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ABSTRACT

In the last few years symmetry arguments have been used very effectively to
predict the course of chemical reactions. The Woodward—Hoffmann rules are
famous examples. A complete, but simple, theory of how symmetry enters
into a chemical process can be given. Use is made of group theory and second-
order quantum mechanical perturbation theory.

The resulting simple equations can be reduced even further to a considera-
tion of the symmetry of the molecular orbitals of the reactants. The relevant
orbitals are the highest filled (HOMO) and the lowest empty (LU MO) with
the correct symmetries to match the symmetry of the reaction coordinate.
The closer in energy these orbitals are, the lower the activation energy. An
orbital symmetry forbidden reaction is one where no orbitals of the right
symmetry exist within a reasonable energy range of each other. In the usual
case it is unnecessary to know the molecular orbital scheme of the products.

For bimolecular and trimolecular reactions, the reaction coordinate must
be totally symmetrical, therefore the symmetry requirement for the HOMO
and LUMO is that they have a net positive overlap. For unimolecular reac-
tions, the reaction path need not be totally symmetrical. The direct product
of the HOMO and LUMO symmetries determines the symmetry of the reaction
coordinate.

The HOMO and LUMO also must correspond to bonds that are to be broken
and bonds that are to be made; if they are bonding MOs the reverse state-
ment holds true for antibonding MOs. Examples are given for all of these

rules.

The development of so-called orbital symmetry rules for chemical reactions
has had a great impact on organic chemistry'. Corresponding rules for
inorganic reactions have not been extensively presented or used up to now.
The attemptin the literature2 have dealt only with the d orbitals of transition
metal complexes. The conclusions have been neither definitive nor consistent.

While d orbitals are of great importance in coordination chemistry, it is
unlikely that these are the only important orbitals in chemical reactions.
Also much of inorganic chemistry deals with the non-transition elements.
It is necessary to include molecular orbitals made up of s and p atomic
orbitals to have a complete understanding. In this article we will show in the
most general way how symmetry rules for all chemical reactions can be
derived3.

The procedure used is to consider the variation of potential energy with
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changing nuclear coordinates and how symmetry enters into this relation-
ship. Since any number of nuclei and electrons can be taken, the conclusions
will be valid for a concerted reaction (elementary process) of any molecularity.
While group theory can be used to get an elegant answer to the question of
symmetry effects, rather simple considerations such as orbital overlap can
also be used.

THE THEORY

Figure 1 shows the usual adiabatic plot of potential energy versus reaction
coordinate. The points marked A, B and C will be used to derive the sym-
metry rules since they represent characteristic features of such a plot. Any
point on the diagram corresponds to some arrangement of the nuclei of the
reactants. This arrangement will automatically generate a certain point
group (Td, C3, C, etc.). All of the symmetry properties are now contained
in the irreducible representations or symmetry species of that point group.

The wave equation for the system is now assumed to be solved exactly.
This gives rise to a number of eigen states and corresponding
eigen values E0, E1 . . . E, where /i and E0 refer to the ground electronic
state. Now all the wave functions must belong to one of the symmetry
species A, B, E etc. of the point group. Indirectly then, each energy value has
a symmetry label tied to it.

Any arbitrary small motion of the nuclei away from the original con-
figuration can be analysed as a sum of displacements corresponding to the
normal modes of the pseudo-molecule representing the reactants. Each of
these normal modes (of vibration) belongs to one of the symmetry species
of the point group. Hence the reaction coordinate can also be classified as
having a symmetry label depending on which nuclei are moved, and in what
direction.

We now use quantum-mechanics in the form of perturbation theory to
relate potential energy, E, to the reaction coordinate. For the ground
electronic state, the energy becomes

E = E0 + Q<tJi0U/8Q h/jo> + 1Q2<I/,I2U/Q2h/,>
+ Q2[<,o U/Q/j>]2/(EØ — Ek) (1)

where Q represents the reaction coordinate and also the magnitude of the
small displacement from the original point on the diagram, Q0, for which
E = E0. While equation 1 is valid only for Q very small, we can select Q0
anywhere on Figure 1. Hence equation 1 is general for the pirpose of dis-
playing symmetry properties. Q and (U/aQ) have the same symmetry,
where U is the nuclear—nuclear and electron—nuclear potential energy.

