894980 855.62 7.94

54023.691519 698.64 7.94

54186.998252 696.78 7.72

54187.104158 684.36 6.84

54187.159878 717.17 6.59

54188.016885 757.70 7.00

54188.159622 774.61 6.80

54189.010378 651.86 6.59

54189.088911 635.16 6.48

54189.157721 619.70 7.22

54216.959395 722.59 8.04

54257.756431 27.91 5.79

54257.758677 35.49 6.17

54257.760702 24.33 6.18

54257.794116 −11.70 5.48

54257.796779 −19.01 5.02

54257.799452 −20.94 5.10

54257.802148 −23.48 4.74

54257.804926 −21.89 5.15

54257.807634 −35.65 4.91

54257.810342 −24.40 5.08

54257.813143 −40.82 5.22

54257.815817 −37.08 5.45

54257.818490 −23.98 5.21

54258.024146 −313.00 4.87

54258.027167 −310.40 4.89

54258.030292 −311.56 4.37

54258.033278 −326.04 4.58

54258.042630 −314.19 5.10

54258.045488 −336.27 4.92

54258.048393 −342.10 5.07

54258.051483 −351.92 4.88

54258.054828 −356.80 4.94

54258.058161 −356.72 4.65

54258.061472 −360.49 4.85

54258.064666 −374.47 4.73

54258.099110 −432.29 5.27

54258.102836 −433.53 4.97

54258.106679 −446.91 4.74

54279.876893 371.51 8.26

54285.823854 137.15 5.91

54294.878702 728.72 6.61

54304.864982 588.92 6.07

54305.870122 737.55 6.23

54306.865216 731.39 7.95

54307.912379 456.62 6.39

54335.812619 549.60 6.64

54546.098175 −684.07 7.79

54547.115700 536.15 7.19

54549.050468 754.51 7.26

54602.916550 271.30 6.47

54603.932112 662.48 5.74

54839.166895 −369.59 8.09

55015.871081 679.68 8.89

55350.945695 −513.11 8.45

55465.742817 606.08 6.99

55703.872995 623.50 7.70

55704.836273 377.02 8.02

55705.853346 −535.77 8.12

55706.831645 −257.19 7.57

55707.844353 504.50 7.68

55808.759715 323.97 8.49
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Table 1
(Continued)

BJD −2,400,000 RV Uncertainty

(days) (m s−1) (m s−1)

55850.695496 557.65 7.37

55932.161110 −241.35 9.48

55945.128011 595.28 8.57

55992.018498 401.30 10.08

56147.753065 553.56 7.95

56149.738596 381.71 8.37

allowed to vary freely. Initial attempts at fitting just the 3.6 and
4.5 μm transits simultaneously produce a value for P within 1σ
of the Pál et al. (2010) value, and we are therefore confident that
adopting the Pál et al. (2010) value for P has not introduced any
significant errors into our analysis.

We initially attempted to fit for the wavelength independent
parameters b2, ζ/R⋆, e cos ω, e sin ω, and Tc simultaneously
for the RV, 3.6, 4.5, and 8.0 μm data sets. However, given
the size of our data sets (over 2.5 million data points) and
the time required to create our “pixel-maps” for the 3.6 and
4.5 μm data (see Appendix B), we found it computationally
infeasible. It is possible that further improvements to our
analysis code, including parallelization, could make the problem
more computationally tractable. Such improvements are left for
future iterations of our analysis methods.

We plot the normalized time series for the 3.6, 4.5, and 8.0 μm
data sets after the best-fit intrapixel sensitivity variations and
ramp corrections have been removed in Figure 5. The regions
near secondary eclipse and transit for each best-fit solution are
presented in Figures 6, 7, 8, and 9 for the 3.6, 4.5, 5.8, and 8.0 μm
data sets, respectively. We also present our best-fit solution to
the RV data in Figure 10.

We use a total of five independent chains with 105 steps per
chain in our MCMC analysis. Each chain is initialized at a
position in parameter space determined by randomly perturbing
the best-fit parameters from a Levenberg–Marquardt nonlinear
least-squares fit to the data (Markwardt 2009). Instead of using
a standard χ2 minimization scheme, we instead opt to maximize
the log of the likelihood (L) given by

log(L) =
∑

(− log(2πσ 2) − (data − model)2/(2σ 2)), (15)

where σ is the relevant error term. This allows us to simultane-
ously solve for the noise terms σphot and σjitter with our other fit
parameters (see Carter & Winn 2009, for further discussion of
the maximum likelihood method as applied to exoplanet transit
observations). After each chain has reached 105 steps, we find
the point where log(L) first surpasses the median log(L) value
and discard all steps up to that point. We then combine the results
from our independent chains and find the range about a median
value that contains 68% of the values for a given parameter. We
set our best-fit parameters equal to this median value and use
this distribution to initially determine the 1σ uncertainties in
each of our parameters. For most parameters our error distribu-
tion was close to being symmetric about the median value. In
the cases where the distribution was significantly asymmetric,
we have noted both the positive and negative uncertainties in
the parameter value.

We find that there is (“red”) correlated noise in our data
even after the best fit intrapixel sensitivity variations have
been removed. To account for correlated noise in our data we
first employed the wavelet-based MCMC method described in
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Figure 5. Final 3.6 (top), 4.5 μm (middle), and 8.0 μm photometry (filled
circles) after correcting for intrapixel sensitivity variations (3.6 and 4.5 μm)
and the ramp-like behavior of the flux with time (3.6 and 8.0 μm), binned into
five-minute intervals. The best-fit phase, transit, and secondary eclipse curves
are overplotted as a red line. The dashed line represents the stellar flux level.

(A color version of this figure is available in the online journal.)

Carter & Winn (2009). However, we found that our correlated
noise could not be treated as a stationary noise parameter.
Often we found that fits to the transit and secondary eclipse
portions of our phase curves were degraded to introduce “red”
noise consistent with other portions of the light curve. As
a result, we instead opt to use the “residual-permutation” or
“prayer-bead” method to estimate the errors in our parameters
in the presence of correlated noise (see, for example, Jenkins
et al. 2002; Southworth 2008; Bean et al. 2008; Winn et al.
2008). The “prayer-bead” errors are typically 1.5–3× larger
than the errors determined from our MCMC analysis. The largest
increases in the uncertainty using the “prayer-bead” method
were for the planet–star ratio and secondary eclipse depths.
In some cases the “prayer-bead” errors are slightly smaller
(∼0.9×) than the errors from the MCMC analysis. In those
cases we report the larger errors from the MCMC analysis.
Table 2 presents the best-fit parameters for our data sets and
their 1σ error bars. We find that our photometric errors, σphot,
are 1.05, 1.11, 1.11, and 1.15 times higher than the predicted
photon noise limit at 3.6, 4.5, 5.8, and 8.0 μm, respectively.

4. DISCUSSION

In the following sections we discuss the implications of these
results for our understanding of the HAT-P-2 system and the
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Figure 6. Best-fit transit (middle panel) and secondary eclipse (top and bottom
panels) light curves (red lines) for the 3.6 μm observations (black filled circles).
The data have been binned by five-minute intervals. Residuals for each of the fits
are presented just below each transit or secondary eclipse event. The dashed red
lines in the secondary eclipse panels show the best fit light curve corresponding
to the other secondary eclipse.

(A color version of this figure is available in the online journal.)

atmospheric properties of HAT-P-2b. We compare our results
with the previous studies of the HAT-P-2 system from Bakos
et al. (2007a), Winn et al. (2007b), Loeillet et al. (2008), and
Pál et al. (2010), which were limited to ground-based transit
and RV data. We also compare our results to predictions from
one-dimensional radiative transfer and semi-analytic models of
HAT-P-2b’s atmosphere.
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Figure 7. Best-fit transit (middle panel) and secondary eclipse (top and bottom
panels) light curves (red lines) for the 4.5 μm observations (black filled circles).
The data have been binned by five-minute intervals. Residuals for each of the fits
are presented just below each transit or secondary eclipse event. The dashed red
lines in the secondary eclipse panels show the best fit light curve corresponding
to the other secondary eclipse.

(A color version of this figure is available in the online journal.)

