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Abstract

orbitize! is an open-source, object-oriented software package for fitting the orbits of directly imaged objects. It
packages the Orbits for the Impatient (OFTI) algorithm and a parallel-tempered Markov Chain Monte Carlo
(MCMC) algorithm into a consistent and intuitive Python API. orbitize! makes it easy to run standard
astrometric orbit fits; in less than 10 lines of code, users can read in data, perform one fit using OFTI and another
using MCMC, and make two publication-ready figures. Extensive pedagogical tutorials, intended to be navigable
by both orbit-fitting novices and seasoned experts, are available on our documentation page. We have designed the
orbitize! API to be flexible and easy to use/modify for unique cases. orbitize! was designed by members
of the exoplanet imaging community to be a central repository for algorithms, techniques, and know-how
developed by this community. We intend for it to continue to expand and change as the field progresses and new
techniques are developed, and call for community involvement in this process. Complete and up-to-date
documentation is available atorbitize.info, and the source code is available atgithub.com/sblunt/orbitize.

Unified Astronomy Thesaurus concepts: Open source software (1866); Orbit determination (1175)

Supporting material: animation

1. Introduction

By repeatedly imaging exoplanets, we can directly observe

them moving along their orbits. The physics behind orbits is

well established and straightforward to computationally model,

and can reveal much about the properties and dynamical

histories of planetary systems. For example, misalignment of

the orbital plane with the stellar spin axis can indicate

disturbances early in the lifetime of a system before planets

formed (Bate et al. 2010; Maire et al. 2019). In systems with

circumstellar dust, a planet can warp a disk when the two are

mutually inclined (Lagrange et al. 2010; Dawson et al. 2011) or

scatter comets into the inner planetary system (Thébault &

Beust 2001; Zieba et al. 2019). Planet–planet scattering and

resonant migration in a gas disk can excite observable

eccentricities (Yu & Tremaine 2001; Scharf & Menou 2009),

potentially implying the presence of unseen planets in planetary

systems and constraining formation scenarios. Improved

astrometric precision (e.g., Gravity Collaboration et al. 2019)

could soon lead to the detection of unseen planets based on

perturbations in the orbits we observe. In the future, accurate

orbit models of exo-Earths from future space imaging missions

will be critical to properly assess their climates and habitability

(Williams & Pollard 2002).

While the physics of orbits is straightforward, orbit fitting is
challenging, especially for the current generation of directly
imaged planets. The wide angular separations needed to detect
these objects translate to decades-long or longer orbital periods,
which means that the parameter space of possible orbits is often
large. Orbit-fitting packages such as ExoFast (Eastman et al.
2013) and PyAstrOFit (Wertz et al. 2017) explore these
parameter spaces using a Markov Chain Monte Carlo (MCMC)

approach, but such algorithms often converge slowly in this
regime. Several specialized techniques have been developed in
the past few years to address some of these difficulties (e.g.,
Blunt et al. 2017; Brandt et al. 2019; O’Neil et al. 2019), but it
is often left as an exercise to the reader to implement, debug,
and combine these techniques.
In this paper, we present orbitize!, an open-source orbit-

fitting software package inspired by radvel (Fulton et al.
2018), designed to meet the needs of the high-contrast imaging
community.13 orbitize! is designed to consolidate the
algorithms, techniques, and know-how of the high-contrast
orbit-fitting community in one place. It is fast and robust, but
also clearly written, well documented, and easy to use. We
have designed orbitize! to be flexible and easily modifi-
able so it can grow with the field of high-contrast orbit fitting.
We believe orbitize! to be a code base with a
comparatively low barrier to understanding and contribution.
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We seek to remove obstacles to becoming an expert in direct-
imaging orbit fitting, enabling the field to advance more
rapidly.

This paper is organized as follows. In Section 2, we review
Bayesian orbit fitting for directly imaged astrometry and
discuss the various algorithms used to perform this procedure.
In Section 3, we outline the design of orbitize! and give
examples of how to use the code. In Section 4, we discuss
community involvement guidelines and provide a list of items
on the orbitize! to-do list, and we conclude in Section 5.
We direct readers to articles that use orbitize! to learn
more about the diverse science applications of this software
(Blunt et al. 2019; De Rosa et al. 2019; Ruane et al. 2019;
Ruffio et al. 2019).

