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ABSTRACT.   Let  D  be an arbitrary set of  C     vector fields on the   C     mani-
fold  M.   It is shown that the orbits ol  D  are   C      submanifolds of M,  and that,
moreover, they are the maximal integral submanifolds of a certain   C     distribu-
tion  P„.   (In general, the dimension of PrJm) will not be the same for all  m cM.)
The second main result gives necessary and sufficient conditions for a distribu-
tion to be integrable.   These two results imply as easy corollaries the theorem
of Chow about the points attainable by broken integral curves of a family of vec-
tor fields, and all the known results about integrability of distributions (i.e. the
classical theorem of Frobenius for the case of constant dimension and the more
recent work of Hermann, Nagano, Lobry and Matsuda).   Hermann and Lobry stud-
ied orbits in connection with their work on the accessibility problem in control
theory.   Their method was to apply Chow's theorem to the maximal integral sub-
manifolds of the smallest distribution   A such that every vector field  X in the
Lie algebra generated by  D  belongs to  A   (i.e.   X(zzz) e A(zzz)  for every  m eM).
Their work therefore requires the additional assumption that  A be integrable.
Here the opposite approach is taken.   The orbits are studied directly, and the
integrability of A is not assumed in proving the first main result.   It turns out
that  A is integrable if and only if   A = P„,   and this fact makes it possible to
derive a characterization of integrability and Chow's theorem.   Therefore, the
approach presented here generalizes and unifies the work of the   authors   quoted
above.

1.  Introduction.   Let D be a set of C°° vector fields on the   C°° manifold  M.

We are interested in studying the zO-orbits.   Precisely, let   G be the "group" of

local diffeomorphisms generated by the one-parameter groups whose infinitesimal

generators are the elements of  D.    The   D-orbits are the orbits of the action of  G.

Our main result (Theorem 4.1) states that the D-orbits (with a natural topology that

that we define in §2) are   C     submanifolds of   M.   Moreover, we show how to as-

sociate with  D a   C     distribution   Pp   (i.e. a mapping which to each  m £ M as-

signs a linear subspace of the tangent space to  M at   ttz; the dimension of this

subspace may vary with  ttz,  and the mapping is supposed to be   C     in a sense

made precise in §3).   This distribution has the property that through every point

of  M there passes a maximal integral manifold of   P„  and that, moreover, these

maximal integral manifolds are precisely the orbits of  D.
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The orbits of an arbitrary set  D  of vector fields have been studied in the lit-

erature because of their importance in Control Theory (cf. Hermann [4], Lobry [5jj

Sussmann and Jurdjevic 18]).   The method that has been used so far relies on a

theorem by Chow [2], and on the theory of integral submanifolds of distributions.

Let  D    denote the smallest set of vector fields which contains  D  and is closed

under Lie brackets.   Chow's theorem says that if  D  im) has maximal rank for each

m £ M,  then the orbits of  D  are precisely the connected components of  M  (here

we use the notation  DAm) = iX(77z) : X £ D   \).   Even if the assumption of Chow's

theorem is not satisfied, it is still possible to get a good description of the or-

bits.   To achieve this one associates with  D  a distribution  J ÍD), defined by let-

ting, for each ttz £ M, A(D)(ttz) = linear hull of D  im).   Then Chow's theorem is

applied to the maximal integral manifolds of J(D),   and it follows that these mani-

folds are the orbits of D.
The method outlined in the preceding paragraph has an obvious drawback:

the maximal integral manifolds of J (D) need not exist.   This can be seen by sim-

ple examples (cf. §3).   However, in these examples the orbits are still submani-

folds, even though this fact cannot be proved by means of Chow's theorem.   This

suggests that the "pathology", when it occurs, arises from the integral manifolds,

and not from the orbits.   Our Theorem 4.1 substantiates this assertion.   Roughly

speaking, the orbits are always well behaved.   Moreover, they are given as maxi-

mal integral manifolds of a   C     distribution  Pp.   The reason why the method based

on Chow's theorem is unable to handle the pathological cases is simply that, in

general, the distribution  J (/?) does not coincide with   Pp.   The "right" distribu-

tion to look at is   Pp, and the situations in which Chow's theorem can be applied

correspond precisely to those cases when   Pp - J (/?)•

As a by-product of our work, we shall obtain a complete characterization of

those  C°° distributions  A  that have the maximal integral manifolds property (i.e.

through every point of M there passes a maximal integral manifold of A).   This

characterization is given in Theorem 4.2, and it implies all the known results

about integrability of distributions.   We shall now indicate how this result relates

to previous work.

An obvious necessary condition for a  C°° distribution A  to have integral

manifolds is that it be involutive (the definition is given in §3).   If, in addition,

the dimension of A(ttz) is constant, then this condition is also sufficient (this is

the classical theorem of Frobenius, cf. Chevalley Ll]).   When the dimension of

A(ttz) varies (i.e. when A  has "singularities"), extra assumptions are needed.

Hermann [4] stated various conditions that would guarantee integrability.   Nagano

[7] proved that integrability follows if  M  is a real analytic manifold and A  is an

analytic distribution.   Lobry [5] introduced a condition (that  A be "locally of
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finite type") which also implies integrability.   Moreover, since this condition is

automatically satisfied in the analytic case, Lobry's work provides a new proof of

Nagano's result.   Matsuda [6] showed that integrability also follows from a "con-

vergence condition".   Our Theorem 4.2 contains all these results.   Its proof con-

sists essentially of isolating from the conditions of Hermann and Lobry only what

is strictly necessary to obtain integrability.

As a second by-product of our work, we submit that, by looking at orbits (ra-

ther than integral manifolds) as the fundamental objects to be studied, one obtains

an approach that clarifies and unifies many known results.   To substantiate this

claim, we have made this paper practically self-contained, and included proofs

(by our methods) of results that are not new.   (Another reason for this is that the

main applications of our results are to the study of controllability problems, and

we wish to make this article readable by an audience which is only acquainted

with the rudiments of differential geometry.)   As an illustration of the advantages

of our approach, we show in §7 how our results imply Chow's theorem.

