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advance and retreat representing ice-volume changes that might

have driven past sea-level fluctuations3
, such as those later inferred

from high-resolution, deep-sea oxygen isotope records5
•
9

,1O. How­

ever, the frequency of these oscillations could not be determined.

This was because core stratigraphy and sedimentology indicated

numerous potential time breaks, and because core chronologies,

based largely on biostratigraphic methods, allowed a time resolu­

tion of no better than a million years.

In the austral summers of 1998 and 1999, the Cape Roberts

Project (CRP) drilled 1,500 m of strata from the western margin of

the Victoria Land basin13
-

IS (Fig. 1); 46 unconformity-bound,

Oligocene to Early Miocene (33-17 Myr ago) glacimarine cycles,

or depositional sequences, were recorded. The strata accumulated

some kilometres off the coast as part ofa laterally extensive seaward­

thickening nearshore wedge. This geometry is evident in seismic

profiles oriented parallel to and normal to the coast l6
• During

periods of glacial advance, the interior ice sheet fed through

outlet glaciers to a laterally extensive marine ice terminus that

extended well out onto the continental shelf beyond the CRP drill

sites. In periods of ice retreat the drill sites layoff an open wave­

dominated coast, with deposition of mud, and occasional debris

from floating ice. Thus cycles of ice-margin advance and retreat

across the shelf are viewed as cycles of expansion and contraction of

the East Antarctic ice sheet recorded as unconformity-bound

sequences. This view is supported by the style of erosion within

these strata-laterally extensive, sub-horizontal erosion surfaces,

judging from coast-parallel seismic sections.

Each sequence (Fig. 2) begins with an erosion surface followed by

a characteristic vertical facies succession, interpreted to represent:

(1) erosion during ice-margin advance followed by deposition

during ice-margin retreat, (2) relatively ice-free open marine

sedimentation and (3) re-advance of the ice margin into a shallow

marine setting. Sedimentary features of this succession are given in

more detail below, but it is important to note that sedimentological

and faunal palaeobathymetric indicators within cycles suggest that

water depth changes of up to -50 m occurred in concert with ice­

margin advance and retreat cycles l3
,l4. Variations in grain size and

changes in lithofacies with time primarily reflect oscillations in

depositional energy that were most probably controlled by the

combination of changes in shoreline and glacial proximity. Such
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Between 34 and 15 million years (Myr) ago, when planetary

temperatures were 3-4 DC warmer than at present and atmos­

pheric CO2 concentrations were twice as high as today!, the

Antarctic ice sheets may have been unstable2
-

7
• Oxygen isotope

records from deep-sea sediment cores suggest that during this

time fluctuations in global temperatures and high-latitude con­

tinental ice volumes were influenced by orbital cycles8
-

1o
• But it

has hitherto not been possible to calibrate the inferred changes in

ice volume with direct evidence for oscillations of the Antarctic ice

sheets". Here we present sediment data from shallow marine

cores in the western Ross Sea that exhibit well dated cyclic

variations, and which link the extent of the East Antarctic ice

sheet directly to orbital cycles during the Oligocene/Miocene

transition (24.1-23.7Myr ago). Three rapidly deposited glaci­

marine sequences are constrained to a period of less than

450 kyr by our age model, suggesting that orbital influences at

the frequencies of obliquity (40 kyr) and eccentricity (125 kyr)
controlled the oscillations of the ice margin at that time. An

erosional hiatus covering 250 kyr provides direct evidence for a

major episode of global cooling and ice-sheet expansion about

23.7 Myr ago, which had previously been inferred from oxygen

isotope data (Mil eventS).

Sediment cores recovered from the Antarctic continental margin

during the past three decades have indicated that grounded ice has

covered much of Antarctica since Oligocene times2
-

4
,12, with the

earliest ice sheets forming close to the Eocene/Oligocene boundary

around 34 Myr ag04
-

7
• Oligocene strata in the longest and most

complete of these cores (CIROS-I) recorded cycles of ice-margin

West CRP-3 CRP-2 CRP-1

-< 12 km to Cape Roberts

East

O,.---'f{---,=----""'"'\'i.......-""'"'\'i.......----------,

Figure 1 Cross-section through Cenozoic strata beneath the western flank of Roberts

ridge, western Ross Sea. The geometry and age of strata recovered by CRP drilling is

shown. Depositional sequences 9, 10 and 11 in CRP-2/2A, the focus of this study, are

mappable in seismic reflection profiles16
. EAIS, East Antarctic ice sheet; WAIS, West

Antarctic ice sheet. Vl-5 refer to Ross Sea seismic units (see ref. 16).
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inferences are consistent with established depositional models of

temperate and polythermal (sub-polar) glaciers entering the seal7,

and with models of shallow marine sedimentation during orbitally

driven cyclical changes in relative sea level 's.

