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1. Introduction. In their classic treatise on inequalities [2], Hardy, Littlewood

and Pólya introduce a certain partial order -< in the real n-dimensional vector space

£". If x and y are n-vectors and y -<x, then y is said to be majorized by x. Perhaps

the most important result regarding this partial order is that y < x if and only if

y is an average of x. That is, if and only if there is a doubly stochastic matrix T

such that y = Tx. (An n-square matrix is said to be doubly stochastic if it has

non-negative elements with the sum of each row and each column equal to 1.)

Equivalently, let X be the set of all vectors obtained by permuting the compo-

nents of x. Then y -< x if and only if y belongs to the convex hull of X (see [7]).

Furthermore, the set of vertices of this convex hull is again X.

The purpose of this work is to present continuous analogues to the above

results. Vectors will be replaced by integrable functions and matrices by

linear operators. In particular, we shall be concerned with the class of doubly

stochastic operators which have received some attention in current literature

[6; 8; 9]. After certain modifications, the partial order of Hardy, Littlewood and

Pólya carries over to the L^-space and allows us to state the problem and its

solution completely in terms of the partial order and doubly stochastic opera-

tors.

All variables encountered will be real and all functions measurable and finite-

valued. L1 = L'fO, 1) is to be the space of Lebesgue integrable "functions" on

the unit interval. It will be convenient to distinguish between elements of

L1 and their representatives. We shall do this by using boldface, so that/e/is to

mean that / is a representative of the class /. The same convention will apply to

elements of the dual space (L1)* = Lœ = L°(0,1) of essentially bounded "func-

tions." Finally, we denote the unit interval [0,1] by I and Lebesgue measure

by p.

To define the partial order -< in £", suppose that x = (xx, ■■•, x„) and

y = Oi, —,?■)• Take x* = (xf, -,4) and y*= (yf, -,y*) to be the vectors

obtained from x and y by rearranging their components in descending order.

Then we define y «< x whenever
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yï^x*

(1) yï + - + y* Ú XÏ+-+X* (lúkín)

yi + ••• +yn = X! + ••• +x„ .

Now, if/ is a measurable function on /, then the function

(2) m(y)  =  p{s:f(s)>y}

is right-continuous and nonincreasing. As such we may invert m according to

the formula

(2') f*(s) =     sup  y
m(y)>s

obtaining again a right-continuous, nonincreasing function, known as the

decreasing rearrangement of/(2). Moreover,/ and/* are equally integrable or

nonintegrable, have the same distribution (2), and

Jo Jo

f/=     Íf*.
Jo Jo

f*
(0 = S = 1),

Whenever/is integrable, we shall take/* to be the element of L1 containing/*.

If/ and g are elements of L1 we say that/ majorizes g if

(3) jV    -   JV (0 ̂  s zg 1),

J» - /'Jo Jo
/

Jo

and write g -</ (compare with (1)).

We intend to determine the necessary relationship between / and g in order

that g -</. This question has been raised by Mirsky [6] and the author [9].

It will be shown that the relation g < f holds if and only if there is a doubly

stochastic operator which takes/onto g. A linear transformation T :Ü -* Ü is

said to be doubly stochastic if T/«< / for all/e L1. This definition is suggested

by the fact that a matrix D is doubly stochastic if and only if Dx ■< x for all

vectors x. Another equivalent (see [9]) definition is used by Rota in [8]. Dou-

bly stochastic operators also carry L*5 into itself and are contractions ( | T || g 1)

(2) This represents a departure from the convention of defining /* as the decieasing

rearrangement of |/| .
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in both the Ll and£°° operator norms. Because of this, we shall use the

term operator hereafter and denote the class of doubly stochastic operators by

3. The set @> forms a convex self-adjoint semigroup of operators (that is, T eQ>

implies T* e 3) and T,, T2 e3> then TyT2e3>). This is not quite precise, since

an operator and its adjoint act on different spaces. However, if we think of

TeQ> acting on L1, then T* (acting on Lco) always admits a unique extension to

an operator on L1 which belongs to 3>. This extension will tacitly be assumed

hereafter.

