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\S 1. Introduction

This paper is a continuation of the previous paper, [5] M. Goto, Orbits
of one-parameter groups II, which will be quoted as Orbits II, and the main
purpose of this paper is to prove the following theorem.

THEOREM. Let $\mathcal{G}$ be a Lie group. Let $\mathcal{L}$ be an analytic subgroup, and let
$\mathcal{X}$ be $a$ one-parameter subgroup, of $\mathcal{G}$. Then either

(a) $\mathcal{X}$ is a closed straight line and $\mathcal{X}\overline{\mathcal{L}}$ is topologically the same as the
direct product $\mathcal{X}\times\overline{\mathcal{L}}$, or

(b) We can give a toral group structure to the set $\overline{\mathcal{X}\mathcal{L}}/\overline{\mathcal{L}}$ such that $\mathcal{X}\overline{\mathcal{L}}/\overline{\mathcal{L}}$

becomes an everywhere dense one-parameter subgroup in it.
The theorem was proved for the general linear group $\mathcal{G}\mathcal{L}(n, R)$ , in a

slightly weaker form (Theorem 1 in Orbits II), and it can be applied for all
analytic subgroups of $\mathcal{G}\mathcal{L}(n, R)^{2)}$ . However, in order to prove the theorem
for a closed analytic subgroup $\mathcal{G}$ of $\mathcal{G}\mathcal{L}(n, R)$ , we need some groups which
are not in $\mathcal{G}$, but in the algebraic hull of $\mathcal{G}$ .

Hence in order to extend the method in Orbits II to general analytic
groups, it was necessary to find a suitable analytic group $S$ which contains
the given $\mathcal{G}$ and all the groups which appear in the process of the proof.
For the purpose, we introduce the notion of semi-algebraic subgroups of
$\mathcal{G}\mathcal{L}(n, R)$ and adjoint semi-algebraic analytic groups in \S 2. For a given an-
alytic group $\mathcal{G}$, we can find an adjoint semi-algebraic group $S$ which contains
$\mathcal{G}$ as a closed normal subgroup by (3.4). Thus, roughly speaking, by con-
sidering the adjoint representation of $S$, we can reduce the problem into the
case of linear groups. The proof of the Theorem is given in \S 5 and \S 6.

In \S 4 we shall give some lemmas, which are based on “ category argu-
ment” of locally compact groups, and which make the brute force part of

1) Research supported in part by NSF GP4503.
2) By a theorem in Goto [4], every analytic subgroup of $\mathcal{G}\mathcal{L}(n, R)$ is isomorphic

with a closed subgroup of $\mathcal{G}\mathcal{L}(m, R)$ for a sufficiently large $m$ .
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the proof of Theorem 1 in Orbits II much more unified and shortened. Thus,

assuming the preliminary parts in Orbits II, this paper is self-contained.
Unless specified otherwise, an analytic group and its corresponding Lie

algebra will be denoted by the same capital script and capital Roman letter,

respectively. For example, if $\mathcal{L}$ is an analytic subgroup of an analytic group
$\mathcal{G}$ , then $G$ will denote the Lie algebra of $\mathcal{G}$ and $L$ will denote the subalgebra
of $G$ corresponding to $\mathcal{L}$ . If $\varphi$ is a continuous homomorphism from an an-
alytic group $\mathcal{G}$ into an analytic group $\mathcal{H}$, then we denote the corresponding
Lie algebra homomorphism from $G$ into $H$ also by $\varphi$ . All Lie algebras in
this paper are finite-dimensional over the field $R$ of real numbers. For a
finite-dimensional vector space $V$ over $R$ , we let $M(V)$ denote the Lie alge-
bra of all endomorphisms, and $\mathcal{G}\mathcal{L}(V)$ the group of all automorphisms, of $V$ .

\S 2. Semi-algebraic groups

Let $V$ be a finite-dimensional vector space over $R$ , and let $\mathcal{H}$ be an
analytic subgroup of $\mathcal{G}\mathcal{L}(V)$ . We let $[\mathcal{H}]$ denote the identity component group
of the algebraic hull of $\mathcal{H}$ , in this paper.3) The Lie algebra $[H]$ of $[\mathcal{H}]$ is
the smallest algebraic Lie algebra containing $H$.