The bracket symbol, <...>, represents integration over the electron co-
ordinates, covering all space. We can now use a group theory rule to decide
whether the integrals in equation 1 are exactly zero or not. The rule is that
the direct product of three functions must contain the totally symmetrical
species, or the integral over all space is zero.

Let us consider the term in equation 1 which is linear in Q.Atany maximum
or minimum in the potential energy curve the integral must be identically
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zero, independent of symmetry. At all other points this term must be the
dominant one, since Q is small. If i/ia belongs to a degenerate symmetry
species (E or T), the term usually leads to the first order Jahn—Teller effect4,
which removes the degeneracy. Since this is not important in the present
context, we will assume that i/ia is non-degenerate.

Since the direct product of a non-degenerate species with itself is always
totally symmetric, we derive our first symmetry rule: all reaction coordinates
belong to the totally symmetrical representation. That is, (U/aQ), and also Q,
must be totally symmetrical, otherwise its product with i/i will not be sym-
metric and the integral will be zero. But it must be non-zero for all of the
rising and falling parts of Figure 1.

This means that once a reaction embarks on a particular reaction path it
must stay within the same point group until it reaches an energy maximum

1

Reaction coordinate,Q

Figure 1. Points A, B and Care discussed in the text.

or minimum. A totally symmetrical set of nuclear motions can change
bond angles and distances, but it cannot change the point group. This
restriction on the point group is not as absolute as it sounds since an energy
maximum may also be encountered in a normal mode orthogonal to the
reaction coordinate. This then allows a non-symmetrical nuclear motion to
change the point group.

We now consider point A on Figure 1. The integral ('lb U/8Q 'l'> has a
positive value since the reaction has a positive activation energy. Instead
of trying to evaluate the integral we accept that its value is the slope of
Figure 1 at the point A. The terms in Q2 in equation 1 now become important.
Their sum determines the curvature of the potential energy plot. For a
reaction with a small activation energy, the curvature should be as small
as possible (or negative).

The integral ('l's Iö2U/Q2 I i/i0> has a non-zero value by symmetry since
(ô2U/8Q2) is totally symmetrical. Furthermore it will be positive for all
molecules. It represents the force constant which resists moving any set
of nuclei away from an original configuration for which i/i is the electron
density distribution. The last term in equation 1 represents the change in
energy that results from changing the electron distribution to one more
suited to the new nuclear positions determined by Q. Its value is always
negative since E0 — Ek is a negative number.
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This can be seen more 'easily if the equation for the wave function is
written down from perturbation theory.

= 'I' + Q</i 3 U/3Q I1k> frk/(Eo — Ek) (2)

The summations in equations 1 and 2 are over all excited states. Each
excited state wave function is mixed into the ground state wave function by an
amount shown in equation 2. The wave function is changed because the
resulting electron distribution, /,2, is better suited to the new nuclear posi-
tions.

Now we can use group theory to show that only excited state wave func-
tions, /'k, which have the same symmetry as I'o can mix in and lower the
potential energy barrier. This follows because we have already shown that
(U/Q) must be totally symmetric. Hence the direct product of and 'k
must be totally symmetric, but this requires that they have the same sym-
metry. We can conclude that for a chemical reaction to occur with a reason-
able activation energy, there must be low-lying excited states for the reacting
system of the same symmetry as the ground state. Such a reaction is said to
be symmetry allowed. A symmetry forbidden reaction is simply one which
has a very high activation energy because of the absence of suitable excited
states.

Equations 1 and 2 are exact, as are the symmetry rules derived from them.
For practical applications, some rather drastic assumption must now be
made. One is that LCAO MO theory will be used in place of the exact wave
functions, i' and Since we are interested only in the symmetry properties,
this creates no serious error, since MO theory has the great virtue of accur-
ately showing the symmetries of the various electronic states.

The second assumption is more serious, since we will replace the infinite
sum of excited states in equations I and 2 by only a few lowest lying states.

p
LUMO 0 0

11 _____ _____ _____ _____OOHOMO 0 0 i 00
00 00 00
00 00 00 00

Figure 2. Molecular orbital description of ground state and first few excited states.

