Orbits on affine symmetric spaces under the action of parabolic subgroups

Toshihiko MATSUKI (Received December 17, 1981)

Introduction

Let G be a connected Lie group, σ an involutive automorphism of G and H a subgroup of G satisfying $(G_{\sigma})_0 \subset H \subset G_{\sigma}$ where $G_{\sigma} = \{x \in G \mid \sigma(x) = x\}$ and $(G_{\sigma})_0$ is the identity component of G_{σ} . Then the triple (G, H, σ) is called an affine symmetric space. We assume that G is real semisimple throughout this paper.

Let P be a minimal parabolic subgroup of G. Then the double coset decomposition $H\backslash G/P$ is studied in [3] and [4]. Let P' be an arbitrary parabolic subgroup of G containing P. Then we have a canonical surjection

$$f: H \backslash G/P \longrightarrow H \backslash G/P'$$
.

The purpose of this paper is to determine $f^{-1}(\mathcal{O})$ for an arbitrary double coset \mathcal{O} in $H\backslash G/P'$.

When G is a complex semisimple Lie group and H is a real form of G, the double coset decomposition $H\backslash G/P$ is studied in [1] and [7] and structures of H-orbits on G/P' are studied in [7].

When G is a complex semisimple Lie group, H is a complex subgroup of G and P' is a parabolic subgroup of G corresponding to a simple root, the structure of $f^{-1}(\mathcal{O})$ is determined for an arbitrary double coset \mathcal{O} in $H\backslash G/P'$ in [5], p. 29, Lemma 5.2.

The results of this paper are as follows. Let $\mathfrak g$ and $\mathfrak h$ be the Lie algebras of G and H respectively, and the automorphism σ of $\mathfrak g$ be the one induced from the automorphism σ of G. Let θ be a Cartan involution of $\mathfrak g$ such that $\sigma\theta=\theta\sigma$. Let $\mathfrak g=\mathfrak h+\mathfrak q$ (resp. $\mathfrak g=\mathfrak k+\mathfrak p$) be the decomposition of $\mathfrak g$ into the +1 and -1 eigenspaces for σ (resp. θ).

Let P^0 be a minimal parabolic subgroup of G. Then the factor space G/P^0 is identified with the set of minimal parabolic subalgebras of g. By Theorem 1 of [3], every H-conjugacy class of minimal parabolic subalgebras of g contains a minimal parabolic subalgebra of the form $\mathfrak{P} = \mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ where \mathfrak{a} is a σ -stable maximal abelian subspace of \mathfrak{p} , $\Sigma(\mathfrak{a})^+$ is a positive system of the root system $\Sigma(\mathfrak{a})$ of the pair (g, \mathfrak{a}) and $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+) = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$ is the corresponding minimal parabolic subalgebra of g.

Thus the problem is reduced to the following. Fix a σ -stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} and a minimal parabolic subalgebra $\mathfrak{P} = \mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$. Let \mathfrak{P}' be an arbitrary parabolic subalgebra of \mathfrak{g} containing \mathfrak{P} and P' the corresponding parabolic subgroup of G. Then we have only to determine the double coset decomposition

$$H\backslash HP'/P$$
.

Since there is a canonical bijection $H \cap P' \setminus P' / P \cong H \setminus HP' / P$ and since the factor space P' / P is identified with the set of minimal parabolic subalgebras of $\mathfrak g$ contained in $\mathfrak B'$, we have only to consider $H \cap P'$ -conjugacy classes of minimal parabolic subalgebras of $\mathfrak g$ contained in $\mathfrak B'$. Let $\mathfrak B' = \mathfrak m' + \mathfrak a' + \mathfrak n'$ be the Langlands decomposition of $\mathfrak B'$ such that $\mathfrak a' \subset \mathfrak a$. A subset $\mathfrak a'_+$ of $\mathfrak a'$ is defined by $\mathfrak a'_+ = \{Y \in \mathfrak a' \mid \alpha(Y) > 0 \text{ for all } \alpha \in \Sigma(\mathfrak a) \text{ satisfying } \mathfrak g(\mathfrak a; \alpha) \subset \mathfrak n'\}$ ($\mathfrak g(\mathfrak a; \alpha) = \{X \in \mathfrak g \mid [Y, X] = \alpha(Y)X \text{ for all } Y \in \mathfrak a\}$). Now we can state the main result of this paper as follows.

Theorem. Every minimal parabolic subalgebra of $\mathfrak g$ contained in $\mathfrak P'$ is $H \cap P'$ -conjugate to a minimal parabolic subalgebra $\mathfrak P_1$ of $\mathfrak g$ of the form

$$\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$$

where a_1 is a σ -stable maximal abelian subspace of $\mathfrak p$ such that $a_1 \supset \mathfrak a'$ and $\Sigma(a_1)^+$ satisfies $\langle \Sigma(a_1)^+, a_+' \rangle \subset R_+ \ (=\{t \in R \mid t \geq 0\}).$

Let $\mathfrak{J}_{\mathfrak{g}}(\mathfrak{a}'+\sigma\mathfrak{a}')$ denote the centralizer of $\mathfrak{a}'+\sigma\mathfrak{a}'$ and \mathfrak{J} the center of $\mathfrak{J}_{\mathfrak{g}}(\mathfrak{a}'+\sigma\mathfrak{a}')$. Define a subalgebra \mathfrak{m}'' of $\mathfrak{J}_{\mathfrak{g}}(\mathfrak{a}'+\sigma\mathfrak{a}')$ by $\mathfrak{m}''=\{X\in\mathfrak{J}_{\mathfrak{g}}(\mathfrak{a}'+\sigma\mathfrak{a}')\,|\,B(X,\mathfrak{J}\cap\mathfrak{a})=\{0\}\}$ where $B(\cdot,\cdot)$ is the Killing form of \mathfrak{g} . Then a subspace \mathfrak{a}_1 of \mathfrak{p} satisfying the condition of Theorem contains $\mathfrak{J}\cap\mathfrak{a}$. For such a subspace \mathfrak{a}_1 of \mathfrak{p} , define subsets $\Sigma(\mathfrak{a}_1)_{\mathfrak{m}'}$ and $\Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}$ of $\Sigma(\mathfrak{a}_1)$ by

$$\Sigma(\mathfrak{a}_1)_{\mathfrak{m}'} = \{\alpha \in \Sigma(\mathfrak{a}_1) \mid \langle \alpha, \alpha' \rangle = \{0\}\}$$

and

$$\Sigma(\mathfrak{a}_1)_{\mathfrak{m}''} = \{ \alpha \in \Sigma(\mathfrak{a}_1) \mid \langle \alpha, \alpha' + \sigma \alpha' \rangle = \{0\} \}.$$

We consider closed H-orbits and open H-orbits on HP'/P with respect to the topology of HP'/P.

