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1  ABSTRACT 

Experimental and theoretical study to determine the applicability of li- 
near wave theory for the description of the velocity field in irregular 
waves. A comparison between theory and measurement was executed both in 
frequency and in time domain. In frequency domain by means of the experi- 
mentally and theoretically determined frequency response functions of 
wave motion to orbital velocity, and in time domain by means of the mea- 
sured and computed time records of the velocities. The time records for 
the velocities were computed from the measured waterlevel fluctuations 
by using the impuls response function method. The orbital velocities 
were measured contactless with laser-doppler equipment. 

2  INTRODUCTION 

In order to determine the applicability of linear wave theory for conver- 
sion of irregular wave motion to wave induced orbital velocities near 
the bottom, the Delft Hydraulics Laboratory has carried out in the past 
experimental investigation where the velocities were measured by means of 
a propeller-type flowmeter. The results of this study were used for the 
computation of wave forces on submarine pipelines. Although'in general a. 
a reasonable agreement was found between theory and measurement, also 
significant discrepancies were observed. However, these discrepancies 
had to be ascribed to the distortion of the flow by the flowmeter. 

The development of the laser-doppler velocity meter made it possible to 
measure accurately the orbital velocities in an extremely small area, 
without influence of the meter. With this accurate instrument new expe- 
riments in irregular waves were carried out, where apart from the bottom 
velocity also the horizontal and vertical orbital velocities at half wa- 
ter depth and just beneath the deepest trough were measured. The program 

173 



174 COASTAL ENGINEERING-1980 

comprised waves of moderate steepness at intermediate depth/wavelength 
ratios (0.008 < h/g l| < 0.069, 0.0009 < Hs/g T^ < 0.0064). It appeared 
that the discrepancies mentioned above were indeed due to inaccuracies 
of the flowmeter and that the agreement with linear wave theory was 
even better than was found in the first set of experiments. 

3 NOTATION 

a distance from the bottom where the velocities were measured 
acs significant crest of the waves 
aci crest exceeded by 1% of all the crests of the wave record 
ats significant trough of the waves 
atj trough exceeded by 1% of all the troughs of the wave record 
g acceleration of gravity 
h water depth 
H(u>) computed frequency response function 
H(oj) "measured" frequency response function 
h(x) impuls response function 
Hs significant wave height 
Hj wave height exceeded by 1% of all the heights of the wave 

record 
i     /=T 
k      wave number 
SXy(oj)  cross-spectrum 
SxxCco)  auto-spectrum 
ucs     significant crest velocity of the horizontal velocity compo- 

nent u 
ucj     crest velocity exceeded by 1% of all the crest velocities of 

the record of the horizontal velocity component u 
uts     significant trough velocity of the horizontal velocity compo- 

nent u 
uti     trough velocity exceeded by 1% of all the trough velocities of 

the record of the horizontal velocity component u 
vcs     significant crest velocity of the vertical velocity component 

v 
vcj     crest velocity exceeded by \%  of all the crest velocities of 

the record of the vertical velocity component v 
vts     significant trough velocity of the vertical velocity component 

v 
vtj     trough velocity exceeded by 1% of all the trough velocities of 

the record of the vertical velocity component v 
•e      relative error 

4 THEORETICAL APPROACH 

In Appendix A it is shown that according to the linear wave theory the 
water level fluctuations r](t) and the' horizontal and vertical orbital 
velocity components u(t) and v(t) at distance a from the bottom are 
mutually related by 
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u(t) =        h (T) {n(t-T) + n(t+x)} dr (l) 

v(t)   =     |     hv(T)   (n(t-T)   - ri(t+T)}  dT, (2) 

where b^Or) and l^Ct) are impuls response functions. 
The corresponding frequency response functions are given by 

_ , .  (0 cosh ka ,,., 
H (w) = —• • i, (3) u      smh kh 

„ . .    . m  sinh ka ,,., 
H (u) = I —• . ..  . (4) 
v sinh kh 

The "measured" frequency response functions Hu(oo) and HV((J)) can be 
obtained from the measured data by using the relation 

S  (u) 

^ - <rW > (5) 
XX 

°Ky\U>)     i 
(orbital velocity component) and Sxx(io) is the auto-spectrum of input 
(see e.g. Bendat and Piersol, 1971). 