This procedure will work because we are not trying to evaluate the sum but
only to decide if it has a substantial value. It can be shown5 that the various
states contributing to 1 and 2 fall off very rapidly as the difference I E0 — Ek I

becomes large. This is because the integral <& Ik) decreases very
rapidly for two wave functions of quite different energy.
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Figure 2 shows bow we use MO theory to represent the ground and
excited states that are needed. The symmetry of frOfrk is replaced by
where4 is the occupied MO in the ground state and is the MO occupied
in its place in the excited state. Positions of special importance are occupied
by the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular
orbitals, since excitation of an electron from HOMO to LUMO defines the
lowest excited state.

These two orbitals are called frontier orbitals by Fukui6. At this time it is
helpful to point out that the requirement that two orbitals, 4and , have
the same symmetry is the same as saying that they must have a net positive
overlap. Two molecular, or atomic, orbitals of different symmetry species
have exactly zero overlap.

BIMOLECULAR REACTIONS

Let us consider a bimolecular reaction which has reached point A in
Figure 1. Two molecules have approached each other with a definite orienta-
tion. They have started to interact with each other, but the interaction energy
is still small. This means that the MOs of the two separate molecules are
still a good starting point for considering the combined system. Those of
the same symmetry (positive overlap) will interact more and more strongly
as the reaction coordinate is traversed and at the transition state (point
B in Figure 1) quite different MOs will be produced.

For the reaction to be allowed by symmetry, we must have transfer of
electrons from high energy occupied MOs (4) to low energy empty MOs
(4) which have positive overlap. This will lower the energy of the system
via the last term in equation 1 and prevent an excessive energy barrier. Now
we can add an additional requirement on 4 and 4 using chemical know-
ledge rather than mathematical or quantum mechanical arguments.

All chemical reactions consist of the breaking of certain bonds and the
making of new bonds. All MOs correspond to the bonding together of
certain atoms, anti-bonding of other atoms, and non-bonding of the remain-
ing atoms. It follows that / must represent bonds that are broken and 4
bonds that are made during the reaction, for their bonding parts. The reverse
statement holds for their anti-bonding parts.

Also we know that some atoms are much more electronegative than other
atoms. Therefore electrons will move more easily from 4 to 4when they
move in the direction of the more electronegative atoms. In such cases
I E0 — Ek I will be small and the stabilizing effect of electron movement will
be large. Conversely electron movement from an occupied MO in a halogen
molecule to an empty MO in an alkali metal molecule, for example, would
correspond to a large value of 1E0 — EkI.

Reactions of hydrogen are particularly easy to describe. The only MOs
of reasonable energy are the bonding a, which is occupied and the anti-
bonding c7', which is empty. One of the simplest of chemical reactions would
be isotope exchange between hydrogen and deuterium.

H2+D22HD (3)
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Let us assume that reaction 3 occurs by a bimolecular mechanism in which
H2 and D2 collide broadside, giving rise to a four-centre transition state.

D—D

The point-group of this transition state is C2,,. Also, at point A in Figure 1
the point group is C2,. The MOs of H2 and D2 should now be classified as
A1 for the bonding ag and B1 for the anti-bonding 4

As Figure 3 shows, the filled MO of one hydrogen or deuterium molecule
has zero overlap with the empty MO of the other. This is the same as showing

—
E.::: (:" 00 A1

00 A1

Figure 3. Molecular orbitals in 112 + D2 reaction. Occupied orbitals are shaded. Symmetry
labels are for c2,,point group.

that there is no low-flying exc ited state of the same symmetry as that of the
ground state. Hence the exchange reaction 3 is forbidden by orbital symmetry.
This simply means that the selected mechanism and transition state would
have an excessively high energy barrier.

Indeed reaction 3 does not occur in a single elementary step. Instead a
series of allowed steps occurs:

D2=a2D (4)

D-FH2-*HD+H (5)

H+D2—HD+D (6)

Reactions of free radicals and atoms rarely have serious symmetry restric-
tions and are often found. Four-centre reactions of diatomic molecules, on
the other hand, are almost always symmetry forbidden and either do not
occur, or occur with high activation energies7.