DEFINITION. An analytic subgroup $S$ of $\mathcal{G}\mathcal{L}(V)$ is called semi-algebraic
if $S$ contains a maximal compact subgroup of $[S]$ . A subalgebra of $M(V)$

is said to be semi-algebraic if the corresponding analytic group is semi-
algebraic.

Let $S$ be a semi-algebraic group. Since $S$ contains the commutator sub-
group of [S] and since all maximal compact subgroups are conjugate to
each other, all compact subgroups of $[S]$ are contained in $S$ . Obviously, $a$

semi-algebraic group is closed.
Let $\mathcal{G}$ be an analytic subgroup of $\mathcal{G}\mathcal{L}(V)$ . Let us pick up a maximal

compact subgroup $JC$ of $[\mathcal{G}]$ . Then $JC\mathcal{G}$ is the smallest semi-algebraic group
containing $\mathcal{G}$ . We denote $cX\mathcal{G}$ by $\{\mathcal{G}\}$ and call it the semi-algebraic hull of $\mathcal{G}$ .
Since the semi-simple part of $J\zeta$ is contained in $\mathcal{G}$ , we can find a toral sub-
group $g$ with $\{\mathcal{G}\}=9\mathcal{G}$ and $T\cap G=0$ . The Lie algebra $T+G$ of $\{\mathcal{G}\}$ will be
denoted by $\{G\}$ , and will be called the semi-algebraic hull of $G$ .

DEFINITION. Let $G$ be a Lie algebra, and let $\xi$ be a representation of $G$

(into a suitable $M(n,$ $R)$). $\xi$ is said to be minimal if the center of $[\xi(G)]$ is
contained in $\xi(G)$ .

We note that for a minimal representation $\xi$ of $G$ , the center of $\xi(G)$ ,

the center of $[\xi(G)]$ , and the centralizer of $\xi(G)$ in $[\xi(G)]$ all coincide.
Let $H$ be a Lie algebra. We let $I(H)$ denote the Lie algebra of all inner

3) In Orbits II, $[\mathcal{H}]$ denotes the algebraic hull of $\mathcal{H}$.
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derivations of H. $I(H)$ is a subalgebra of $M(H)$ and the corresponding an-
alytic group $\mathcal{I}(H)$ is the adjoint group of $H$. The adjoint group $\mathcal{I}(\mathcal{H})$ , com-
posed of all inner automorphisms of an analytic group $\mathcal{H}$ with the Lie alge-
bra $H$, can be identified with $\mathcal{I}(H)$ . If $H$ is an algebraic subalgebra of $M(V)$ ,

then $I(H)$ is also algebraic because the adjoint representation is rational.
Conversely if $I(H)$ is algebraic, then it is known that there exists a faithful
representation $\xi$ of $H$ such that $\xi(H)$ is algebraic.4)

(2.1) Every Lie algebra has a faithful minimal representation.
PROOF. Let $\xi$ be a faithful representation of $G$ , and let $C_{1}$ be the center

of $[\xi(G)]$ . If $C=C_{1}\cap\xi(G)\neq C_{1}$ , then we can find an abelian subalgebra $C_{2}$

with $C_{1}=C_{2}+C$ and $C_{2}\cap C=0$ . Because $\xi(G)$ contains the commutator sub-
algebra of $[\xi(G)]$ , we can find an ideal $G_{2}$ of $[\xi(G)]$ such that $[\xi(G)]=C_{2}+G_{2}$ ,
$G_{2}\supset\xi(G)$ and $C_{2}\cap G_{2}=0$ . Since $I([\xi(G)])$ is algebraic and $I(G_{2})$ is essentially
the same as $I([\xi(G)])$ , we see that $I(G_{2})$ is algebraic. Hence $G_{2}$ has a faithful
representation $\eta$ such that $\eta(G_{2})$ is algebraic. This implies that if $\xi$ is not
minimal, then we can find a faithful representation $\zeta$ of $G$ with $\dim[\zeta(G)]$

$<\dim[\xi(G)]$ . Because $G$ has a faithful representation,5) $G$ has a faithful
minimal representation. Q. E. D.