Basal sequence boundaries are overlain by massive diamictite

and sandstone. Clast fabrics are weakly oriented or random,

suggesting a large component of rainout debris, which in many

cases may have been remobilized in gravity flows. Subglacial shear is

indicated by syndepositional soft sediment deformation structures,

intraclasts, and clastic dykes within diamictites 19. Subglacial features

are indicated by 'turbate' and 'linear' microstructures and a perva­

sive 'plasmic' fabric, characterized by an oriented clay matrix,

within diamictites and deformed sediments beneath diamictites20.

The basal diamictite of sequence 11 (for example, Fig. 2) displays

synsedimentary shearing and contains striated clasts '4. Sequence

boundaries are formed by erosional processes during ice advance

and the overlying sediments, with their lack of ice-contact features

and fining-upwards texture, are mostly the product of a retreating

ice margin.

Basal sediments are followed by a sparsely fossiliferous, biotur­

bated shelf mudstone corresponding to an interval of maximum

water depth, the glacial minimum, and the lowest sedimentation

rate within a cycle. A sharp-based, shallow-marine, regressive

sandstone facies succession occurs in the upper parts of most

sequences. The shallowing character of this succession, and the

truncation by the overlying sequence boundary, are both consistent

with sediments deposited during a period of relative sea-level fall

followed by erosion by the re-advancing ice margin.

Figure 2 shows systematic variations in grain size, clast content,

diatom abundance and "i-radiation for one of the more fully

developed depositional sequences in CRP-2/2A drill core (Fig. 1),

sequence 11. These variations represent environmental proxies that

provide additional support to the ice margin and relative water

depth interpretations outlined above. The up-section decrease in

sand content, clast abundance21 (ice-rafted debris), and diatom

abundance22 in the lower part of sequence 11 is consistent with

progressive withdrawal of the ice margin from the Ross Sea in

concert with a decrease in hydraulic energy during shoreline

transgression and relative sea-level rise. The main peak in the

number of in situ diatom tests corresponds to a mudstone interval

within sequence 11, interpreted as ice-distal open shelf and indica­

tive of increased oceanic connection during interglacials. In con­

trast, peaks in reworked diatom assemblages correspond to

diamictites. The "i-ray log displays a positive shift from quartz­

and plagioclase-rich, ice-proximal sandstone upward into an inter­

val ofhigh-potassium, illite-dominated, ice-distal shelfmudstone23
.

Most of the time interval spanned by the Cape Roberts drillcore

is not represented by the stratigraphic record owing to non­

deposition and erosion through long-term tectonic influences and

shorter-term glacial processesI4.IS. However, intervals of relatively

continuous deposition occur where increased rates of basin sub­

sidence provided sufficient accommodation space. Thus, although

fragmentary, the CRP record provides high-resolution windows

into the history and dynamics of the East Antarctic ice sheet. One

such interval includes sequences 9, 10 and 11 (Fig. 1) in the CRP-2/

2A core. These sequences are on average much thicker than the rest,

and include a number of high-precision age datums (polarity

reversals and numeric ages on volcanic ashes) providing a chron­

ology that allows estimation of sequence durations at Milankovitch

periodicities (Fig. 3). This chronology, which is based on a combina­

tion of single-crystal 40Ar/39Ar ages24, microfossil biostratigraphf2,25,

87Sr/86Sr analyses26, and correlation of a magnetic polarity zonation

to the magnetic polarity timescale (MPTS)27, permits the construc­

tion of a robust age model for sequences 9 to 11 28.