5 MEASUREMENTS 

5.1 Experimental Set-up 

The tests were carried out in the 2 meter wide windwave flume of the 
Delft Hydraulics Laboratory. In this flume irregular waves can be gen- 
erated up to a height of 30 cm by means of wind and/or a hydraulically 
driven wave generator. A detailed description of the wave generator is 
given in (DHL, 1976). For the actual tests no wind was applied. The 
water level fluctuations were measured by means of a resistance type 
wave height meter, consisting of two vertical metal rods, and the 
orbital velocities were measured by means of a laser-doppler equipment 
which could simultaneously measure horizontal and vertical component. 
A description of the laser-doppler velocity meter is given in (Godefroy, 
1978). In order to measure the undisturbed velocities with this instru- 
ment, the walls of the flume had to be translucent for transmitting the 
laser beams. As this was not the case, the flume was partially provided 
with an inner flume with perspex walls (see Figure I). For absorption 
of the waves, beaches were used with a slope of 1:10 for minimal re- 
flection. 
Wave motion and orbital velocities were simultaneously measured in the 
same cross-section of the flume at a mutual distance of 20 cm. This 
distance proved to be sufficient for avoiding disturbance of the veloc- 
ity measurement by the wave height meter. As the waves were long- 
crested this solution could be used. 
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For elaboration with the computer the measured signals were digitized 
with sample frequency of 25 Hz. 

5.2 Test Program 

The test program comprised irregular waves of moderate steepness at 
intermediate depth/wave length ratios, which are the normal working 
conditions for offshore structures. The wave parameters are given in 
Tables I and II. The wave heights, defined as the maximum difference of 
the record between two succeeding zero-down crossings, appeared to be 
nearly Rayleigh distributed. As an example the energy density spectrum 
of a wave record and the corresponding cumulative frequency distribu- 
tion of the wave heights at test 16 are presented in Figures 2 and 3. 
Velocities were measured at three locations along the vertical: the 
horizontal bottom velocity just outside the boundary layer, and the 
horizontal and vertical components at mid-depth and just beneath the 
deepest trough (see Tables I and II). 

TABLE I TEST PROGRAM FOR 
BOTTOM VELOCITIES 

TABLE II TEST PROGRAM FOR VELOCITIES 
AT DISTANCE a FROM THE BOTTOM 

TEST 
1000 h 1000 Hs 

£ T2 S '•p 
£u 
% *t 

1 7.8 0.89 1.4 
2 11.8 0.88 5.2 
3 19.2 1.75 2.1 
4 19.2 2.49 2.3 
5 24.4 2.02 1.7 
6 24.4 2.81 2.2 
7 26.3 3.13 4.8 
8 26.3 3.12 2.8 
9 33.5 2.69 1 .2 

10 33.5 3.94 2.6 
11 43.6 3.85 5.8 
12 43.6 5.62 2.9 

TEST 
1000 h 

g T2 
1000 Hs a 

h 
eu 
% 

ev 
% 

13 13.3 1.3 0.500 2.0 4.4 
14 13.3 1.3 0.873 2.9 2.1 
15 16.3 2.0 0.500 4.7 7.6 
16 16.3 2.0 0.825 1.4 3.5 
17 17.0 1.5 0.500 3.5 3.1 
18 20.6 1.6 0.850 3.0 2.6 
19 39.2 4.8 0.500 3.2 7.1 
20 39.2 4.6 0.825 1.4 3.4 
21 53.9 5.2 0.500 5.2 5.4 
22 53.9 5.0 0.873 0.6 2.1 
23 68.6 5.2 0.500 4.6 2.8 
24 68.6 5.3 0.850 1.0 1.7 
25 35.9 6.4 0.810 1.0 1.2 