4.1. Orbital and RV Parameters

We find that our estimates for the orbital and RV parameters
listed in Table 2 fall within the range of the values from previous
studies presented in Table 3. We note that there is often a more
than 3σ discrepancy between orbital parameters for the HAT-P-2
system presented in previous studies (Table 3). We conclude
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Figure 8. Best-fit secondary eclipse light curve (red line) for the 5.8 μm
observations (black filled circles). The data have been binned by five-minute
intervals. Residuals to the fit are presented just below the secondary eclipse
event.

(A color version of this figure is available in the online journal.)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
Time From Eclipse/Transit Center (Earth Days)

−0.0005

0.0000

0.0005

0.9995

1.0000

1.0005

1.0010

1.0015

R
e

la
ti
v
e

 F
lu

x

−0.0005

0.0000

0.0005

0.996

0.998

1.000

R
e

la
ti
v
e

 F
lu

x

Figure 9. Best-fit transit (top panel) and secondary eclipse (bottom panel) light
curves (red lines) for the 8.0 μm observations (black filled circles). The data
have been binned by five-minute intervals. Residuals for each of the fits are
presented just below each transit or secondary eclipse event.

(A color version of this figure is available in the online journal.)
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Figure 10. Top panel: RV measurements for HAT-P-2 presented in Table 1
(black circles) folded with an orbital period equal to 5.6334729 d along with
the best-fit RV solution (red line) with long-term variation in the RV signal due
to substellar object c removed. Open circles represent RV measurements taken
after the completion of the analysis. Bottom panel: residuals between the RV
measurements and best-fit solution. Error bars on the data points include the
best-fit stellar jitter term (σjitter).

(A color version of this figure is available in the online journal.)

that either previous studies underestimate their error bars for
the discrepant parameters, or the planet’s orbital properties are
varying in time. If we compare the orbital parameters we derived
from the 3.6, 4.5, and 8.0 μm data sets, we find that our estimates
are within 3σ of each other. The previous studies presented in
Table 3 included only ground-based transit and RV data. By
the inclusion of secondary eclipse in our data we were able to
improve the estimate of the orbital eccentricity of HAT-P-2b
by an order of magnitude over the value presented in Pál et al.
(2010).

From our orbital and RV parameters we can estimate the mass
of HAT-P-2b using

Mp =
2π

P

K
√

1 − e2

G sin i

(

a

R⋆

)2

R2
⋆ , (16)

where the orbital period (P) and stellar radius (R⋆) are as-
sumed to be the values presented in Pál et al. (2010),
5.6334729 ± 0.0000061 d and 1.64+0.09

−0.08R⊙, respectively. Val-
ues for the RV semi-amplitude (K), eccentricity (e), inclination
(i), and normalized semi-major axis (a/R⋆) are taken as the
error-weighted average of the values from the 3.6, 4.5, and
8.0 μm observations, which are presented in Table 4. We esti-
mate the mass of HAT-P-2b to be 8.00±0.97 MJ , which is within
1σ of the previous estimates of Mp for HAT-P-2b (Table 3).
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Table 2
Global Fit Parameters

Parameter 3.6 μm 4.5 μm 5.8 μm 8.0 μm

Transit parameters

Rp/R⋆ 0.06821 ± 0.00075 0.07041 ± 0.00060 0.06933d 0.0668 ± 0.0016

b2 0.122+0.066
−0.078 0.345 ± 0.042 . . . 0.238+0.096

−0.131

i (◦) 87.37+1.34
−0.81 84.91 ± 0.47 85.97d 86.0+1.5

−1.0

a/R⋆ 9.53 ± 0.35 8.28 ± 0.24 8.70d 8.83+0.67
−0.53

Tc (BJD −2,400,000)a 55288.84988 ± 0.00060 55756.42520 ± 0.00067 . . . 54353.6911 ± 0.0012

ζ/R⋆ (d−1) 12.221 ± 0.058 12.286 ± 0.057 . . . 12.21 ± 0.11

T14 (d)b 0.1770 ± 0.0011 0.1813 ± 0.0013 . . . 0.1789 ± 0.0023

T12 (d)b 0.0128 ± 0.0010 0.0177 ± 0.0012 . . . 0.0144 ± 0.0021

Secondary eclipse parameters

φsec 0.19177 ± 0.00029 0.19310 ± 0.00025 . . . 0.19253 ± 0.00048

T14 (d)b 0.1550 ± 0.0027 0.1651 ± 0.0023 0.1610 ± 0.0043

T12 (d)b 0.01090 ± 0.00075 0.01444 ± 0.00083 0.0121 ± 0.0016

First eclipse depth 0.080% ± 0.012% 0.1009% ± 0.0084% . . . . . .

Tc (BJD −2,400,000)a 55284.2967 ± 0.0014 55751.8795 ± 0.0011 . . . . . .

Second eclipse depth 0.0993% ± 0.0090% 0.1057% ± 0.0090% 0.071%+0.029%
−0.013% 0.1392% ± 0.0095%

Tc (BJD −2,400,000)a 55289.9302 ± 0.0014 55757.5130 ± 0.0011 54906.8561+0.0076
−0.0062 54354.7757 ± 0.0022

Orbital and RV parameters

e cos ω −0.50539 ± 0.00057 −0.50301 ± 0.00051 . . . −0.50419 ± 0.00088

e sin ω −0.0741 ± 0.0072 −0.0729 ± 0.0054 . . . −0.0685 ± 0.0059

e 0.51081 ± 0.00092 0.50829 ± 0.00068 0.50910d 0.50885 ± 0.00097

ω (◦) 188.34 ± 0.80 188.25 ± 0.62 188.09d 187.74 ± 0.66

Tp (BJD −2,400,000) 55289.4734 ± 0.0079 55757.05194 ± 0.0061 . . . 54354.3109 ± 0.0065

K (m s−1) 927.0 ± 5.9 923.0 ± 5.8 . . . 923.1 ± 6.0

γ (m s−1) 247.4 ± 3.7 248.0 ± 3.6 . . . 248.0 ± 3.6

γ̇ (m s−1 d−1) −0.0890 ± 0.0050 −0.0881 ± 0.0049 . . . −0.0886 ± 0.0058

Phase curve parameters

Functional form Equation (12) Equation (12) Flat Equation (7)

c1 0.0379% ± 0.0015% 0 (fixed) . . . 0.0555% ± 0.0032

c2 0.0422% ± 0.0025% 0.0293% ± 0.0042% . . . 41.◦8 ± 2.◦7

c3 0 (fixed) 0 (fixed) . . .

c4 0 (fixed) 0.0163% ± 0.0035% . . . . . .

Amplitude 0.114% ± 0.010% 0.079% ± 0.013% . . . . . .

Minimum flux 0.00014%+0.00927%
−0.00014% 0.0372%+0.0086%

−0.0096% . . . . . .

Minimum flux offset (hr)c −18.36+0.18
−1.00 6.71 ± 0.43 . . . . . .

Maximum flux 0.1139% ± 0.0089% 0.1162%+0.0089%
−0.0071% . . . 0.1888% ± 0.0072%

Maximum flux offset (hr)c 4.39 ± 0.28 5.84 ± 0.39 . . . 4.68 ± 0.37

Ramp parameters

Functional form Equation (1) None Equation (1) Equation (1)

a1 −0.00134+0.00105
−0.00054

. . . +0.00683+0.00086
−0.00054

−0.00537+0.00088
−0.00069

a2 0.078+0.050
−0.029 . . . 0.095 ± 0.015 0.0195+0.0067

−0.0051

a3 0 (fixed) . . . . . . −0.01765+0.00053
−0.00075

a4 0 (fixed) . . . . . . 0.2812+0.0155
−0.0091

Noise parameters

σphot 0.0042209 ± 0.0000024 0.0057064 ± 0.0000032 0.015380 ± 0.000034 0.002164 ± 0.000015

σjitter (m s−1) 26.0 ± 2.1 25.7 ± 2.2 . . . 25.5 ± 2.1

Notes.
a We list all time in BJD UTC for consistency with other studies; to convert to BJD TT add 66.184 s.
b T14 is the total transit or eclipse duration. T12 is the ingress duration, which equivalent to the egress duration (T34) to within error.
c Minimum flux offset is measured relative to the center of transit time (Tc). Maximum flux offset is measured relative to the time of periapse passage (Tp).
d Represents average value from 3.6 μm, 4.5 μm, and 8 μm analyses. Value held fixed in 5.8 μm analysis.