In order to further fix our terminology, let £f be a semigroup of transformations

acting on a vector space V. To each veV, the set of vectors {Sv : S e SF} will

be called the orbit of v and will be written Si(v). In particular, consider the case

where SF is the semigroup 3>n of n-square doubly stochastic matrices. As 3>n is a

compact, convex subset of £" , it follows that the orbit of any vector is likewise

compact and convex. Thus, if y -< x but y £ Si(x), we may separate Si(x) and y by

a hyperplane. That is, we can choose a vector z such that

(Dx,z)<(y,z)

for all De®, (the parenthesis represents the scalar product in £"). The addition

of a constant vector c = (c,---,c) to z will not destroy the inequality in view of

(1). Hence, we may assume that the components of z are non-negative. Write

z = Pz* and x = Qx* where P and Q are permutation matrices. Then with D still

at our disposal, set D = PQ*, so that

(4) (x*, z*) = (PQ*Qx*, Pz*) < (P*y, z*).

However, if u and v are n-vectors with u -< v and w is any vector with non-negative

components, then

(5) (u,w*)z%(v*,w*).

As y -< x implies P*y < x, we see that (4) is not possible. Incidentally, (5) is easily

checked by observing that

0 ú i K* - w*+1) i ivj-uj) = Z w*iv* - uk)
k = l J"l k=l

(where w*+1 =0).

The preceding argument is essentially that of Rado [7] and represents a model

we shall use for the continuous case. It is not at the moment clear that appropriate

analogues to permutation matrices can always be found. Also, some kind of

compactness will be necessary if we are to use separating hyperplanes.

2. Equimeasurable functions. Among the first examples of doubly stochastic

operators encountered are those induced by measure preserving transformations

of / into itself. A function o:I->I is called measure preserving if, for each
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measurable set Eczl, a~l(E) is measurable and p(E) = p(a~1(E)). Two such

transformations will be identified if they differ on a set of measure zero. In keeping

with our notation, the equivalence class containing a will be a. IffeU, the

transformation T:/->/o<t is then doubly stochastic and is said to have been

induced by o\ Such operators exhibit behavior similar to that of permutation

matrices although they are generally not invertible. While the permutation matrices

constitute the extreme points of 3>n, those operators induced by measure preserving

transformations, though extreme in 3>, do not include all of the extreme points

of 3¡ (see [9] for an example). A precise characterization of the extreme points of

2 does not seem to be known. Even so, we can still exibit enough operators in Si

to accomplish what the permutation matrices accomplish in £".

Two measurable functions fe f and ge g are said to be equimeasurable if,

for each number y,

p{s :/(s) > y} = p{s : g(s) > y}.

In this case we write f~g. In particular, one always has/ ~/*. The remainder

of this section will be devoted to a proof of the following theorem.

Theorem 1. Iff and g are in L1 with f ~g, then there exists a Te3) such

that g = Tf.

An immediate corollary to this theorem is that £2(f) = Q.(g) if and only iff ~ g.

The sufficiency of the condition is clear, whereas necessity follows at once from

the relation

f/* = fV
Jo Jo

which must be valid for each sel.

The proof will be broken down into three lemmas, the first of which is due

to Lorentz [4]. The notational liberties f~l(A) = {s:f(s)eA} and

f(B) = {y =/(s) :s eB} will be employed throughout.

Lemma 1 (Lorentz). Suppose f that and g are equimeasurable functions.

IfC is any set of real numbers for which f~l(C) is measurable then so is g'1 (C)

and both sets have the same measure.

Roughly, this says that equimeasurable functions take on the same values

equally often(3).

Lemma 2. To each f elf there corresponds a measure preserving trans-

formation a such thatf=f* o a.

(3) For other results along these lines, the reader is referred to the works of Lorentz [4]

and Fan and Lorentz [1].
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Proof. Choose/e/ and let/* be given by (2'). Since/_1(/*(J)) has unit

measure, we may assume (by suitably redefining /) that / and /* have exactly

the same range. Call the range C. To each yeC set Ey = {s :f(s) = y}. There is

at most a denumerable set J c C for which p(Ey) > 0, yej. Each such y corre-

sponds to an interval of constancy in the graph off*. If ye C — J, define, for each

seEy, ay(s) to be that unique value tel for which f*(t) = y (the monotonicity

of/* guarantees this).