An important example of a forbidden reaction is the decomposition of
nitric oxide.

2N0-*N2+02 (7)

Since this reaction is highly exothermic (by 43 kcal), one would expect it to
occur rapidly. In fact it is extremely slow, having an activation energy of
50 kcal. This is a symmetry imposed barrier.

This can be seen most readily by looking at the reverse reaction, since a
symmetry barrier which exists for a forward reaction must also exist for the
reverse. Figure 4 shows the important MOs of N2 and 02. The 7r anti-
bonding MO of 02 is half-filled. It can act either as an electron acceptor or
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NNO

Figure 4. Molecular orbitals in N2 + 02 reaction. Occupied orbitals are shaded.

donor. By symmetry, electrons cannot flow from the filled rca, MO of N2 into
the iz of 02, since the overlap is zero. Electrons could flow from 02 to N2
by symmetry, since the ir MO of N2 is empty. However, this is chemically
unacceptable, since 02 is more electronegative than N2. In addition, the
O—O bond would be strengthened rather than weakened by emptying the
ir anti-bonding MO of 02.

Orbital symmetry arguments can be used to decide between two proposed
mechanisms for the oxidation of NO to NO2.

2N0 + 02 -*2N02 (8)

This reaction, while third-order in kinetic behaviour, is believed to occur
by a series of bimolecular steps8.

2N0=aN202
N202+O2 -2N02

NO+O2 NO3
NO3 + NO —2NO2

(9)

(10)

(11)

(12)

Figure 5(a) shows the relevant MOs for the reaction of the N2O2 dimer
with 02. Flow of electrons from the filled B1 orbital of N202 to the half-
empty B1 orbital of 02 results in the breaking of the °2 bond by filling up

(a) (b)

Figure 5(a). Molecular orbitals in 02 + N202 reaction. Product is N204. (b). Molecular
orbitals in NO + 02 reaction.
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an anti-bonding MO of 02. The N—N bond is strengthened in N202
because an anti-bonding MO is emptied. Two new N•—O bonds are formed
by positive overlap between the B1orbitals.

All of this seems reasonable except that clearly the reaction is

N202+O2-N2O4 (13)

which is not the same as reaction 10. In fact, it is forbidden by spin conserva-
tion rules if the oxygen molecule is in the normal 3E ground state. It could
only occur for the excited 14 state.

The alternative mechanism, shown in reactions 11 and 12, is allowed both
by orbital symmetry and spin conservation. Figure 5(b) shows the MO
situation for reaction 12 assuming a Y-shaped structure9 for NO3 There is
some evidence that a peroxy structure for NO3, but its reaction with
NO is also allowed.

The third-order reaction of nitric oxide with hydrogen

2N0 + 2H2 -N2 + H20 (14)

is believed to go through a mechanism in which H202 is formed as an
intermediate,

N2O2 + H2 -N2 + H202 (15)

followed by a rapid reaction of H202 with H2 to give water. Figure 6 shows
that reaction 15 is symmetry allowed and is chemically reasonable. The

NN

Figure 6. Molecular orbitals in H2 + N2O2 reaction. Products are N2 + H202 or N2 + 20H.

H—H bond is broken, two 0—H bonds are formed, the weak N—N bond
of N2O2 is strengthened and two strong N—O bonds are weakened. While
0—0 bonding also is increased, it still remains questionable whether
H2O2 or two OH radicals would result from reaction 15.

NUCLEOPHILIC SUBSTITUTION REACTIONS

It is particularly instructive to look at old, well established mechanisms
from the new viewpoint of orbital symmetry. A case in hand is the bimolecular
nucleophilic substitution, or SN2 reaction. Clearly it is the HOMO of the
nucleophile and the LUMO of the substrate which are the critical orbitals.
Figure 6 shows these orbitals for a typical case of organic chemistry, e.g.

1 + CH3CI - CH3I + C1 (16)
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The anti-bonding o orbital is a critical one in all molecules which can
be regarded as X—Y, two groups joined together by a single bond. Filling
this orbital will clearly break the bond between X and Y. Molecules of this
type include H2, Cl2, HCI, CH3C1, CH3CH3, CH3H, etc. The symmetry
of the o orbital will always be roughly that shown in Figure 6.