2. Fitting Imaged Orbits

2.1. Defining the Orbit

Orbits in orbitize! are parameterized using the angle
conventions from Green (1985): semimajor axis (a), eccen-
tricity (e), inclination angle (i), argument of periastron of the
secondary’s orbit (ω),14 longitude of ascending node (Ω), epoch
of periastron passage (τ), parallax (π), and total mass (MT).
Note that we express epoch of periastron passage (τ) as a
fraction of the orbital period past a specified reference date tref
(default 2020 January 1),

( )⎜ ⎟
⎛
⎝

⎞
⎠

t =
-t t

P
mod 1, 1

0 ref

where t0 is the time of periastron and P is the orbital period. We

chose to fit in τ rather than t0 because the prior bounds for τ are

straightforward (between 0 and 1) no matter the orbital period.

A screen capture from an interactive module intended to help

readers visualize these parameters is shown in Figure 1, and an

interactive version is available.15

In the orbitize! coordinate system, motion along the
positive z-direction causes a redshift. The positive x-direction is
in the positive R.A. direction offset from the primary star, and
the positive y-direction is in the positive decl. direction. The
orbital elements are defined as usual within this reference
frame, with i=0° corresponding to a face-on orbit.

2.2. Bayesian Orbit Fitting

For high-contrast imaging, Bayesian orbit fitting is the
process of converting time-series measurements of a planet’s
location relative to its primary to a posterior over its orbital
parameters. The inputs to this process are times at which
measurements were taken and relative position measurements,
most often expressed as a planet–star separation (ρ) and
position angle (θ), or as offsets in R.A. (α) and decl. (δ).

To compute the posterior over orbital parameters, we use
Bayes’ theorem,

( ∣ ) ( ∣ ) ( ) ( )µ  p m m p m , 2

where ( ∣ )p m is the posterior, ( ∣ ) m is the likelihood (the

probability of the orbit model given the data), and p(m) is the

prior (the probability of the orbit model itself). By default,

orbitize! uses a Gaussian likelihood
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Figure 1. Screen capture of an animated, interactive Python module intended to
help users visualize orbits and the orbitize! coordinate system. Top: R.A.
vs. decl. The orbit’s line of nodes is shown as a dashed line, and the primary’s
location as a pink star. Orbital parameters without associated sliders were fixed
at the following values: a=10 au, τ=0.3, π=30 mas, and MT=1.3 Me.
The mass of the secondary was fixed at 0.01Me. The dark purple arc shows the
portion of the orbit in front of the sky plane, and the lighter purple arc shows
the portion that is behind the sky plane. Middle: stellar radial velocity vs. time.
Bottom: interactive sliders that users can drag to set the values of orbital
elements in the interactive version. A narrated and captioned animation of a
user varying the orbital elements by interacting with the sliders is available in
the online version of this article. In addition, readers are encouraged to
download and interact with this visualization atthis link.

(An animation of this figure is available.)

14
We caution that users must be careful comparing the outputs of radial-

velocity orbit-solving packages like radvel with those of orbitize!, since
radvel fits the orbit of the star, and orbitize! fits the orbit of the planet.
In practice, this just means adding 180◦ to any argument of periastron (ω)
values returned by an radial-velocity code. See Figure 1 of Fulton et al. (2018)
for a visualization of this difference.
15

github.com/sblunt/orbitize/blob/master/docs/tutorials/show-me-the-
orbit.ipynb
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where N is the number of observation epochs with observations

measured in terms of ρ and θ, M is the number of observation

epochs with observations measured in terms of α and δ, ti is the

epoch of the ith observation, ( )r tm i is the separation predicted

by the model orbit at ti, ( )r to i is the observed separation at ti,

and ( )sr to i
is the observational uncertainty on the observed

separation. The inverse tangent function in Equation (4)

accounts for angle wrapping near 0 and 2πto ensure that the

difference between the model and observed value is calculated

correctly. ( )r tm i , ( )q tm i , ( )a tm i , and ( )d tm i are determined by

solving Kepler’s equation, discussed further in Section 3.1.3.
Total mass and parallax are either included as free

parameters and assigned priors motivated by observations or
held fixed in this analysis. In orbitize!, users can select
either option.