COROLLARY 1. (a) A minimal parabolic subalgebra $\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$ satisfying the conditions of Theorem is contained in a closed H-orbit on HP'/P (here we identified \mathfrak{P}_1 with a point in P'/P) if and only if the following three conditions are satisfied:

- (i) $\langle \Sigma(\alpha_1)_{\mathfrak{m}'}^+, \sigma \alpha_+' \rangle \subset \mathbf{R}_+ \text{ where } \Sigma(\alpha_1)_{\mathfrak{m}'}^+ = \Sigma(\alpha_1)_{\mathfrak{m}'}^+ \cap \Sigma(\alpha_1)^+,$
- (ii) $\Sigma(\alpha_1)_{\mathfrak{m}''}^+$ is σ -compatible (i.e. $\alpha \in \Sigma(\alpha_1)_{\mathfrak{m}''}^+$, $\alpha \mid_{\mathfrak{m}'' \cap \alpha_1 \cap \mathfrak{q}} \neq 0 \Rightarrow \sigma \alpha \in \Sigma(\alpha_1)_{\mathfrak{m}''}^+$) where $\Sigma(\alpha_1)_{\mathfrak{m}''}^+ = \Sigma(\alpha_1)_{\mathfrak{m}''}^+ \cap \Sigma(\alpha_1)_{\mathfrak{m}''}^+$,

- (iii) $\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{m}'' \cap \mathfrak{p} \cap \mathfrak{h}$.
- (b) A minimal parabolic subalgebra $\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$ satisfying the conditions of Theorem is contained in an open H-orbit on HP'/P if and only if the following three conditions are satisfied:
 - (i) $\langle \Sigma(\mathfrak{a}_1)^+_{\mathfrak{m}'}, \sigma\theta\mathfrak{a}'_+ \rangle \subset \mathbf{R}_+,$
 - (ii) $\Sigma(\mathfrak{a}_1)_{\mathfrak{m}'}^+$ is $\sigma\theta$ -compatible (i.e. $\alpha \in \Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$, $\alpha \mid_{\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{b}} \neq 0 \Rightarrow \sigma\theta\alpha \in \Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$),
 - (iii) $\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{q}$ is maximal abelian in $\mathfrak{m}'' \cap \mathfrak{p} \cap \mathfrak{q}$.

For an affine symmetric space (G, H, σ) , the associated affine symmetric space $(G, H', \sigma\theta)$ is defined by $H' = (K \cap H) \exp(\mathfrak{p} \cap \mathfrak{q})$. Then there exists a one-to-one correspondence between the double coset decompositions $H \setminus G/P$ and $H' \setminus G/P$. If \mathfrak{a} is a σ -stable maximal abelian subspace of \mathfrak{p} , then the H-orbit containing $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ corresponds to the H'-orbit containing the same $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ ([3], Corollary 2 of Theorem 1).

COROLLARY 2. (a) In the above correspondence between $H\backslash G/P$ and $H'\backslash G/P$, $H\backslash HP'/P$ corresponds to $H'\backslash H'P'/P$. Moreover closed H-orbits on HP'/P correspond to open H'-orbits on H'P'/P and open ones to closed ones.

(b) Let P'' be a parabolic subgroup of G containing P'. Then there is a one-to-one correspondence between $H\backslash HP''/P'$ and $H'\backslash H'P''/P'$. In this correspondence closed H-orbits on HP''/P' correspond to open H'-orbits on H'P''/P' and open ones to closed ones.

Lastly we state an explicit formula for the decomposition $H\backslash HP'/P$ applying the method used in §2 of [3]. Let \mathfrak{a}_0 be a σ -stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_0 \subset \mathfrak{a}'$ and that $\mathfrak{m}'' \cap \mathfrak{a}_0 \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{m}'' \cap \mathfrak{p} \cap \mathfrak{h}$. Fix a positive system $\Sigma(\mathfrak{a}_0)^+$ of $\Sigma(\mathfrak{a}_0)$ such that $\langle \Sigma(\mathfrak{a}_0)^+, \mathfrak{a}'_+ \rangle \subset \mathbf{R}_+$. Then $\mathfrak{P}_{(0)} = \mathfrak{P}(\mathfrak{a}_0, \Sigma(\mathfrak{a}_0)^+)$ is contained in \mathfrak{P}' . Let $P_{(0)}$ be the corresponding minimal parabolic subgroup of G.

Let $\bar{\alpha}$ be a σ -stable maximal abelian subspace of p such that $\bar{\alpha} \cap h$ is maximal abelian in $p \cap h$, $\bar{\alpha} \cap h \supset \alpha_0 \cap h$ and $\bar{\alpha} \cap q \subset \alpha_0 \cap q$. Put $r = \{Y \in \bar{\alpha} \cap h | B(Y, \alpha_0 \cap h) = \{0\}\}$. Put $\Sigma_{\mathfrak{h}}(\alpha_0)_{\mathfrak{m}''} = \{\alpha \in \Sigma(\alpha_0)_{\mathfrak{m}''} \mid H_{\alpha} \in \mathfrak{m}'' \cap \alpha_0 \cap h\}$ where $H_{\alpha} \in \alpha_0$ is defined by $B(H_{\alpha}, Y) = \alpha(Y)$ for $Y \in \alpha_0$. Then a set of root vectors $Q = \{X_{\alpha_1}, \ldots, X_{\alpha_k}\}$ is said to be a q-orthogonal system of $\Sigma_{\mathfrak{h}}(\alpha_0)_{\mathfrak{m}''}$ if the following two conditions are satisfied:

- (i) $\alpha_i \in \Sigma_h(\mathfrak{a}_0)_{\mathfrak{m}''}$ and $X_{\alpha_i} \in \mathfrak{g}(\mathfrak{a}_0; \alpha_i) \cap \mathfrak{q} \{0\}$ for i = 1, ..., k,
- (ii) $[X_{\alpha_i}, X_{\alpha_i}] = [X_{\alpha_i}, \theta X_{\alpha_i}] = 0$ for $i \neq j$.

We normalize X_{α_i} , i=1,...,k so that $2\alpha_i(H_{\alpha_i})B(X_{\alpha_i},\theta X_{\alpha_i})=-1$. Define an element c(Q) of M_0'' by

$$c(Q) = \exp(\pi/2)(X_{\alpha_1} + \theta X_{\alpha_1}) \cdots \exp(\pi/2)(X_{\alpha_k} + \theta X_{\alpha_k}).$$

Then $\mathfrak{a}^1=\operatorname{Ad}(c(Q))\mathfrak{a}_0$ is a σ -stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}'\subset\mathfrak{a}^1$. Let $\{Q_0,\ldots,Q_n\}$ $(Q_0=\emptyset)$ be a complete set of representatives of \mathfrak{q} -orthogonal systems of $\Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''}$ with respect to the following equivalence relation \sim . For two \mathfrak{q} -orthogonal systems $Q=\{X_{\mathfrak{a}_1},\ldots,X_{\mathfrak{a}_k}\}$ and $Q'=\{X_{\mathfrak{h}_1},\ldots,X_{\mathfrak{h}_{k'}}\}$ of $\Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''}$, $Q\sim Q'$ if and only if there exists a $w\in W_{K\cap H}(\overline{\mathfrak{a}})(=N_{K\cap H}(\overline{\mathfrak{a}})/Z_{K\cap H}(\overline{\mathfrak{a}}))$ such that

$$w(r + \sum_{i=1}^{k} H_{\alpha_i}) = r + \sum_{i=1}^{k'} H_{\beta_i}.$$

Put $a_i = Ad(c(Q_i))a_0$, i = 1,..., n. Then we have the following corollary.

COROLLARY 3. $HP' = \bigcup_{i=0}^n \bigcup_{j=1}^{m(i)} Hw_j^i c(Q_i) P_{(0)}$ (disjoint union) where $\{w_1^i, ..., w_{m(i)}^i\}$ is a complete set of representatives of $W_{K \cap H}(\mathfrak{a}_i) \cap W(\mathfrak{a}_i)_{\mathfrak{m}'} \setminus W(\mathfrak{a}_i)_{\mathfrak{m}'}$ in $N_{K \cap M'}(\mathfrak{a}_i)$ ($W(\mathfrak{a}_i)_{\mathfrak{m}'} = N_{K \cap M'}(\mathfrak{a}_i)/Z_{K \cap M'}(\mathfrak{a}_i)$). Moreover we have

$$H'P' = \bigcup_{i=0}^{n} \bigcup_{j=1}^{m(i)} H'w_{i}^{i}c(Q_{i})P_{(0)}$$
 (disjoint union).