We see in Figure 7 the characteristic features of bond making between the
nucleophile, B, and the carbon atom, as well as bond breaking between

B ®C1 Z3 CL
(0)

(b)

Figure 7.Nucleophilic displacement with (a) inversion of configuration, (b) retention of
configuration at carbon atom.

carbon and halogen. Also inversion of configuration at the carbon atom is
clearly indicated. This results from the easy availability of the a* orbital
at this position. A similar situation would be found for many other four-
coordinated central atoms of the non-transition elements.

If we consider tetrahedral complexes of the transition elements, a general
conclusion emerges. Filling up the d orbitals has the effect of decreasing the
availability of the anti-bonding tik orbital. The most adv'antageous situation
would be to have an empty e orbital. The next best would be to have an empty
t orbital. Interestingly, using an e orbital corresponds to edge attack, and
using the t orbital to face attack on the tetrahedron. Evaluating the relative
rates of a series of d complexes would require assessing a number of different
effects, including changes in crystal field stabilization energies.

A square planar complex offers a different situation. The LUMO now is
(a2), the p2 orbital perpendicular to the plane. It is a non-bonding, rather
than an anti-bonding MO. This means that bond making will be considerably
in excess of bond breaking. The reaction coordinate• can lead directly to an
intermediate of D3h symmetry. Unlike the tetrahedral case, the entering and
leaving groups will be equatorial, rather than axial.

Figure 8(a) shows a typical LUMO in an octahedral complex. This par-

GL M - L L

(a) (b)
Figure 8. (a) Empty anti-bonding MO of T, symmetry in octahedral complex. (b) Non-bonding

MO of T2g symmetry in octahedral complex.
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ticular one is of t,., symmetry. Those of at9 or e symmetry would have
similar properties. The most significant feature is that the orbital is quite
inaccessible to a nucleophilic reagent. The six ligands effectively block off
access. Again, filling up the d orbitals would have an inhibiting effect. An
empty t29 orbital (Figure 8b) could be used as the LUMO and, lithe ligands
were not too bulky, would allow for an SN2 mechanism. It is a familiar fact
that 5N2 mechanisms are extremely rare for the substitution reactions of
octahedral complexes. On the other hand, nucleophilic attack on a ligand,
such as a CO group, can easily occur.

OXIDATWE-ADDITION REACTIONS

There has been much recent interest in the mechanism of oxidative-addi-
tion reactions such as (17)10.

Ir(CO)Cl[P(C6H5)3]2 + CH3I —* IrCO[P(C6H5)3]2CH31 (17)

Recently several observations11 have been made which give detailed infor-
mation on reactions such as this. These observations lead to the conclusions
that (1) the reaction occurs in a one-step, concerted process without the
formation of intermediates, and in the absence of solvents; (2) that trans

0x3 CYS
L

—0Jr-——

L

L" L

(a)

(7)LeL Li _L
(b)

L L L
Jr

L

©
L

c)a Jr tX3 ®YZT3 —' Irt—X ÷ V

0
L

Figure 9. Mechanisms of oxidative addition: (a) one step cis addition of XY with retention at X.
(b) one step trans addition with retention at X, (c) two step addition with inversion of con-

figuration at X.
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addition to the square plane can occur even with these restrictions; and (3)
retention of configuration results at the carbon atom, when a more complex
alkyl group than methyl is used.

These results are completely in agreement with orbital symmetry con-
siderations. Figures 9(a) and (b) show that the d orbitals of the metal which are
of eg symmetry constitute the HOMO. It is well known that soft metal atoms
act as nucleophiles, or Lewis bases, in their reactions'2. It is particularly
important that in oxidative-addition, both the groups X and Y finish up
bound to the metal. It can be seen that a metal complex using a d orbital as the
HOMO could also react with an alkyl halide to give inversion of configura-
tion, Figure 9(c).

This mechanism is expected when only one group, X, is bound to the metal
and Y is displaced. A number of examples of this type are known. For
example, the reaction

R*Br + Mn(CO) - R*Mn(CO)5 + Br (18)

occurs with inversion of configuration at the carbon atom of R'3. It is also
possible that the group Y in Figure 9(c) could later add to the five-coordinated
product first formed. This would be a two-step mechanism for oxidative-
addition'4. It appears that such a mechanism would be favoured in a polar
solvent.