The sets Ey, for yej, correspond to subintervals [a,A) (or [a,A]) of / with

b — a = p(Ey). For such a y, consider Ey as a measure space in itself by restricting

p to the measurable subsets of Ey. Define ay : Ey -> [a, A) by the equation

pi\0,s~\C\Ey) = t-a,

where seEy and az%tz^b. The relation t = ayis) is essentially a one-one correspond-

ence between Ey and [a,A)(4). Furtheremore, ay is measure preserving. Indeed,

if (ty, t2) is a subinterval of [a, A) and ayis¡) = í¡ (i = 1,2), then

"((si>s2] O £y) = t2 — tx. But aside from a possible null set, (s.,s2]n£j, is

cr_1(í1,í2). It now follows easily that ay is measure preserving.

Compose the set of mappings oy, yeC, to form a single map a : I -> I. We

intend to show that this composite is measure preserving. If £ is a measurable

subset of /, write

£= U[£no-(£y)]uB,
y e«J

a decomposition of £ into mutually disjoint sets such that/* is one-one on B. As

o-i(E)=\Jlo-\E)nEy](ja-1(B)
y e J

and

p(o--1(£)n£y) = p(En(j(£y))

for each yej, we shall be finished if we can show that p(B) = p(orl(B)).

But, if we set D =/*(B), then f~l(D) = <r_1(B). Application of Lemma 1 now

establishes the assertion.

In conclusion, we need only note that by the very definition of a, it follows that

f(s) =f*(a(s)) (a.e.) and consequently that/ =/* o a.

If T is the operator induced by a in Lemma 2, then Tf* = /. We would like

to show that one can go from / to /* by means of an operator in 2>. In those

cases where a is one-one, there is no problem—but this is not always the case.

Nevertheless, it is still always possible to obtain/* from/if we look at the adjoint

of the operator which is given in Lemma 2.

Lemma 3.   // T is the operator induced by a then Tf* —f and T*f=f*.

(4) A denumerable number of sets of measure zero may go over to points of [a, b).
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Proof.   Let iE be the characteristic function of the measurable set £. Then

f fT%E=   Í(/*o<r)(x£o<T)=   f %ET*f.
Jo Jo Jo

The middle term equals f¿ /*Xe • That is,

ít*/= r
j£ JlE

or, T*/=/*.

That T* is not always induced by a measure preserving transformation can

readily be seen by considering the following example. Let/(s) = 1 —2s (mod 1)

so that f*(s) = 1 - s. Then <r(s) = 2s (mod 1) and T* is given by (T*g) (s)

= iíg(s/2) + g((s + 1)12)] which cannot be written as got, % measure

preserving.

To prove Theorem 1 we simply observe that/~^ implies f*=g* and, by

composition of two operators from 3 (/-► /* -» g) we can go from/ to g.

3. Weakly compact orbits. Since the operators in 3 act as contractions on

L00 we may view 3 as a subset of the operator space of Vo. From this point of

view, we know, according to a general compactness theorem of Kadison [3],

that 3 is compact in the weak*-operator topology. A sub-basic neighborhood

of the null transformation in this topology is given by

N(f,g,e) = {T:\ Í fTu\<e},
Jo

where the operators T are taken from the operator space of L0 (not L1) and

feL1, ueU°. Actually, it is necessary to show that 3 is closed in this topology.

The following simple criterion helps to establish this : T e 3 if and only if to

each Xe>0 ^ T*Le = 1 and/¿Txt = u(£) (see [9] for details). Exploiting the ad-

joint further, we now prove

Theorem 2.   IffeL1, then Q(f) is weakly compact.

Proof. Let {TJ} be a net in Q(f). Then {T*} is a net in 3. Choose a weak*-

convergent subnet, {T$}, and set T* = lim^T* so that T0 is the adjoint of this

limit. Then To /= limßTßf(weakly). Indeed, if

N(T0f;u,e) = {geÜ:\ Jig- T0f)u\ < e}

is a sub-basic neighborhood of T0f (u e L°° and e > 0) we may consider the cor-

responding weak*-neighborhood of T%, N(T*;f,u,e). The net {T*} is eventually

in this neighborhood and, from
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\f(T* - T*)u    = 1   Cu(Tß-T0)f
Jo l Jo

it follows that {Tßf} is eventually in N(T0f;u,£). Similarly, one shows that Sl(f)

is weakly closed; hence closed in the strong (norm) topology.