§ 1. Notations and preliminaries

Let R denote the set of real numbers and R_+ the subset of R defined by $R_+ = \{t \in R \mid t \ge 0\}$. Let G be a Lie group with Lie algebra g. For subsets s and t in g and a subset S in G, g(t), g(t) and g(t) are the subsets of g, g(t) defined by

$$\mathfrak{Z}_{\mathfrak{s}}(\mathfrak{t}) = \{X \in \mathfrak{s} \mid [X, Y] = 0 \text{ for all } Y \in \mathfrak{t}\},$$

 $Z_{\mathfrak{s}}(\mathfrak{t}) = \{x \in S \mid \operatorname{Ad}(x)Y = Y \text{ for all } Y \in \mathfrak{t}\}$

and

$$N_{S}(t) = \{x \in S \mid Ad(x)t = t\},\$$

respectively.

Let G be a connected real semisimple Lie group, σ an involutive automorphism of G (i.e. σ^2 =identity) and H a subgroup of G satisfying $(G_{\sigma})_0 \subset H \subset G_{\sigma}$ where $G_{\sigma} = \{x \in G \mid \sigma(x) = x\}$ and $(G_{\sigma})_0$ is the identity component of G_{σ} . Then the triple (G, H, σ) is an affine symmetric space such that G is real semisimple.

Let g and h be the Lie algebras of G and H respectively, and the automorphism σ of g be the one induced from the automorphism σ of G. There exists a Cartan involution θ of g such that $\sigma\theta = \theta\sigma$ ([2], cf. Lemmas 3 and 4 in [3]). Fix such a Cartan involution θ of g. Let g = h + q (resp. g = l + p) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ). Then we have the following direct sum decomposition

$$q = f \cap h + f \cap q + p \cap h + p \cap q$$

of g. Let K denote the analytic subgroup of G for \mathfrak{k} .

Let a be a maximal abelian subspace of \mathfrak{p} . Then the space of real linear forms on a is denoted by \mathfrak{a}^* . For an $\alpha \in \mathfrak{a}^*$, let $g(\alpha; \alpha)$ denote the subspace of g defined by

$$q(\alpha; \alpha) = \{X \in q \mid [Y, X] = \alpha(Y)X \text{ for all } Y \in \alpha\}.$$

Then the root system $\Sigma(a)$ of the pair (g, a) is the finite subset of a^* defined by

$$\Sigma(\mathfrak{a}) = \{ \alpha \in \mathfrak{a}^* - \{0\} \mid \mathfrak{g}(\mathfrak{a}; \alpha) \neq \{0\} \}.$$

Let $\Sigma(\mathfrak{a})^+$ be a positive system of $\Sigma(\mathfrak{a})$. Then we can define a minimal parabolic subalgebra $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ of \mathfrak{g} and a minimal parabolic subgroup $P(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ of G by

$$\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+) = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$$

and

$$P(\mathfrak{a}, \Sigma(\mathfrak{a})^+) = MAN,$$

respectively, where $\mathfrak{m} = \mathfrak{Z}_{\mathfrak{t}}(\mathfrak{a})$, $M = Z_{K}(\mathfrak{a})$, $A = \exp \mathfrak{a}$, $\mathfrak{n} = \sum_{\alpha \in \Sigma(\mathfrak{a})^{+}} \mathfrak{g}(\mathfrak{a}, \alpha)$ and $N = \exp \mathfrak{n}$.

Let \mathfrak{P}' be an arbitrary parabolic subalgebra of g containing $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ and P' the corresponding parabolic subgroup of G. Then there is a unique Langlands decomposition

$$\mathfrak{P}'=\mathfrak{m}'+\mathfrak{a}'+\mathfrak{n}'$$

of \mathfrak{P}' such that $\mathfrak{a}' \subset \mathfrak{a}$. Let \mathfrak{a}'_+ denote the subset of \mathfrak{a} defined by

$$a'_{+} = \{ Y \in a' \mid \alpha(Y) > 0 \text{ for all } \alpha \in \Sigma(a) \text{ such that } g(a; \alpha) \subset n' \}.$$

The corresponding Langlands decomposition of P' is denoted by P' = M'A'N'.

Let P^0 be a minimal parabolic subgroup of G and \mathfrak{P}^0 the corresponding minimal parabolic subalgebra of \mathfrak{g} . Then the factor space G/P^0 is identified with the set of minimal parabolic subalgebras of \mathfrak{g} by the correspondence $xP^0 \mapsto \mathrm{Ad}(x)\mathfrak{P}^0$, $x \in G$. Thus the H-orbits on G/P^0 are identified with the H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} .

Here we review a main result of [3]. Let $\{\alpha_i \mid i \in I\}$ be a complete set of representatives of the $K \cap H$ -conjugacy classes of σ -stable maximal abelian subspace of \mathfrak{p} . Let $W(\alpha_i) = N_K(\alpha_i)/Z_K(\alpha_i)$ be the Weyl group of $\Sigma(\alpha_i)$ and $W_{K \cap H}(\alpha_i)$ the subgroup of $W(\alpha_i)$ defined by

$$W_{K\cap H}(\mathfrak{a}_i) = N_{K\cap H}(\mathfrak{a}_i)/Z_{K\cap H}(\mathfrak{a}_i)$$
.

PROPOSITION (Corollary 1 of Theorem 1 in [3]). There is a one-to-one correspondence between the set of H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} and the set $\bigcup_{i \in I} W_{K \cap H}(\mathfrak{a}_i) \setminus W(\mathfrak{a}_i)$ (disjoint union). Fix a positive

system $\Sigma(\mathfrak{a}_i)^+$ of $\Sigma(\mathfrak{a}_i)$ for each $i \in I$. Then $W_{K \cap H}(\mathfrak{a}_i) w \in W_{K \cap H}(\mathfrak{a}_i) \setminus W(\mathfrak{a}_i)$ corresponds to the H-conjugacy class of minimal parabolic subalgebras of \mathfrak{g} containing $\mathfrak{B}(\mathfrak{a}_i, w\Sigma(\mathfrak{a}_i)^+)$.

§ 2. Theorem and its corollaries

Let $\mathfrak{P}^{0'}$ be an arbitrary parabolic subalgebra of g containing \mathfrak{P}^{0} and $P^{0'}$ the corresponding parabolic subgroup of G. Then we have a canonical surjection

$$f: H\backslash G/P^0 \longrightarrow H\backslash G/P^{0'}.$$

For every double coset $\mathcal{O} = HxP^{0'} \in H\backslash G/P^{0'}$ ($x \in G$), we want to study $f^{-1}(\mathcal{O}) = H\backslash HxP^{0'}/P^0$. It follows from Proposition in § 1 that there exist an $h \in H$, a σ -stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} and a positive system $\Sigma(\mathfrak{a})^+$ of $\Sigma(\mathfrak{a})$ such that $\mathrm{Ad}(hx)\mathfrak{P}^0 = \mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$. Thus we have only to study the double coset decomposition $H\backslash HP'/P$ for such a minimal parabolic subalgebra $\mathfrak{P} = \mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ where P is the minimal parabolic subgroup corresponding to \mathfrak{P} and $P' = hxP^{0'}x^{-1}h^{-1}$.

Therefore we fix a σ -stable maximal abelian subspace α of $\mathfrak p$ and a positive system $\Sigma(\mathfrak a)^+$ of $\Sigma(\mathfrak a)$. Put $\mathfrak P=\mathfrak P(\mathfrak a, \Sigma(\mathfrak a)^+)$ and let $\mathfrak P'$ be the parabolic subalgebra of $\mathfrak g$ which is conjugate to $\mathfrak P^0$ and contains $\mathfrak P$. Notations $\mathfrak P=\mathfrak m+\mathfrak a+\mathfrak n$, P=MAN, $\mathfrak P'=\mathfrak m'+\mathfrak a'+\mathfrak n'$, P'=M'A'N' and $\mathfrak a'_+$ are the same as in §1.

