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ABSTRACT

We introduce a machine learning method in which energy solutions from the Schrödinger equation are predicted using symmetry adapted
atomic orbital features and a graph neural-network architecture. OrbNet is shown to outperform existing methods in terms of learning
efficiency and transferability for the prediction of density functional theory results while employing low-cost features that are obtained from
semi-empirical electronic structure calculations. For applications to datasets of drug-like molecules, including QM7b-T, QM9, GDB-13-T,
DrugBank, and the conformer benchmark dataset of Folmsbee and Hutchison [Int. J. Quantum Chem. (published online) (2020)], OrbNet
predicts energies within chemical accuracy of density functional theory at a computational cost that is 1000-fold or more reduced.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021955., s

I. INTRODUCTION

The potential energy surface is the central quantity of interest in
modeling of molecules and materials. The calculation of these ener-
gies with sufficient accuracy in chemical, biological, and materials
systems is in many—but not all—cases adequately described at the
level of density functional theory (DFT). However, due to its rela-
tively high cost, the applicability of DFT is limited to either relatively
small molecules ormodest conformational sampling, at least in com-
parison to force-field and semi-empirical quantummechanical theo-
ries. Amajor focus ofmachine learning (ML) for quantum chemistry
has, therefore, been to improve the efficiency with which potential
energies of molecular and materials systems can be predicted while
preserving accuracy.

In the context of quantum chemistry, many applications
have focused on the use of atom- or geometry-specific fea-
ture representations and kernel-based1–9 or neural-network (NN)
ML architectures.10–23 Recent studies focus on the featurization

of molecules in abstracted representations—such as quantum
mechanical properties obtained from low-cost electronic structure
calculations24–28—and the utilization of novel graph-based neu-
ral network29–35 techniques to improve transferability and learning
efficiency.

In this vein, we present a new approach (OrbNet) based on
the featurization of molecules in terms of symmetry-adapted atomic
orbitals (SAAOs) and the use of graph neural network methods for
deep-learning quantum-mechanical properties.

We demonstrate the performance of the new method for the
prediction of molecular properties, including the total and rela-
tive conformer energies for molecules in a range of datasets of
organic and drug-like molecules. The method enables the prediction
of molecular potential energy surfaces with full quantum mechan-
ical accuracy while enabling vast reductions in computational cost;
moreover, the method outperforms existing methods in terms of its
training efficiency and transferable accuracy across diverse molecu-
lar systems.
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II. METHOD

The target of this work is to machine learn a transferable map-
ping from input features’ values {f} to the regression labels that are
quantum mechanical energies,

E ≈ E
ML∥{f}∥. (1)

The key elements of OrbNet (Fig. 1) include the efficient evaluation
of the features in the SAAO basis, the utilization of a graph neural-
network architecture with edge and node attributes and message
passing layers (MPLs), and a prediction phase that ensures exten-
sivity of the resulting energies. We summarize these elements in
the current section and discuss the relationship between OrbNet
and other ML approaches. Although results in the current paper
are presented for the mapping of features from semi-empirical-
quality features to DFT-quality labels, the method is general with
respect to the mean-field method used for features [i.e., also allow-
ing for Hartree–Fock (HF) and DFT] and the level of theory used
for generating labels (i.e., also allowing for coupled-cluster and other
correlated-wavefunction method reference data).

A. SAAO features

Let {ϕAn,l,m} be the set of atomic orbital (AO) basis functions
with atom index A and the standard principal and angular momen-
tum quantum numbers, n, l, and m. Let C be the corresponding
molecular orbital coefficient matrix obtained from amean-field elec-
tronic structure calculation, such as HF theory, DFT, or a semi-
empirical method. The one-electron density matrix of the molecular

system in the AO basis is then

Pμν = 2 ∑
i∈occ

CμiCνi (2)

(for a closed-shell system). We construct a rotationally invariant
symmetry-adapted atomic-orbital (SAAO) basis {ϕ̂An,l,m} by diago-
nalizing diagonal density-matrix blocks associated with indices A, n,
and l such that

P
A
nlY

A
nl = Y

A
nldiag(λAnlm), (3)

where ∥PA
nl∥mm′ = P

A
nlm,nlm′ . For s orbitals (l = 0), this symmetrization

procedure is obviously trivial and can be skipped. By construction,
SAAOs are localized and consistent with respect to geometric per-
turbations of the molecule, and in contrast with localized molecular
orbitals (LMOs) obtained from minimizing a localization objec-
tive function (e.g., Pipek–Mezey and Boys), SAAOs are obtained
by a series of very small diagonalizations, without the need for an
iterative procedure. The SAAO eigenvectors YA

nl are aggregated to
form a block-diagonal transformation matrix Y that specifies the full
transformation from AOs to SAAOs,

