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Abstract

Few-layer CrI3 is the most known example among two-dimensional (2D) ferromagnets, which

have attracted growing interest in recent years. Despite considerable efforts and progress in under-

standing the properties of 2D magnets both from theory and experiment, the mechanism behind

the formation of in-plane magnetic ordering in chromium halides is still under debate. Here, we

propose a microscopic orbitally-resolved description of ferromagnetism in monolayer CrI3. Starting

from first-principles calculations, we construct a low-energy model for the isotropic Heisenberg ex-

change interactions. We find that there are two competing contributions to the long-range magnetic

ordering in CrI3: (i) Antiferromagnetic Anderson’s superexchange between half-filled t2g orbitals

of Cr atoms; and (ii) Ferromagnetic exchange governed by the Kugel-Khomskii mechanism, involv-

ing the transitions between half-filled t2g and empty eg orbitals. Using numerical calculations, we

estimate the exchange interactions in momentum-space, which allows us to restore the spin-wave

spectrum, as well as estimate the Curie temperature. Contrary to the nearest-neighbor effective

models, our calculations suggest the presence of sharp resonances in the spin-wave spectrum at

5–7 meV, depending on the vertical bias voltage. Our estimation of the Curie temperature in

monolayer CrI3 yields 55–65 K, which is in good agreement with experimental data.

Keywords: CrI3, two-dimensional materials, exchange interactions, electric field effects, density functional

theory, magnetic-force theorem
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INTRODUCTION

Recent discovery of ferromagnetism in two-dimensional (2D) materials has triggered enor-

mous interest to these materials from the research community [1–6]. Apart from being fun-

damentally interesting object in the context of the Mermin-Wagner theorem, which forbids

magnetic ordering in 2D at any nonzero temperature for the case of isotropic Heisenberg

or easy-plane-anisotropic magnets [7], 2D magnets are especially promising for applications,

such as spintronics, quantum computing and energy-efficient electronics [8–11].

A few-layer chromium triiodide (CrI3) is the most studied representative among 2D ferro-

magnets with the Curie temperature in the range 45–61 K, depending on the layer thickness

[1]. It was first synthesized by mechanical exfoliation of bulk CrI3 crystal, and identified

as an Ising ferromagnet with out-of-plane spin orientation [1]. Being strongly sensitive to

external electric field, few-layer CrI3 became the subject of numerous experimental studies

[1, 12–15], particularly aimed to electrical control and manipulation of magnetic states [2–4].

It was found that the magnetism of few-layer CrI3 is essentially layer-dependent: monolayer

and trilayer CrI3 demonstrate ferromagnetic (FM) ordering in its ground state, whereas

bilayer turns out to be antiferromagnetic (AFM) [2, 3, 14, 15]. This behavior opens up

the possibility to realize an electrical switching of magnetic ordering in bilayer CrI3 [2, 4].

As it has been shown in Ref. [12], the stacking order and interlayer exchange interactions

in CrI3 are intimately connected, leading to stacking-dependent magneto-Raman signatures

[16]. Despite the similarities between monolayer and trilayer CrI3, the latter appears to be

closer to the bulk crystal [1]. This makes ultra-thin films with thickness of one or two atoms

the most interesting objects for further studies.

On the theory side, a large number of studies was devoted to a microscopic analysis of

magnetism in 2D CrI3 and its analogues [17–24]. Most of them were based on first-principles

calculations (density functional theory and beyond) with direct mapping on the Heisenberg

model. Being a standard approach in material science, such method allows one to describe

the macroscopic quantities (e.g., the Curie temperature) with reasonable accuracy [25–27].

On the other hand, this method is limited with respect to the orbital-resolved physics, and

does not provide insights into the origin of exchange interactions. In Ref. [17], an important

role of the Coulomb interactions in 2D magnets was revealed using the combination of first-

principles calculations with classical Monte Carlo simulations. An essential contribution of
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the ligand states in the formation of ferromagnetism in CrI3 was emphasized in Ref. [28].