Since $H \backslash HP'$ is isomorphic to $H \cap P' \backslash P'$, there is a canonical bijection

$$(2.1) H \cap P' \backslash P' / P \longrightarrow H \backslash HP' / P.$$

Then the following theorem gives standard representatives for $H \cap P' \setminus P' / P$ since P' / P is identified with the set of minimal parabolic subalgebras of g contained in \mathfrak{P}' .

THEOREM. Every minimal parabolic subalgebra of $\mathfrak g$ contained in $\mathfrak P'$ is $H \cap P'$ -conjugate to a minimal parabolic subalgebra $\mathfrak P_1$ of $\mathfrak g$ of the form

$$\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$$

where a_1 is a σ -stable maximal abelian subspace of $\mathfrak p$ such that $a_1 \supset \mathfrak a'$ and $\Sigma(a_1)^+$ is a positive system of $\Sigma(a_1)$ such that

$$\langle \Sigma(\mathfrak{a}_1)^+, \mathfrak{a}'_+ \rangle \subset \mathbf{R}_+.$$

REMARK. Conversely if α_1 and $\Sigma(\alpha_1)^+$ satisfy the conditions in Theorem, then $\mathfrak{P}_1 = \mathfrak{P}(\alpha_1, \Sigma(\alpha_1)^+)$ is contained in \mathfrak{P}' . In fact, write $\mathfrak{P}_1 = \mathfrak{m}_1 + \alpha_1 + \mathfrak{n}_1$ where $\mathfrak{m}_1 = \mathfrak{Z}_{\mathbf{f}}(\alpha_1)$ and $\mathfrak{n}_1 = \sum_{\alpha \in \Sigma(\alpha_1)^+} \mathfrak{g}(\alpha_1; \alpha)$. Note that

 $\mathfrak{P}' = \sum_{\alpha} \mathfrak{g}(\alpha'; \alpha)$ (the sum is taken over all $\alpha \in (\alpha')^*$ such that $\langle \alpha, \alpha'_+ \rangle \supset \mathbf{R}_+$)

where $(\alpha')^*$ is the space of real linear forms on α' and $g(\alpha'; \alpha) = \{X \in g \mid [Y, X] = \alpha(Y)X\}$. Then it follows from the condition for α_1 that $\mathfrak{m}_1 + \alpha_1 \subset g(\alpha'; 0)$. On the other hand it follows from the condition for $\Sigma(\alpha_1)^+$ that $g(\alpha_1; \alpha) \subset g(\alpha'; \alpha|_{\alpha'}) \subset \mathfrak{P}'$ for $\alpha \in \Sigma(\alpha_1)^+$. Thus we have $\mathfrak{P}_1 \subset \mathfrak{P}'$.

We use the following method of Lusztig and Vogan ([5], p. 29, Lemma 5.2). Let $\pi: P' \to M'$ be the projection with respect to the Langlands decomposition P' = M'A'N'. Then π is a group homomorphism and induces an isomorphism of P'/P onto $M'/M' \cap P$. Put $J = \pi(H \cap P')$. Then there is a canonical bijection

$$(2.2) H \cap P' \backslash P' / P \xrightarrow{\sim} J \backslash M' / M' \cap P.$$

(In [5], G and H are complex groups and P' is a parabolic subgroup of G corresponding to a simple root of $\Sigma(a)^+$.)

Let J_0 and M'_0 be the identity components of J and M' respectively. Since $M' \cap P \supset M$, every connected component of M' has a non-trivial intersection with $M' \cap P$. Thus $M'/M' \cap P$ is isomorphic to $M'_0/M'_0 \cap P$ and we have a canonical surjection

$$(2.3) J_0 \backslash M'_0 / M'_0 \cap P \longrightarrow J \backslash M' / M' \cap P.$$

It is clear that the subalgebras $\mathfrak{m}' \cap \mathfrak{P}$ and $\mathfrak{m}' \cap \sigma \mathfrak{P}'$ are a minimal parabolic subalgebra and a parabolic subalgebra of \mathfrak{m}' respectively. Let $\Sigma(\mathfrak{a})_{\mathfrak{m}'}$ and $\Sigma(\mathfrak{a})_{\mathfrak{n}'}$ be the subsets of $\Sigma(\mathfrak{a})$ defined by $\Sigma(\mathfrak{a})_{\mathfrak{m}'} = \{\alpha \in \Sigma(\mathfrak{a}) \mid \langle \alpha, \alpha' \rangle = \{0\} \}$ and $\Sigma(\mathfrak{a})_{\mathfrak{n}'} = \{\alpha \in \Sigma(\mathfrak{a}) \mid \langle \alpha, \alpha'_+ \rangle \subset \mathbf{R}_+ - \{0\} \}$ respectively. Then

$$\mathfrak{m}' + \mathfrak{a}' = \mathfrak{m} + \mathfrak{a} + \sum_{\alpha \in \Sigma(\mathfrak{a})_{\mathfrak{m}'}} \mathfrak{g}(\alpha; \alpha)$$

and

$$\mathfrak{n}' = \sum_{\alpha \in \Sigma(\mathfrak{a})_n} g(\mathfrak{a}; \alpha).$$

Let

$$\mathfrak{m}' \cap \sigma \mathfrak{V}' = \mathfrak{m}'' + \mathfrak{a}'' + \mathfrak{n}''$$

be the Langlands decomposition of $\mathfrak{m}' \cap \sigma \mathfrak{P}'$ such that $\mathfrak{a}'' \subset \mathfrak{a}$. Let $\Sigma(\mathfrak{a})_{\mathfrak{m}''}$ and $\Sigma(\mathfrak{a})_{\mathfrak{n}''}$ be the subsets of $\Sigma(\mathfrak{a})_{\mathfrak{m}'}$ defined by $\Sigma(\mathfrak{a})_{\mathfrak{m}''} = \{\alpha \in \Sigma(\mathfrak{a}) \mid \langle \alpha, \alpha' + \sigma \alpha' \rangle = \{0\}\}$ and $\Sigma(\mathfrak{a})_{\mathfrak{n}''} = \{\alpha \in \Sigma(\mathfrak{a})_{\mathfrak{m}'} \mid \langle \alpha, \sigma \alpha'_{+} \rangle \subset \mathbf{R}_{+} - \{0\}\}$ respectively. Then we have

$$\mathfrak{m}'' + \mathfrak{a}'' + \mathfrak{a}' = \mathfrak{m} + \mathfrak{a} + \sum_{\alpha \in \Sigma(\alpha)_{\mathfrak{m}''}} \mathfrak{g}(\alpha; \alpha)$$

and

$$\mathfrak{n}'' = \sum_{\alpha \in \Sigma(\alpha)_{\mathfrak{n}''}} \mathfrak{g}(\alpha; \alpha).$$

LEMMA. Let j be the Lie algebra of J and α_i'' be the subspace of α'' given by $\alpha_i'' = \pi((\alpha' + \alpha'') \cap \mathfrak{h})$. Then

$$j = m' \cap h + a_i'' + n''$$
.