The organization of the paper is as follows:   in §2 we introduce the basic

definitions and notations concerning families of vector fields, groups of local dif-

feomorphisms, and orbits.   In particular, this section contains the definition of the

"natural" topology of the orbits.   In §3 we define what is meant by a  C°° distri-

bution, and we introduce the distribution   Pp.   A remark at the end of the section

explains its geometric meaning.   In §4 we state our two main theorems.   The

proofs of Theorems 4.1 and 4.2 are given in §5 and §6, respectively.   In §7 we

derive Chow's theorem.   In V8 we discuss the connection of Theorem 4.2 with

known results on integrability of distributions and, in particular, we derive the

theorems of Frobenius, Hermann, Lobry and Matsuda.   In §9 we make a few re-

marks about the analytic case and indicate, following Lobry, how to derive

Nagano's result.

Finally, two remarks on terminology.

(a) We have chosen to speak about "groups" of local diffeomorphisms to

emphasize the analogy with the case of a Lie group acting on a manifold.   These

groups of local diffeomorphisms are not groups in the algebraic sense, unless they

consist of everywhere defined diffeomorphisms.   For a similar reason, we use the

word "orbit" rather than "leaf" (Hermann [4], Lobry [5]).   The reader who wishes

to do so may substitute "pseudogroup" for "group" and/ or "leaf" for "orbit".

(b) The distribution which we have denoted by J (D) (following [8]) will be
denoted in the rest of this article by  AD*   according to the general notational
conventions of "§3.

2.   Families of vector fields and orbits.   Throughout this paper, all manifolds

are supposed to be of class  C°° and paracompact.   If M is a manifold, a submani-
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fold of M  is a manifold  S such that S  is a subset of  M  and that the inclusion

map from S  into  M  is a  C     map whose differential is everywhere injective (in

particular, the inclusion map is continuous, but it is not required that S be a to-

pological subspace of M).

We shall use  M     to denote the tangent space to the manifold  M at the point

77Z.   If S is a submanifold of M, and if s £ S,  S    can be identified in a natural way

with a subspace of  M  .   In particular, the meaning of expressions such as "the

vector field  X  is tangent to the submanifold S" is clear.

VÍM) will denote the set of all  C°° vector fields defined on open subsets of

M.   If X and   Y  belong to  V(M), then the Lz'e bracket [X, Y] of X  and   Y is a
vector field which is defined on the intersection of the domains of definition of X

and   Y,  and which is given by the formula

[X, Y]/= X(Yf)- Y(Xf)

for / a  C     real-valued function on  M.   (To avoid the need for remarks such as

"provided the domains of X  and   Y intersect", we shall declare   the empty vec-

tor field to be an element of  V(M).   A similar remark applies to other concepts to

be introduced later, such as local diffeomorphisms.)

If X € VÍM), an integral curve of X  is a  C°° curve   Z —» yit) such that, for

every  Z  in the domain of definition of y, the tangent vector to  y at  t is   Xiyit)).

By well-known  theorems, for every ttz  in the domain of X there exists an integral

curve y of X  such that y(0) = 77z,  and which is defined in an open interval /

which contains the origin.   Moreover,  y is unique if we require, in addition, that

the interval / be maximal (i.e. if y is not the restriction of an integral curve which

is defined on an interval which properly contains /).   We shall refer to this curve

as the integral curve of X through  ttz.    To indicate the dependence on  X  and  ttz

(as well as   z) we shall write  X im) instead of yit).   It is well known that the map-

ping  it, m) —» X im) is a  C°° map from an open subset fi(X) of R x M  into  M.

For each  t,  X    is a diffeomorphism from an open subset  fi  of  M  onto an open

subset fi'.   The set fi (which may be empty) will be denoted by fi (X).   It is then
clear that  fi    is precisely fi    (X).

We shall need some notations for composites of several maps of the form X

If A   is an arbitrary set, let  Am  denote the set of all (ordered) zzz-tuples of ele-

ments of A.   Let £ £ ViM)m and  T £ Rm,   m £ M.   If f = (X1, ... , Xm) and T =
(Zj, • ■ ■ , t  ), then £Tim) will denote the point

X1  (X2(... X" (m).--)).
12 n

It is clear that £fTim) will be defined for all  (T, ttz) which belong to an open

subset of  Rm x M.   We shall use  fi(<f ) to denote this set, and   fiT(rf ) to denote
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the set of all ttz  such that  (T, ttz) £ fi(<f) (i.e.  the set of all  m  for which çJm)

is defined).
A local diffeomorphism on  M  is a C     diffeomorphism from an open subset fi

of M onto an open subset fi.   If 8 '. : fi. —> fi. (z = 1, 2) are local diffeomorphisms,

then the composite 8X82  is a local diffeomorphism, with domain 8~ (fi.) and

range S,(fi2 O fi,).   The inverse of   <5.   is denoted by  87 , and is a local diffeo-

morphism with domain  fi,   and range  fij.   The formal laws

(S1S2)z53 = z51(/52S3)    and    (S^)"1 =S2-1S71

are clearly valid.
A group of local diffeomorphisms is a set  G  of local diffeomorphisms which

is closed under compositions and inverses.   If  X e VÍM) then the mapping  X    is

a local diffeomorphism for every  Z.    The set  of all such local diffeomorphisms is

called the group of local diffeomorphisms generated by  X,  and is denoted by  Gx.

More generally, let  D be a subset of  VÍM).   There exists a smallest group of lo-

cal diffeomorphisms which contains the union of the   GY  for  X £ D.   We shall use

Gp to denote this group, and we shall call it the group of local diffeomorphisms

generated by D.    It is clear that the elements of  GD  are precisely the mappings

which are of the form çT where, for some positive integer n, ^ £ D" and  T £ R".