6 COMPARISON OF THEORY AND MEASUREMENT 

The comparison of the measured velocities in irregular waves with the 
linear wave theory has been carried out in frequency domain and, except 
for the bottom velocities, also in time domain. 
In frequency domain theory and measurement were compared by defining a 
relative error e by 

Nif. 

|H(OJ.)| |H<ioi) | 

|HOo7)l 

where the "measured" frequency response functions H(U)J) were determined 
by (5), and H(i0£) by means of (3) or (4). The notation |.| denotes the 
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amplitude of the (complex) number. The relative errors e have been 
evaluated only for those frequencies ti)£ for which both the spectral 
density functions of input and output were greater than 10% of their 
peak value, as for smaller values the spectral densities are relatively 
inaccurate. All spectra were computed using a Fast Fourier Transform 
method. The relative errors are given in Tables I and II. The indices u 
and v have been attached for distinction between horizontal and verti- 
cal velocity. 
Figure 4 presents most amplitudes of the "measured" and computed 
frequency response functions. 

A comparison in time domain was executed for the velocities above the 
bottom by computing the time records of the orbital velocity components, 
for which either (1) or (2) was used, and by comparing them with the 
measured ones. The significant and the 1% crest and trough velocities 
are presented in Tables III and IV. Crest and trough velocities are 
defined in accordance with crests and troughs of the wave motion by the 
maximum positive and maximum negative velocity between two succeeding 
zero-down crossings. A positive velocity means for the horizontal veloc- 
ity a velocity in direction of propagation of the waves, and for the 
vertical velocity a velocity in upwards direction. 
An example of measured and computed time record is presented in Figure 
5 and in more detail in Figure 6. 

TABLE III WAVE MOTION AND MEASURED AND COMPUTED HORIZONTAL ORBITAL 
VELOCITY 

WAVE MOTION HORIZONTAL ORBITAL VELOCITY 

TEST 
MEASURED MEASURED COMPUTED 

acs acl ats atl "cs ucl V utl 
cm/s V cm/s V 

utl 
cm cm cm cm cm/s cm/s cm/s cm/s cm/s cm/s 

13 2.5 3.9 2.4 3.5 9.0 12.6 9.4 14.2 9.0 12.7 9.9 14.9 
14 2.4 3.6 2.7 3.5 11.7 16.5 12.0 18.3 11.6 16.8 12.2 18.4 
15 2.6 3.9 2.4 3.6 7.6 11.5 7.7 13.1 6.8 10.6 8.1 13.0 
16 2.5 4.0 2.3 3.6 12.0 17.8 12.4 20.8 12.0 18.6 12.2 18.6 
17 2.8 4.0 2.6 4.0 9.6 13.2 9.5 16.0 9.5 1.3.3 9.6 16.1 
18 2.8 3.8 2.7 4.1 12.6 17.0 11.5 17.2 12.6 17.0 12.0 17.2 
19 2.9 4.8 2.5 4.0 5.9 9.1 5.9 10.0 5.6 9.4 5.9 9.3 
20 2.7 4.5 2.5 3.8 12.0 19.1 12.9 20.4 12.7 21.0 12.3 18.8 
21 3.5 5.2 3.2 4.6 10.1 14.6 10.1 16.2 9.6 14.9 9.8 14.5 
22 3.0 4.5 2.8 4.0 10.8 16.1 11.5 16.9 11.8 17.4 11.0 16.0 
23 2.7 4.6 2.7 4.1 4.2 6.1 4.1 6.8 4.1 6.5 4.3 6.7 
24 2.9 4.5 2.6 3.8 10.6 15.3 11.8 18.4 11.2 17.0 11.1 16.4 
25 7.3 13.1 6.2 9.6 22.0 34.0 25.1 41.2 23.1 36.2 24.6 40.5 
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TABLE IV MEASURED AND COMPUTED VERTICAL ORBITAL VELOCITY 