PROOF. Put $A_1 = \Sigma(\mathfrak{a})_{\mathfrak{m}'} \cap \sigma \Sigma(\mathfrak{a})_{\mathfrak{m}'} = \Sigma(\mathfrak{a})_{\mathfrak{m}''}$, $A_2 = \Sigma(\mathfrak{a})_{\mathfrak{m}'} \cap \sigma \Sigma(\mathfrak{a})_{\mathfrak{n}'} = \Sigma(\mathfrak{a})_{\mathfrak{m}'}$ and $A_3 = \Sigma(\mathfrak{a})_{\mathfrak{n}'} \cap \sigma \Sigma(\mathfrak{a})_{\mathfrak{n}'}$, and set

$$\mathfrak{A}_i = \sum_{\alpha \in A_i} (\mathfrak{g}(\mathfrak{a}; \alpha) + \mathfrak{g}(\mathfrak{a}; \sigma \alpha)) \cap \mathfrak{h} \qquad (i = 1, 2, 3).$$

Then

$$\mathfrak{P}' \cap \mathfrak{h} = \mathfrak{P}' \cap \sigma \mathfrak{P}' \cap \mathfrak{h} = \mathfrak{m} \cap \mathfrak{h} + \mathfrak{a} \cap \mathfrak{h} + \mathfrak{A}_1 + \mathfrak{A}_2 + \mathfrak{A}_3$$

Since $\pi: \mathfrak{P}' \to \mathfrak{m}'$ is the projection with respect to the decomposition $\mathfrak{P}' = \mathfrak{m}' + \mathfrak{a}' + \mathfrak{n}'$, we have

$$j = \pi(\mathfrak{P}' \cap \mathfrak{h}) = \mathfrak{m} \cap \mathfrak{h} + \pi(\mathfrak{a} \cap \mathfrak{h}) + \mathfrak{A}_1 + \sum_{\alpha \in A_2} \mathfrak{g}(\alpha; \alpha)$$

= $\mathfrak{m} \cap \mathfrak{h} + \mathfrak{m}'' \cap \mathfrak{a} \cap \mathfrak{h} + \mathfrak{a}_1'' + \mathfrak{A}_1 + \mathfrak{n}'' = \mathfrak{m}'' \cap \mathfrak{h} + \mathfrak{a}_1'' + \mathfrak{n}''.$

q. e. d.

Let $W(\mathfrak{a})_{\mathfrak{m}'}$ and $W(\mathfrak{a})_{\mathfrak{m}''}$ denote the subgroups of $W(\mathfrak{a})$ generated by the reflections with respect to the roots of $\Sigma(\mathfrak{a})_{\mathfrak{m}'}$ and $\Sigma(\mathfrak{a})_{\mathfrak{m}''}$ respectively.

PROOF OF THEOREM. We have only to find a set of standard representatives $S \subset M'_0$ of $J_0 \setminus M'_0 / M'_0 \cap P$ since the set S becomes a set of representatives of $H \setminus HP'/P$ in view of the above arguments.

 $M'_0 \cap P$ is a minimal parabolic subgroup of M'_0 since $\mathfrak{m}' \cap \mathfrak{P}$ is a minimal parabolic subalgebra of \mathfrak{m}' and since $Z_{K \cap M'_0}(\mathfrak{a}) = M'_0 \cap M$ is contained in $M'_0 \cap P$. In the same way $M'_0 \cap \sigma P'$ is proved to be a parabolic subgroup of M'_0 . Thus we have the Bruhat decomposition

$$M_0' = \bigcup_{w \in W_1} (M_0' \cap \sigma P') w(M_0' \cap P)$$

where W_1 is a complete set of representatives of $W(\mathfrak{a})_{\mathfrak{m}'} \setminus W(\mathfrak{a})_{\mathfrak{m}'}$ in $N_{K \cap M'_0}(\mathfrak{a})$.

Let $M_0' \cap \sigma P' = M''A''N''$ be the Langlands decomposition of $M_0' \cap \sigma P'$ corresponding to $\mathfrak{m}' \cap \sigma \mathfrak{P}' = \mathfrak{m}'' + \mathfrak{a}'' + \mathfrak{n}'$. Then it follows from Lemma that

$$(M'_0 \cap \sigma P')w(M'_0 \cap P) = J_0 M'' A'' w(M'_0 \cap P)$$

for every $w \in W_1$. Therefore we have only to study the decomposition

$$J_0 \cap M''A'' \setminus M''A'' / wPw^{-1} \cap M''A''$$
.

Since $M''A''/wPw^{-1} \cap M''A''$ is isomorphic to $M''_0/wPw^{-1} \cap M''_0$ (M''_0 is the identity component of M'') and since $J_0 \cap M''A'' = (M'' \cap H)_0 \exp \mathfrak{a}_1''$ (Lemma), there is a canonical bijection

$$(2.4) (M'' \cap H)_0 \backslash M''_0 / w P w^{-1} \cap M''_0 \longrightarrow J_0 \cap M'' A'' \backslash M'' A'' / w P w^{-1} \cap M'' A''.$$

Here we note that M_0'' is σ -stable. Thus the triple $(M_0'', (M'' \cap H)_0, \sigma)$ is an affine symmetric space such that M_0'' is a connected real reductive Lie group. Moreover $wPw^{-1} \cap M_0''$ is a minimal parabolic subgroup of M_0'' . Therefore the result of [3] can be applied to the left hand side of (2.4). For every $x \in M_0''$ there is a $y \in (M'' \cap H)_0 x (wPw^{-1} \cap M_0'')$ such that $\alpha_1'' = \operatorname{Ad}(y)(\alpha \cap \mathfrak{m}'')$ is a σ -stable maximal abelian subspace of $\mathfrak{m}'' \cap \mathfrak{p}$ (Proposition in §1).

Thus we have proved the following. For an arbitrary $x \in HP'$ there exists a $w \in W_1$ and a $y \in M_0''$ such that $\alpha_1 = \operatorname{Ad}(y)\alpha$ is σ -stable and that $yw \in HxP$. Then it is clear that α_1 and $\mathfrak{P}_1 = \operatorname{Ad}(yw)\mathfrak{P} = \mathfrak{P}(\alpha_1, \Sigma(\alpha_1)^+)$ satisfy the conditions of the theorem. Hence the theorem is proved.

For a σ -stable maximal abelian subspace α_1 of p satisfying $\alpha_1 \supset \alpha'$, we can define subsets $\Sigma(\alpha_1)_{\mathfrak{m}'}$ and $\Sigma(\alpha_1)_{\mathfrak{m}'}$ of $\Sigma(\alpha_1)$ in the same manner as $\Sigma(\alpha)_{\mathfrak{m}'}$ and $\Sigma(\alpha)_{\mathfrak{m}'}$. If $\Sigma(\alpha_1)^+$ is a positive system of $\Sigma(\alpha_1)$, then $\Sigma(\alpha_1)^+_{\mathfrak{m}'}$ and $\Sigma(\alpha_1)^+_{\mathfrak{m}'}$ are defined by $\Sigma(\alpha_1)^+_{\mathfrak{m}'} = \Sigma(\alpha_1)_{\mathfrak{m}'} \cap \Sigma(\alpha_1)^+$ and $\Sigma(\alpha_1)^+_{\mathfrak{m}'} = \Sigma(\alpha_1)_{\mathfrak{m}'} \cap \Sigma(\alpha_1)^+$ respectively.

Now we consider closed H-orbits and open H-orbits on HP'/P with respect to the topology of HP'/P.

COROLLARY 1. Retain the notations in Theorem.

- (a) A minimal parabolic subalgebra $\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$ satisfying the conditions of Theorem is contained in a closed H-orbit on HP'/P (\mathfrak{P}_1 is identified with a point in P'/P) if and only if the following three conditions are satisfied:
 - (i) $\langle \Sigma(\mathfrak{a}_1)^+_{\mathfrak{m}'}, \sigma\mathfrak{a}'_+ \rangle \subset \mathbf{R}_+,$
 - (ii) $\Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$ is σ -compatible (i.e. $\alpha \in \Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$, $\alpha \mid_{\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{a}_2} \neq 0 \Rightarrow \sigma \alpha \in \Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$),
 - (iii) $\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{m}'' \cap \mathfrak{p} \cap \mathfrak{h}$.
- (b) A minimal parabolic subalgebra $\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$ satisfying the conditions of Theorem is contained in an open H-orbit on HP'/P if and only if the following three conditions are satisfied:
 - (i) $\langle \Sigma(\alpha_1)^+_{\mathfrak{m}'}, \sigma\theta\alpha'_+ \rangle \subset \mathbf{R}_+,$
 - (ii) $\Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$ is $\sigma\theta$ -compatible (i.e. $\alpha \in \Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$, $\alpha \mid_{\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{b}} \neq 0 \Rightarrow \sigma\theta\alpha \in \Sigma(\mathfrak{a}_1)_{\mathfrak{m}''}^+$),
 - (iii) $\mathfrak{m}'' \cap \mathfrak{a}_1 \cap \mathfrak{q}$ is maximal abelian in $\mathfrak{m}'' \cap \mathfrak{p} \cap \mathfrak{q}$.