DEFINITION. A Lie algebra $G$ is said to be adjoint semi-algebraic if $I(G)$

is semi-algebraic. An analytic group $\mathcal{G}$ is adjoint semi-algebraic if the Lie
algebra $G$ is adjoint semi-algebraic.

(2.2) Let $G$ be an adjoint semi-algebraic Lie algebra, and let $\xi$ be a faith-
ful minimal representation of G. Then $\xi(G)$ is semi-algebraic.

PROOF. For $x$ in $[\xi(G)]$ we let $\varphi(x)$ denote the restriction of ad $x$ in $\xi(G)$ :
$\varphi(x)\in M(\xi(G))$ . Since $\xi$ is faithful we identify $\xi(G)$ with $G$ . Then $\varphi$ induces
a rational homomorphism from the analytic subgroup corresponding to $[\xi(G)]$

onto $[\mathcal{I}(G)]$ . If $\exp Rx$ is a circle, then so is $\exp R\varphi(x)$ . Since $I(G)$ is semi-
algebraic, we have that $\varphi(x)\in I(G)$ . Because $\varphi(\xi(G))=I(G)$ , we can find $y$ in
$\xi(G)$ with $\varphi(x)=\varphi(y)$ . On the other hand, since $\xi$ is minimal, the kernel of
$\varphi$ is the center of $\xi(G)$ . Hence $x-y\in\xi(G)$ , and so $x\in\xi(G)$ . Q. E. D.

\S 3. Semi-algebraic hull of an adjoint group

(3.1) Let $\tilde{\mathcal{G}}$ be a simply connected analytic group, and let $C$ be the center

of $\tilde{\mathcal{G}.}$ Let $\mathcal{I}=\mathcal{I}(\tilde{\mathcal{G}})$ be the adjoint group of $\tilde{\mathcal{G}.}$ Then for $\sigma$ in $\{\mathcal{I}\}$ and $c$ in $C$

we have that $c^{\sigma}=c$ .
PROOF. Let $C^{0}$ denote the identity component group of $C$. Then $C^{0}$ is

simply connected, and is elementwise fixed by $[\mathcal{I}]$ . Let $JC$ be a maximal

4) See Goto [2], Matsushima [8], and Chevalley [1].
5) See $e$ . $g$ . Jacobson [7].
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compact subgroup of $[\mathcal{I}]$ . Since every element of the discrete factor group
$C/C^{0}$ is fixed by $JC$ , for a fixed element $d$ in $C$ and $\sigma$ in $JC$ , we have that
$d^{\sigma}d^{-1}=c(\sigma)\in C^{0}$ . For $\tau$ also in $X$ , we have that

$c(\sigma\tau)=d^{\sigma\tau}d^{-1}=(d^{\sigma}d^{-1})^{\tau}d^{\tau}d^{-1}=c(\sigma)^{\tau}c(\tau)=c(\sigma)c(\tau)$ .
Hence $JC\ni\sigma\leftrightarrow c(\sigma)\in C^{0}$ is a continuous homomorphism. Since $C^{0}$ contains no
compact proper subgroup, $c(\sigma)$ must be the identity. Q. E. D.

Let $\mathcal{G}$ be an analytic group, locally isomorphic with $\tilde{\mathcal{G}}$. Then there exists
a discrete subgroup $\mathcal{D}$ of $C$ such that the factor group $\tilde{\mathcal{G}}/\mathcal{D}$ is isomorphic
with $\mathcal{G}$ . By (3.1), $\mathcal{D}$ is fixed by $\{\mathcal{I}\}$ . Therefore, we have the following (3.2).

(3.2) Let $\mathcal{G}$ be an analytic group, and $\mathcal{I}$ the adjoint group of $\mathcal{G}$ . Then $\{\mathcal{I}\}$

is an automorphism group of $\mathcal{G}$ .
For elements $g$ and $h$ of a group we adopt the notation $h^{Ad(g)}=g^{-1}hg$.
(3.3) Let $\tilde{\mathcal{G}}$ be a simply connected analytic group, and let $\mathcal{M}$ be a compact

connected subgroup of $\{\mathcal{I}(\tilde{\mathcal{G}})\}$ . If $g$ is an element of $\tilde{\mathcal{G}}$ such that Ad $(g)$ com-
mutes with every element of $\mathcal{M}$, then $g^{\sigma}=g$ for all $\sigma$ in $\mathcal{M}$ .