2.3. Algorithms for Orbit Fitting

Prior to more modern Bayesian techniques, well-constrained
visual orbits were typically fit with least-square minimization
techniques (e.g., Binnendijk 1960; Sozzetti et al. 1998). While
such methods are computationally efficient, and they effec-
tively find the maximum-likelihood orbit with estimates of the
1D errors and 2D covariances, they do not produce full
posteriors. This is particularly problematic for poorly con-
strained orbits, when the posteriors are distinctly non-Gaussian.

A more computationally intensive method is the least-square
Monte Carlo (LSMC), which generates input orbits by drawing
randomly from a multidimensional parameter space of orbital
parameters. Each of the input orbits is run through an iterative
χ2 minimizer until a stopping criterion is reached (e.g.,
Mugrauer et al. 2012). Several recent publications (Ginski
et al. 2013; Vigan et al. 2016; Maire et al. 2019) have
demonstrated that while LSMC is capable of finding families of
plausible orbits, its output is often significantly different from
the Bayesian posterior. Another Monte-Carlo-based method
was used in Wagner et al. (2016) and Wagner et al. (2018) to fit
short orbital arcs. This method used a multistep grid-search
algorithm to find the maximum-likelihood orbit and Gaussian
point estimates to approximate confidence intervals.

Both LSMC and grid-search algorithms have difficulty
fitting systems with data covering only short orbital arcs, in part
because both prioritize finding the set of orbital parameters
corresponding to the maximum-likelihood solution. In a well-
constrained orbit where the posterior is a 6D Gaussian, either
method should find the best-fitting parameters and recover the
marginalized uncertainty in each parameter. When the poster-
iors are decidedly non-Gaussian, however (which is much more
often the case for orbit fitting in direct imaging), both
techniques fail to adequately derive the shape of the posterior.
Additionally, neither of these methods appears to offer a gain in
computational efficiency compared to Orbits for the Impatient
(OFTI; see below) or MCMC.

In the following two subsections, we describe OFTI and
MCMC, the two backend algorithms available in orbitize!.
These algorithms represent efficient Bayesian methods for
producing plausible sets of orbital parameters that represent the
full multidimensional posterior of orbital parameters. These
posteriors are robust probability density functions with

confidence intervals that are an accurate reflection of the
constraints imposed by the data.

2.3.1. OFTI

The OFTI algorithm is described in detail in Blunt et al.
(2017), but we review it briefly here. Trial orbits are drawn
randomly from priors, and are scaled and rotated to match the
data. Scaling and rotating involves modifying the semimajor
axis and position angle of nodes of the trial orbit to match the
most constrained astrometric data point within the observa-
tional uncertainties, cutting down the large parameter space of
possible orbits. For each scaled-and-rotated trial orbit, Kepler’s
equation is solved (See Section 3.1.3) and a likelihood is
computed. Finally, each orbit is either accepted or rejected by
comparing the likelihood probability to a uniform random
number.
The OFTI algorithm is most efficient when the orbital

posteriors are similar to the priors or, in other words, when the
parameter space is relatively unconstrained. This occurs most
often for short orbital arcs, when the data span only a small
fraction of the total orbital period.
In the case of OFTI, each individual orbit considered is

uncorrelated with the rest, and so the only stopping criterion is
the number of samples desired, which varies by application. To
plot plausible orbit tracks, ∼100 sets of orbital parameters are
sufficient. ∼1000 may be needed for accurate medians and 1σ
confidence intervals on each parameter. Plots of 1D margin-
alized posteriors are well sampled with ∼104 sets, and 2D
parameters with ∼106.

2.3.2. Affine-invariant and Parallel-tempered MCMC

MCMC algorithms are commonly used to sample the
posterior of planetary orbits. orbitize! makes use of two
such algorithms: the Affine-invariant sampler from emcee

(Foreman-Mackey et al. 2013), and the parallel-tempered
MCMC sampler from ptemcee (Vousden et al. 2016). Given
the complex covariances and often multimodal posteriors of the
orbits of directly imaged planets, the Affine-invariant sampler
alone generally fails to fully sample the posterior without fine-
tuned starting locations for the walkers. We offer the use of
ptemcee, which runs multiple Affine-invariant samplers with
different likelihood weights, as an alternative to overcome this
difficulty.
MCMC algorithms generally have similar run times for

orbits with partial phase coverage (Blunt et al. 2017). However,
convergence time is cut down significantly if the orbital
elements are well constrained, such that the posterior is close to
a multivariate Gaussian.
Unlike OFTI, the MCMC algorithms coded in orbitize!