Particularly, the authors showed that the Goodenough-Kanamori-Anderson rule for 90° Cr-

I-Cr bond cannot serve as an explanation for short-range ferromagnetic order due to the

competing character of exchange interactions. Being also applicable to the monolayer case,

this finding suggests an orbitally-resolved analysis to be necessary to understand the mech-

anism behind the magnetic ordering in CrI3. An attempt to provide an orbitally-resolved

picture was first made in Ref. [29] in the context of interlayer interactions in bilayer CrI3.

However, a systematic orbital theory of the intralayer ferromagnetic ordering in CrI3 was

not formulated up to now.

FIG. 1. Schematic illustration of the main idea of our study. Contrary to the atomic level (left

panel) employed in previous studies, here we work at the level of individual orbital states of

chromium atoms (right panel). This allows us to reveal a rich picture of competing ferromagnetic

(t2g - eg) and antiferromagnetic (t2g - t2g) interactions in monolayer CrI3.

In this paper, we propose a microscopic, orbitally-resolved picture of ferromagnetism in

CrI3. Starting from first-principles electronic structure calculations, we construct a micro-

scopic model allowing us to determine orbitally-resolved exchange interactions by utilizing

the magnetic force theorem. We find two competing contributions to the magnetic inter-

actions in CrI3 originating from the AFM and FM coupling between symmetry-equivalent

(t2g–t2g) and inequivalent (t2g–eg) orbitals, respectively (see Figure 1 for a schematic illustra-

tion). Although the first contribution, which is the well-known Anderson’s superexchange,

is typical to many magnetic materials, the second contribution is less common and can be

understood in terms of the Kugel-Khomskii picture. In this picture, the ferromagnetic in-

teraction arises from indirect transitions between the half-filled (t2g) and unoccupied (eg)

3



orbitals modulated by the intraatomic Hund’s rule coupling. We also qualitatively deter-

mine the role of external electric field and substrate screening in the formation of magnetic

ordering in monolayer CrI3.

METHOD

Our computational approach is based on first-principles electronic structure calculations

within the density functional theory (DFT) [30]. We start from the projected augmented

wave (PAW) method [31, 32] as implemented in Vienna ab-initio simulation package (vasp)

[33, 34]. To describe the exchange-correlation effects, we use the generalized gradient approx-

imation (GGA) [35] augmented by the Hubbard-U corrections (GGA+U method [36, 37]),

where U is treated as a free parameter. An energy cutoff of 250 eV was used for the plane

wave basis. The convergence threshold during the self-consistent solution of the Kohn-Sham

equations was set to 10−10 eV. A (8×8) k-point mesh was used to sample the Brillouin zone.

To avoid spurious interactions between the cells, a vacuum slab of 20 Å was added in the

direction normal to the 2D plane. The atomic structure and lattice parameters were fully

relaxed preserving the lattice symmetry (D3d point group) until the residual forces were less

than 0.001 eV/Å. The resulting lattice parameter is found to be a = 4.03 Å, while the layer

thickness (separation between topmost and lowermost iodine atoms) is d = 3.03 Å.

As a next step, we construct an extended tight-binding model by mapping the resulting

DFT wave functions onto the Wannier functions [38]. To this end, we use the wannier90

package [39]. The tight-binding model was constructed in the canonical basis of cubic

harmonics, corresponding to chromium 3d, and iodine 5s and 5p orbitals. The tight-binding

Hamiltonian considered in our study has the following form:

Ĥ =
∑

αβ, σ

tσ
αβ ĉ†

ασ ĉβσ +
V

d

∑

α, σ

ẑα n̂ασ, (1)

where ĉ†
ασ (ĉβσ) is is the creation (annihilation) operator of an electron with spin σ at orbital

α (β), and tσ
αβ is the spin-resolved matrix of hopping integrals. The second term in Eq. (1)

describes the effect of external static electric field [40, 41], where ẑα is the z-component of the

position operator associated with orbital α, n̂ασ = ĉ†
ασ ĉασ is the particle number operator,

V is the vertical bias potential, and d is an effective 2D layer thickness. It should be noted

that Eq. (1) describes the electric field effect only qualitatively. In our study, we consider
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two cases only: V = 0 and V = 1 eV. The latter corresponds to an unscreened vertical

electric field of Ez = V/d ≈ 0.33 eV/Å.