VERTICAL ORBITAL VELOCITY 

TEST 
MEASURED COMPUTED 

vcs 
cm/s cm/s cm/s 

vtl 
cm/s cm/s 

Vcl 
cm/s cm/s 

vtl 
cm/s 

13 5.2 7.8 5.2 7.5 4.9 7.0 4.8 7.0 
14 9.2 14.2 9.0 13.3 9.0 13.2 8.7 12.9 
15 5.7 9.0 5.8 8.9 5.3 8.3 5.3 8.1 
16 11.2 18.3 11.4 17.8 11 .0 17.7 11.1 17.9 
17 4.4 6.3 4.6 6.6 4.2 6.1 4.3 6.4 
18 8.7 12.9 8.4 12.6 8.6 12.6 8.8 12.4 
19 4.7 8.0 4.9 7.9 4.6 7.5 4.6 7.3 
20 12.2 19.9 12.3 19.4 12.1 19.9 12.1 19.2 
21 4.9 7.6 5.6 7.8 5.0 7.6 5.0 7.3 
22 9.1 14.5 9.0 13.9 9.0 14.3 8.9 13.4 
23 3.7 5.7 3.7 5.8 3.6 5.7 3.6 5.8 
24 11.0 16.4 11.0 17.0 10.8 16.5 10.8 16.8 
25 21.0 34.7 20.9 32.8 20.8 35.6 21.2 33.0 

7 DISCUSSION OF THE RESULTS 

It is remarkable to see from the comparison in frequency domain that 
the velocities near the free surface match linear wave theory better 
than the velocities at mid-depth, whereas in view of testresults in 
regular waves (see e.g. Le Mehaute, Divoky and Lin, 1968) just the 
opposite would be expected. This phenomenon was observed for both the 
orbital velocity components. The bottom velocities were indeed in more 
agreement with linear wave theory than the velocities at mid-depth. 
However, from the comparison in time domain, as far as executed, these 
tendencies could not be observed. 

From Table III it appears that for the horizontal velocities the trough 
velocities are greater in magnitude than the crest velocities, contrary 
to the wave motion where the crests are higher than the troughs. The 
vertical velocities appeared to be distributed more symmetrically. It 
is important to note that these tendencies are followed by linear wave 
theory in most cases. However, when a higher order wave theory, such as 
the fifth order Stokes1 method of De (1954), would be used for descrip- 
tion of the velocity field in the individual waves of the irregular sea 
(the so-called deterministic approach) just the opposite would be found, 
apart from the fact that with respect to the crests of the waves only a 
"symmetrical" velocity distribution would be found. Also when linear 
wave theory is used in the random phase model, these tendencies will 
not be found, just as a consequence of the random phases by which equal 
crest and trough velocities will be found. 

8  CONCLUSIONS AND RECOMMENDATIONS 

In the present study low to moderately steep irregular waves have been 
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investigated, and it appeared that linear wave theory gives a reasonable 
description of the velocity field, in particular for the velocities near 
the free surface just beneath the deepest trough. 
In view of these results it is advised to carry out further investiga- 
tion of the applicability of linear wave theory to more severe wave 
conditions and to the velocities in the crests of the waves. 
It will also be interesting to check linear wave theory for a spatial 
description of the velocity field. As for long-crested waves the corre- 
lation between water level fluctuations and orbital velocities in the 
same vertical has now been shown, this investigation can then be re- 
stricted to a check of the correlation in space of the wave motion at 
different locations. This was already investigated by Lundgren and Sand 
(1978), who found that the dispersion of the waves over limited distance 
is well described by linear wave theory, but that deviations increase 
with increasing distance. For directional seas research of the velocity 
field is necessary. 
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APPENDIX A. THEORY OF LINEAR SYSTEMS 

Suppose that x(t) is the input and y(t) the output or response of a 
linear system and that X(w) and Y(tu) are the corresponding Fouriertrans- 
forms. Put H(u) equal to the ratio Y(oi))/X(to); thus 

Y(to) = H(io).X((D) (A. 1) 
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Inverse Fouriertransform of this relation yields the well-known convolu- 
tion expression 

y(t) =     h(T) x(t-T) dT , (A.2) 
J+oo 

h(T) x 

where h(t) is the inverse Fouriertransform of H(d)), given by 

f+c° 
h(t) = ~ H(io) ell0t dm (A.3) 

Often h(t) is denoted by impuls response function, as 

J+co 

h(T) 6(t-T) dT , 

and H(u) by frequency response function. 