require an initial period for the walkers to fully converge before
they sample the posterior in an unbiased fashion. Convergence
is assessed using a combination of the walkers’ autocorrelation
time as recommended by Foreman-Mackey et al. (2013) and
visual inspection of the walker positions over time to determine
if they are fully exploring parameter space. Unconverged
posteriors typically appear “lumpy,” as different chains are still
in different regions of parameter space, compared to generally
smooth (though not necessarily Gaussian) posteriors for
converged chains. See Figure 4 of Blunt et al. (2017) for an
illustration. The multimodal posteriors of ω and Ω can also
illustrate convergence. Without a measurement of radial
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position or velocity, values 180◦ apart in both ω and Ω are
degenerate. Thus, the chains are more likely to have converged
when the 1D marginalized posteriors on ω and Ω show
symmetric equal peaks.

3. Code Design

3.1. API

orbitize! comprises several modules, each a separate
code file. This section refers to orbitize! version 1.7.0, but
the most up-to-date documentation can be found online.16 The
primary modules are described in the following sections.

3.1.1. Input Data

The orbitize.read_input module is designed to read
astrometric measurements as input to orbitize! in any file
format supported by astropy.io.ascii.read(), includ-
ing csv, fixed width, cds, and LaTeX formats. The main
method in this module is orbitize.read_input.read_
file().

This module also contains the method orbitize.read_
input.write_orbitize_input(), which takes a table
of measurements formatted in the orbitize! format and
writes it as an ASCII file in any file format supported by
astropy.io.ascii.read().

3.1.2. Priors

Priors in orbitize! are represented as subclasses of the
abstract super class orbitize.priors.Prior. Each prior
class can draw random values from its distribution as well as
compute the probability of drawing particular values from that
prior distribution. Other parts of the code use these two
methods to interface with the priors. Currently, orbitize!
implements uniform, Gaussian, log-uniform (Jeffreys), sine,
and linear priors. The default priors listed in Table 1 are used
for orbit fits, but users can easily replace priors by instantiating
their own priors and replacing them in the orbitize.

system.System instance.17

3.1.3. Kepler’s Equation Solver

The orbitize.kepler module converts orbital elements
to position and radial-velocity measurements by generating an
orbital ellipse, placing the companion at the appropriate phase
of the orbit, and rotating the orbit based on viewing geometry.

The instantaneous position of a companion along an orbital

ellipse is defined by the true anomaly ν, the angle between the

location of the companion and periastron, as measured from the

focus of the orbital ellipse. ν cannot be analytically calculated

from a given epoch and set of orbital elements. It is instead

calculated from the eccentric anomaly E, the angle between the

projection of the companion’s location onto a circle of radius a

that intersects the true orbit at periastron, which is calculated in

turn from the mean anomaly M, the fraction of the period that

has elapsed since periastron passage. See Murray & Correia

(2010) for an excellent derivation of the relevant equations

from first principles and visualizations of these quantities.
The conversion between M and E, typically called Kepler’s

equation, is given by

( )= -M E e Esin . 8

This equation cannot be solved analytically. In orbitize!,

we solve Kepler’s equation using one of two different methods

depending on the eccentricity of the orbit. For e<0.95, we use
Newton’s method to estimate E with a default tolerance of

∣ ∣- <-
-E E 10n n 1
9. We use E0=M as a starting point and

typically achieve the required tolerance in three or four

iterations. If a solution to E is not found within a default of

50 iterations, the procedure is restarted with E0=π. If a

solution is still not found, we instead use the numerical

approximation described below to estimate E.
For highly eccentric orbits (e∼1) the number of iterations