In order to calculate the magnetic interactions in CrI3, we use the Green’s functions

formalism allowing us to apply the magnetic-force theorem [42]. Within this scheme,

the Heisenberg exchange interactions are expressed via infinitesimal spin rotations Jij =

∂2E/∂φi∂φj as:

Jij =
1

8π
Im

∫ EF

−∞
TrL

[ ∑

σ

∆i Gσ
ij ∆j G−σ

ji

]
dω, (2)

where Gσ
ij =

∑
k(ω − Hσ

ij)
−1 · eikTij is the spin-polarized intersite Green’s function, taken as

an integral over the Brillouin zone, with Hσ
ij being the Hamiltonian matrix (Eq. (1)), Tij

is the translation vector, connecting atoms i and j, and k is the reciprocal lattice vector.

∆i = H↑
ii − H↓

ii is the intraatomic exchange splitting of the Cri(3d) shell, TrL denotes the

trace over the orbital (L) indices, and EF is the Fermi energy. Hereinafter positive/negative

Jij corresponds to FM/AFM ordering, respectively.

The exchange interactions defined above represent a reliable starting point for the analysis

within the isotropic Heisenberg model: H = −
∑

ij JijSiSj. However, the advantage of

the approach presented is that it allows one to decompose Jij into the individual orbital

contributions. To perform this decomposition, we define the exchange splitting matrix in

the orbital space, and perform its diagonalization, ∆m m′

i = Um k
i · ∆̃k k

i · (Uk m′

i )∗, where ∆̃kk
i

is the on-site matrix, which is diagonal in the orbital space and the matrix U is a unitary

transformation matrix which defines the basis where ∆ is diagonal. The exchange interaction

between the k-th orbital at site i and the k′-th orbital at site j is then given by [43–45]

Jkk′

ij =
1

8π
Im

∫ EF

−∞
TrL

[ ∑

σ

∆̃kk
i · G̃kk′

ij σ · ∆̃k′k′

j · G̃k′k
ji −σ

]
dω, (3)

where G̃kk′

ij σ =
∑

mm′ Uk m
i · Gmm′

ij σ · (Um′ k′

j )∗. To perform an accurate evaluation of the ex-

change interactions by means of Eqs. (2) and (3), we use a (400 × 400) k-point mesh for

calculating the Brillouin zone integrals, which was checked to be sufficient to reach numerical

convergence.

The Curie temperature is estimated in our study at the level of the random-phase approx-

imation (RPA), which is also known as the Tyablikov’s approximation [46], and spherical

model [47]. This approach provides a reasonable description of the long-wavelength spin

fluctuations, which is the crucial factor suppressing the ordering temperature in 2D [48]. In
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case of multiple magnetic sublattices, the critical temperature of magnetic ordering can be

determined from the following system of equations [49, 50]:

TC =
2

3

Sa(Sa + 1)

〈sz
a〉

{
1

Ω

∫
dq [N−1(q)]aa

}−1

, (4)

where q is the magnon wave vector, Sa is the total spin at sublattice a, 〈sz
a〉 is the averaged

sublattice magnetization projected on the z-axis for sublattice a, Ω is the volume of the

Brillouin zone, and Nab(q) is a matrix given by:

Nab(q) = δab

(
Λ +

∑

p

J̃ap(0)〈sz
p〉

)
− 〈sz

a〉J̃ab(q), (5)

where Λ is the magnetic anisotropy energy (MAE) and J̃ab(q) is the Fourier component of

the normalized exchange parameter J̃ij = Jij/(SiSj). The spectrum of spin-wave excitations

ǫ(q) can be obtained by solving the secular equation det[N(q)−ǫ(q)I] = 0 with I being the

unity matrix. In the case of a hexagonal magnetic lattice with nearest-neighbor exchange

interactions, this approach leads to a dependence in the form TC ∼ JS2/ln(JS2

Λ
) [51]. We

note that a more accurate estimate of the Curie temperature for 2D magnets can be done

within the self-consistent spin-wave theory with fluctuation corrections [48]. Within the

accuracy of the main logarithm [ln( J
Λ

)] and for spins S > 1/2, the results are close to the

approach used here.