4.2. Linear RV Trend

Our RV data span a period of nearly six years, which allows
us to test for long-term trends in the RV signal. We find a
non-zero value for the linear term in our RV fit (γ̇ ), which
indicates the presence of a second body orbiting in the system.
If we assume that this second companion to HAT-P-2 (“c”) is

on a circular orbit and is much less massive than its host star,
we can relate γ̇ to the mass and orbital semi-major axis of “c”
by the expression presented in Winn et al. (2009)

γ̇ ≈
GMc sin ic

a2
c

. (17)
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Table 3
Results from Previous HAT-P-2 Studies

Parameter Bakos et al. (2007a) Winn et al. (2007b) Loeillet et al. (2008) Pál et al. (2010)

Transit parameters

Rp/R⋆ 0.0684 ± 0.0009 0.0681 ± 0.0036a 0.06891+0.00090
−0.00086 0.07227 ± 0.00061

i (◦) >84.6 >86.8 90.0+0.85
−0.93 86.72+1.12

−0.87

a/R⋆ 9.77+1.10
−0.02 9.90 ± 0.39a 10.28+0.12

−0.19 8.99+0.39
−0.41

Tc (BJD −2,400,000) 54212.8563 ± 0.0007 54212.8565 ± 0.0006 . . . 54387.49375 ± 0.00074

T14 (d) 0.177 ± 0.002 . . . . . . 0.1787 ± 0.0013

T12 (d) 0.012 ± 0.002 . . . . . . 0.0141+0.0015
−0.0012

Secondary eclipse parameters

φsec 0.1847 ± 0.0055a 0.1969 ± 0.0040a 0.1896 ± 0.0016a 0.1868 ± 0.0019

T14 (d) . . . . . . . . . 0.1650 ± 0.0034

Tc (BJD −2,400,000) . . . . . . . . . 54388.546 ± 0.011

Orbital and RV parameters

P (d) 5.63341 ± 0.00013 5.63341 (fixed) 5.63341 (fixed) 5.6334729 ± 0.0000061

e cos ω . . . . . . . . . −0.5152 ± 0.0036

e sin ω . . . . . . . . . −0.0441 ± 0.0084

e 0.520 ± 0.010 0.501 ± 0.007 0.5163+0.0025
−0.0023 0.5171 ± 0.0033

ω (◦) 179.3 ± 3.6 187.4 ± 1.6 189.92+1.06
−1.20 185.22 ± 0.95

Tp (BJD −2,400,000) 54213.369 ± 0.041 . . . 54213.4798+0.0053
−0.0030 . . .

K (m s−1) 1011 ± 38 883 ± 57a 966.9 ± 8.3 983.9 ± 17.2

Planetary parameters

Mp (MJ) 9.04 ± 0.50 8.04 ± 0.40 8.62+0.39
−0.55

9.09 ± 0.24

Rp (RJ) 0.982+0.038
−0.105

0.98 ± 0.04 0.951+0.039
−0.053

1.157+0.073
−0.062

ρp (g cm−3) 11.9+4.8
−1.6 10.60 ± 0.55a 12.5+2.6

−3.6 7.29 ± 1.12

gp (m s−2) 227+44
−16 207 ± 20a 237+30

−41 168 ± 17

a (AU) 0.0677 ± 0.0014 0.0681 ± 0.0014a 0.0677+0.0011
−0.0017 0.06878 ± 0.00068

Noise parameters

σjitter (m s−1) 60 31 17 . . .

Note. a Parameter value not directly quoted in reference, but calculated from quoted parameter values and errors.

Table 4
HAT-P-2b Parameters from a Weighted Average of the Values

from the 3.6, 4.5, and 8.0 μm Fits

Parameter Value

Rp/R⋆ 0.06933 ± 0.00045

Etransit (BJD) 2455288.84923 ± 0.00037

a/R⋆ 8.70 ± 0.19

i (◦) 85.97+0.28
−0.25

e 0.50910 ± 0.00048

ω 188.09 ± 0.39

φsec 0.19253 ± 0.00018

Esec (BJD) 2455289.93211 ± 0.00066

Eperiapse (BJD) 2455289.4721 ± 0.0038

Mp (MJ) 8.00 ± 0.97

Rp (RJ) 1.106 ± 0.061

ρp (g cm−3) 7.3 ± 1.6

gp (m s−2) 162 ± 27

a (AU) 0.0663 ± 0.0039

Figure 11 shows the range of values for Mc sin ic and ac

that are allowed for the HAT-P-2 system given that γ̇ =
−0.0886 ± 0.0030. We know the orbital period of “c” must
be significantly longer than six years since we do not detect
any significant curvature in our long-term RV trend, so we set a
lower limit of Mc sin ic ∼ 15 MJ and ac ∼ 10 AU based on an
orbital period for “c” of 24 years. We further employ adaptive

optics (AO) imaging to search for “c” and set an upper limit on
the values of Mc sin ic and ac.

4.2.1. Adaptive Optics Imaging

In an attempt to directly image the body responsible
for causing the linear RV trend, we observed HAT-P-2 on
2012 May 29 using NIRC2 (PI: Keith Matthews) and the
Keck II AO system at Mauna Kea (Wizinowich et al. 2000).
Our observations consist of dithered images taken with the
K ′ (λc = 2.12 μm) filter. Using the narrow camera setting,
which provides fine spatial sampling of the NIRC2 PSF (10
mas pixel−1), we acquired nine frames each having 13.2 s of
on-source integration time. The seeing was estimated to be 0.′′4
at visible wavelengths at the time of observations using AO
wavefront sensor telemetry. We note that significant wind-shake
degraded the quality of correction for some images but only by
a marginal amount.

The data were processed using standard techniques to correct
for hot pixels, remove background radiation from the sky and
instrument optics, flat-field the array, and align and co-add
individual frames. Figure 12 shows the final reduced AO image
along with the corresponding (10σ ) contrast levels achieved as
a function of angular separation. No companions were detected
in raw or processed frames.

We can use the limits from a non-detection to rule out the
presence of companions as a function of Mc sin(ic) and ac. Us-
ing HAT-P-2’s parallax distance of 119 ± 8 pc and estimated
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Figure 11. Top: RV variation as a function of BJD after subtracting the calculated
variations due to HAT-P-2b. The red line shows our best-fit solution for the linear
trend (γ̇ ) in the data that result from companion “c.” Open circles represent RV
measurements taken after the completion of the analysis, which conform with
our measured linear trend. Bottom: range of M sin i and semi-major axis (a) for
companion “c” (solid line) as estimated from the long term drift in the RV data
(γ̇ ). Dotted lines estimate the range in M sin i and a given the error in γ̇ . The
shaded region gives the acceptable range of parameter space for companion “c”
given our upper and lower bounds on Mc sin i vs. ac (dashed lines).

(A color version of this figure is available in the online journal.)

age of 2.6 ± 0.5 Gyr as determined by Pál et al. (2010) through
a combined isochrone, light curve, and spectroscopic analysis,
we find that our diffraction-limited observations are sensitive
to companions on the hydrogen-fusing boundary for separa-
tions beyond ≈1′′. Interior to this region, the combination of
imaging and RV data eliminates most low-mass stars, though
late-type M-dwarf tertiaries located at ∼40 AU could cause the
long-term Doppler drift yet simultaneously evade direct detec-
tion (Figure 11).

4.2.2. Orbital Evolution

The likely presence of an M/L/T/Y dwarf at an orbital
distance, ac, of 10 to 40 AU from HAT-P-2b lends credence to
the possibility that HAT-P-2b owes is current orbit to a history of
Kozai cycling (Kozai 1962) combined with long-running orbital
decay generated by tidal friction (Eggleton et al. 1998; Wu &
Murray 2003; Fabrycky & Tremaine 2007). At first glance, this
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Figure 12. Left: Keck AO/NIRC2 K band image of the HAT-P-2 system. Image
displayed using a square root scaling. Right: 10σ contrast limit for companion
detection as a function of angular separation from which define the upper bounds
on Mc sin i vs. ac.

combination of Kozai Cycling and Tidal Friction (KCTF) seems
more plausible than disk migration for producing the current
orbital configuration of HAT-P-2b and indeed, long-distance
disk migration for HAT-P-2b seems quite problematic. The
protostellar disk itself would have needed to be exceptionally
massive and long lived, and an ad hoc mechanism must be
invoked to explain the large observed orbital eccentricity of
HAT-P-2b. Furthermore, HAT-P-2b has planetary and orbital
parameters that place it significantly outside the well-delineated
population of “conventional” hot Jupiters with P ∼ 3 days,
M ∼ MJup, and e ∼ 0.