PROOF. Let $\sigma$ be an element of $\mathcal{M}$ . The equalities $\sigma\circ$ Ad $(g)=Ad(g)\circ\sigma$

and Ad $(g^{\sigma})=\sigma^{-1}\circ Ad(g)\circ\sigma$ imply that $g^{\sigma}g^{-1}=c(\sigma)$ is in the center $C$ of $\tilde{\mathcal{G}}$.
By (3.1), $JC\ni\sigma\leftrightarrow c(\sigma)\in C$ is a homomorphism. On the other hand $C$ contains
no compact connected subgroup except the identity group. Q. E. D.

(3.4) Let $\mathcal{G}$ be an analytic group. We can find an adjoint semi-algebraic
group $S$ which contains $\mathcal{G}$ as a closed normal subgroup such that $\mathcal{I}(S)|_{G}$

$=\{\mathcal{I}(\mathcal{G})\}$ , where $\mathcal{I}(S)|_{G}$ denotes the restriction of $\mathcal{I}(S)$ to the invariant sub-
space $G$ .

PROOF. We denote $\mathcal{I}(\mathcal{G})$ simply by $\mathcal{I}$, and take a toral subgroup ET of
$[\mathcal{I}]$ with $\{\mathcal{I}\}=\mathcal{T}\mathcal{I}$ and $T\cap I=0$ . Since $\mathcal{T}$ is an automorphism group of $\mathcal{G}$,

we can construct a semi-direct product $S=\mathcal{T}\times \mathcal{G}$ by defining the multiplica-
tion

$(\sigma, a)(\tau, b)=(\sigma\tau, a^{\tau}b)$ $\sigma,$
$\tau\in \mathcal{T}$, $a,$

$b\in \mathcal{G}$ .
Let us prove that this $S$ satisfies the conditions.

Let $\tilde{\mathcal{G}}$ be the universal covering group of $\mathcal{G}$ . Then we can construct the
semi-direct product $\tilde{S}=\mathcal{T}\times\tilde{\mathcal{G}}$ in a similar manner. Since $S$ and $\tilde{S}$ are locally

isomorphic to each other, $\mathcal{I}(\tilde{S})$ can be identified with $\mathcal{I}(S)$ . Hence after this
without changing the notations, let us assume that $\mathcal{G}$ is simply connected.

We let $\varphi$ denote the adjoint representation of $S$ , and $\psi$ the restriction of
$\varphi$ into the subspace $G$ . We denote the identity and the identity automor-
phism of $\mathcal{G}$ by $e$ and $\epsilon$ , respectively. Then for $g$ and $h$ in $\mathcal{G}$, and $\sigma$ and $\tau$

in $\mathcal{T}$, we have

(1) $(\sigma, g)^{-1}(\epsilon, h)(\sigma, g)=(\epsilon, h^{\sigma Ad(g)})$ ,
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(2) $(\sigma, g)^{-1}(\tau, e)(\sigma, g)=(\tau, (g^{-1})^{\tau}g)$ .

From (1) we see that the kernel of $\psi$ is given by { $(Ad(g^{-1}),$ $g)$ ; Ad $(g)\in \mathcal{T}$ }.

On the other hand, Ad $(g)\in \mathcal{T}$ implies that $g^{\tau}=g$ for all $\tau$ in $\mathcal{F}$ , by (3.3).

Hence from (2) we can see that the kernel of $\psi$ coincides with the center of
$S$ , that is $\psi$ is a faithful representation of $\mathcal{I}(S)$ . Also (1) indicates that $\psi(S)$

$=\mathcal{T}\mathcal{I}=\{\mathcal{I}\}$ .
Since $\varphi(s)-\rangle$ $\psi(s)$ gives a one-one continuous homomorphism from $\varphi(S)$

onto $\psi(S)$ and $\psi(S)$ is a closed subgroup of $\mathcal{G}\mathcal{L}(G)$ , the homomorphism $\varphi(s)$

$\rightarrow\psi(s)$ must be a homeomorphism, and $\varphi(S)$ is a closed subgroup of $\mathcal{G}\mathcal{L}(S)$ .
Let $N$ be the set of all elements of $[I(S)]$ which vanish on $G$ . Then $N$

is an ideal composed of nilpotent endomorphisms, and $N_{\cap}I(S)=0$ . Hence
I $N,$ $I(S)$] $=0$ .