If X = (A.j, ... , X ) and p = (px, • ■ • , p.) are finite sequences, we use Xp

to denote the sequence (Xx, ■ ■ ■ , X , px, • ■ ■ , pA,. Also, A will denote the se-

quence  (X  , • • ■  , Aj).   With this notation, the operations of  Gp  are given by:

^j.rjj.1 = (¿;t))tt'     and    (£T)_1 = £_ f..

We say that a subset D  of  V(M) is everywhere defined if the union of the do-

mains of the elements of D  is  M.   Similarly, a group of local diffeomorphisms  G

is everywhere defined if every m £ M belongs to the domain of some  g £ G.

Let  G be an everywhere defined group of local diffeomorphisms on  M.   We

say that two elements  ttz and  ttz    of M  are G-equivalent if there is a  g £ G such

that g(7Tz,)= ttz,.   This clearly defines an equivalence relation on  M.    The equiv-

alence classes modulo this relation are called the orbits of  G  (or G-orbits).   If

D C V(M) is everywhere defined, the GD-orbits will be referred to as the orbits of

D,  or D-orbits.   Two points  ttZj   and  ttz2  belong to the same orbit if and only if,

for some positive integer  rz,  there exist <f £ D" and   T £ R"  such that ¿jT(mA =

77z2.   Equivalently,  ttZj   and  ttz2   belong to the same orbit if and only if there exists

a curve  y: [a, b] —> M such that  y (a) = ttz,, yib) = m2,  and which has the follow-

ing property:

(PI) There exist numbers Z. such that a = Iq< tx < • ■ • < t = b and vector

fields  X1 £ D  (i = 1, • . ■ , r) such that, for each  z,  the restriction of y to
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lt.  ,, tx1 is an integral curve of X'  or of — X1.

A curve y which satisfies condition (PI) will be called a piecewise integral

curve of D.
The orbits of D can be given a natural topology.   If ttz £ M and ç £ Dn,  let

Pf      denote the map  T —» £,Tim) and let  fizr       (Ç Rn) be its domain.   Now let  S

be the orbit of D through ttz.    Then S is the union of the images of all the map-

pings  pp    .   We topologize  S by the strongest topology which makes all the pc

(for all n and all ç £ D") continuous.   Since the topology of  S as a subspace of

M  has this property, it follows that the inclusion map from  S  into  M  is continuous.

In particular,  S is Hausdorff.   S will not be, in general, a topological subspace of

M.   Since all the sets  fi¿r      are connected it follows that  S  is connected.
S ,777

We now verify that the topology so defined on S does not depend on the

choice of ttz £ S.   For each ttz £ S,  let Sm denote  S with the topology defined

above by means of the maps  pe    .   It is sufficient to prove that the inclusion map

i : Sm —* Sm    is continuous for every ttz, ttz.    Let  q, TQ be such that  r)T (m ) = m.

Then p¿      is the mapping  T —> ̂ j-rjj- (m ), which is the composite of  T—>TTQ

and  Odr^,    / .   Since  p.-      ,    is continuous into Sm , it follows that  Oc     : fit    —>SmrÇV,m rST),77! ' rÇ ,rn Ç ,m

is continuous.   Since this is true for all ç, our conclusion follows.

3.   Distributions.   A distribution on a manifold  M  is a mapping A  which as-

signs, to every  m £ M,  a linear subspace  A(ttz)  of the tangent space   M   .

A set of vector fields is said to span the distribution  A  if, for every  ttz £ M,

Aim) is the linear hull of the vectors  X(?rz), where   X  belongs to the given set.   If

D C VÍM) is everywhere defined, there is a distribution A  which is spanned by D.

This distribution will be denoted by AD.   A distribution which is of the form Aß
for some everywhere defined subset  D of  VÍM) is called a   C°° distribution.

A vector field  X £ VÍM) belongs to the distribution A  if X(ttz) £ Aim) for
every  m in the domain of X.   We let  D¿ denote the set of all  X £ VÍM) which be-

long to A.   It is clear that A  is a   C°° distribution if and only if A  is spanned by

If G is a group of local diffeomorphisms on M, then the distribution A  is said

to be G-invariant if dg maps A(ttz) into Aigim)) for every  ttz £ M and every g such

that ttz belongs to the domain of g.    If A  is G-invariant and if g, m are as above,

then dg~    maps  A(g(7rz)) into A(ttz).   In particular, the dimension of A(ttz)  is the

same for all points   ttz  which belong to a given G-orbit.

If A,   and A2  are distributions, we say that A,   is contained in  A2  if Aj(t?z)

C A2(t7î) for every  ttz.    If A  is a distribution and  G  is a group of local diffeomor-

phisms, then there is a smallest distribution A     which contains  A  and is G-in-

variant.   The space  A   (ttz) is the linear hull of all the vectors  v £ V     such that

v £ Aim) or  v = dgiw) where  g £ G and, for some  m' £ M,   ttz = gimA and w £ AW).
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If A is spanned by D C VÍM), then A is spanned by the union of D and the set

of all vector fields which are images of elements of D under local diffeomorphisms

that belong to G.   In particular, if  A  is a C°° distribution, then  A     is also C°°.

If D C VÍM),  a distribution which is G^-invariant is said to be D-invariant.

The smallest D-invariant distribution which contains  A is denoted by A   .

Let D  be an everywhere defined subset of V(M).   We'are interested in the

distribution Ap,  i.e. the smallest distribution which is D-invariant and contains

Ap.   This distribution will be denoted by  Pp.    Clearly,  Pp  is a C°° distribution.
It follows from the preceding remarks that the dimension of Pd(t7z)  depends only on

the D-orbit of ttz.   If 5 is a D-orbit, and if m £ S, then the dimension of Ppim) is

called the rank of the orbit S.
A set D C VÍM)  is said to be involutive if, whenever X £ D   and  Y £D,  it

follows that  [X, Y]  belongs to D.    If D C V(Al)  is arbitrary, then there exists a

smallest involutive subset of V(M)  which contains  D.    This set will be denoted

by D*.
A  C°°  distribution A is involutive   if the set D^   is involutive.   It will be

shown below that, if D C V(M)  is everywhere defined, then  P-,  is involutive.