Single-crystal, laser-fusion 40Ar/39Ar tephra ages at 280 and 193 m

below sea floor (m.b.sJ.), 87Sr/86Sr ages on in situ molluscan samples

at 247 and 195 m.b.sJ., and the last occurrence (LO) of Lisitzinia

ornata at 255 m.b.s.f. (in C6Cr in Southern Ocean cores29) constrain

correlation of the normal-polarity interval (magnetozone N5)

containing sequences 10 and 11 with geomagnetic chron

C6Cn.3n. Stratigraphically higher magnetozones R4 and N4 com­

prising the lower three-quarters of sequence 9 are correlated with
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C6Cn.2r and C6Cn.2n, respectively. The upper quarter of sequence

9, which has reversed polarity (magnetozone R3) and contains the

LO of Dictyococcites bisectus, is correlated with earliest C6Cn.lr3o
.

The age model implies an age range from 24.12 to 23.68 Myr. Given

that the thin magnetically reversed interval (magnetozone R4)

corresponds to rapidly deposited ice-proximal diamictite and

sandstone at the base of sequence 9, most of the sedimentary

record of C6Cn.2r is considered to have been lost at the underlying

sequence boundary-perhaps as much as 250 kyr. The Oligocene/

Miocene boundary is placed within sequence 9 at the base of

C6Cn.2n at 183.70 m.b.spa.

An alternative age model has been proposed28 that correlates

sequence 9 (magnetozones R4, N4 and R3) with the upper part of

C6Cn.3n. In this age model, the 4-m-thick reversed polarity interval

of diamictite and sandstone at the base of sequence 9 is inferred to

represent a short-duration geomagnetic excursion within C6Cn.3n,

and the LO ofD. bisectus in CRP-2/2A is correlated with C6Cn.2r in

the earliest Miocene. This alternative age model has been considered

unlikeli8 because: (1) the polarity signal is robust for the interval of

CRP core, (2) the MPTS31 contains no evidence of 'tiny wiggles' at

this time and sedimentary records from ODP site 1090 spanning

C6Cn.3n show no indication ofshort polarity intervals 0. Channell,

personal communication), and (3) the age of the LO of D. bisectus

would be inconsistent with Southern Ocean records30
•

Our preferred age model restricts the duration of the three

glacimarine sequences to no more than -450 kyr. Sequence 9 is

of -125kyr duration (C6Cn.2n spans 123kyr), and may reflect

orbital control of the East Antarctic ice sheet at the eccentricity

frequency. The stratigraphically underlying sequences 10 and 11 are

restricted to C6Cn.3n, a duration of 119 kyr. Moreover, with

sequence 10 appearing to be truncated1
3 and with most of

C6Cn.2r inferred to be missing at the sequence 9/10 unconformity,

we contend that sequences 10 and 11 probably reflect 40-kyr,

obliquity-controlled oscillations in the margin of the East Antarctic

ice sheet. On this basis, we present a correlation of sequences 9, 10

and 11 with a high-resolution, Late Oligocene-Early Miocene deep­

sea oxygen isotope record from western Atlantic, ODP site 9299
,10

(Fig. 4).

Figure 4 shows a detailed characterization of the Mil oxygen

isotope excursionS, which is defined by an overall -1.5%0 increase

Age model

MPTS (ref. 33)
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Figure 3 Lithostratigraphy, sequence stratigraphy, variation in sand content and age

models for sequences 9,10 and 11 (130.27-306.65 m) from the CRP-2/2A drill hole.

Key for ice margin proximity is shown in Fig, 2 legend. Datums include: (1) the LO

(last occurrence) of Dictyococcites bisectus at 144.44 m and LO of Lisitzinia ornata at

259.2 m in C6Cn,1 rand C6Cr, respectively, (2) the 4oAr/39Ar pumice dates at 193.40 m

(23.98 ::+: 0.13 Myr) and at 280.03 m(24.22 ::+: 0.03 Myr) and (3) the 87Sr/86Sr dates on

in situ mollusca at 194.87 m(24.00+0.4/-05 Myr) and 247.00 m(24.02 ::+: 0.35 Myr).

The length of vertical bars on biostratigraphic datums indicates the range of error from the

respective sampling interval on which the datums are defined.