Expression (A.1) yields the relation between input and output of the 
linear system in frequency domain and (A.2) in time domain. Thus if the 
frequency response function H(u) of the linear system is known, then 
the response y(t) on any arbitrary input can be computed, either by 
using (A.3) followed by (A.2), or by using (A.l), in which case first 
the input has to be Fouriertransformed, resulting in X(io), and the out- 
put Y(u) has to be Fourier inverted in order to obtain y(t). 

The frequency response function between wave motion and orbital velocity 
component at distance a from the bottom (both in the same cross-section 
of the flume) can be found with linear wave theory by putting as input 
of the linear system the wave motion in frequency domain 

X(u) = e   = cosut + i sinoot . (A.4) 

(Note that e   is the Fouriertransform of the impulse on time -t; t 
has to be considered as a parameter.) 
According to linear wave theory the response Y(to) is then given by 

„, .  (i) cosh ka itot .. c. 
Y(U) =  sinh kh £ (A-5) 

for the horizontal orbital velocity component, which is defined positive 
in wave direction, and by 

„, >   . (0 sinh ka iiot ,.   ,s Y(m) = I —•  ,   e (A.6) 
sinh kh 

for the vertical orbital velocity component, which is defined positive 
in upwards direction. 
Then by using (A.l) the frequency response functions can be determined 
to be 
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^ 25 

Fig. 7 Irapuls response function for the horizontal orbital 
velocity component at test 14 and 16. 
hi    =15 rad/s, t = 4.0 s 
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H (oo) = "> ?°f £ (A. 7) 
u      sinh kh 

„ , .   .0) sinh ka ,,  „^ H (m) = I  . , ..  , (A.a; v        sinn kn 

where indices u and v have been attached for distinction. 
With the aid of (A.3) it follows that 

h (t) = I 
U      IT  I 

r0J cosh ka    ^ , r\   n\ { • , . .— cosojt} du , (A.9) sinh kh 

h (t) -I    {" Sl"h^a sinu)t} did , (A.10) 
v     TT      sinh kh 

o' 

where also use was made of the property that the impuls response of a 
physical system is real. 
From these expressions it can be seen that hu(t) is an even and hv(t) an 
odd function of t. With these properties it follows from (A.2) that the 
horizontal and vertical orbital velocity components u and v at distance 
a from the bottom are respectively given by 

u(t) =    h (T) (n(t-T) + n(t+T)} dT (A. 11) 

v(t) =   h (T) (n(t-T) - n(t+T)} dx (A.12) 

It is remarkable to see from these relations that the response on time 
t depends on the wave motion n(t) before and after t. Thus, not only 
the past but also the future of r|(t) determines the velocities at time t. 
Physically seen this is rather strange. However, it has to be realized 
that these relations are based on linear wave theory where it is assumed 
that the sinusoidal wave motion is present from t = -" to t = +<*>.   In 
view of this basic assumption, the results (A. 11) and (A. 12) could be 
expected. 

In order to achieve existing integrals in (A.9) and (A.10), the con- 
stituent functions Hu(w) and Hv(u) have been put equal to zero for 
0) > 0)o, which implies that the response on input in this frequency 
range is zero. However, this interference is no limitation if 0)0 is 
chosen such that for higher frequencies the input signal does not con- 
tain energy. 
For numerical computation of the integrals in (A.11) and (A. 12), the 
functions h^t) and hv(t), which approach to zero for t ->• <*>, have been 
put equal to zero for t > tQ, where tQ is chosen such that for t > t0 

|h(t)[ < £.max[h(p)| 
P 

(e.g.   is 0.01). An example of h^t) is presented in Figure 7. 