required to reach the required tolerance increases dramatically,

especially as M approaches 0 or 2π, significantly reducing the

speed of this solver (Figure 2, left panel). This can be especially

problematic for the parallel-tempered MCMC sampler

described in Section 3.1.6, where the high-temperature walkers

will explore the full range of eccentricities allowed by the prior

distribution. To mitigate this slowdown, we instead use the

numerical approximation for Kepler’s equation described by

Mikkola (1987) for orbits with e�0.95. Mikkola’s algorithm

invokes a cubic approximation to Kepler’s equation and a

numerically intensive (but single iteration) high-precision

correction formula.
We verified the accuracy of Mikkola’s method by comparing

the value of E calculated for a range of (M, e) combinations using

Newton’s method (with a tolerance of 10−18) and using Mikkola’s

method. We find a maximum absolute difference between the

eccentric anomaly computed via both methods of 1.6×10−15

(Figure 2, middle panel), well below the nominal tolerance on the

eccentric anomaly solver of ∣ ∣- <-
-E E 10n n 1
9. While Mikko-

la’s method is strictly more accurate than applying Newton’s

method with a tolerance of 10−9, it is much more computationally

expensive, especially for low-eccentricity orbits where it is a

factor of 10 slower (Figure 2, right panel). For the vast majority

of applications for orbitize! the default tolerance of 10−9

corresponds to a position angle error of 3.6×10−7° for a face-
on circular orbit, well below the precision of current astrometric

measurements.
These algorithms are implemented in C for maximum

computational efficiency. A Python version of this module is

also included in orbitize!, and the package will revert to

the Python version if the C-solver fails to compile on a user’s

machine.

Table 1

Orbit Model Parameters

Parameter Symbol Unit Default Prior

Semimajor axis a au Log-uniform

Eccentricity e Uniform[0, 1]

Inclination i rad Sine[0, π]

Argument of periastron ω rad Uniform[0, 2π]

Longitude of ascending node Ω rad Uniform[0, 2π]

Epoch of periastron passagea τ Uniform [0, 1]

Note.
a
Expressed as a fraction of the orbital period past 2020 January 1.

16
orbitize.info

17
http://orbitize.info/en/latest/tutorials/Modifying_Priors.html
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3.1.4. Planetary System

The main component of the orbitize.system module is

the orbitize.system.System class, which stores obser-

vational data, priors, and posteriors for a star–planet system. To

initialize an instance of orbitize.system.System, a

user inputs a data table, created using the orbitize.

read_input module, a total system mass, and a parallax. The

__init__() method automatically initializes a list of

orbitize.priors.Prior objects in a standard order,

detailed in the online documentation. orbitize.system.

System also has a compute_model() method that takes in

an array of potential orbital parameters and computes model
predictions to be compared against the data. This is the method
called the Keplerian orbit-solver (Section 3.1.3). Note that this
abstraction makes the sampler agnostic of physics; a user could
use any model computation code as a drop-in replacement.
Finally, this class has an attribute results, a list of
orbitize.results.Results objects (Section 3.1.5). In
version 1.7.0, orbitize! is limited to single-planet systems.
Users can create orbitize.system.System objects for
each planet in a multiplanet system, but orbit fits using this
framework currently do not take into account the dynamical
effects of other planets on the orbit fit.

Figure 2. Performance summary of our two Keplerian solvers. Left: number of iterations by the Newton solver required to achieve a tolerance of 1e–9 as a function of
eccentricity and mean anomaly. The Mikkola solver is used for orbits with e 0.95 to mitigate this slowdown at high eccentricities. Middle: absolute difference
between the eccentric anomaly values computed by the Mikkola and Newton solvers. A tolerance of 1e–18 was used in this experiment. The absolute difference
between the two solvers is negligible compared with current astrometric precision. Right: time needed for both solvers to achieve a tolerance of 1e–18. The Mikkola
solver achieves significant performance gains over the Newton solver for high eccentricities.

Figure 3. Orbit figure produced from the code snippet. Left: 100 orbits drawn from the posteriors computed for GJ 504 b, projected on the sky and color coded by
year. Upper right: separation vs. time for the same 100 orbits. Lower right: position angle vs. time for the same 100 orbits.

5
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3.1.5. Results

The orbitize.results module contains code for the
orbitize.results.Results class. Each instance of this
class represents a posterior (whether calculated using OFTI or
MCMC). The orbitize.sampler.Sampler objects add
their output to an instance of this class. This module also
controls saving, loading, and visualizing results.