NATURE 1VOL 413118 OCTOBER 2001Iwww.nature.com ~ © 2001 Macmillan Magazines ltd 721

Naish et al. in Nature (October 18, 2001) 413(6857)



letters to nature

in 0180, equivalent to a sea-level lowering of -80 m accompanied by

a decrease in deep-water temperature of 3°C (refs 9, 10). The

increase and subsequent decrease in oceanic mean 0
180 across the

Mil event has been interpreted as a long-term, 400-kyr, eccentricity

cycle9
• Higher-frequency 100-kyr (eccentricity) and 40-kyr orbital

(obliquity) components punctuate the Mi 1 excursion. Strong

covariance reported in the benthic and planktonic foraminiferal

0
180 record and the absence of a Northern Hemisphere ice sheet is

taken to suggest the presence of retreating and advancing ice sheets

on Antarctica9
• Assuming a Pleistocene calibration of 0.11%0 0

180
per 10m of sea-level, sea-level fluctuations of -30-40m are

indicated at 40- and 100-kyr frequencies with corresponding

changes in deep-water temperature of I-2°C. Like the authors of

ref. 10, we find it intriguing that the climatic deterioration leading

into the Mil event is punctuated by 40-kyr cycles, yet 100-kyr cycles

dominate the 0
18

0 record after the Mil excursion. Although not

well understood, certain periods of Earth history (for example,

the past 800 kyr) have been dominated by a climatic response at

100-kyr orbital frequencies. This phenomenon has been explained

by several mechanisms involving nonlinear responses to orbital

forcing-these include feedbacks in ocean-atmosphere circulation,

the global carbon cycle, and the internal dynamics and bedrock

interactions associated with large continental ice sheets in polar

regions31
•

In summary, the pattern of ice-volume change that is indicated by

the deep ocean record (Fig. 4) is consistent with the pattern of ice

marginal sedimentation on Antarctica implied from our analysis of

the CRP-2/2A core for the interval 24.1-23.7 Myr ago. Oscillations

in ice margin inferred from glacimarine sequences 11 and 10 can be

correlated with 40-kyr, 0
180 cycles at the onset of the Mi1excursion.
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Figure 4 Correlation of sequences 9,10 and 11 in CRP-2/2A core, western Ross Sea with

deep-water benthic foraminiferal 8180 record of ODP site 929, western equatorial

Atlantic. The 8180 record has been interpreted as a proxy of Antarctic ice volume and

oceanic temperature changes across the Oligocene/Miocene boundary9,10 Oscillations in

the size of the East Antarctic ice sheet inferred from the ice-proximal CRP-2/2A core show

a close correspondence with variations in the 8180 record. Two age models have been

proposed for the site 929 record, One is based on a nannofossil and planktonic

foraminiferal biostratigraphy and, like our CRP-2/2A core data, is calibrated to the MPTS

of ref, 33. Durations for intervals between biostratigraphic datums were estimated from

inferred ~40-kyr frequencies in magnetic susceptibility records, The second age model is

based on a new astronomically calibrated timescale34 established by tuning the 40-kyr

cycles in magnetic susceptibility records to orbital target solutions for obliquity and

precession31 .The astronomical chronology has subsequently been used to recalibrate the

MPTS in the vicinity of the Oligocene/Miocene boundary36, and indicates that this

boundary is ~900 kyr younger than that reported in ref, 33. Because both age models for

site 929 are based on afundamental40-kyr frequency in the magnetic susceptibility data,

the durations of geomagnetic chrons and the frequency of the oxygen isotope signal is not

affected by changes to absolute ages of the MPTS.

The erosional hiatus of some 250 kyr between sequences 10 and 9

spans an interval of major global cooling, ice-sheet expansion, and

sea-level fall culminating at the Mil maximum. The oscillation in

ice-margin proximity inferred from sequence 9 can be correlated

with a -125-kyr, 0
180 cycle in the heavily eccentricity-modulated

part of the record that follows the Mil excursion.

We conclude that the cyclicity recorded by glacimarine sequences

in CRP-2/2A provides strong ice-marginal evidence for orbital

oscillations in the size of the Oligocene East Antarctic ice sheet, a

style of behaviour identical with that of the unstable Northern

Hemisphere ice sheets of the past 2.5 Myr. Studies of Antarctic ice

sheets during the Oligocene-a time when planetary temperature

was around 3-4°C warmer than today-should help to provide

realistic analogues for their future behaviour following the

increased levels of atmospheric CO2 and temperature projected

for the end of this centurf2. D
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