It is increasingly being realized that many examples of both homogeneous
and heterogeneous catalysis on transition metals involve oxidative-addition,
and its reverse, as key steps. These two processes, together with the ligand
migration reaction, are the steps involved in most detailed mechanisms. In
agreement with this concept, it has been found that silicon hydrides add to
both metal complexes and to metal surfaces with retention of configuration
at silicon'5. Years ago it was shown that optically active hydrocarbons are
adsorbed on metal surfaces with retention of configuration' 6•

Oxidative-addition reactions may occur more commonly than supposed
with transition metal compounds. Many reactions with electrophilic reagents
may proceed by prior addition of the reagent, followed rapidly by the reverse
process. In such cases the product of the addition step need not be a stable
species.

As an example, bromine cleavage of the optically active product formed
in reaction 18 proceeds with retention of configuration' .

Br2 + R*Mn(CO)5 Br—Mn(CO)5 + R*Br (19)

It is tempting to postulate that Br2 adds first to a filled d orbital of the man-
ganese, and then that R*Br splits out. In the same way cleavage by acid
could follow the course,

HCI + CH3Mn(CO)5 Z CH3MnHCI(CO)5 (20)

CH3MnHCl(CO)51* CH4 + CIMn(CO)5 (21)

Such an oxidative-addition, reductive-elimination mechanism could
account for the fact that molecular HCI is the cleaving agent1 7 Thus
HC1O4 is ineffective and H + plus C1 in a polar solvent is not effective. A
similar mechanism would also account for the well known retention of
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configuration at carbon that results in the acid cleavage of organomercury
compounds18. Other electrophilic reagents also give retention with the
organomercurials.

In at least one case of a d8 planar complex, the addition-elimination
mechanism for alkyl—metal bond cleavage seems well established19.

trans-Pt[P(C2H5)3]2CH3CI + HC1 —÷ trans-Pt[P(C2H5)3]2C12 + CH4
(22)

The intermediate would be a six-coordinated platinum(Iv) complex. While
not stable itself, certainly it would have many stable analogues. In methanol,
the solvent where reaction 22 was studied, the solvated H + can also cause
cleavage. Apparently a one-step addition of HC1 is not required.

UNIMOLECULAR REACTIONS

We now go to a consideration of points B and C in Figure 1. B refers to
an activated complex and C to a single molecular species, which is unstable
with respect to isomerization, or breakdown to other products. In either case,
the theory is changed somewhat from that of the bimolecular reactions dis-
cussed earlier. For unimolecular processes, the theory is also called the
second-order, or pseudo, Jahn—Teller effect.

The term linear in in equation 1 now vanishes, since we are at an extremum
in the potential energy plot. As before, the first quadratic term is positive,
and the second one is negative. Clearly at a maximum, point B, the second
term is larger than the first. At a minimum, point C, the first term dominates,
but the magnitude of the second term determines whether we lie in a deep
potential well or a shallow one.

Again, the existence of low lying states, Il/k, of the correct symmetry to
match with t,Ii is critical. Now there is no restriction on the symmetry of the
reaction coordinates. It need no longer be totally symmetrical. However,

(aU/aQ) and 'i/k are still bound by the symmetry requirement that their
direct product must contain the totally symmetrical representation.

II we consider rather symmetrical molecules to begin with, it will usually
be found that the reaction coordinate and (aU/aQ) are asymmetric. The reason
for this is that maximum and minimum potential energies are usually found
for nuclear arrangements with a high degree of symmetry. Any disturbance
of the nuclear positions will now reduce the symmetry. But this corresponds
to a change in the point group, which can only come about by an asymmetric
vibrational mode.

Conversely, it may be pointed out that a number of point groups depend
upon a unique value of Q0 in Figure 1. For example, a tetrahedral molecule
has uniquely determined bond angles. All such cases must correspond to
either maxima or minima in Figure 1, if the reaction coordinate is taken
either as the bond angles or relative bond distances.