3.1.6. Samplers

orbitize! implements the OFTI algorithm (Section 2.3.1)
in the orbitize.sampler.OFTI class and two MCMC
algorithms (Section 2.3.2) in the orbitize.sampler.MCMC

class.
The run_sampler() method of the orbitize.sam-

pler.OFTI class generates a posterior of permissible orbits.
This method iteratively runs a series of methods that define the
process of generating and statistically vetting potential orbits
until a desired number of orbits is accepted. Accepted orbits are
then added to an instance of the orbitize.Results class.
This process is arbitrarily parallelizible, and users can easily set
the number of CPU cores available for fits.

orbitize.sampler.MCMC uses MCMC algorithms to
generate a Markov Chain representing the posterior. Setting the
attribute num_temps to 1 invokes the affine-invariant sampler,
and setting it to a number greater than 1 invokes the parallel-
tempered sampler. Users also choose the number of walkers,
the number of threads, and whether they would like to fix
certain parameters so that they are not sampled by the MCMC
algorithm. A convenient API for inspecting chains to assess
convergence is available, and is explained in the online
tutorials and documentation.

3.1.7. Driver

Finally, the orbitize.driver module automates the
creation of the data table and orbitize.system.System

objects. It is a convenient shortcut for standard orbit fits, and
allows new users to begin using the code relatively quickly.
While using this object makes it simple to run orbitize! in a
standard way, users are encouraged to learn about the underlying
API in order to learn how to, e.g., modify priors, customize
plots, and set parameters specific to OFTI or MCMC.

3.2. Example Usage

To illustrate the ease with which a user can run an orbit fit
with orbitize!, we provide a minimal code example below.
The first code block is a Python program a user could run to
produce orbit posteriors and figures, and the second code block
shows the .csv file used as input. One of the strengths of
orbitize! is its customizability, however, and this example
is merely intended to show how easy it is to run a standard orbit
fit, not to give a sense of the full scale of the code’s capabilities.
We encourage users to peruse the online tutorials18 for more in-
depth examples of how to use and modify orbitize!.

In the example below, an orbitize.driver.Driver

object is initialized, and the OFTI algorithm runs until 10,000
orbits have been accepted. To use the MCMC instead of the
OFTI algorithm, the user just needs to switch out the keyword
in line 6. In-line comments are provided to aid understanding.

The two figures produced by this code snippet are shown in
Figures 3 and 4.

1 from orbitize import driver

2 from orbitize import DATADIR

3

4 myDriver=driver.Driver(

5 ‘‘{}/GJ504.csv’’.format(DATADIR), # data file

6 ‘‘OFTI’’, # choose from: [“OFTI,” “MCMC”]

7 1, # number of planets in system

8 1.22, # total system mass [M_Sun]

9 56.95,# system parallax [mas]

10 mass_err=0.08,# mass error [M_Sun]

11 plx_err=0.26# parallax error [mas]

12 )

13 orbits=myDriver.sampler.run_sampler(100000)
14

15 # plot the results

16 myResults=myDriver.sampler.results

17 orbit_figure=myResults.plot_orbits(

18 # minimum MJD for colorbar (choose first data epoch)

19 start_mjd=myDriver.sampler.epochs[0]

20 )

21 corner_figure=myResults.plot_corner()

1 # Table 12 of Blunt et al. 2017

2 # Previous Observations of GJ 504 b

3

4 epoch,object,sep,sep_err,pa,pa_err

5 55645.95,1,2479,16,327.94,0.39

6 55702.89,1,2483,8,327.45,0.19

7 55785.015,1,2481,33,326.84,0.94

8 55787.935,1,2448,24,325.82,0.66

9 55985.19400184,1,2483,15,326.46,0.36

10 56029.11400323,1,2487,8,326.54,0.18

11 56072.30200459,1,2499,26,326.14,0.61

3.3. Comparison to Published Results

As an example of the reliability of orbitize!, we
calculated the orbital posterior for GJ 504 b and compared it
with the results presented in Blunt et al. (2017). The orbital
elements in that reference were determined using an indepen-
dent implementation of OFTI. We obtained 1,000,000 sample
orbits using orbitize! and the published astrometry. Our
orbitize! orbital parameter posteriors agree with the
published distributions with 95% confidence, as shown in
Table 2. We carried out an identical comparison to the orbit fit
presented in Pearce et al. (2019) and find that the results also
agree for this system.

4. Future Prospects

4.1. Community Involvement Guidelines

In order to realize our goals of consolidating direct-imaging
orbit-fitting best practices in one place and continually adapting
orbitize! to serve the direct-imaging community, we
require substantial community involvement. We strongly
encourage anyone interested in using orbitize! to con-
tribute code. We maintain a document with specific contributor
guidelines19 on our GitHub page.