Let $x$ be an element of $[I(S)]$ such that $\exp Rx$ is a circle. Let $x_{1}$ denote
the restriction of $x$ to $G$ . Then $x_{1}\in[I]$ and $\exp Rx_{1}$ is a circle. Hence
$x_{1}\in\{I\}=\psi(S)$ . Hence we can find an element $y$ of $S$ with $x_{1}=\psi(y)$ . Since
$\varphi(s)\mapsto\psi(s)$ is a topological isomorphism, $\exp R\varphi(y)$ is also a circle group, and
in particular, $\varphi(y)$ is a semi-simple endomorphism. On the other hand,
$n=x-\varphi(y)=0$ on $G$ , and so $n\in N$. Thus we have that $x=\varphi(y)+n,$ $[\varphi(y), n]$

$=0,$ $x$ and $\varphi(y)$ are semi-simple, and $n$ is nilpotent. Hence $n=0$ , and this
proves that $I(S)$ is semi-algebraic. Q. E. D.

\S 4. Locally compact groups

First we shall generalize (2.2) of Orbits II into the following form.
(4.1) Let $\mathcal{G}$ be a topological group, and let $\mathcal{A}$ and $\mathfrak{B}$ be locally compact

groups with countable bases. Let $\alpha$ and $\beta$ be continuous homomorphisms from
$\mathcal{A}$ and $\mathfrak{B}$ into $\mathcal{G}$ , respectively. Let $\mathcal{L}$ be a normal subgroup of $\mathfrak{B}$ such that
$\beta(\mathcal{L})$ is closed. If $\alpha(\mathcal{A})\beta(\mathfrak{B})$ is a locally compact set, then the map $\rho$

$\mathcal{A}\times \mathfrak{B}\ni(a, b)\leftrightarrow\rho(a, b)=\alpha(a)^{-1}\beta(b)\beta(\mathcal{L})\in \mathcal{G}/\beta(\mathcal{L})$

is (continuous and) open. More precisely, setting

$\mathcal{D}=\{(a, b)\in \mathcal{A}\times \mathfrak{B};\alpha(a)^{-1}\beta(b)\in\beta(\mathcal{L})\}$ ,

$\mathscr{Q}$ is a closed subgroup of $\mathcal{A}\times \mathfrak{B}$ , and the map $\rho$ induces a homeomorphism $\tilde{\rho}$

from the right coset space $\mathcal{D}\backslash \mathcal{A}\times \mathfrak{B}$ onto the locally compact set $\alpha(\mathcal{A})\beta(\mathfrak{B})/\beta(\mathcal{L})$ .
PROOF. Let $a_{1}$ and $a_{2}$ be elements of $\mathcal{A}$ , and let $b_{1}$ and $b_{2}$ be elements

of $\mathfrak{B}$ . If $\rho(a_{1}, b_{1})=\rho(a_{2}, b_{2})$ , then $(a_{1}, b_{1})\in \mathcal{D}(a_{2}, b_{2})$ , and conversely. Hence $\mathcal{D}$

is a closed subgroup of $\mathcal{A}\times \mathfrak{B}$ and $\rho$ induces a continuous one-one map $\tilde{\rho}$

from the coset space $\mathcal{D}\backslash \mathcal{A}\times \mathfrak{B}$ onto $\alpha(\mathcal{A})\beta(\mathfrak{B})/\beta(\mathcal{L})=\mathcal{M}$ . Thus $\mathcal{A}\times \mathfrak{B}$ is
acting as a transitive transformation group on $\mathcal{M}$ . On the other hand, $\mathcal{A}\times \mathfrak{B}$

ts a $10_{\vee}^{\sim}$ ally compact gro up with a countable base, and $\mathcal{M}$ is locally compact.
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Hence the map $\rho$ is open.6) Q. E. D.
(4.2) In (4.1) we assume moreover that $\mathcal{A}$ is an abelian group and $\mathcal{L}$ con-

tains the commutator subgroup of $\mathfrak{B}$ . Let $g(\lambda),$ $a(\lambda)$ , and $b(\lambda),$ $\lambda\in R$ , be one-
parameter subgroups of $\mathcal{G},$