RESULTS AND DISCUSSION

Monolayer CrI3 is a hexagonal crystal with two sublattices forming a honeycomb structure

of Cr atoms. Each Cr atom is located in the octahedral environment of six I atoms (see

Figure 2). In order to investigate its electronic and magnetic properties, we start from

first-principles calculations within the GGA+U approach. In Figure 3, we show the spin-

resolved band structure with relative contribution of Cr 3d shell, indicated by color. Apart

from different values of a band gap for majority and minority spin channels, it is seen that

the distribution of Cr 3d states is essentially different for spin up and spin down channels.

While minority Cr d states are empty and well separated from the p states of iodine, the

majority d states are partially occupied and hybridized strongly with the iodine p states.

This suggest a nontrivial role of the ligand states in the formation of magnetic properties

of CrI3. Figure 4 shows the density of electronic states projected onto different orbitals.
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FIG. 2. Schematic crystal structure of CrI3 monolayer. Orange circles correspond to chromium

atoms. Blue and red circles denote the iodine atoms higher and lower of Cr sublattice, respectively.

Vertical displacement between iodine sublattices is 3.03 Å. Arrows denote first-, second- and third-

nearest-neighbor exchange interactions.

According to the crystal symmetry, the d-shell of Cr atoms splits into two inequivalent sets

of orbitals: three t2g and two eg. From Fig. 4 one can see that the eg orbitals are either

filled or empty, whereas t2g orbitals are half-filled, making monolayer CrI3 almost an ideal

realization of a system with spin S = 3/2. The splitting between the majority and minority

t2g orbitals is governed by the Coulomb interaction U , whereas the position of eg states are

almost unaffected by this parameter.

As it immediately follows from the band structure, the total magnetization in CrI3 is 3

µB per Cr atom. In order to distinguish between the contributions of t2g and eg orbitals to

the magnetic moment, we consider the difference between the occupation matrices for spin

up and spin down electrons [52],

Mk = −
1

π
Im

∫ EF

−∞
[G↑

k(ω) − G↓
k(ω)] dω, (6)
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FIG. 3. Band structure of CrI3 monolayer, obtained from GGA+U (U = 3 eV) calculations. The

relative contribution of Cr 3d states is illustrated by color.

FIG. 4. Partial density of states of Cr 3d shell obtained from low-energy models without local

Coulomb interaction at Cr atoms and with U = 3 eV.

where Gσ
k ≡ [Gσ

kk]ii is the local Green’s function for orbital k. The resulting values are given
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in Table I), from which one can identify t2g as the orbitals with the largest spin polarization.

A slight deviation of the total magnetic moment (3.12 µB) from the expected value can be

attributed to the presence of a non-negligible Cr(3d)−I(5s5p) hybridization, resulting in a

compensating iodine magnetization with −0.04 µB per atom. We note that the magnetic

moment appears to be almost independent of the Coulomb parameter U. Although the spin

density undergoes a redistribution in the presence of U , the occupation matrices are weakly

affected.

TABLE I. Orbital occupation and magnetic moments of t2g and eg orbitals in CrI3. The values

are obtained from the integration of the density of states (Fig. 4) over occupied states.

Orbital Spin Up Spin Down Magnetic moment (µB)

t2g 2.984 0.265 2.719

eg 1.042 0.642 0.400

The calculated interatomic exchange interactions in CrI3 monolayer are presented in

Fig. 5. One can see a significant influence of the Coulomb interaction on the nearest-

neighbor exchange interaction Jij between Cr atoms. One can see a gradual increase of the

interaction with U , which can be attributed to the localization of magnetic moments. This

tendency is in line with the results of hybrid functional calculations, predicting larger Jij

values compared to standard semilocal functional. However, we note that the obtained Jij(U)

dependence is different from the dependence expected within the conventional superexchange

mechanism, where Jij ∼ 1/U . The typical U values in chromium-based compounds including

CrI3 multilayer is around 3 eV, as follows from the estimations within the random-phase

approximation [29] as well as within the linear response approach [53]. In this case for the

nearest-neighbor exchange interaction we have J ≈ 1 meV, which is reasonable agreement

with the results obtained by means of DFT total energy calculations in Ref. 54 (note different

definition for the Heisenberg Hamiltonian used in this paper).