In the context of the KCTF process, HAT-P-2b is envisioned
to have formed well outside its current orbit, perhaps via
gravitational instability in the original protostellar disk. KCTF
can operate if the mutual orbital inclination between companion
“c” and planet b was larger (or better, substantially larger) than
the Kozai critical angle, ic = arccos[(3/5)1/2] ∼ 40◦ (assuming
Mc ≫ Mb, and an initially circular orbit for b). In the event
that KCTF did operate, planet b experienced periodic cycling
between successive states of high orbital eccentricity and high
mutual inclination. The timescale for these cycles was

τKozai =
2P 2

c

3πPb

M⋆ + Mb + Mc

Mc

(

1 − e2
c

)3/2
. (18)

With plausible values of Pc = 25 years, ec = 0.5, and
Mc = 20 MJup, τKozai = 300 Kyr. By contrast, the general
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relativistic precession rate for HAT-P-2b is currently

ω̇GR =
3G3/2(M⋆ + Mb)3/2

a
5/2

b c2
(

1 − e2
b

)
, (19)

which generates a full 2π circulation of the apsidal line in 20 Kyr
(τGR). Because τKozai ≫ τGR, the magnitude of the Kozai cycling
is strongly suppressed at present.

To a good approximation, tidal friction is currently the
dominant contributor to the orbital evolution of HAT-P-2b, and
it is plausible that the current state of the system has undergone
dissipative evolution from an earlier epoch where τKozai = τGR.
If we assume that the tidal evolution has roughly conserved
HAT-P-2b’s periastron distance, dperi = ab(1 − eb) = 0.033
AU, then in order for τKozai = τGR implies that HAT-P-2b has
evolved to its current orbit from an orbit with an initial period,
Pomin

, given by

Pomin
=

(

1 − e2
c

)3/4 PcM⋆

c

(

G

Mcdperi

)1/2

, (20)

or

Pomin
∼ 33 d

(

Pc

25 yr

) (

20 MJup

Mc

)1/2

. (21)

Additionally, the RV-derived constraint on the unseen compan-

ion “c” indicates that Mc ∼ P
4/3
c , which allows us to simply

write

Pomin
∼ 33 d

(

Pc

25 yr

)1/3

. (22)

Given that direct imaging constrains the maximum period for
companion “c” to be of order 250 years, the KCTF scenario
gives a lower limit on the possible initial periods for HAT-P-2b
to be 30 days < Pomin

< 60 days.
The KCTF process delivers planets into orbits in which the

planetary orbital angular momentum and the stellar spin angular
momentum are initially largely uncorrelated. As mentioned ear-
lier in the text, initial measurements of the projected spin-orbit
misalignment angle, λ, suggested that HAT-P-2b’s orbit lies
in the stellar equatorial plane. Recently, however, an re-
assessment by Albrecht et al. (2012) reports λ = 9◦ ±
5◦, indicating a modest projected misalignment. In addition,
HAT-P-2b’s parent star is almost precisely on the Teff = 6250 K
boundary at which stars empirically appear to be able to maintain
misalignment over multi-Gyr time scales (Albrecht et al. 2012).

4.3. Transit Timing Variations

We calculate ephemeris for the HAT-P-2 system given the
center of transit and eclipse times presented in Table 2 as

Tc(n) = Tc(0) + n × P (23)

where Tc is the predicted transit, eclipse, or periapse time and
n is the number of orbits that have elapses since Tc(0). From
our transit data we calculate Tc(0) = 2455288.84923±0.00037
BJD and P = 5.6334754 ± 0.0000026 d, which is consis-
tent with the orbital period for HAT-P-2b presented in Pál
et al. (2010). We calculate Tc(0) = 2455289.93211 ± 0.00066
BJD and P = 5.6334830 ± 0.0000086 d from our secondary
eclipse data and Tc(0) = 2455289.4721 ± 0.0038 BJD and
P = 5.633479 ± 0.000026 d from our estimated times of
periapse passage. The orbital periods estimated from the sec-
ondary eclipse and periapse passage timings are within 1σ of
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Figure 13. Observed minus calculated transit (top panel), periapse passage
(middle), and secondary eclipse (bottom panel) times from data presented in
Tables 2 (squares) and 3 (triangles). Dashed lines indicate the 1σ uncertainties
in the predicted transit, periapse, and eclipse times.

the value derived from our transit timings. Figure 13 presents
our transit, secondary eclipse, and periapse times compared
to our derived constant ephemeris. We define the center of
transit/eclipse to occur when the projected planet–star dis-
tance given by Equation (3) is minimized. The definition of
transit/eclipse center is not always clearly stated in studies for
eccentric systems. Pál et al. (2010) estimate a difference between
RV and photometric transit centers for the HAT-P-2 system of
nearly two minutes. Some of the spread in the measured versus
predicted transit times could be accounted for by inconsistent
definitions of transit center.

The separate visits to HAT-P-2b for the 3.6, 4.5, 5.8, and
8.0 μm observations allow constraints to be placed on possible
transit timing variations (TTVs) for HAT-P-2b. Previous transit
timing measurements for this system (Bakos et al. 2007a; Winn
et al. 2007b; Pál et al. 2010) had relatively low timing resolution
(Δt ∼ 50 → 500 s) and appeared to be consistent with a
constant ephemeris (Pál et al. 2010). Somewhat surprisingly, the
Spitzer data from orbits 0 and 83 appear to be inconsistent with a
constant ephemeris at the ∼3.5σ level, with a typical deviation
of 150 s. The deviations are anti-correlated between primary
transit and secondary eclipse, and they switch sign on the two
successive visits. This could be due to either an astrophysical
cause, or an as-yet unmodeled systematic error. In the sections
below we consider two potential astrophysical explanations for
the TTVs: a planetary satellite or an external perturber.

4.3.1. TTVs Generated by a Planetary Satellite

HAT-P-2b is expected to be in pseudo-synchronous rotation,
in which its spin period is close to the orbital frequency in the
vicinity of periapse. Given Porbit = 5.63347 d, Hut’s (1981)
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treatment gives

Pspin =

⎡

⎣

5e6

16
+ 45e4

8
+ 15e2

2
+ 1

(1 − e2)3/2

(

3e4

8
+ 3e2 + 1

)

⎤

⎦

−1

Porbit = 1.89 d.

(24)

In order to maintain orbital dynamical stability, a prospective
moon for HAT-P-2b must have an orbital semi-major axis, asat,
such that asat � FcritRHill, where RHill is the Hill sphere radius
at periapse,

RHill ∼ apl(1 − e)

(

Mpl

3 M⋆

)1/3

= 0.0042 AU, (25)

and Fcrit � 0.5 (see, e.g., Barnes & O’Brien 2002 for a
discussion of satellite stability for planets with low orbital
eccentricity). At distance asat < FcritRHill from HAT-P-2b,
the orbital period of the satellite is Psat = 0.385 d, which is
substantially shorter than the Pspin = 1.89 d spin period of the
planet. Tidal evolution will therefore cause the satellite’s orbit
to gradually spiral in to meet the planet (Sasaki et al. 2012).

Based on the fairly uniform satellites-to-planet mass ratios
exhibited by the regular satellites of the Jovian planets in the
solar system, and in the absence of any concrete information
regarding exomoons, it is not unreasonable to expect Msat =
Mpl/104 ∼ 0.28 M⊕. The characteristic time for a satellite’s
orbital decay, assuming an equilibrium theory of tides with a
frequency-independent tidal quality factor, Qp, is (Murray &
Dermott 1999)

τ =
2

13
(FcritRHill)

13/2 Qpl

3k2pMsR
5
pl

(

Mpl

G

)1/2

. (26)

Adopting Qpl = 106, and k2p = 0.1 we find τ ∼ 2 Gyr,
which is comparable to the estimated stellar age, τ⋆ = 2.7 Gyr
(Pál et al. 2010). The small value for the apsidal Love number,
k2p, stemming from the fact that HAT-P-2b at 8 MJup is quite
centrally condensed in comparison to Jupiter (see Bodenheimer
et al. 2001; see Batygin et al. 2009 for a discussion of the relation
between k2p and interior models). Given the substantial range of
possible values for Qpl, it would therefore not be unreasonable
to find that HAT-P-2b harbors a fairly massive moon.