PROOF. Since the bijections (2.1) and (2.2) come from the topological isomorphisms $H \cap P' \setminus P' \cong H \setminus HP'$ and $P' \mid P \cong M' \mid M' \cap P$ respectively, we have only to consider closed double cosets and open double cosets in the decomposition

$$J\backslash M'/M'\cap P$$
.

For $x \in M'$ and $y \in J$, we have $J_0yx(M' \cap P) = yJ_0x(M' \cap P)$. Hence $Jx(M' \cap P)$ is closed (resp. open) in M' if and only if $J_0x(M' \cap P)$ is closed (resp. open) in M' and therefore we have only to consider closed double cosets and open double cosets in the decomposition

$$J_0\backslash M'_0/M'_0\cap P$$
.

Consider the decomposition

$$M'_0 = \bigcup_{w \in W_1} J_0 M'' A'' w (M'_0 \cap P).$$

Then open double cosets in $J_0 \backslash M'_0 / M'_0 \cap P$ are contained in

$$J_0M''A''w_2(M'_0 \cap P) = (M'_0 \cap \sigma P')w_2(M'_0 \cap P)$$

where w_2 is the unique element in W_1 satisfying

$$(2.5) \qquad (\mathfrak{m}' \cap \sigma \mathfrak{P}') + \operatorname{Ad}(w_2)(\mathfrak{m}' \cap \mathfrak{P}) = \mathfrak{m}'.$$

On the other hand closed double cosets in $J_0\backslash M_0'/M_0'\cap P$ are contained in

$$J_0M''A''w_1(M'_0\cap P)$$

where w_1 is the unique element in W_1 satisfying

$$(2.6) Ad(w_1)(\mathfrak{m}' \cap \mathfrak{P}) \supset \mathfrak{n}''.$$

This is proved as follows. Let $g: J_0 \to M''A'' \cap J_0$ be the projection with respect to the decomposition $J_0 = (M''A'' \cap J_0)N''$. For $x \in M''A''$ and $w \in W_1$, we have

$$J_0xw(M_0'\cap P)/M_0'\cap P\cong J_0/J_0\cap xw(M_0'\cap P)w^{-1}x^{-1}.$$

Then the map g induces a projection

$$J_0/J_0 \cap xw(M'_0 \cap P)w^{-1}x^{-1} \longrightarrow (M''A'' \cap J_0)/g(J_0 \cap xw(M'_0 \cap P)w^{-1}x^{-1})$$

with fibres isomorphic to $F = N''/N'' \cap xw(M'_0 \cap P)w^{-1}x^{-1}$. Since $x^{-1}N''x = N''$, we have $F \cong N''/N'' \cap w(M'_0 \cap P)w^{-1}$. If we apply Lemma 1.1.4.1 in [6] to \mathfrak{n}'' and $\mathfrak{n}'' \cap \mathrm{Ad}(w)(\mathfrak{m}' \cap \mathfrak{P})$, it follows easily that F is topologically isomorphic to \mathbb{R}^k where $k = \dim \mathfrak{n}'' - \dim (\mathfrak{n}'' \cap \mathrm{Ad}(w)(\mathfrak{m}' \cap \mathfrak{P}))$. If the double coset $J_0xw(M'_0 \cap P)$ is closed in M'_0 , then $J_0xw(M'_0 \cap P)/(M'_0 \cap P)$ is compact and therefore k = 0. Hence $\mathrm{Ad}(w)(\mathfrak{m}' \cap \mathfrak{P}) \supset \mathfrak{n}''$ and $w = w_1$.

The assertion (a) is proved as follows. Since the canonical map

$$M_0''/w_1Pw_1^{-1}\cap M_0''\longrightarrow M''A''/w_1Pw_1^{-1}\cap M''A''$$

is a topological isomorphism and since (2.5) is a bijection, we have only to consider closed double cosets in

$$(2.7) (M'' \cap H)_0 \backslash M''_0 / w_1 P w_1^{-1} \cap M''_0.$$

For each double coset in (2.7), take a representative $x \in M_0''$ so that Ad (x) ($\mathfrak{m}'' \cap \mathfrak{a}$) = \mathfrak{a}_1'' is σ -stable. Then x is contained in a closed double coset in (2.7) if and only

if $\mathfrak{a}_1'' \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{m}'' \cap \mathfrak{p} \cap \mathfrak{h}$ and the positive system $\Sigma(\mathfrak{a}_1'')^+$ of $\Sigma(\mathfrak{a}_1'')$ corresponding to $xw_1Pw_1^{-1}x^{-1} \cap M_0''$ is σ -compatible ([3], § 3, Proposition 2). Put $\mathfrak{a}_1 = \operatorname{Ad}(x)\mathfrak{a}$ and $\mathfrak{P}_1 = \operatorname{Ad}(xw_1)\mathfrak{P} = \mathfrak{P}(\mathfrak{a}_1, \Sigma(\mathfrak{a}_1)^+)$. Then it is clear that (2.6) is equivalent to the condition (i) in (a) and that the above conditions for $\mathfrak{a}_1'' = \mathfrak{a}_1 \cap \mathfrak{m}''$ and $\Sigma(\mathfrak{a}_1'')^+$ are equivalent to the conditions (ii) and (iii) in (a). Hence the assertion (a) is proved.

The assertion (b) is proved by a similar argument using (2.5) and Proposition 1 in [3]. q. e. d.

For an affine symmetric space (G, H, σ) such that G is semisimple, the associated affine symmetric space $(G, H', \sigma\theta)$ is defined by $H' = (K \cap H) \exp(\mathfrak{p} \cap \mathfrak{q})$. Then there exists a one-to-one correspondence between the double coset decompositions $H \setminus G/P$ and $H' \setminus G/P$. If \mathfrak{a} is a σ -stable maximal abelian subspace of \mathfrak{p} , an H-orbit containing $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ corresponds to the H'-orbit containing the same $\mathfrak{P}(\mathfrak{a}, \Sigma(\mathfrak{a})^+)$ ([3], Corollary 2 of Theorem 1).

COROLLARY 2. (a) In this correspondence, $H\backslash HP'/P$ corresponds to $H'\backslash H'P'/P$. Moreover closed H-orbits on HP'/P correspond to open H'-orbits on H'P'/P and open ones to closed ones.

(b) Let P'' be a parabolic subgroup of G containing P'. Then there is a one-to-one correspondence between $H\backslash HP''/P'$ and $H'\backslash H'P''/P'$ which is compatible with the canonical surjections $f: H\backslash HP''/P \to H\backslash HP''/P'$ and $f': H'\backslash H'P''/P \to H'\backslash H'P''/P'$ and with the correspondence $H\backslash HP''/P \hookrightarrow H'\backslash H'P''/P$. In this correspondence closed H-orbits on HP''/P' correspond to open H'-obrits on H'P''/P' and open ones to closed ones.

PROOF. The first assertion in (a) is clear from Theorem. The second assertion in (a) is clear from Corollary 1. Since a double coset HxP' in HP'' is closed (resp. open) in HP'' if and only if HxP' contains a closed (resp. open) double coset HyP in HP'', and since the same holds for H', the assertions in (b) are clear from (a).

q. e. d.