4. Orbits and their extreme points. The reader will recall that a weakly closed

convex subset of a real Banach space B and any point not in that set may be

(strictly) separated by a hyperplane: {x eB :L(x) = a}, where L is a linear

functional continuous in the weak topology. Since the dual spaces of B, considered

in the weak and strong topologies, coincide, the functional L is actually taken

from B*. This remark, together with the next lemma, combine to give our

principal theorem.

Lemma 4. Suppose that f, g are in L1 and that u is in L00. If u= 0 and

g <f, then

\ gu*^ \ g*u*^ \ f*u*
Jo Jo Jo

The proof of this lemma will be omitted . It may be established directly using

integration by parts (see [4, p. 62]).

Theorem 3.   /// and g are in Û, then g <. f if and only if g e fi(/).

Proof.   The sufficiency of the condition remains to be shown. If g $ Q.(f), then

an element h e L°° exists such that for all Te3

f uTf< f ug.
Jo Jo

Since  f¿T/ =   f¿/ = $0g, we may assume that u = 0. Set u = Pu* and/= Q/*,

where P,Qe3. Then choose T = PQ*. We have

Pu* PQ* Qf* =  f gPu*
Jo Jo

f «7* = f *
Jo Jo

u*P*g .

But, as P*g -< g «< /, we contradict Lemma 4; thus geÇî(f).

The question of extreme points is most interesting although it has yet to be

completely settled. The next theorem give some indication of the situation.

Theorem 4.   If g ~f, then g is an extreme point o/Q(f).

Proof(5). Suppose thatg = %(fx +f2) with fx and f2 in Í2(/). Then, for each sel

(5)   Professor Doob kindly communicated this proof to the author.
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¡'fi =  [V , i = 1,2,
Jo Jo

since g* =/*. Now it is well known (and easily verified) that if v1,v2eL1, then

/»s /»s /»s

(Vy   + V2)* =      \    V*y    + V*2Jo Jo Jo

for each sel. Consequently,

holds throughout /. This implies that f¡~g, i = 1,2. Since equimeasurable

functions have the same L1-norms,

f[|/l+/2|-(|/l|+|/2|)]=0.
Jo

The triangle inequality shows that /. and f2 are positive and negative together.

But for any constant c, fy+c and/2 + c have the same properties as/. and/2,

so they too must be of like sign. From this follows fy =f2.

It is somewhat disconcerting that the converse does not seem to lend itself to

a simple solution. For all functions commonly encountered, the condition is also

necessary. One should note that if g is an extreme point of Si(f) then so is g*. To

see this, write g* = %(fy +f2) with/. and/2 in iî(/). Next, determine a, measure

preserving such that a =g* o*t= ±(fy oa+f2od). It follows that/, o a=/2o a and

so,/.. =/2. The converse problem then reduces to one of determining whether or

not Si(f) can have an extreme point which is nonincreasing yet distinct from /*.

While this is still open we can still give an approximation theorem for functions

in SKJ) in terms of convex combinations of functions equimeasurable with /.

We circumvent the problem of (possibly) not knowing all the extreme points of

Si(f). A point e of a convex set C is called an exposed point of C if it is possible

to pass a supporting hyperplane through e which contains no other points of C.

In terms of linear functionals L, this means that an inequality L(v) < L(e), all

veC, »#e, is satisfied. Of course, exposed points are always extreme points.

To see how they are distinguished, consider a sphere set in the base of a truncated

cone so that each ray on the surface of the cone is tangent to the sphere (in short,

an "ice cream cone"). The points where the surfaces of the cone and sphere meet

are extreme but not exposed. In [10, p. 96-97] Klee shows that weakly compact

convex subsets of separable Banach spaces are equal to the closed convex hull

of their exposed points (which, incidentally, are weakly dense in the set of extreme

points). With regard to Si (/) it is easy to show that each exposed point is equi-

measurable with /. Let g be such a point. There exists «b e Lœ (<J>^0) such that
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l

0<l>ÍH> is
Jo Jo

for all h e ñ(f) different from g o Let <]> = <b* • a where a is measure preserving,

and take h =f*oa. If g = h, then g ~f. Otherwise, we have

f(f*o<T)((|>*0(T)=  f/*<b*<   f</o<j> =   L*4>*=   f/*4>*
Jo Jo Jo Jo Jo

(since g < f) which is impossible. The approximation theorem then reads

Theorem 5.   The convex combinations of all functions equimeasurable with

f are Ü-dense in Í2(f).
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