Since every X £ D  belongs to  Pp,  we have the inclusions

(3-D ADÇA^CPD.

It is clear that the first inclusion in (3.1) may be proper.   The following ex-
2ample shows that this is also possible for the second inclusion.   Let M   be  R   ,

and let the coordinates be denoted by x  and y.   Let D  consist of two vector

fields X,   and X 2.   Precisely, let

Xx = d/dx,       X2 = (bd/dy

where  d>ix, y) = i/Hx),  and  if/  is a  C°° function such that  ifi(x) = 0 for x < 0  and

ib(x) > 0 for x > 0.   Clearly,  Ppix, y) has dimension two if x > 0.   Since every

point of AI   can be joined to a point (x, y)  with x > 0  by a piecewise integral

curve of D,  it follows that Pp  has dimension two everywhere.   On the other hand,

it is clear that  A^* has dimension one whenever x < 0.

A submanifold  S of M   is said to be an integral submanifold (or integral mani-

fold) of the distribution  A if, for every s  £ S,  the tangent space S    is exactly

A(s-).   A  C°° distribution  A has the integral manifolds property  if for every ttz  £ M

there exists an integral manifold 5  of  A  such that m £ S.   If A has the integral

manifolds property then a  C°° vector field X  belongs to  A  if and only if X  is

tangent to every integral manifold of  A.   It follows that a  C     distribution which

has the integral manifolds property must be involutive.    The converse is not true,

as shown by the distribution  A^,  where D = iX„ X2J  is the set of vector fields

that was introduced in the example discussed above.
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If A is a  C     distribution, a maximal integral manifold of A  is a connected

submanifold S  of M   such that
(a) 5  is an integral manifold of A,  and

(b) every connected integral manifold of  A  which intersects S  is an open

submanifold  of  A.
It follows trivially from the definition that any two maximal integral submani-

folds through a point ttz  must coincide.

We say that  A has the maximal integral manifolds property if through every

point ttz  £ M   there passes a maximal integral manifold of  A.

Remark.   The following considerations have the purpose of clarifying the geo-

metric meaning of Ap*   and  Pp.   Suppose that we are trying to define a distribu-

tion  A  with the property that the orbits of D  are the maximal integral manifolds

of A.   It is reasonable to define  A(ttz)  as the set of all tangent vectors at ttz  of

curves  y that pass through m  and are entirely contained in the D-orbit of m.

Let T    be the set of all such curves.   If X £ D,  then the curve  Z —► X im) be-
ÏT2 ' t

longs to  T  .   Therefore,  A(ttz) must contain X(t7z).   Now let X £ D,   Y £ D.    The

curve

t^XtiYtiX_tiY_tim))))

also belongs to  T.   After a reparametrization, it is well known that the tangent

vector to this curve at  Z = 0  is  LX> YKttz)  (cf. Helgason [3, p. 97]).   Therefore

A(ttz) must also contain  [X, YKttz).   A similar argument can be applied to higher

brackets, and we conclude that  Ap*  must be contained in  A.   However, there

may be more directions that have to be included in  A(ttz), besides those of Ap^m).

For instance, let X e D  and let  T eR  be fixed.   Write m' = X_Tim).   If t—> yit)
is a curve such that  y(0) = ttz'   and y eV  ,, then the curve  8 given by  Z—>

XAyit)) belongs to  T  .   If   v  is the tangent vector to y at Z = 0, then the tangent

to 8 at t = 0 is dXTiv).   Therefore, if v £ Aim'), then dXTiv) must belong to

A(ttz).   Therefore,  A must be D-invariant.   This suggests that we define A to be the

smallest D-invariant distribution which contains  A p*.   It would not be hard to

prove directly that the same result is achieved by taking  A to be the smallest

D-invariant distribution that contains  Ap, i.e. by taking  A = Pp  (this will follow

from the results of the next section.   Specifically, the inclusion  Ap* Ç Pp is a

corollary of Theorem 4.1).   The reason why Ap*   may not be the "right" distribu-

tion to look at can now be understood:   It may happen that  Ap*   does not contain

sufficiently many directions.   More precisely, one may move within the orbit of ttz

by "going  far away", moving along an integral curve of an X £ D,  and then com-

ing back.   Directions of motion obtained in this way need not belong to  Ap*(77z),

but they will belong to  Ppim).
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4. Statement of the main results.   We now state the two main theorems.

Theorem 4.1. Let M be a C°° manifold, and let D be an everywhere defined

set of C     vector fields.    Then
(a) // S is an orbit of D,   then S  (with the topology of §2) admits a unique

differentiable structure such that  S is a submanifold of M.     The dimension of S

is equal to its rank, as defined in s 3.

(b) With the topology and differentiable structure of (a), every orbit of D is a

maximal integral submanifold of Pp.

(c) Pp has the maximal integral manifolds property,

id) Pp  is involutive.

Our formulation of Theorem 4.1 was chosen so that the statement will contain

all the relevant information about the orbits of D and the distribution Pp. Notice

that parts (c) and (d) of Theorem 4.1 are immediate corollaries of (a) and (b).

We now turn to our second theorem.

Theorem 4.2.   Let M  be a  C     manifold, and let  A be a  C     distribution on

M.   Let D  be a set of C°° vector fields which spans  A iso that, in particular,   D

is everywhere defined).   Then the following conditions are equivalent:

(a) A has the integral manifolds property.

(b) A has the maximal integral manifolds property.

(c) A z's D-invariant.

(d) For every  X £ D,   t £ R,   m £ M  such that X im) is defined, then dX
maps  A(ttz) into  A(X im)).