REMARK. Let \mathfrak{a}^o be a σ -stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^o \cap \mathfrak{q}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{q}$ and let $\Sigma(\mathfrak{a}^o)^+$ be a $\sigma\theta$ -compatible positive system of $\Sigma(\mathfrak{a}^o)$. Then $\mathfrak{P}^o = \mathfrak{P}(\mathfrak{a}^o, \Sigma(\mathfrak{a}^o)^+)$ is contained in an open H-orbit on G/P. Let \mathfrak{P}'^o be a parabolic subalgebra of \mathfrak{g} containing \mathfrak{P}^o and $W^o_{\mathfrak{P}}$, the subgroup of $W(\mathfrak{a}^o)$ corresponding to \mathfrak{P}'^o . Then it follows easily from Theorem and [3], Proposition 1 that there is a one-to-one correspondence between the set of open double cosets in $H \setminus G/P'^o$ and

$$W_{K \cap H}(\mathfrak{a}^o) \setminus W_{\sigma}(\mathfrak{a}^o) / W_{\sigma}(\mathfrak{a}^o) \cap W_{\mathfrak{M}}^o$$

where $W_{\sigma}(\mathfrak{a}^o) = \{ w \in W(\mathfrak{a}^o) \mid w\sigma = \sigma w \}$. This fact is also proved in [4], Corollary 16.

Let \mathfrak{a}^c be a σ -stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^c \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$ and let $\Sigma(\mathfrak{a}^c)^+$ be a σ -compatible positive system of $\Sigma(\mathfrak{a}^c)$. Let \mathfrak{P}'^c be a parabolic subalgebra of \mathfrak{g} containing $\mathfrak{P}^c = \mathfrak{P}(\mathfrak{a}^c, \Sigma(\mathfrak{a}^c)^+)$ and $W_{\mathfrak{P}}^c$ the subgroup of $W(\mathfrak{a}^c)$ corresponding to \mathfrak{P}'^c . Then there is a one-to-one correspondence between the set of closed double cosets in $H \setminus G/P'^c$ and

$$W_{K \cap H}(\mathfrak{a}^c) \backslash W_{\sigma}(\mathfrak{a}^c) / W_{\sigma}(\mathfrak{a}^c) \cap W_{\mathfrak{B}^c}^c$$

where $W_{\sigma}(\mathfrak{a}^c) = \{ w \in W(\mathfrak{a}^c) \mid w\sigma = \sigma w \}$ (Theorem and [3], Proposition 2).

In the following we shall give an explicit formula for the decomposition $H\backslash HP'/P$ applying the method used in § 2 of [3]. Let \mathfrak{a}_0 be a σ -stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_0\supset\mathfrak{a}'$ and that $\mathfrak{m}''\cap\mathfrak{a}_0\cap\mathfrak{h}$ is maximal abelian in $\mathfrak{m}''\cap\mathfrak{p}\cap\mathfrak{h}$. Such a subspace \mathfrak{a}_0 of \mathfrak{p} is constructed as follows. Let \mathfrak{a}''_{0+} be a maximal abelian subspace of $\mathfrak{m}''\cap\mathfrak{p}\cap\mathfrak{h}$ and \mathfrak{a}''_0 a maximal abelian subspace of $\mathfrak{m}''\cap\mathfrak{p}$ containing \mathfrak{a}''_{0+} . Then $\mathfrak{a}_0=\mathfrak{a}''_0+\mathfrak{a}''+\mathfrak{a}'$ is a desired one. By [3], \mathfrak{p} . 341, Lemma 7, all the maximal abelian subspace \mathfrak{a}'' of $\mathfrak{m}''\cap\mathfrak{p}$ such that $\mathfrak{a}''\cap\mathfrak{h}$ is maximal abelian in $\mathfrak{m}''\cap\mathfrak{p}\cap\mathfrak{h}$ are mutually $(M'''\cap H)_0$ -conjugate. Thus the choice of \mathfrak{a}_0 is unique up to $(M'''\cap H)_0$ -conjugacy. Fix a positive system $\Sigma(\mathfrak{a}_0)^+$ of $\Sigma(\mathfrak{a}_0)$ such that $\langle \Sigma(\mathfrak{a}_0)^+, \mathfrak{a}'_+ \rangle \subset \mathbf{R}_+$. Then $\mathfrak{P}_{(0)} = \mathfrak{P}(\mathfrak{a}_0, \Sigma(\mathfrak{a}_0)^+)$ is contained in \mathfrak{P}' . Let $P_{(0)}$ be the corresponding minimal parabolic subgroup of G.

Let \bar{a} be a σ -stable maximal abelian subspace of p such that $\bar{a} \cap h$ is maximal abelian in $p \cap h$, $\bar{a} \cap h \supset a_0 \cap h$ and $\bar{a} \cap q \subset a_0 \cap q$. The existence of such a subspace \bar{a} of p is an easy consequence of [3], p. 342, Lemma 8. Put $r = \{Y \in \bar{a} \cap h \mid B(Y, a_0 \cap h) = \{0\}\}$. Then $\bar{a} \cap h = a_0 \cap h + r$ (direct sum).

Put $\Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''} = \{\alpha \in \Sigma(\mathfrak{a}_0)_{\mathfrak{m}''} \mid H_{\alpha} \in \mathfrak{m}'' \cap \mathfrak{a}_0 \cap \mathfrak{h}\}$ where $H_{\alpha} \in \mathfrak{a}_0$ is defined by $B(H_{\alpha}, Y) = \alpha(Y)$ for all $Y \in \mathfrak{a}_0$. Then a set of root vectors $Q = \{Y_{\alpha_1}, \ldots, X_{\alpha_k}\}$ is said to be a q-orthogonal system of $\Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''}$ if the following two conditions are satisfied:

- (i) $\alpha_i \in \Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''}$ and $X_{\alpha_i} \in \mathfrak{g}(\mathfrak{a}_0; \alpha_i) \cap \mathfrak{q} \{0\}$ for i = 1, ..., k,
- (ii) $[X_{\alpha_i}, X_{\alpha_i}] = [X_{\alpha_i}, \theta X_{\alpha_i}] = 0$ for $i \neq j$.

We normalize X_{α_i} , i=1,...,k so that $2\alpha_i(H_{\alpha_i})B(X_{\alpha_i},\theta X_{\alpha_i})=-1$. Define an element c(Q) of M_0'' by

$$c(Q) = \exp(\pi/2)(X_{\alpha_1} + \theta X_{\alpha_1}) \cdots \exp(\pi/2)(X_{\alpha_k} + \theta X_{\alpha_k}).$$

Then $\mathfrak{a}^1 = \operatorname{Ad}(c(Q))\mathfrak{a}_0$ is a σ -stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^1 \supset \mathfrak{a}'$.

Let $\{Q_0, ..., Q_n\}$ $(Q_0 = \phi)$ be a complete set of representatives of \mathfrak{q} -orthogonal

systems of $\Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''}$ with respect to the following equivalence relation \sim . For two q-orthogonal systems $Q = \{X_{\alpha_1}, \ldots, X_{\alpha_k}\}$ and $Q' = \{X_{\beta_1}, \ldots, X_{\beta_{k'}}\}$ of $\Sigma_{\mathfrak{h}}(\mathfrak{a}_0)_{\mathfrak{m}''}$, $Q \sim Q'$ if and only if there exists a $w \in W_{K \cap H}(\overline{\mathfrak{a}})(=N_{K \cap H}(\overline{\mathfrak{a}})/Z_{K \cap H}(\overline{\mathfrak{a}}))$ such that

$$w(r + \sum_{j=1}^{k} H_{\alpha_j}) = r + \sum_{j=1}^{k'} H_{\beta_j}.$$

Put $a_i = Ad(c(Q_i))a_0$, i = 1,..., n. Then the following is a trivial consequence of Theorem in this paper, Corollary 1 of Theorem 1 in [3] (Proposition in § 1) and Theorem 2 in [3].