In order to study the driving force of CrI3 ferromagnetism, we performed a decomposition

of Jij into different orbital contributions. The results are presented in Table II and in Fig. 6.

The dominant contribution to the exchange interactions in CrI3 originates from the t2g − t2g

and t2g − eg orbital channels, demonstrating an essentially different character. Particularly,

the AFM coupling between the occupied t2g orbitals competes with the FM coupling between
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FIG. 5. The isotropic exchange interactions calculated between the magnetic moments of chromium

atoms in CrI3 as a function of the distance. Solid (dashed) lines are the results obtained in the

absence (presence) of a vertical bias potential (V = 1 eV).

the occupied t2g and unoccupied eg states. This picture appears consistent with the well-

known Kugel-Khomskii formalism developed on the basis of the superexchange theory [43,

55, 56]. According to this approach the total exchange interaction of a multiorbital electronic

system can be presented as a sum of two contributions in the following form:

J1 = J
t2g−t2g

1 + J
t2g−eg

1 = −
2(t

t2g−t2g

1 )2

U
+

2(t
t2g−eg

1 )2JH

(U + ∆)(U + ∆ − JH)
. (7)
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Here, the first term describes conventional superexchange interaction between the occupied

orbitals of Cr atoms mediated by the sp states of iodine ligands. The second term has a more

complicated nature and originates from the virtual transitions between the occupied and

unoccupied orbitals on two different atoms, which also involves the intraatomic exchange

JH (Hund’s rule coupling). Schematic representation of the Kugel-Khomskii interaction

mechanism is shown in Fig. 7. In Eq. (7), t
t2g−t2g

1 and t
t2g−eg

1 are effective hoppings between

different orbital states of the nearest-neighbor Cr atoms, and ∆ is the crystal-field splitting

between corresponding occupied and empty orbitals. All the parameters could in principle

be estimated from non-spin-polarized DFT calculations. The Kugel-Khomskii model was

successfully applied to reveal the microscopic origin of magnetic interactions and provide its

quantitative description in a large variety of systems, including strongly frustrated transition

metal oxides [43]. However, in the case of CrI3 monolayer spin polarization induces strong

changes in the hybridization between d states of chromium and sp states of iodine (see Fig. 3

for spin up). This results in a significant variation of the hopping integrals, and prevents us

from using Eq. (7) for a quantitative analysis of the Green’s function results.

On a qualitative level, Eq. (7) describes the decay of t2g − t2g exchange interactions for

increasing U , in agreement with the results shown in Fig. 6. On the other hand, nearly

constant behavior of the t2g − eg coupling for U > 1 eV can be explained within the Kugel-

Khomskii model, if one assumes U >
∼ ∆. In this case, for not too small ∆ (a direct estimation

from Fig. 4 yields ∆ ≈ 2 eV), the first term in Eq. (7) is not dominant, ensuring an FM state

of the system. We emphasize the detailed balance of the two interactions and a crucial role of

the Coulomb interaction in determining the ground magnetic state in CrI3. In the situation

with U ≫ ∆, the second term in Eq. (7) would be suppressed, resulting in a net AFM

state. We also point to a decisive role of the Hund’s rule coupling JH in the formation of

CrI3 ferromagnetism. JH is weakly affected by the dielectric screening [57], and is primarily

determined by the degree of orbital localization. It is, therefore, not expected that the

FM exchange interactions in CrI3 can be further enhanced in the presence of a dielectric

environment. We admit, however, that for a deeper microscopic understanding of exchange

interactions in this system, more sophisticated many-body approaches may need be involved.

Such methods include, for example, dynamical mean field theory and its extensions, allowing

for a more accurate and systematic treatment of the electron correlation effects.

11



FIG. 6. Orbital decomposition of the total isotropic exchange interactions Jij in CrI3 shown as

a function of the Coulomb interaction U for three nearest-neighbor (NN) Cr atoms. Circles and

squares denote t2g − t2g and t2g − eg channels, respectively.