$\mathcal{A}$ , and $\mathfrak{B}$ , respectively. Suppose that the one-para-
meter subgroups $\alpha(a(\lambda))$ and $\beta(b(\lambda))$ are commutative to each other and $g(\lambda)$

$=\alpha(a(\lambda))\beta(b(\lambda))$ . We set $\mathcal{X}=\{g(\lambda);\lambda\in R\}$ . Then we have either
(a) $\mathcal{X}\beta(\mathcal{L})$ is a closed subset of $\alpha(\mathcal{A})\beta(\mathfrak{B})$ , or
(b) $\tilde{\rho}^{\rightarrow 1}(\overline{\mathcal{X}\beta(\mathcal{L})}/\beta(\mathcal{L}))=JC$ is a compact connected abelian group and

$\tilde{\rho}^{-1}(g(\lambda)\beta(\mathcal{L}))$ is an everywhere dense one-parameter subgroup in $\chi$ .
PROOF. Since $\mathcal{D}$ contains $\mathcal{L},$ $\mathcal{D}$ is a normal subgroup and $\mathcal{A}\times \mathfrak{B}/\mathcal{D}$ is

an abelian group. $h(\lambda)=(a(-\lambda), b(\lambda))\mathcal{D}$ is a one-parameter subgroup of
$\mathcal{A}\times \mathfrak{B}/\mathcal{D}$ . We set $\mathcal{Y}=\{(a(-\lambda), b(\lambda));\lambda\in R\}$ . If $h(\lambda)$ is a closed one-parameter
subgroup, then $\mathcal{Y}\mathcal{D}$ is closed, and so is $\rho(\mathcal{Y}\mathcal{D})=\mathcal{X}\beta(\mathcal{L})$ in $\mathcal{M}$ , whence $\mathcal{X}\beta(\mathcal{L}\rangle$

is locally compact. If $h(\lambda)$ is not a closed one-parameter subgroup, then its
closure $J\zeta=\overline{\mathcal{Y}\mathcal{D}}/\mathcal{D}$ is a compact connected subgroup of $\mathcal{A}\times \mathfrak{B}/\mathcal{D}$ . Q. E. D.

\S 5. Linear group case

Let $\mathcal{G}$ be a closed analytic subgroup of $\mathcal{G}\mathcal{L}(n, R)$ . Let $L$ be a subalgebra
of $G$ and let $x$ be an element of $G$ . We set $[x]\cap[L]=D$ and decompose
$[x]$ into a direct sum: $[x]=A^{\prime}+D,$ $A^{\prime}\cap D=0$, such that $A^{\prime}$ is an algebraic
subalgebra of $[x]$ . Then, we can find $y\in A^{\prime}$ and $z\in D$ with $y+z=x$ . It is
obvious that $A^{\prime}=[y]$ and $D=[z]$ . We denote the one-parameter groups
$\exp Rx,$ $\exp Ry$ and $\exp Rz$ by $\mathcal{X},$ $\mathcal{Y}$ and $\mathcal{Z}$ , respectively. Since $z$ normalizes
$L,$ $\mathcal{Z}\mathcal{L}$ is an analytic subgroup of $\mathcal{G}$ . We set $\overline{\mathcal{Y}}=\mathcal{A}$ and $\overline{\mathcal{Z}\mathcal{L}}=\mathfrak{B}$ .

The product $[\mathcal{Y}][\mathcal{L}]$ is a locally compact set, and $[\mathcal{Y}]\cap[\mathcal{L}]$ is finite.
Hence for the closed set $\mathcal{A}$ in $[\mathcal{Y}]and\mathfrak{B}$ in $[\mathcal{L}]$ , we have that $\mathcal{A}\mathfrak{B}$ is closed
in $[\mathcal{Y}][\mathcal{L}]$ and is locally compact itself. (See Orbits II)

(5.1) Under the above assumptions, either
(a) $\mathcal{X}$ is a closed straight line, $\mathcal{X}\overline{\mathcal{L}}$ is locally compact and the map $\mathcal{X}\times\overline{f}$