A moon with the above qualities would produce TTVs of
magnitude (Kipping 2009)

δTTVsat
=

a
1/2

pl FcritRHillMsat

Msat + Mpl(2GM⋆)1/2Λ
, (27)

where the geometric factor Λ appropriately amplifies or damps
the TTVs in accordance with the eccentricity and orientation of
the elliptical orbit of the planet about the parent star

Λ = cos

[

tan−1

(

−e cos(ω)

1 + e sin ω

)] (

2(1 + e sin ω)

1 − e2
− 1

)1/2

.

(28)

Substituting the various values discussed above, we find

δTTVsat
= 0.15 s, (29)

which is several orders of magnitude too small to be of current
interest. So while (somewhat surprisingly) it is distinctly pos-
sible that HAT-P-2b could currently harbor a massive satellite,
any such satellite cannot be responsible for TTVs of the size
that appear to be present.

4.3.2. TTVs Generated by an External Perturber with a Long Period

Perturbations from an as-yet undetected perturbing body
present another potential explanation for the apparent TTVs.
After the signature of HAT-P-2b’s orbit has been removed from
the existing RV observations, a secular acceleration that can
be attributed to a distant companion remains. The constancy of
the acceleration implies an orbital period for the companion
of at least several years; for example, a body with mass,
Mc ∼ 18 MJup, and semi-major axis, ac = 10 AU, would suffice.
For a configuration in which ac ≫ apl (Holman & Murray 2005),

δTTVperturber
∼

45π

16

Mc

M⋆

Pplα
3
e

(

1 −
√

2α3/2
e

)−2

. (30)

where αe = apl/(ac(1−ec)). For a perturber with Mc ∼ 18 MJup,
ec = 0.3, and ac = 10 AU, we find δTTVperturber

= 0.1 s. In
addition, direct numerical integrations indicate that for external
perturbing planets that are consistent with the observed secular
acceleration, the expected TTVs are invariably very small, and
furthermore, do not exhibit the rapid variation shown by the
timing reversal observed between orbit 0 and orbit 83.

4.3.3. A Low-mass Resonant Perturber?

There are an effectively infinite number of stable orbits for
perturbing bodies in mean-motion resonance with HAT-P-2b,
and the diversity of such orbits is extended by HAT-P-2b’s
substantial eccentricity. A body in low-order resonance with
HAT-P-2b can readily induce TTVs of the magnitude that are
apparently observed, and may be able to produce the curious
structure exhibited by the timing variations of the secondary
eclipses and the primary transits. Exploratory calculations are
currently underway to evaluate this possibility. If we assume that
the observed TTV are generated by a gravitational perturber, this
appears to be the most promising approach. However, we note
that the significance of the reported TTVs is less than 4σ . Further
high-precision transit and/or secondary eclipse observations
along with additional RV measurements would be needed to
confirm the presence of these TTVs and constrain the properties
of the perturbing body.

4.4. Transit and Secondary Eclipse Depths

From our three transit observations we obtain planet–star
radius ratios of 0.06821 ± 0.00075, 0.07041 ± 0.00060, and
0.0668 ± 0.0016 at 3.6, 4.5, and 8.0 μm, respectively. Our
estimates of the planet/star radius ratio, Rp/R⋆, are significantly
smaller than the value presented in Pál et al. (2010), but are fairly
well aligned with the values presented in Bakos et al. (2007a),
Winn et al. (2007b), and Loeillet et al. (2008). Although Pál et al.
(2010) incorporate the I band observations from Bakos et al.
(2007a) they also include follow-up observations that utilize the
z and Strömgren b + y bandpasses. While the I and z bands probe
a similar wavelength range (∼0.8–0.9 μm), the Strömgren b and
y bands probe a slightly shorter wavelength range (∼0.5 μm)
where atmospheric scattering may become important.

The difference between our values of Rp/R⋆ at 3.6, 4.5,
and 8.0 μm could point to enhanced atmospheric opacity in the
4.5 μm bandpass due to CO, but our values of Rp/R⋆ differ by
less than 2σ . Given the large value of the average gravitational
acceleration of HAT-P-2b (162 ± 27 m s−2, Table 4), we
would expect atmospheric scale heights to be small, which
supports our wavelength independent values for the planetary
radius. If we assume a value of R⋆ = 1.64+0.09

−0.08R⊙ (Pál et al.
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Figure 14. Secondary eclipse depths (squares) at 3.6, 4.5, 5.8, and 8.0 μm
compared to one-dimensional atmosphere models for HAT-P-2b’s day side
following Burrows et al. (2008) with the planet at a distance of 0.0478 AU. The
models presented here incorporated values of the parameterized recirculation
parameter (Pn) of both 0.1 and 0.3 and allowed for the presence of a modest
high-altitude absorber (κ = 0.2 cm2 g−1). Filled circles represent the band
integrated planet/star flux ratio for each of the IRAC bands. Models with an
inversion best match data at 3.6, 4.5, and 8.0 μm.

(A color version of this figure is available in the online journal.)

2010), then we find an average radius value for HAT-P-2b of
Rp = 1.106 ± 0.061RJ . The radius of the planet, given its
mass, is in line with models of the thermal evolution of massive
strongly irradiated planets. Planetary radii of 1.13 to 1.22 RJ

for 8 MJ planets are expected for 1–10 Gyr ages (Fortney et al.
2007).

The estimates for the secondary eclipse depths at 3.6, 4.5,
5.8, and 8.0 μm presented here are the first secondary eclipse
measurements for HAT-P-2b. We compare these results to the
predictions of atmospheric models for this planet to better
understand the atmospheric properties of HAT-P-2b. Figure 14
presents predicted day side emission as a function of wavelength
from a one-dimensional radiative transfer model similar to those
described in Burrows et al. (2008). These models assume a solar-
metallicity atmosphere in local thermochemical equilibrium and
include a parameterization for the redistribution of heat from
the day side to the night side of the planet (Pn) and the possible
presence of a high-altitude optical absorber (κ) It is important to
note that these one-dimensional models assume instantaneous
radiative equilibrium and therefore do not account for the
expected phase lag between the incident flux and planetary
temperatures for eccentric planets.

Models that also include an additional high-altitude optical
absorber to produce a dayside inversion best match our 3.6, 4.5,
and 8.0 μm data points. We find some difficulty in matching the
5.8 μm data point. We note that even with our best attempts to
remove the ramp from this data that the secondary eclipse depth
appears to be slightly underestimated (Figure 8). Given the large
uncertainty in the 5.8 μm secondary eclipse depth it is within
2.5σ of the flux ratio predicted by our models that include an
inversion. Both the 4.5 and 8.0 μm secondary eclipse depths
are more than 14σ larger than those predicted by atmospheric
models without an inversion. Even if the planet were assumed
to be ∼100 K warmer to account for the phase lag in planet-
wide temperatures, models without an inversion would still
underestimate the planetary flux in the 4.5 and 8.0 μm bands.

We calculate brightness temperatures in each band using a
PHOENIX stellar atmosphere model for the star (Hauschildt
et al. 1999). The 3.6 μm eclipse depths have an average value of
0.0996% ± 0.0072%, which corresponds to a brightness tem-

perature of 2392 ± 84 K. We find an average 4.5 μm eclipse
depth of 0.1031% ± 0.0061% and a corresponding brightness
temperature of 2117 ± 65 K. Our eclipse depth at 5.8 μm cor-
responds to a brightness temperature of 1613+335

−150 K, while our
eclipse depth at 8.0 μm corresponds to a brightness temperature
of 2258 ± 106 K. Our secondary eclipse measurements in the
3.6 and 4.5 μm bandpasses agree at the 1σ level, and there-
fore do not provide any convincing evidence for variability in
the planet’s flux. Further observations of HAT-P-2b at 3.6 and
4.5 μm could place better constraints on possible orbit-to-orbit
variability in the planet’s thermal structure.

4.5. Phase Curve Fits

The overall shape and timing of the maximum and minimum
of the planetary flux from our phase curves reveals a great deal
about the atmospheric properties of HAT-P-2b. For planets on
circular orbits, phase curve observations are generally related
to day/night brightness contrasts on the planet. In the case of
HAT-P-2b, the phase variations in the planetary flux are more
indicative of thermal variations that result from the time-variable
heating of the planet. In both the circular and eccentric cases
the thermal phase amplitude and phase lag are determined
by the radiative and advective timescales of the planet. By
comparing the 3.6, 4.5, and 8.0 μm phase variations we can gain
further insights into the thermal, wind, and possible chemical
structure of HAT-P-2b’s atmosphere.