Simulation of electric field. Motivated by the ability to control materials’ properties

by means of the gate voltage in experiments, we examine the influence of external static

electric field on monolayer CrI3. To this end, we induce an additional energy gap of 1 eV

between the orbitals of I atoms that geometrically reside above and below the Cr atoms,

withe the corresponding Hamiltonian given by Eq. (1)). At the level of the band structure,

the application of the bias voltage results in a slight (<∼ 5%) narrowing of the band gap.
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TABLE II. Main contributions to the Cr-Cr exchange interactions (in meV) calculated for two

different values of the Coulomb interaction (U) in CrI3. 1NN and 2NN denote first and second

nearest-neighbor interactions, respectively.

Jij

U = 0 eV U = 3 eV

t2g − t2g t2g − eg t2g − t2g t2g − eg

1NN −2.743 3.041 −0.569 1.574

2NN −0.228 0.857 −0.067 0.460

FIG. 7. Schematic representation of the Kugel-Khomskii interaction mechanism as applied to CrI3

monolayer. FM and AFM Cr-Cr interactions are assumed to be mediated by the iodine sp states.

Despite the fact that the net magnetic moment remains almost unchanged, the exchange

interactions acquire additional AFM contribution, which is almost independent of the U

values (see Fig. 5). In Fig. 8, we show an orbitally decomposed difference JV =1
ij − JV =0

ij

as a function of U , demonstrating overall trend toward destabilization of the FM state in

the presence of vertical bias. However, the effect of the two interaction channels is opposite:

Unlike the t2g − t2g interaction, the t2g − eg interaction tends to stabilize the FM state. As

we well show below, slight modification of exchange interactions in the presence of vertical
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bias results in the appearance of new excitations in the spin-wave spectrum.

FIG. 8. The effect of the vertical bias on the Cr–Cr exchange interactions in CrI3, presented as

the field-contribution to the exchange JV =1
ij − JV =0

ij . Circles and squares denote t2g − t2g and

t2g − eg channels, respectively.

Curie temperature estimation. Magnetocrystalline anisotropy is known to be the main

factor stabilizing long-range magnetic order in two dimensions. In turn, magnetic anisotropy

in CrI3 originates from the strong spin-orbit coupling arising due to heavy iodine atoms [58],

and can be further stimulated by strain [59]. Magnetic anisotropy ensures a gap in the

spin-wave spectrum, resulting in a finite Curie temperature, as it immediately follows from

Eqs. (5) and (4). To estimate the Curie temperature in CrI3, we consider two magnetic

sublattices and solve the system of equations given by Eq. 4. For the FM ground state, the

system has only one solution with 〈sz
1
〉 = 〈sz

2
〉.

As a next step we calculate TC as a function of MAE for U = 0 and U = 3 eV, with

the results presented in Fig. 9. As expected, for MAE → 0 we have TC → 0 in accordance

with the Mermin-Wagner theorem [7], while for MAE > 0.1 meV one can see a linear

growth of TC . The value of MAE can be estimated from first-principles calculations, which

predict MAE ≈ 0.65 meV [25], shown in Fig. 9 by a vertical line. The presence of an
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on-site Coulomb interaction leads to an enhancement of TC , as it is expected from the

suppression of the AFM t2g − t2g interacting channel. Using realistic values for MAE, we

obtain TC = 55 K for U = 0 eV and 63 K for U = 3 eV, which is in reasonable agreement with

the experimental extrapolation to the monolayer limit (45 K) [1]. This allows us to conclude

that introducing additional screening of the Coulomb interaction in CrI3 monolayer (e.g.,

by metallic substrates) is not favorable in terms of magnetic ordering. It is worth noting

that the Curie temperature is found to be almost insensitive to the applied vertical bias:

for non-zero U the difference between V = 0 eV and V = 1 eV does not exceed 1% for

any considered MAE. This observation in consistent with the results of previous theoretical

studies [19]. Nevertheless, we do not exclude further TC stimulation by tuning the balance

between t2g − t2g and t2g − eg interaction channels through the crystal field modification

induced by strain [59], charge doping [60], or by formation of heterostructures [61].

FIG. 9. The Curie temperature in CrI3 as a function of MAE calculated within RPA for U =

0 eV and U = 3 eV. Blue vertical line denotes MAE = 0.65 meV obtained from first-principles

calculations in the presence of spin-orbit coupling [25].