18
http://orbitize.info/en/latest/tutorials.html

19
https://github.com/sblunt/orbitize/blob/master/contributor_

guidelines.md
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In addition to directly contributing code, we encourage
community members to request features, report bugs, and
provide feedback through raising issues on GitHub. This is the
most efficient way to reach the entire development team.

4.2. Future Work

orbitize! has a long and exciting list of planned updates.
A version 2.0 release, intended to implement many of these, is
planned for 2020. Key upgrades in version 2.0 will be enabling

dynamical mass measurements by jointly fitting radial velocity

and stellar astrometry data sets, as well as fitting multiplanet

systems. To summarize, the major upcoming features are:

1. jointly fitting radial velocities;
2. incorporating independent radial-velocity fits as priors;
3. jointly fitting stellar astrometry;
4. fitting multiplanet and hierarchical systems;
5. fitting using other orbital element parameterizations (e.g.,

we cos and we sin rather than e and ω)

Figure 4. Corner plot produced from the code snippet. The diagonals show 1D marginalized posteriors for each free parameter in the GJ 504 b orbit fit (semimajor
axis, eccentricity, inclination, argument of periastron, position angle of nodes, epoch of periastron passage, parallax, and total mass). The off-diagonals show 2D
covariances between these parameters. This plot was produced using corner (Foreman-Mackey 2016).
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6. incorporating an N-body integrator to replace the standard
Kepler solver where three-body interactions are non-
negligible;

7. adding instrument-specific jitter and offset terms to the
parameterization to account for potential uncorrected
instrumental calibration systematics;

8. adding a Hamiltonian MCMC algorithm backend;
9. and incorporating observation-driven priors (e.g., O’Neil

et al. 2019).

5. Conclusion

In this paper, we have presented orbitize!, an open-
source Python package for fitting the orbits of directly imaged
planets. orbitize! uses OFTI and MCMC, two efficient
Bayesian methods for computing posteriors. We aim to
encourage community contributions, remove barriers to
becoming an expert in orbit fitting, and provide an open-
source development environment in order to meet the orbit
fitting needs of the high-contrast exoplanet imaging
community.

The authors thank those at academic and telescope facilities
whose labor maintains spaces for scientific inquiry, particularly
those whose communities are excluded from the academic
system.

This package was born and developed at the winter 2018 and
2019 AAS Hack Days, and the authors wish to thank the
organizers of these events. S.B. would like to thank Logan
Cody for superb video editing. The authors would also like to
thank Dillon Dong, Jasmine Garani, Melisa Tallis, and Daniel
Yahalomi for their time and initial work on orbitize!, and
Junellie Gonzalez, Kelly Kosmo O’Neil, Ryan Rubenzahl, and
Jean-Baptiste Ruffio for participating in our hackathons and for
their anticipated future contributions to orbitize! S.B.
would like to thank Andrew Howard, B.J. Fulton, and Erik
Petigura for helpful conversations. Finally, we thank the
anonymous individual who unknowingly named orbitize!
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Table 2

Orbital Parameter Posteriors for GJ 504 b Obtained Using orbitize! Compared to Those Published in Blunt et al. (2017)

Element
orbitize! Blunt et al. (2017)

Median 68% CI 95% CI Median 68% CI 95% CI

a (au) 47 (40, 65) (32, 111) 48 (39, 69) (31, 129)

ea 0.16 (0.04, 0.36) (0.00, 0.56) 0.19 (0.05, 0.40) (0.01, 0.62)

i (°) 140 (126, 160) (116, 172) 140 (125, 157) (111, 171)

ωb
(°) 103 (36, 154) (10, 176) 95 (31, 151) (4, 176)

Ω
b

(°) 106 (52, 153) (11, 175) 97 (46, 146) (8, 173)

T0
c 2159 (2073, 2293) (2004, 2459) 2145 (2068, 2310) (2005, 2825)

Notes.
a
A linearly descending eccentricity prior was applied, as in Blunt et al. (2017).

b
ω and Ω have been wrapped by 180°, as in Blunt et al. (2017).

c
Epoch of periastron passage is reported as T0 here (as a decimal year, contrary to the orbitize! convention) in order to facilitate easy comparison with Blunt et al.

(2017).
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