COROLLARY 3. $HP' = \bigcup_{i=0}^{m} \bigcup_{j=1}^{m(i)} Hw_j^i c(Q_i) P_{(0)}$ (disjoint union) where $\{w_1^i, ..., w_{m(i)}^i\}$ is a complete set of representatives of $W_{K \cap H}(\mathfrak{a}_i) \cap W(\mathfrak{a}_i)_{\mathfrak{m}'} \setminus W(\mathfrak{a}_i)_{\mathfrak{m}'}$ in $N_{K \cap M'}(\mathfrak{a}_i)$. Moreover we have

$$H'P' = \bigcup_{i=0}^n \bigcup_{j=1}^{m(i)} H'w_j^i c(Q_i) P_{(0)} (disjoint union).$$

EXAMPLE 1. Suppose that $G = G_1 \times G_1$ where G_1 is a connected real semi-simple Lie group with Lie algebra \mathfrak{g}_1 and that $H = \Delta G_1 = \{(x, x) \in G \mid x \in G_1\}$. Let $\mathfrak{g}_1 = \mathfrak{f}_1 + \mathfrak{p}_1$ be a Cartan decomposition of \mathfrak{g}_1 and put $\mathfrak{f} = \mathfrak{f}_1 + \mathfrak{f}_1$ and $\mathfrak{p} = \mathfrak{p}_1 + \mathfrak{p}_1$. Then a σ -stable maximal abelian subspace \mathfrak{q} of \mathfrak{p} is of the form $\mathfrak{q} = \mathfrak{q}_1 + \mathfrak{q}_1$ where \mathfrak{q}_1 is a maximal abelian subspace of \mathfrak{p}_1 . Let \mathfrak{P}^0 be a minimal parabolic subalgebra of \mathfrak{g} of the form $\mathfrak{P}^0 = \mathfrak{P}_1 + \mathfrak{P}_1$ where $\mathfrak{P}_1 = \mathfrak{P}(\mathfrak{q}_1, \Sigma(\mathfrak{q}_1)^+)$ for some positive system $\Sigma(\mathfrak{q}_1)^+$ of $\Sigma(\mathfrak{q}_1)$. Then there is a one-to-one correspondence

$$\Delta W(\mathfrak{a}_1)\backslash W(\mathfrak{a}_1)\times W(\mathfrak{a}_1) \xrightarrow{\sim} H\backslash G/P^0$$

which is induced by the map $(w_1, w_2) \mapsto \operatorname{Ad}(w_1) \mathfrak{P}_1 + \operatorname{Ad}(w_2) \mathfrak{P}_1$ $(w_1, w_2 \in W(\mathfrak{a}_1))$ where $\Delta W(\mathfrak{a}_1) = \{(w, w) \in W(\mathfrak{a}_1) \times W(\mathfrak{a}_1) \mid w \in W(\mathfrak{a}_1)\}$. If we identify $H \setminus G$ with G_1 by the map $(x, y) \mapsto x^{-1}y$ $(x, y \in G_1)$, the decomposition $H \setminus G/P^0$ is equivalent to the Bruhat decomposition

$$P_1 \backslash G_1 / P_1 \cong W(\mathfrak{a}_1)$$
.

Fix $(w_1, w_2) \in W(\alpha) (= W(\alpha_1) \times W(\alpha_1))$ and put $\mathfrak{P} = \operatorname{Ad}(w_1) \mathfrak{P}_1 + \operatorname{Ad}(w_2) \mathfrak{P}_1$. Let $\mathfrak{P}^{0'} = \mathfrak{P}_1' + \mathfrak{P}_1''$ be an arbitrary parabolic subalgebra of g containing \mathfrak{P}^0 and let $W_{\mathfrak{P}_1'}$ and $W_{\mathfrak{P}_1''}$ be the subgroups of $W(\alpha_1)$ corresponding to \mathfrak{P}_1' and \mathfrak{P}_1'' respectively. The parabolic subalgebra $\mathfrak{P}' = \operatorname{Ad}(w_1) \mathfrak{P}_1' + \operatorname{Ad}(w_2) \mathfrak{P}_1''$ contains \mathfrak{P} and then $W(\alpha)_{\mathfrak{m}'} = w_1 W_{\mathfrak{P}_1'} w_1^{-1} \times w_2 W_{\mathfrak{P}_1''} w_2^{-1}$. Thus the minimal parabolic subalgebras of g given in Theorem are of the form $\operatorname{Ad}(w_1 w_1') \mathfrak{P}_1 + \operatorname{Ad}(w_2 w_2') \mathfrak{P}_1$ $(w_1' \in W_{\mathfrak{P}_1'}, w_2' \in W_{\mathfrak{P}_1'})$. Hence there is a bijection

$$\Delta W(\mathfrak{a}_1)\backslash W(\mathfrak{a}_1)\times W(\mathfrak{a}_1)/W_{\mathfrak{P}_1'}\times W_{\mathfrak{P}_1''}\longrightarrow H\backslash G/P^{0'}.$$

If we identify $H \setminus G$ with G_1 , the above decomposition $H \setminus G/P^{0'}$ is equivalent to the well-known decomposition

$$P_1' \setminus G_1/P_1'' \cong W_{\mathfrak{P}_1'} \setminus W(\mathfrak{a}_1)/W_{\mathfrak{P}_1''}.$$

EXAMPLE 2 ([5], p. 29, Lemma 5.2). Let G be a connected complex semi-simple Lie group and σ a complex linear involution of G. Then H is a complex subgroup of G. A Cartan involution θ is a conjugation of g with respect to a compact real form f of g and $p = (-1)^{1/2}f$. Let α be a σ -stable maximal abelian subspace of p and $\Sigma(\alpha)^+$ a positive system of $\Sigma(\alpha)$. Then $\mathfrak{P} = \mathfrak{P}(\alpha, \Sigma(\alpha)^+)$ is a Borel subalgebra of g. Let \mathfrak{P}' be a parabolic subalgebra of g corresponding to a simple root α of $\Sigma(\alpha)^+$. Then the simple root α is called (i) compact imaginary if $g(\alpha; \alpha) \subset \mathfrak{h}$, (ii) non-compact imaginary if $g(\alpha; \alpha) \subset \mathfrak{h}$, (iii) real if $\sigma \alpha = -\alpha$ and (iv) complex if $\sigma \alpha \neq \pm \alpha$. In [5], $H \setminus HP'/P \subset H \setminus G/P$ is determined in each case (i) \sim (iv). Therefore $f^{-1}(f(\mathcal{O}))$ is determined for an arbitrary $\mathcal{O} \in H \setminus G/P$ if P' is a parabolic subgroup of G corresponding to a simple root.

References

- [1] K. Aomoto, On some double coset decompositions of complex semi-simple Lie groups,J. Math. Soc. Japan, 18 (1966), 1-44.
- [2] M. Berger, Les espace symétriques non compacts, Ann. Sci. École Norm. Sup., 74 (1957), 85-177.
- [3] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
- [4] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math., 31 (1979), 157-180.
- [5] D. Vogan, Irreducible characters of semisimple Lie groups III. Proof of the Kazhdan-Lusztig conjectures in the integral case, preprint.
- [6] G. Warner, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [7] J. Wolf, The action of a real semi-simple group on a complex flag manifold, 1: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1969), 1121– 1237.

Department of Mathmatics, Faculty of Science, Hiroshima University*)

^{*)} The current address of the author is as follows: Faculty of General Education, Tottori University.