Finally, it is instructive to restore the spin-wave dispersion spectra at zero temperature,

and compare it with the effective first nearest-neighbor models proposed earlier. In Fig. 10,
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we show the corresponding spectra ǫ(q) obtained from the calculated exchange interactions

for U = 3 eV and MAE 0.65 meV with and without the vertical bias, and using the model

from Ref. 58 with J∗
1

= 2.25 meV. One can see a qualitative difference between the two

spectra: the spectrum calculated in our work exhibits narrow bands in the region 5–7 meV

depending on the applied bias voltage, which give rise to sharp peaks in the corresponding

energy region. The difference between the two spectra points to an important role of ex-

change interactions at distances beyond the nearest-neighbor, included in our model. We

also note that the application of vertical electric field modifies the curvature of the spin-wave

spectrum near the Γ point, i.e. the spin stiffness, being one of the basic characteristics of

low-energy magnetic excitations [62, 63]. Assuming quadratic form of the spin-wave spec-

trum at q → 0: ǫ(q) ≈ ∆+DSq2, the spin stiffness constant can be estimated as DV =0
s = 17

meV · Å2 and DV =1
s = 26 meV · Å2, which is in reasonable agreement with previous as-

sessments [64]. One can see that although there is almost no effect of bias voltage on TC ,

the spin stiffness constant can be increased significantly in the presence of vertical electric

field. In our case, for V = 1 eV it is nearly 50% higher. We note, however, that our model

does not include the dependence of MAE on the electric field, as well as it does not take

into account the field-induced inversion symmetry breaking, which is to be accompanied by

the Dzyaloshinskii-Moriya interaction [65]. These effects lie beyond the scope of our present

work, but can be considered in future studies. Our findings suggest a complex character of

magnetic excitations in CrI3, which deserve further attention from both experimental and

theoretical perspectives.

CONCLUSION

We have performed a systematic theoretical study of magnetic properties of monolayer

CrI3, material with vast prospects for technological applications in the domain of spintronics.

Starting from first-principles DFT calculations within the GGA+U approach, we constructed

a low-energy microscopic model for the electronic structure. This model allowed us to

estimate orbital-resolved exchange interactions in CrI3 using the advantage of the magnetic

force theorem.

Orbital decomposition of isotropic exchange interactions revealed an essentially compet-

ing character of t2g − t2g and t2g − eg interacting channels. To explain the interaction origin,
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FIG. 10. Spin-wave dispersion and density of magnon states calculated for CrI3 monolayer using

the exchange interaction obtained in this work with U = 3 eV, MAE = 0.65 meV, V = 0 and 1 eV,

as well as using an effective nearest-neighbor model with J∗
1 = 2.25 meV [58]. The spin stiffness

constant Ds, reflecting the curvature near the Γ point, is provided for reference.

we made use of the Kugel-Khomskii formalism, which assumes two distinct contributions to

the exchange coupling: (i) AFM, governed by the conventional superexchange mechanism

involving occupied t2g orbitals, and (ii) FM, arising from the interaction between occupied

t2g and unoccupied eg orbitals, mediated by the intraatomic Hund’s rule coupling.

We also found that the Coulomb interaction is an important factor stabilizing long-range

magnetic ordering in CrI3. In the presence of additional dielectric screening, the t2g − t2g

FM interacting channel becomes suppressed, leading to a considerable reduction of the Curie

temperature. Our estimation within the RPA scheme gives TC ≈ 63 K, which is in reasonable

agreement with experimental observations. Additionally, we examined the effect of electric

field applied normal to the plane of CrI3. Although it is found that the electric field tends

to destabilize short-range FM ordering, TC remains virtually unaffected.

The calculated exchange interactions allowed us to find interesting details of the spin-

wave spectrum. Contrary to the effective nearest-neighbor exchange models, our calculations

predict the appearance of intensive spin excitations at energies 5–7 meV, depending on the

17



applied bias voltage. Apart from that, we showed that the spin stiffness constant can be

effectively controlled by the external electric field. Summarizing, our findings shed light on

the mechanisms behind the magnetic ordering in CrI3, and can motivate further theoretical

and experimental studies of magnetic properties of this material and its analogues.
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