In molecular orbital theory the product Il1OIl1k is again replaced by 4çbf,
where both the occupied and empty MOs must be in the same molecule.
Electron transfer from 4 to / results in a shift in charge density in the
molecule. Electron density increases in the regions where 4 and q. have the

156



ORBITAL SYMMETRY RULES

same sign (positive overlap), and decreases where they have opposite signs
(negative overlap). The positively charged nuclei then move in the direction
of increased electron density. The motion of the nuclei defines a reaction
coordinate. The symmetry of Q is the same as that of the product 4 x

The size of the energy gap between çb and 4is critical. A small gap means
an unstable structure, unless no vibrational mode of the right symmetry
exists for the molecule capable of changing its structure. A large energy gap
between the HOMO and the LUMO means a stable molecular structure.
Reactions can occur, but only with a high activation energy.

For an activated complex (point B) there must necessarily be at least one
excited state of low energy. The symmetry of this state and the ground state
then determines the mode of decomposition of the activated complex5. By
the principle of microscopic reversibility, this can then be used to decide on
the mechanism of formation of the activated complex.

As an example of a molecule in a shallow potential well (point C), we will
consider the molecule NO3. Assuming a planar structure of D3h symmetry,
the MO sequence is2°

(2e')4(1e")4(3e')4(1a')' (2a)°

The transition (3e') —÷ (1a) requires very little energy, according to the
calculations. The direct product E' < A'2 = E', a normal mode which distorts
the molecule into a Y-shaped structure, with two oxygen atoms close
together. The predicted mode of dissociation of NO3 is therefore into NO
and 02, in agreement with the facts.

0 0/ E' /1
0—N -÷ 0—N I -* NO + 02 (23)

If we were to add one more electron, as in NO or SO3, the easily available
excited state would be blocked. Thus these molecules would be much more
stable towards dissociation. The NO3 molecule absorbs visible light, with a
maximum at 660 nm. The NO ion, however, does not absorb until 300 nm.
Coloured molecules are less stable than colourless molecules, providing the
symmetry rules can be obeyed.

Predicting the mode of decomposition of a molecule lying in a deep
potential well is more difficult. Since the reaction requires much energy,
quite high-lying excited states may be important. Nevertheless, the symmetry
rules can be very useful.

Suppose we know that a unimolecular reaction occurs in which certain
bonds are broken and some other bonds are made. These bonds can then
select 4 and the relevant molecular orbitals. These MOs, in turn, can
determine the symmetry of the reaction coordinate, Q.We need to know only
the symmetries of 4 and 4. Considerations of this kind have been of great
importance in elucidating complex organic reactions21. Applications to
inorganic chemistry are still unknown.

Alternatively, we can pick the symmetry of the reaction coordinate and
then seek suitable molecular orbitals. For example, the unimolecular (SN 1)
dissociation of a tetrahedral complex requires a vibration of T2 symmetry22.
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Hence we seek a HOMO and LUMO whose direct product is of this symmetry
type. The MO sequence for CH4 is

\21 6' 2/ 2/

Excitation of an electron from a bonding (t2) to an anti-bonding (ar) orbital
will promote dissociation into CH3 and H.

A transition metal complex inserts the d manifold between the above
bonding and anti-bonding MOs.

Since E x T2 = T1 + T2, it is possible that a hole in the d shell will promote
unimolecular dissociation of tetrahedral complexes. At the moment there is
little evidence one way or another on this point.

In an octahedral complex it is a T1 vibration which corresponds to dis-
sociation of one ligand22. We see that the d manifold

kt2g)m(eg* )I

cannot contribute excitations that will promote dissociation, since T2g X
Eq = Tig + T2g. This raises the suspicion that, because of the inherent
gerade properties of d orbitals d—d transitions in general will not effectively
promote the dissociation of even less symmetrical complexes.

MOLECULAR STRUCTURE

One of the interesting applications that can be made of the symmetry rules
is the prediction of the stable shapes of molecules23. Molecules with formulas
XY or X2Y usually are found with rather regular structures. A decision can
be made as to which of several alternative structures is the most stable using
equation 1. It is necessary to assume that the term linear in Qhas a coefficient
of zero. That is, we can only decide if a certain point group is stable for the
molecule. We cannot find the best values for the bond angles and bond dis-
tances within the point group.