(e) For every  m  £ M  there exist elements  X  , • ■ • , X    of D such that

(1) A(ttz)  is the linear bull of Xlim), ■ ■ ■ , Xk(m), and
(2) for every  X £ D  there exists c > 0 such that there are  C     functions

f\ (l < z, j < k) which are defined in the open-interval i-e, e) and satisfy

[X, X'l iXtim)) = ¿   fjit)XHXtim))
i- i

for -e< t< e, i = 1, • • • , k.
it) A = PD.

Theorems 4.1 and 4.2 will be proved in the following two sections.

5. Proof of Theorem 4.1.   We let  D  be an everywhere defined set of C

vector fields on M.    Let S  be an orbit of D.    We give  S  the topology of §2.   Let

k  denote the rank of S.    We shall use the notations  pp    ,  fi/r      that were intro-
b,772 b.ZTZ

duced in §2.   Let  D°° denote the union of the sets  D",  taken over all positive

integers  n.    Recall that, if ç £ D",  then fi¿r      is an open subset of R",  and
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pe is a C msp f'om fit into M. Moreover, if ttz e 5 then pp is a contin-

uous map into S. If ¿; e D°°, m £ M, T £ tip m, we let V(¿j, ttz, T) denote the im-

age of the tangent space to fi/r at T under the differential of pp . It follows

that V(<f, m,T) is a subspace of M   i,  where ttz' = zf-Grz).

Theorem 4.1 will be a consequence of the following lemmas.

Lemma 5.1.  Let ¿f £ D°°, ttz e S,   T £ Up m, mQ = ^t(ttz).   Then  ViÇ, m, T) is
contained in  PpimA.

Lemma 5.2.  Let 77zn £ S.   Then there exist <f £ D°°, m £S,T efit     szzci

Zzjaz  ¿Jt(ttz) = 77zn and V(£, m, T) - PpimQ).

Lemma 5.3.  Let N  be a connected integral submanifold of PD  and let   U be

its underlying set of points.    If U  intersects S then  U is  an open subset of S.

Proof that the lemmas imply Theorem 4.1.  Let m0 £ S.    By Lemma 5.2 there

exist m £ S,   (fe D00, T eu;      such that £Tim) = mQ and V(<f, m, T) = Ppim0).
The differential of pp      has rank k  at  T.    By Lemma 5.1, the rank of dpp      can-

not exceed k  at any point of fit    .   Let  <f £ D".   By awell-known form of the

implicit function theorem, there exist neighbourhoods (i  of T in R"  and  V  of

ttz 0  in M,  and diffeomorphisms  tf>, if/ from  U  onto C"  and from  V  onto  C^ such

that the following diagram

P?..m

commutes, and that  4>iT) = 0,  if/im Q) = 0.   Here we are using the notations

C = {(*!,■
E

xp) : -1 < x. < 1  for  i = 1, , p\,

p,k{xv ••• > v> = (v •••»**. °» ••• »o).

vher '0, , 0" denotes a string of p — k  zeroes,  and p = dim M.

Let A denote the submanifold of M   which is the inverse image under if/ of

E        ¡AC").   The set of points of A is precisely pp    ((/).   If T  £ U,  then the
tangent space of A at ttz' = pp    (T ) is V(<f, m, T ).   By Lemma 5.1,  V(<f, m, T )
is contained in  Pp(Trz').   Since both spaces have dimension k,  it follows that

A   , = Ppim').   Therefore  A is an integral submanifold of Pp.    It is clear that A

is contained in S.    By Lemma 5.3, the set of points of  A is open in S.    Let /  de-

note the inclusion map from A into S.   Lemma 5.3 can be applied to every open

connected subset W of A.   Moreover, the open connected sets constitute a basis
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for the topology of  A.    Therefore,   / is an open map.   Moreover,   / is the composite

of the inclusion  /':   A —* V, the diffeomorphism if/, the mapping  E     ^k,  tne dif-

feomorphism  qb~     and the map Pp m-   Since  pp m  is continuous as a map into S,

we conclude that  / is continuous.   Therefore we have shown that  / is a homeo-

morphism onto its image and that this image is open in  S.

Let 2  denote the set of all manifolds  A that can be obtained by the construc-

tion that was described above.   For each A £ 2,  let  U(A) denote the underlying

set of  A.   It is clear that the sets   iXA) form an open covering of  S,  and that for

each  A £ 2  the inclusion of A onto  S is a homeomorphism onto its image.   There-

fore, we have a family of differentiable structures on a family of open subsets of

S which cover S.   We want to define a differentiable structure on  S in such a way

that all the members of 2 will be open submanifolds of S.   It is sufficient to

prove that, if  A. £ S (z = 1, 2)  then the differentiable structures of  t/(Aj) n U(A)

as open submanifolds of A,   and  A2  coincide.   Let these manifolds be denoted

by  W,, W2,  and let  /: W. —» W2 be the identity map.   It is sufficient to prove
that  / is   C"".   Since   W    is a submanifold of M,  this will follow if we show that

/  is continuous.   But the continuity of  / is a consequence of the fact that the in-

clusions of W.   into  S are homeomorphisms for  z= 1, 2.

We have proved that S admits a differentiable structure which is compatible

with the topology of §2, and is such that S is a submanifold of M. The unique-

ness of such a structure is immediate. It follows from our construction that S is

a ¿-dimensional manifold, and that S is an integral submanifold of  Pp.

We now show that  5 is a maximal integral submanifold of  Pp.    It is clear that

S is connected (cf. §2).   Let T be a connected integral submanifold of  Pn  which

intersects  S.   By Lemma 5.3, the set   UÍT) of points of T is an open subset of  S.