We find that the peak of the observable planetary flux at
3.6 μm occurs 4.39 ± 0.28 hr after periapse passage with a
peak value of 0.1139% ± 0.0089%, which corresponds to a
brightness temperature of 2556 ± 100 K. The exact timing and
level of the minimum planetary flux at 3.6 μm is much more
uncertain. We find the planetary flux at 3.6 μm drops below
observable levels for a period of ∼1 day 18.36+0.18

−1.0 hr before
transit. As such we can only put an upper limit of 1040 K on the
minimum brightness temperature of HAT-P-2b at 3.6 μm.

The observed 4.5 μm HAT-P-2b phase curve exhibits a peak
in the observable planetary flux 5.84 ± 0.39 hr after periapse
passage with a value of 0.1162%+0.0089%

−0.0071% and corresponding

brightness temperature of 2255+92
−74 K. We detect emission

from HAT-P-2b over the entirety of its orbit at 4.5 μm with
a minimum in the planet/star flux ratio of 0.0372%+0.0086%

−0.0096%,

which corresponds to a brightness temperature of 1345+119
−133 K.

This minimum in the planetary flux occurs 6.71 ± 0.43 hr
after transit. Roughly speaking, the shift of the minimum of the
observed phase curve at 4.5 μm away from the region between
apoapse and transit points to a minimum in the planetary
temperature that is shifted west from the antistellar longitude
and/or that the night side of the planet is still cooling even
after the transit event. We would expect the planet to have
a temperature minimum east of the anti-stellar point near the
sunrise terminator assuming a super-rotating flow as shown for
HD 189733b and HD 209458b in Showman et al. (2009). This
dip in the planetary flux after transit is indeed puzzling and will
be investigated further in a future study.

Our 8.0 μm observations cover only the portion of
HAT-P-2b’s orbit between transit and secondary eclipse, so we
can only constrain the behavior of the 8.0 μm phase curve near
the peak of the planetary flux. We find that the peak in the plan-
etary flux at 8.0 μm occurs 4.64 ± 0.33 hr after the predicted
time for periapse passage. The maximum of the planetary flux at
8.0 μm is 0.1888% ± 0.0072%, which corresponds to a bright-
ness temperature of 2806 ± 79 K.

16



The Astrophysical Journal, 766:95 (22pp), 2013 April 1 Lewis et al.

It is significant that we obtain a good fit to the data using
Equation (12), which is similar to the functional form used to
fit the light curves of HD 189733b and WASP-12b in Knutson
et al. (2012) and Cowan et al. (2012a), respectively, and produce
a longitudinal map of the planet’s thermal variations. The
“longitudinal” direction of thermal phase maps, φ, must be
understood to mean “local stellar zenith angle,” Φ. Thermal
phase variations probe the diurnal cycle, T (Φ). A tidally locked
planet has a one-to-one correspondence between local stellar
zenith angle and longitude (e.g., φ = Φ), but phase maps can
be made regardless of rotation rate (e.g., for Earth; Cowan et al.
2012b).

Nonetheless, there are two reasons why phase mapping
should not work for eccentric planets: (1) the time-variable
incident flux makes the brightness map time-variable (T (Φ, t))
and (2) the time-variable orbital angular velocity of the planet
dictates that longitudinally sinusoidal variations in brightness
on the planet would not correspond to sinusoidal variations in
the light curve. Equation (12) is sinusoidal in the true anomaly
(f) rather than in time, which implicitly accounts for (2).

The fact that Equation (12) fits the phase variations of
HAT-P-2b implies that the diurnal brightness profile of the planet
is constant throughout the orbit: dT (Φ)/dt = 0. This is entirely
different from claiming that the longitudinal brightness profile
of the planet is constant: since the planet is on an eccentric orbit,
there is no fixed correspondence between longitude and stellar
zenith angle. Rather, our data seem to indicate that the planet
maintains a constant brightness as a function of stellar zenith
angle, in marked disagreement with expectations for such an
eccentric planet. This is almost certainly due to a geometric
coincidence; however HAT-P-2b shows us its day side shortly
after periapse. The day-side brightness of the planet likely
changes throughout its orbit, but we are not privy to it.

4.5.1. Interpreting the Flux Maximum

We use the semi-analytic model developed in Cowan & Agol
(2011) to interpret the peak amplitudes and phase lags of the
planet’s thermal brightness variations. This is essentially a two-
dimensional, one-layer energy balance model where the user
specifies Bond albedo, radiative timescale at the sub-stellar point
at periapse, and the characteristic zonal18 wind velocity.

The Bond albedo is assumed to be 0.1 for all of the simulations
shown here. Measured albedos of hot Jupiters range from 0.025
for TrES-2b (Kipping & Spiegel 2011) to 0.32 for Kepler-7b
(Demory et al. 2011). Since HAT-P-2b is viewed equator-on, its
albedo is degenerate with poleward heat transport, which we do
not explicitly model. Increasing either albedo or meridional19

energy transport has the effect of uniformly decreasing the
planet’s flux throughout its orbit.

The sub-stellar radiative timescale is specified at periapse,
and is assumed to scale as τrad ∝ T −3 (Showman & Guillot
2002; Showman et al. 2011), as one would expect for blackbody
parcels of gas. The radiative relaxation time therefore varies
throughout the orbit and is also a function of the location of a
parcel of gas on the planet.

Observationally, the zonal wind speeds on a gas giant like
HAT-P-2b are degenerate with its rotation rate. In our model we
therefore specify the angular velocity of gas parcels in an inertial
frame, rather than in the usual rotating planet frame. By adopting
the Hut (1981) prescription for pseudo-synchronous rotation of

18 Zonal refers to the east/west direction.
19 Meridional refers to the north/south direction.

binary stars, we convert the inertial angular frequency into an
equatorial zonal wind speed in the rotating planet’s frame. If
another prescription is more appropriate for the planet’s rotation
rate (e.g., Ivanov & Papaloizou 2007), then the equatorial wind
velocities presented here are off by a uniform offset.

Both zonal wind speeds and albedo are assumed to be constant
throughout the planet’s orbit. The constant zonal wind velocity
is likely the most problematic assumption given that three-
dimensional simulations of Kataria et al. (2013) predict that
zonal wind speeds at the mid-IR photosphere (pressures of
0.1–1 bar) change by tens of percent throughout the orbit of
a hot Jupiter with an eccentricity of 0.5. It is also likely that the
amount of equator-to-pole heat transport, which is degenerate
with albedo in our model, will vary throughout HAT-P-2b’s
orbit. Our assumption of a constant albedo for the planet could
also be limiting given that clouds could form near the apoapse of
HAT-P-2b’s orbit, then dissipate near periapse (Kane & Gelino
2010). By focusing on the region near periapse we limit the
possible influence of temporal changes in albedo and wind
speeds on our results.

4.5.2. Model of HAT-P-2b and Circular Analog

The top panels of Figure 15 shows how τrad and vwind

affect the 4.5 μm peak flux ratio and phase lag for HAT-P-2b.
The dependencies are qualitatively similar for the other two
wavebands. For comparison, we also show in bottom panels of
Figure 15 the same dependencies for a hypothetical circular twin
to HAT-P-2b with semi-major axis fixed at the actual planets
periapse separation. There are a number of conclusions we can
draw from these models.

1. For circular planets, the radiative time scale and wind
velocity are entirely degenerate: both the peak flux ratio
and the phase lag depend solely on the product τradvwind ∝
ǫ, the “advective efficiency” of Cowan & Agol (2011).
Furthermore, the peak flux does not depend on the direction
of zonal winds. The phase lag, on the other hand, would
have the same amplitude but opposite sign for eastward
versus westward zonal winds.

2. The peak flux ratio for the eccentric planet HAT-P-2b
depends approximately on the advective efficiency, ǫ, as for
circular planets, but the dependence is no longer monotonic.
The peak flux ratio exhibits a maximum for radiative
times of ∼6 hr and wind velocities of 2 km s−1. This is
because eastward advection of heat brings the hot spot
into view shortly after periapse, as discussed in Cowan
& Agol (2011). There is a local minimum in peak flux
for τrad = 0, the radiative equilibrium case. The global
minimum, however, still occurs in the limit of long radiative
times and rapid winds, which results in a planet with zonally
uniform, time-constant temperature, as in the circular case.