The procedure is to test a given molecule in two (or more) possible struc-
tures, say, square planar and tetrahedral. One structure usually corresponds
to a maximum in Figure 1 and the other to a minimum. The reaction co-
ordinate is the normal mode which interconverts the two structures. The
stable structure will have a large energy gap between the HOMO and LUMO
that matches up with this transition. The unstable structure, conversely, must
have a small energy gap. Occasionally both structures are unstable, indicating
an intermediate structure, say of D2d symmetry (squashed tetrahedron).

A complex molecule with many atoms will have many possible structures.
If an accurate MO sequence is available for such a molecule in an unstable
structure, it is possible to predict which normal mode is favoured. This is
actually a prediction of the stable structure into which the original configura-
tion will distort.

The geometric isomers of XY, which can be interconverted without
breaking bonds, have been called polytopal isomers24. More complex
molecules, such as X2Y,, have many more structures possible, some of which
can be interconverted only by the breaking of bonds.
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Consider the possible isomerization of four-coordinated complexes of the
transition metal ions between tetrahedral (Td) and square-planar (D4h)
structures. The normal mode which takes a tetrahedral structure into a
planar one is of E symmetry22. The molecular orbital scheme (needed to
express the symmetries) is generally agreed to be

(t1) or (t2) (e)(t (ai)
with the d manifold separated by dashed lines.1

Since T1 (or T2) x E = T1 + T2, there is no low-lying transition which
causes a tetrahedral complex to rearrange to a planar complex. This is true
for all systems from d° to d10.

However, first-order Jahn—Teller effects are important for many of these
complexes. Only d°, d2, high-spin d5, d7 and d1° complexes have A1 or A2
ground states and are stable. All others are E, T1 or T2 states. Since E x
E = A1 + A2 + E, and T1 x T1 = T2 x T2 = A1 + E + T1 + T2, all of
these allow a distortion in the direction leading toward a planar structure.

Since a D2d, or distorted tetrahedral structure, is sufficient to lift the orbital
degeneracy in every case except low-spin d3, we cannot tell whether the
initial distortions will continue on to a planar structure. To get further in-
formation we must now look at the stability of the possible planar forms.

The generally agreed upon MO scheme for D4h symmetry is25

(a28)(b2) (aigXegXb2g)(big) (a2)
The vibration which takes a ilanar complex iito a tetrahedral one is of
B2 symmetry22. The transitions which can give the correct symmetry are
(b2) —+ (a18) and (b18) - (a2j. It seems likely that the energy gap in both
cases is only 2—3 eV.

This leads to the conclusion that low-spin d2, d4, d5, d6, d7 and d8 complexes
are stable as square-planar structures. Low-spin d3 is orbitally degenerate.
In all other cases an excitation is possible which favours the B2 vibration.
This means a low, or zero, activation energy for ôonversion into either D2d or
Td symmetry. In combination with the conclusions from the first-order

Thble 1. Stable structures for MX4 systems

High spin Low spin High spin Low spin

d° Td Td d6 D2d D4h
dt D2d D2d d7 T D45
d2 Td D45 d8 D2d" D45
d3 D2d d9 D2d D2
d4 D2d D45 dto Td Td
d5 Td D4h

Less than D2d symmetry. Spin—orbit forces can remove the first-order Jahn—TeIler effect. NiCIi has T4 symmetry.

Jahn—Teller effects, we can assign a most stable structure for each four-
coordinate system according to the number of d electrons and the spin state.
Table 1 summarizes the results for all systems.

The predictions are in accord with experimental facts where known. The
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conclusions for D4h are based on no interaction with other groups above and
below the plane. Such interactions could raise the (a29) level markedly and
stabilize the planar form. Four simple ligands such as halide or cyanide lead
tO D2 structures in solution for copper(u) complexes, so that axial solvent
perturbations are not sufficient in these cases to create planarity. It appears
that a combination of first-order and second-order Jabn—Teller effects can
be used to predict the stable structures of molecules. In practice an MO
scheme is required which need be only qualitatively correct. It also follows
that an incorrect MO scheme may predict structures wrongly. It seems
reasonable to apply a test for second-order Jahn—Teller distortions to MO
calculations in general.
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