As before, we can apply Lemma 5.3 to every open connected subset of V, and use

the fact that these sets are a basis for the topology of T.   It follows that the in-

clusion map from  T into   S is open.   Let  V be the open submanifold of  5 whose

underlying set is   UiF).   Let  /: T' —> T be the identity map.   The preceding re-

marks show that  / is continuous.   Since  T    and  T are submanifolds of  M, it fol-

lows that  / is   C°°.   Since   / is regular, we conclude that  / is a   C°° diffeomor-

phism.   Therefore V = T ,   so that V is an open submanifold of  S.    The proof that

S is a maximal integral submanifold of  Pp  is complete.

The preceding paragraphs establish statements (a) and (b) of Theorem 4.1. The

remaining statements follow trivially from these. The proof of Theorem 4.1 is now
complete, modulo Lemmas 5.1, 5.2 and 5.3.

Proof of Lemma 5.1.   Let  £ £ D".   We prove our result by induction on tz.   If

72 = 1,  the desired conclusion reduces to the assertion that the tangent vector at

tQ to the curve Z —> X{m) belongs to   PpiX( im))  for every  X £ D and every   ZQ
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such that  XtAm)  is defined.   The truth of this assertion is immediate given the

definition of  Pp.
Now let £ £ D",   T £ Dn.   Write £ = Xrj,   T= tQT\  where  X £ D,  77 £ D*_1,

T' £ fi      ,  Z„ £ R.   Assume that our conclusion is true for 77.   It is clear that17,777 '    0 '

V(£ Z72, T)  is spanned by  X(£T(m)) and the image under  dX,    of  V(n, m, T').

Since   Vin, m, T1) is contained in   PpinTAm)),  and   Pp  is D-invariant, it follows

that

dXt iVi-q, m, T')) Ç Pp(¿;   (ttz)).

Also, it is clear that  X(£r(m)) belongs to  Ppi^jim)).   Therefore   V(¿j, ttz, T)  is

contained in   Pp(£T(m)).   The proof of Lemma 5.1 is now complete.

Proof of Lemma 5.2.   We shall prove the following two assertions:

(a) If £ £ DM, m £ S,   T £ fi p m,   77 e D°°,  ttz' £ S,   T' £ Q     ,,  are such that
¿¡Am) = r]T,im') = mQ,  then there exist o £ D°°,  ttz" £ S,   T" £Üo.m„   such that

Vi¿j, m, T) and   Vir], m', T') are contained in   V(o, ttz", T").

(b) There is a subset  A  of  Pp(mQ) which spans   Ppim0) and is such that for

every  v £ A there exist  ¿j £ D°°,   m £ S,   T £Ü,p m  such that  ¿;Tim) = 7720  and

v £Vi£ m, T).

It is clear that Lemma 5.2 follows from (a), (b) and Lemma 5.1.   Therefore,
we only have to prove (a) and (b).

To prove (a), take  ttz" = m',  0= <f<5?,   T" = Ti-T)T   (here we use the notations

of §2).   Then oTJ.m") = ¿;ri¿;_Tir)Tiim'))) = nTiim') = rrz0.   Since  ^Tt_T is tne
identity mapping, it is clear that   V(a, 772", T") will contain   Vin, m', T ).   More-

over, it is immediate from the definition of o, T , and  ttz    that   V(o", ttz", T) also

contains   V(<f, ttz, T).   This proves (a).

To prove (b), we take A to be the set of all vectors  X(t7z0),  where  X is the

vector field which corresponds to some   Y £ D under a local diffeomorphism g£Gn.

It is clear that  A   spans   Pp(mA.   Let   v £ A,  and let  v = dg(w),  where  g £ Gp

and, for some m £ S,  g(m) = tt20 and w £ M     is of the form XW,  X £ D.   Let

g= £T (£ £D°°, T efi^J.   Let77=<iX,  T' = (T,0).  Then r¡T,im) = gTim) = mQ.
Moreover, the image of the differential of p        at   T' certainly contains  d£Tixim)).

Therefore,   v £ V(iy, m, T'),  and (b) is proved.   The proof of Lemma 5.2 is now com-
plete.

Proof of Lemma 5.3.   Let 5) be the set of all vector fields that are of the form
dgiX),  for some  X £ D,  g £ Gp.   Let   Y e ®.   Let   Y = dg(x),  g £ Gp,  X £ D.   If
y is an integral curve of  Y, then y is the image under g of an integral curve of

X.   From this it is clear that any two points in y are in the same  D-orbit.

Let  N be a connected integral submanifold of  Pp,   and let  m £ N.   Let  X1,

••• , Xp be elements of 3) such that [xAm), ••• , X^ttz)! is a basis for  PpU).
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The mapping

it., ..., t) -xMx,2 (...x? (ttz)... ))
P tx     i2 i

is a diffeomorphism from a neighborhood of 0  in  Pp  onto a neighborhood of ttz  in

N.   The preceding remarks imply that every point in the image of this mapping be-

longs to the same orbit as  m.    We have shown that every point of  N has a neigh-

borhood which is entirely contained in one orbit of D.   Since N  is connected, we

conclude that the set   U of points of N is contained in an orbit of  D.    If  U O S

is nonempty, it follows that  U C S.
We now prove that   U is open in  S.   We must show that, if  m £ S,  ç £ D",

then pp    ill)  is an open subset of  R".   Let  T £ fi ¿ m (C P")  be such that pp   (T)
£ U.   It is clear that, for each  i  such that   1 < i < n,  the image under p¿      of any

curve  t —► (r,, • • • , r.,, t, T.   ., •• • , r )   is an integral   curve of an  X £ D.    If y

is one such image, it follows that, if   y(tQ) £ U for some  ZQ,  then yit) £ U for all

Z  in some neighborhood of tQ.    Prom this it follows easily that the image under

Pp      of some neighborhood of  T is contained in   U.   Therefore pp    (U)  is open,

and Lemma 5.3 is proved.