$\ni(\exp\lambda x, l)-\rangle\exp\lambda x\cdot l\in \mathcal{X}\overline{\mathcal{L}}$ is a homeomorphism, $or$

(b) $y$ and $z$ are contained in $\{G\}$ .
PROOF. We note that for a non-closed analytic subgroup $Q$ of an analytic

group $\mathcal{P}$ , we can find a non-closed one-parameter subgroup $\mathcal{V}$ in $Q$ with
$\overline{Q}=\overline{\mathcal{V}}Q^{7)}$ Because every compact subgroup of $[\mathcal{G}]$ is contained in $\{\mathcal{G}\}$ , if $\overline{\mathcal{Y}}$

or $\overline{\mathcal{Z}}$ is a toral group then we have the case (b). Also if $\overline{\mathcal{L}}\supset \mathcal{Z}$ , then we
have the case (b). If $\mathcal{Z}\overline{\mathcal{L}}$ is not closed, then we can find a non-closed one-

6) See $e$ . $g$ . Helgason [6].
7) See Goto [3].
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parameter subgroup $\mathcal{U}$ in $\mathcal{Z}\mathcal{L}^{-}$ but not in $\mathcal{L}^{-}$ such that $\overline{\mathcal{Z}\overline{\mathcal{L}}}=\overline{\mathcal{U}}\mathcal{Z}\overline{\mathcal{L}}=\overline{\mathcal{U}\mathcal{L}}$, and

so $z\in\{G\}$ . Now, let us assume that $\mathcal{Z}$ is a closed straight line, $\mathcal{Z}\overline{\mathcal{L}}$ is closed

and $\mathcal{Z}$ is not contained in $\mathcal{L}^{-}$. If $\mathcal{Z}\cap\overline{\mathcal{L}}$ is not the identity only, then the

factor group $\mathcal{Z}\overline{\mathcal{L}}/\overline{\mathcal{L}}$ is a circle, and $\mathcal{Z}\overline{\mathcal{L}}$ can be written as a product of a
circle and $\overline{\mathcal{L}}$. Hence we have the case (b).

Now it remains only the case when $\mathcal{Y}$ and $\mathcal{Z}$ are closed straight lines,
$\mathcal{Z}\overline{\mathcal{L}}$ is closed, and $\mathcal{Z}\cap\overline{\mathcal{L}}=e$ (the identity). Since $\mathcal{Y}\cap \mathcal{Z}\overline{\mathcal{L}}$ is finite and $\mathcal{Y}$

contains no finite subgroup except $e$ , we have $\mathcal{Y}\cap \mathcal{Z}\mathcal{L}^{-}=e$ . It is easy to see
that the locally compact set $\mathcal{Y}\mathcal{Z}\mathcal{L}^{-}is$ topologically the direct product $\mathcal{Y}\times \mathcal{Z}\times \mathcal{L}^{-}$

On the other hand, $\mathcal{X}$ is a one-parameter subgroup of the two-dimensional
vector group $\mathcal{Y}\mathcal{Z}$ . Hence we have the case (a). Q. E. D.

\S 6. Proof of the theorem

In virtue of (3.4), in order to prove the theorem we may assume that $\mathcal{G}$

is adjoint semi-algebraic, without loss of generality. We choose a fixed
minimal faithful representation $\xi$ of the adjoint semi-algebraic Lie algebra
$C$ , and for the sake of convenience, we identify $G$ with $\xi(G)$ .

Let us denote the adjoint representation of $\mathcal{G}$ (onto the adjoint group
$l\mathcal{J}=\mathcal{I}(G))$ by $\varphi$ . As a Lie algebra homomorphism, $\varphi$ can be extended to a
homomorphism, which will be denoted also by $\varphi$ , from $[G]$ onto [I], although

we consider the group homomorphism $\varphi$ only on $\mathcal{G}$ .
For the given one-parameter subgroup $\exp Rx=\mathcal{X}$ and the analytic sub-

group $\mathcal{L}$ of $\mathcal{G}$, we set $\varphi(x)=x_{1},$ $\varphi(\mathcal{X})=\mathcal{X}_{1}$ and $\varphi(\mathcal{L})=\mathcal{L}_{1}$ . By (5.1) we have
the following two cases (a) and (b).