3. Comparing the top-right and bottom-right panels of
Figure 15 shows that zonal winds have qualitatively the
same effect, regardless of orbital eccentricity: eastward
winds make the peak flux occur early, while westward
winds cause a delay in the peak flux. The major differ-
ence between the two geometries is the phase-lag expected
in the absence of winds, the null hypothesis. For a circu-
lar, tidally locked planet there is no phase lag in this limit,
whereas the eccentric planet exhibits a large positive phase
lag in the absence of winds. As a result of this different zero-
point, the amplitude of phase lag from periapse decreases
nearly monotonically for increasing ǫ in the eccentric
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Figure 15. The dependence of peak flux ratio and phase lag at 4.5 μm on radiative timescale and zonal wind speed. The top panels are for HAT-P-2b; the bottom panels
are for a hypothetical twin on a circular orbit with semi-major axis fixed at the periapse separation of HAT-P-2b. The plots were generated by computing 4.5 μm light
curves on a 20 × 20 grid in τrad and vwind using the energy balance model of Cowan & Agol (2011).

model, exactly the opposite behavior from a circular planet.
Such counterintuitive behavior is precisely why it is more
useful to compare phase lags to the windless scenario rather
than quote absolute phase lags from periapse (Cowan &
Agol 2011).

4.5.3. Constraints on Model Parameters

In Figure 16 we show exclusion diagrams in the vwind versus
τrad plane for each waveband. Since we use a one-layer model,
this can roughly be thought of as constraining the properties of
the photospheres at each waveband, with the understanding that
the mid-IR vertical contribution functions span approximately
a factor of 10 in pressure (e.g., Knutson et al. 2009a; Showman
et al. 2009). Blue lines in Figure 16 show the 1σ and 2σ
confidence intervals from the peak flux value. Red lines show the
same for the phase offset. The gray scale shows the combined
confidence intervals.

At 3.6 and 4.5 μm, the peak fluxes are consistent with a broad
range of eastward zonal wind scenarios. Only very high values
of ǫ (top-right of plot) and most westward winds (bottom of
plot) are excluded. At 8 μm, only the highest peak flux values
are favored, but even these are a very poor fit. If we adopt a
Bond albedo of zero, the 8 μm peak flux still disagrees with

any models by >5σ . We therefore conclude that the high flux
at 8 μm is not due solely to atmospheric dynamics, but also
to chemistry and the planet’s vertical temperature profile. This
waveband falls within a water vapor absorption feature and is
therefore expected to originate higher up in the atmosphere than
either the 3.6 and 4.5 μm flux. The high flux in the 8.0 μm
channel therefore suggests a temperature inversion, which is
also supported by our measured secondary eclipse depths in
Section 4.4.

The constraints from the phase lag of peak flux (red lines in
Figure 16) are stronger, albeit still degenerate. The data favor
a narrow range of advective efficiencies (τradvwind). The bottom
panel of Figure 16 gives the impression that the peak flux and
phase lag at 8 μm combine to give a nice constraint on the
model parameters, but the peak flux constraints should be taken
with a grain of salt, as described above. It is important to note
the decaying exponential-like trend of the preferred values of
the zonal wind speeds with τrad in Figure 16 that pairs short
values for τrad with higher values for vwind and longer values
for τrad with lower values for vwind. Three-dimensional models
that consistently couple radiative and advective processes will
help to further constrain the relevant timescales in HAT-P-2b’s
atmosphere over the full range of its orbit.
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Figure 16. Exclusion diagrams for 3.6, 4.5, and 8.0 μm phase peaks. The blue
lines show the one and two sigma confidence intervals based on the observed
peak flux. Red lines show the same for the observed phase lag. The Gray scale
shows the combined constraint. The plots were generated by computing light
curves on a 20 × 20 grid in τrad and vwind using the energy balance model of
Cowan & Agol (2011).

(A color version of this figure is available in the online journal.)

5. CONCLUSIONS

In this paper we present the first secondary eclipse and
phase curve observations for the eccentric hot Jupiter HAT-P-2b
in the Spitzer 3.6, 4.5, 5.8, and 8.0 μm bandpasses. These
data include two full-orbit phase curves at 3.6 and 4.5 μm, a
partial-orbit phase curve at 8.0 μm, three transit events, and
six secondary eclipse events. The timing between transit and

secondary eclipse during a single planetary orbit combined with
RV measurements allows us to better constrain the eccentricity
(e = 0.50910 ± 0.00048) and argument of periapse (ω =
188.◦09 ± 0.◦39) of HAT-P-2b’s orbit. Long-term linear trends
in the RV data indicate the presence of a third body in the
system.

A comparison of our secondary eclipse depths with a one-
dimensional model for the day-side emission of the planet sug-
gests the presence of a day-side inversion in HAT-P-2b’s atmo-
sphere. The timing and magnitude of the peak in the planetary
flux at 3.6, 4.5, and 8.0 μm are explained by a range of advective
and radiative parameters in our two-dimensional energy balance
model, but suggest the presence of strong eastward equatorial
winds (∼2–6 km s−1) and short radiative timescales (∼2–8 hr)
at mid-IR photospheric levels near periapse.

Further work is needed to fully explain our observations of
HAT-P-2b. Three-dimensional atmospheric models that couple
radiative and advective processes and include a range of com-
positions would help to further explain the phase variations
we observe for HAT-P-2b, especially outside of the orbital re-
gion near periapse. Additionally, low-resolution spectroscopy
taken during secondary eclipse would help to better constrain
the atmospheric chemistry of HAT-P-2b. Exoplanets on highly
eccentric orbits like HAT-P-2b present observers and modelers
with a unique opportunity to disentangle the contributions of ra-
diative, advective, and chemical processes at work in hot Jupiter
atmospheres. By refining our understanding of exoplanets like
HAT-P-2b we will be able to use that knowledge to better un-
derstand the atmospheric processes at work in other exoplanet
atmospheres.
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APPENDIX A

NOISE PIXEL PARAMETER

The IRAC point response function (PRF) results from the
convolution of the stellar PSF with the detector response
function (DRF). The shape of the PRF is not constant and
varies with the DRF at each stellar centroid position and with
changes in the stellar PSF determined by the optics. The shape
of the PRFs differs substantially in each channel of the IRAC
instrument as shown in Figure 17. Given this change in the shape
of the PRF with wavelength, we expect that different methods to
determine the stellar centroid position and correct for systematic
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Figure 17. Spitzer IRAC PRFs at 3.6, 4.5, 5.8, and 8.0 μm. The PRFs were generated by the IRAC team from bright calibrations stars observed at several epochs. The
PRFs are displayed using a logarithmic scaling to highlight their differences in each bandpass.

effects may be needed in each of the four IRAC bands. Both the
3.6 and 4.5 μm channels of the IRAC instrument are shortward
of the Spitzer 5.5 μm diffraction limit (Gehrz et al. 2007) and
exhibit undersampled PRFs whose shape changes as the stellar
centroid moves from the center to the edge of a pixel causing
intrapixel sensitivity variations. The PRFs in the 5.8 and 8.0 μm
channels of the IRAC instrument exhibit a more Gaussian-like
shape that is better sampled by the detector resulting in only
small intrapixel sensitivity variations.

Ideally, we would like to account for these changes in the PRF
in our photometric measurements. We cannot make a direct
determination of the exact shape of the PRF as a function of
pixel position, but we can measure the normalized effective-

background area of the PRF (β̃), which is also called noise pixels
by the IRAC Instrument Team. If we assume the measured flux
in a given pixel (Fi) is given by

Fi = F0Pi (A1)

where F0 is the point source flux and Pi is PRF in the ith pixel.

The noise pixel parameter, β̃, is given by

β̃ =
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∑
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2
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F 2
i

) =
(
∑

F0Pi)
2
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) (A2)

since F0 can be assumed to be constant. The numerator in
Equation (A2) is simply the square of the PRF volume (V)
and the denominator is the effective background area (β).
These quantities are related to the sharpness parameter, S1, first
introduced by Muller & Buffington (1974) for constraining AO
corrections by

β̃ = βV 2 =
1

S1

. (A3)

The S1 parameter describes the “sharpness” of the PRF and can
range from zero (flat stellar image) to one (all the stellar flux in
the central pixel).