6.   Proof of Theorem 4.2.   The implications (d) => (c) =» (f)   and  (b) => (a)   are

trivial.   The implication (f) => (b) follows from Theorem 4.1.   We now show that

(a) =» (e) => id).   Assume that  A has the integral manifolds property.   Let m £ M

and let S  be an integral manifold of A through  m.    Let X   , ... , X^ be elements

of D  such that xAjn), • • • , Xkim) form a basis  for  A(ttz).   If X £ D  then the vec-

tor fields   [X, Xz] are tangent to S.   Therefore their restrictions to S  are linear

combinations of the  X1  with smooth coefficients,   in some  neighborhood   U oí m

(in S).   If í > 0 is small enough, then the curve  Z —» A' (m) is contained in   U for

\t\ < e.   From this it is immediate that (a) =» (e).

We now show that (e) =» (d).   The following  lemma   is a trivial consequence

of the definition of Lie bracket, but we state it separately because we shall need

it again later.

Lemma 6.1.   Let X and  Y be  C°° vector fields on  M.    Let  m £ M,  and let
c > 0 be such that X Am) is defined for   \t\ < c.   Let

W(t) = dX_t(Y(Xt(m)))    for \t\ < (,

so that  Wit) £ M   .   Then Wit) satisfies the differential equation

VU) = dX^([X, Y](Xt(m)))

with initial condition W(0) = Y(m),
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Now assume that condition (e) holds. To prove (d), it is sufficient to do it

for \t\ < t, e > 0. Let X1, ••• , Xk, e, (fi). .= J . , , fc be given by condition (e).
Let Wl(t) £M     be defined by

WAt) = dX_t(XiiXl(m)))    for  \t\ < e.

By Lemma 6.1, we have

dWÀÙ/dt = dX_{[X, X*KX,(in))).

The right side of this equation is equal to

X   f)i(t)dX_tiXAXim))).
7=1

Therefore, the  W1  satisfy the system of differential equations

Ä = f   fi.w.dt        f*   ']
7=1

Since WHO), ■■■ , Wki0) are a basis for Mm), it follows that wHt), ■■■ ,
Wk(t) form a basis for A(ttz) for -e < Z < e.   Since

dXt(Wi(t))= XÁXt(m)) £A(Xt(m)),

we conclude that dX    maps  A(ttz) into A(X (ttz)), and our proof is complete.

Remark.  The preceding proof is essentially contained in Lobry [5].

7. A theorem of Chow.  An everywhere defined set D  of C°° vector fields on

a manifold M  is said to satisfy the reachability condition if the D-orbits are ex-

actly the connected components of M.    The following theorem gives a necessary

and sufficient condition for reachability.

Theorem 7.1.   Let D  be an everywhere defined set of C     vector fields on the

n-dimensional C ■   manifold M.   Then D satisfies the reachability condition if

and only if Ppim) has dimension n for every m £ M.

Proof.   If dim Ppim) = 72  for every  m £ M,  then the maximal integral submani-

folds of  Pp  are precisely the connected components of zM.    By (b) of Theorem 4.1,

D  satisfies the reachability condition.   Conversely, suppose that the dimension  k

of Ppim) is less than 72 for some  m £ M.   Then the orbit S of D through ttz is a

ze-dimensional connected submanifold of M, and k < n.   Therefore the zM-interior

of S is empty.   Then the reachability condition is not satisfied.

Corollary 7.2.   Let  M, n, D be as in Theorem 7.1.    Let Ap*    be the dis tribu-
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Zz'o72 spanned by  D .   If Apjm) has dimension n for every  m £ M,  then D satis-

fies the reachability condition.

Proof.   Every  X £ D belongs to   Pp.   Since   Pp  is involutive, it follows that

every X £ D   belongs to  Pp.   Therefore Ap* Ç Pp.   Our assumption then implies

that   Ppim) has dimension  72  for every  m £ M.   The conclusion now follows from

Theorem 7.1.
The preceding corollary is due to Chow [2].   We emphasize that the sufficient

condition for reachability given in this result is by no means necessary.   A simple

example is obtained by considering the pair iXj, X2I of vector fields in the plane

that was introduced in §3.   In this example, however, there are points   ttz  such

that  Ap*(?7z) has maximal dimension.   The following slight modification of the ex-

ample shows that it is possible to have reachability even when  Ap*(m) does not

have maximal dimension at any point  ttz £ M.   We take  M = P   ,  and we let the set

D consist of three vector fields   X,, X2, X,,  which are defined as follows:

Xx = d/dx,        X2 = (bd/dy,        Xi = xbd/dz.

Here  0(x, y, z) = p(x) and ifiix, y, z) = oix).    The functions   p and o are in-

finitely differentiable and satisfy

p(x) = 0    for  x < 0,        oix) = 0    for  x > -1,

pix) > 0    for x > 0,       oix) > ft    for x < -1.

One sees easily that the reachability condition is satisfied. However, the

dimension of Ap*(x, y, z) never exceeds two.

Theorem 7.1 and the preceding example justify the claim made in the intro-

duction that, in general, Ap* is not the "right" distribution that is needed for

the study of D-orbits.

8.   Integrability of distributions.   We now discuss various conditions under

which it has been proved that a distribution has integral submanifolds.   Our pur-

pose is to show how the known results follow from ours.

An everywhere defined set  D  of  C°° vector fields is said to be locally of

finite type if for every  m £ M  there exist vector fields  X   , • > • , X    which belong

to  D  and satisfy
(LFT1) xHttz), • • • , X^Httz)  span ApU),  and
(LFT2)  for every X £ D there exist a neighborhood  II of m and C°° func-

tions  f1.,  defined on   (7, which satisfy

[X, X'Kttz') = ¿   fKm')X>(m)
7 = 1   '

for all  ttz' £ U.
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Theorem 8.1.   // D   z's locally of finite type then Ap   has the maximal integral

manifolds property.

Proof.   If  D  is locally of finite type then it is clear that condition (e) of

Theorem 4.2 is satisfied (with A = Ap).   Therefore, our conclusion follows from

the equivalence of (e) with condition (a) of the same theorem.