(a) $\mathcal{X}_{1}$ is a closed straight line, $\mathcal{X}_{1}\overline{\mathcal{L}}_{1}$ is locally compact, and $\mathcal{X}_{1}\overline{\mathcal{L}}_{1}$ is
homeomorphic with $\mathcal{X}_{1}\times\overline{\mathcal{L}}_{1}$ .

Let $C$ denote the center of $\mathcal{G}$ . $\mathcal{X}$ is a closed straight line and $\varphi^{-1}(\mathcal{X}_{1})$

$=\mathcal{X}C$ . We set $\varphi^{-1}(\overline{\mathcal{L}}_{1})=\mathcal{M}$ . Then $\varphi^{-1}(\mathcal{X}_{1}\overline{\mathcal{L}}_{1})=\mathcal{X}C\mathcal{M}=\mathcal{X}\mathcal{M}$ is a locally com-
pact set, and the commutator subgroup of $\mathcal{M}=\overline{\mathcal{L}C}$ is contained in $\overline{\mathcal{L}}$. Hence
by (4.2), either $\mathcal{X}\overline{\mathcal{L}}$ is locally compact, or $\overline{\mathcal{X}\overline{\mathcal{L}}}=\overline{\mathcal{X}\mathcal{L}}$ is a torus in $\mathcal{G}/\overline{\mathcal{L}}$. In
the first case, if $\mathcal{X}\cap\overline{\mathcal{L}}$ is not the identity, then $\mathcal{X}\overline{\mathcal{L}}/\overline{\mathcal{L}}$ is a circle, and it
reduces to the second case.

(b) $x_{1}=y_{1}+z_{1}$ , $(y_{1}, z_{1}\in G)$

$[x_{1}]\cap[L_{1}]=[z_{1}],$ $[x_{1}]=[y_{1}]+[z_{1}],$ $[y_{1}]\cap[z_{1}]=0$ .

Because the representation $\xi$ is minimal, we have $\varphi^{-1}(I)=G$ . Since
$\varphi([x])=[x_{1}]\ni z_{1}$ , we can find $z$ in $[x]\cap G$ with $\varphi(z)=z_{1}$ . On the other hand,
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since $z_{1}\in[L_{1}]=[\varphi(L)]$ there exists $z^{\gamma}\in[L]\cap G$ with $\varphi(z^{\prime})=z_{1}$ . That $z-z^{\prime}$

$\in C$ and $[z^{\prime}, L]\subset L$ implies $[z, L]\subset L$ . We put $y=x-z$, and we get that
$[y, z]=0,$ $\varphi(y)=y_{1}$ and $x=y+z$ .

Next, we set

$\varphi^{-1}(\overline{\mathcal{Y}}_{1})=\mathcal{A},$ $\varphi^{-1}(\overline{\mathcal{Z}_{1}\mathcal{L}_{1}})=\mathfrak{B},$ $\exp Ry=\mathcal{Y}$ and $\exp Rz=\mathcal{Z}$ .
$\mathcal{A}=\overline{\mathcal{Y}C}$ is an abelian group, and the commutator subgroup of $\mathfrak{B}=\overline{\mathcal{Z}\mathcal{L}C}$ is.
contained in $\overline{\mathcal{L}}$ . Applying (4.2) to the locally compact set $\leftrightarrow t\mathfrak{B}=\varphi^{-1}(\overline{\varphi}_{1}, \overline{\mathcal{Z}_{1}\mathcal{L}_{1}})$,

we have that either $\mathcal{X}\overline{\mathcal{L}}$ is locally compact, or $\overline{\mathcal{X}\mathcal{L}}/\overline{\mathcal{L}}$ has a toral group
structure with $\exp\lambda x\overline{\mathcal{L}}$ as an everywhere dense one-parameter subgroup.
When $\mathcal{X}\overline{\mathcal{L}}$ is locally compact, if $\mathcal{X}$ is not a closed straight line or if $\mathcal{X}$ is a
closed straight line and $\mathcal{X}\cap\overline{\mathcal{L}}$ is not the identity, it reduces to the second
case.

University of Pennsylvania
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