As discussed in Mighell (2005), the S1 parameter is related
to the standard deviation (σ ) of the PRF by

S1 =
1

C1σ 2
(A4)

where C1 is a constant that depends on the sampling of the PRF
on the detector. From Equations (A4) and (A3) it can be shown
that

σ ∝
√

β̃. (A5)

For both the 3.6 and 4.5 μm data we measure β̃ with the same
circular aperture sizes used to determine the stellar centroid
position.

We find that β̃ can serve two purposes in improving the
signal-to-noise of the 3.6 μm observations. First, using a circular

aperture with a radius proportional to
√

β̃ reduces the overall
variations in raw unbinned flux from ∼5% to ∼2%. Harris
(1990) and Pritchet & Kline (1981) note that the optimal
aperture radius for a circularly symmetric Gaussian with a
standard deviation of σ is r0 ≈ 1.6 σ , which is similar to our

optimal aperture radius r0 ≈ σ ≈
√

β̃. Second, we find that

using
√

β̃ as an additional spatial constraint in the intrapixel
sensitivity correction at 3.6 μm can improve the accuracy, as
defined by the standard deviation of the residuals, in our final

solution by ∼1%–2%. We find that using β̃ as an additional
constraint for the 4.5 μm observations does not significantly
improve the accuracy of our results. This is not surprising since
the IRAC 4.5 μm channel is closer to the Spitzer diffraction

limit of 5.5 μm (Gehrz et al. 2007). We also find that β̃ does
not vary with stellar centroid position in the 5.8 and 8.0 μm
observations, which are longward of the Spitzer of the diffraction
limit.

APPENDIX B

INTRAPIXEL SENSITIVITY CORRECTION

The 3.6 and 4.5 μm channels of the Spitzer IRAC instrument
both exhibit variations in the measured flux that are strongly
correlated with the position of the star on the detector (Figures 1
and 2). These flux variations are the result of well documented
intrapixel sensitivity variations that are exacerbated by an
undersampled PRF (e.g., Reach et al. 2005; Charbonneau et al.
2005, 2008; Morales-Calderón et al. 2006; Knutson et al.
2008). The most common method used to correct intrapixel
sensitivity induced flux variations is to fit a polynomial function
of the stellar centroid position (Reach et al. 2005; Charbonneau
et al. 2005, 2008; Morales-Calderón et al. 2006; Knutson et al.
2008). This method works reasonably well on short timescales
(<10 hr) where the variations in the stellar centroid position are
small (<0.2 pixels). Recently, studies by Ballard et al. (2010)
and Stevenson et al. (2012) have implemented non-parametric
corrections for intrapixel sensitivity variations by creating pixel
“maps,” which give a smaller scatter in the residuals compared
with parametric models in most cases.

The pixel mapping method of Ballard et al. (2010) uses
a Gaussian low-pass spatial filter to estimate the weighted
sensitivity function given by

W (xi, yi) =
∑n

j �=i Ki(j ) × F0,j
∑n

j �=i Ki(j )
(B1)
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Figure 18. Standard deviation of the residuals (circles) and intrapixel sensitivity mapping time (triangles) as a function of the number of nearest neighbors included in
the Gaussian weighting function (Equation (B4)) for the 3.6 μm (left) and 4.5 μm (right) observations. The standard deviation of the residuals from our fits decreases
rapidly as the number of nearest neighbors considered is increased from 5 to 50 after which the gains in the precision of the fit are negligible. The time required
to compute the full pixel map increases more or less linearly with the number of nearest neighbors. We find that repeated iterations become too computationally
expensive when more than 50 nearest neighbors are considered. The computational time required per iteration is a multiple of the number of nearest neighbors and the
1.2 million data points in each of the 3.6 and 4.5 μm data sets.

where

Ki(j ) = exp

(

−
(xj − xi)

2

2σ 2
x

−
(yj − yi)

2

2σ 2
y

)

(B2)

F0,j is the stellar flux measured in the jth frame, xj/yj and
xi/yi are the stellar centroid position in the jth and ith image,
respectively, and σx and σy are the widths of the Gaussian filter
in the x and y directions. In the Ballard et al. (2010) study,
they assumed that all observations obtained outside of planetary
transit (F0,j ) represented the intrinsic stellar flux (F0) convolved
with the intrapixel sensitivity function. In our study, we must
account for possible variations in the flux from the HAT-P-2
system due to phase variations in the flux from HAT-P-2b. This
requires us to iteratively solve Equation (B1), where F0,j is
determined at each step by removing a model for the planetary
transit, eclipse, and phase variations from the observed flux (Fj).

The main challenge in applying the Ballard et al. (2010)
method to the HAT-P-2 data set is that as the number of
data points, n, becomes large the time required to compute
Equation (B1) over the full data set becomes prohibitively long.
We must iteratively solve Equation (B1) to constrain the phase
variations of the planet, which requires the summation over n
data points n times for each iteration. One solution is to bin the
data into a manageable number of points as was done in Ballard
et al. (2010). We find that binning the data degrades the precision
of our final solution. Binning the data results in average values
for the measured flux and stellar centroid position that are not
necessarily representative of the true variations in the stellar flux
due to intrapixel sensitivity effects. We also find that the optimal
σx and σy used in Equation (B2) varies with the stellar centroid
position. Ballard et al. (2010) used fixed values for σx and σy

that empirically produces the lowest scatter. Using values for σx

and σy that vary with centroid position gives us a lower scatter
in the residuals compared to using fixed values for σx and σy .

Here we present an enhanced version of the Ballard et al.
(2010) pixel mapping method that allows for a large number
of data points and optimized values of σx and σy without
being computationally prohibitive. In Equation (B2), points

that are outside ∼6σx/y of the position of the ith data point
will contribute negligibly to the weighted sensitivity function
W (xi, yi). Given this fact, we reduce n in Equation (B1) by only
summing over a fixed number of nearest spatial neighbors. We
determine the nearest neighbors to the ith flux measurement by
the distance, ri, given by

ri =
√

a(xj − xi)2 + b(yj − yi)2 + c
(

β̃j

1/2 − β̃i

1/2)2
(B3)

where xj, yj, and β̃j are the position and noise pixel estimates
for the jth image.

By including β̃ in Equation (B3) we ensure that the nearest
neighbors to the ith flux measurement share the same system-

atic effects. Although β̃ is not strictly a spatial parameter, as

discussed in Appendix A, variations in β̃ incorporate system-
atics that affect the shape of the PRF including and beyond

intrapixel sensitivity variations. Our use of β̃ is similar to the
incorporation of parameters for the PSF width and elongation
in the correction of systematic variations as discussed in Bakos
et al. (2010) for HATNet data. The factors a, b, and c in Equa-
tion (B3) can be adjusted to give more weight to flux variations
in a given spatial direction. For our 3.6 μm observations we find
that the optimal value of

√
1/b is 0.75 with a = c = 1. This

difference in the a and b parameters accounts for the asymmetric
shape of the IRAC PSF in the 3.6 μm bandpass (Gehrz et al.
2007). For our 4.5 μm observations we find that a = b = c = 1
is optimal although the results are similar if we assume c = 0.

We calculate the Gaussian smoothing kernel K for the ith data
point with respect to its jth nearest neighbor, Ki(j ), according
to

Ki(j )= exp

(

−
(xj − xi)

2

2σ 2
x,i

−
(yj − yi)

2

2σ 2
y,i

−
(

β̃j

1/2 − β̃i

1/2)2

2σ 2

β̃1/2,j

)

,

(B4)

where σx,i , σy,i , and σβ̃1/2,i are determined by the standard

deviation of the x, y, and β̃1/2 values for the n nearest neighbors.
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This formulation for σx,i , σy,i , and σβ̃1/2,i gives a wider filter in
poorly sampled regions and narrower filter in regions with higher

spatial resolution. Since the x, y, and β̃ vectors are independent
of the fit parameters, we need only determine the n nearest
neighbors and calculate Ki(n) once for use in our iterative fitting
routines.

When selecting the optimal number of nearest neighbors
to use in this calculation, there is a direct tradeoff between
increased precision and increased computational time. Figure 18
shows the change in the standard deviation of the residuals and
the time required to compute F0,j for all j as a function of
the number of nearest neighbors used. We find that using more
than 50 nearest neighbors reduces the standard deviation of the
residuals by less than 1%. We also find a significant increase in
the computational time required to use more than 20–50 nearest
neighbors. We therefore elect to limit the number of nearest
neighbors considered in our calculation of Equation (B4) to 50.
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