The preceding result is due to Hermann [4] and Lobry [5].   If D C VÍM) is

such that  D    is locally of finite type, it follows that Ap*   has the maximal inte-

gral manifolds property.   By Theorems 4.1 and 4.2,  Ap* = Pp  and the D-orbits

are precisely the maximal integral manifolds of Ap*.

The classical theorem of Frobenius can now be proved easily.

Theorem 8.2.   Let A be a  C°° distibution on  M such that the dimension k

of A(ttz)  is independent of m.    Then A   has the maximal integral manifolds prop-

erty if and only if it is involutive.

Proof.   We know that if A has the maximal integral manifolds property then A

is involutive.   Conversely, let us assume that A  is involutive.   Let  ttz e M.    Let

X   , • • • , X    be  k  C°° vector fields which belong to A  and are such that  X (ttz),

• ■ • , X  (ttz) form a basis for A(ttz).   Clearly, we can assume that  X  (ttz'), • • ■ ,

X  (ttz') are linearly independent for all  m'   in a neighborhood of ttz.   Since the di-

mension of A(?T2') is always  k,  it follows that, in some neighborhood of m, every

vector field that belongs to A  is a linear combination of X   , ■ • • , X    with smooth

coefficients.   If  X  belongs to A, the preceding conclusion applies in particular

to the vector fields   [X, X'], which belong to A because  A  is involutive.   We have

shown that  A  is locally of finite type.   The conclusion now follows from Theorem

8.1.
In particular, the preceding result applies when  A  is the distribution spanned

by an involutive set D :

Corollary 8.3.    Let  D    be an everywhere defined set of C     vector fields. As-

sume that D    is involutive and that A„*   has constant dimension k.    Then Ap*

has the maximal integral manifolds property.

Proof.   By Theorem 8.2, it will be sufficient to show that Ap*   is involutive.

Let ttz £ M and let  X   , • • • , X    be elements of D    which are defined on a neigh-

borhood   U of ttz and are linearly independent at  m.   Let  X  and  X    belong to Ap*

near  m.   Then  X  and  X'   are linear combinations of the  X1  with smooth coeffi-

cients.   The formula

[fY, gZ] = (/ .  Yg)Z - (g . Zf)Y + fg[Y, Z]

together with the fact that the brackets   [X\ X7] are elements of D ,  implies that

[X, X'] belongs to A.
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We now show that our results also contain those of Matsuda [6].    Matsuda

considers a Lie algebra   L  of (everywhere defined)  C°° vector fields on the mani-

fold M.    Let us define inductively

[X(0), Y] = Y,       [X^+1), Y] - [X, [X(H Y]]

for any two  C°° vector fields  X  and   Y on  M.   Matsuda's condition is

(C) For every  X  and   Y in  L  and for every mQ £ M, the series
oo k

gt(X, Y)im)=   £  i-Dkl-[X^\ yKttz)
k =0 k-

converges for  (z, ttz) in some neighborhood of  (0, ttzq).   Moreover,  gAX, Y)(ttz) de-

fines a continuously differentiable function of  Z  and m,  and the derivatives of

this function can be obtained by termwise differentiation of the series.

For each m £ M,  let  L(7tz) = {XÍttz) : X £ L\.   We prove:

Theorem 8.4.   // the Lie algebra  L satisfies Matsuda's condition (C), Z¿e?2

the distribution m —> L(t7z) has the maximal integral manifolds property.

Proof.   In view of Theorem 4.2, it is sufficient to prove that, if X £ L,

ttZq £ M,  and  X (ttZq) is defined, then

dXt(L(mQ)) Ç L(X(U0)).

Clearly, it is sufficient to show that, if v £ L(m0), then  dX((v) belongs to

L(Xt(mQ)) for sufficiently small  Z.    Let  v = Y(mQ), where   Y £ L.    Let  e > 0 be
such that

oo k
Vit, r)= ¿   (-1)* i- [xAk\ Y](XrUn))

fe=o *•

converges for   \t\ < e,  \t\ < c, and can be differentiated term by term.   Let  W(t,r) =

dX_  (V(z, r))  so that  W(t, r) e Mm  .   It follows from Lemma 6.1 that the derivative

with respect to r of dX_Ti[X{k), Y](Xr (ttz)))  is  dX_r [X{k + 1 \ Y](Xr (ttz)).   From

this it follows immediately that  dW/dt + dW/dr = 0.
In particular, the function  Z —> Wit, t) is a constant, so that  Wit, t) = v for

all  Z.
Therefore, dX iv) - Vit, t).   Since   L  is a Lie algebra of vector fields, it is

clear that   Vit, r) belongs to  L(Xr(772)) for every  t, r.   Therefore  dXtiv) £ LiX(im)),

and our theorem is proved.

9.   The analytic case.   If  M  is a real analytic manifold, then all the defini-

tions of .§2  and §3  can be reformulated with "C°°" replaced by "analytic".

Theorems 4.1 and 4.2, and the consequences of §7 and §8 remain valid, with the

stronger conclusion that the orbits of  Pp  are analytic submanifolds of  M.   How-
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ever, there is an additional fact that makes everything simpler:   // D   z's a set of

analytic vector fields on  M,  then D    is locally of finite type.   This is so because

the ring A^  of germs of analytic functions at a point  ttz £ M is noetherian, and

the set of germs of vector fields at  ttz  is the product A".   It follows that A"   is° r m m

noetherian as an A^-module.   If ttz e M,  then there are finitely many elements  X   ,

••• , Xp  of D    such that every X £ D    (and, in particular, every   [X, X!]) can be

written in some neighborhood of ttz as £?_. f X1, where the functions f   are

analytic.
In view of Theorem 8.1, the distribution Ap* has the maximal integral mani-

folds property. This result was proved by Nagano [7]. The method of proof based

on Theorem 8.1 is due to Lobry L5J«
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