∣ϕ̂p⟩ =∑
μ

Yμp∣ϕμ⟩, (4)

where μ and p index the AOs and SAAOs, respectively.
We employ ML features {f} comprised of tensors obtained by

evaluating quantum-chemical operators in the SAAO basis. Here-
after, all quantum mechanical matrices will be assumed to be rep-
resented in the SAAO basis, including the density matrix P and
the overlap matrix S. Following our previous work,24 the fea-
tures include expectation values of the Fock (F), Coulomb (J), and

FIG. 1. Summary of the OrbNet work-
flow. (a) A low-cost mean-field elec-
tronic structure calculation is performed
for the molecular system, and (b) the
resulting SAAOs and the associated
quantum operators are constructed. (c)
An attributed graph representation is
built with node and edge attributes cor-
responding to the diagonal and off-
diagonal elements of the SAAO tensors.
(d) The attributed graph is processed
by the embedding layer and message
passing layers to produce transformed
node and edge attributes. (e) The trans-
formed node attributes for the encoding
layer and each message passing layer
are extracted, and (f) they are passed
to MPL-specific decoding networks. (g)
The node-resolved energy contributions
εu are obtained by summing the decod-
ing network outputs node-wise, and (h)
the final extensive energy prediction is
obtained from a one-body summation
over the nodes.
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exchange (K) operators in the SAAO basis. In this work, we addi-
tionally include the SAAO density matrix, P, the orbital centroid
distance matrix, D, the core Hamiltonian matrix, H, and the over-
lap matrix, S; other quantum-mechanical matrix elements are also
possible for featurization.

B. Approximated Coulomb and exchange SAAO
features

When a semi-empirical quantum chemical theory is employed,
the computational bottleneck of SAAO feature generation becomes
the J and K terms due to the need to compute four-index electron-
repulsion integrals. We address this problem by introducing a gen-
eralized form of the Mataga–Nishimoto–Ohno–Klopman formula,
as in the sTDA-xTB method,36,37

(pq∣rs)MNOK
=∑

A

∑
B

Q
A
pqQ

B
rsγAB. (5)

Here, A and B are atom indices, p, q, r, and s are SAAO indices, and

γ
{J,K}
AB = ( 1

R
y{J,K}
AB + η−y{J,K}

)1/y{J,K} , (6)

where RAB is the distance between atoms A and B, η is the average
chemical hardness for the atomsA and B, and y{J ,K} are the empirical
parameters specifying the decay behavior of the damped interaction

kernels, γ
{J,K}
AB . In this work, we used yJ = 4 and yK = 10 similar to

which employed in the sTDA-RSHmethod.38 The transition density
QA

pq is calculated from a Löwdin population analysis,

Q
A
pq =∑

μ∈A

Y
′

μpY
′

μq, (7)

where the pth column of Y′ = YS
1/2 contains the expansion coef-

ficients for the pth SAAO in the symmetrically orthgonalized AO
basis. This yields approximated J and Kmatrices for featurization,

J
MNOK
pq = (pp∣qq)MNOK

=∑
A,B

Q
A
ppQ

B
qqγ

J
AB, (8)

K
MNOK
pq = (pq∣pq)MNOK

=∑
A,B

Q
A
pqQ

B
pqγ

K
AB. (9)

A naive implementation of Eqs. (8) and (9) is O(N4), the leading
asymptotic cost. However, this scaling may be reduced to O(N2)
with negligible loss of accuracy through a tight-binding approxi-
mation; for molecules in this study, the computation of JMNOK and
K

MNOK is not the leading order cost for feature generation, and such
tight-binding approximation is thus not employed.

C. OrbNet

OrbNet encodes the molecular system as graph-structured data
and utilizes a graph neural network (GNN) machine-learning archi-
tecture. The GNN represents data as an attributed graph G(V, E, X,

X
e), with nodes V, edges E, node attributes X : V → R

n×d, and edge
attributes Xe : E→ R

m×e, where n = |V|,m = |E|, and d and e are the
number of attributes per node and edge, respectively.

Specifically, OrbNet employs a graph representation for
a molecular system in which node attributes correspond to
diagonal SAAO features Xu = [Fuu, Juu, Kuu, Puu, Huu] and
edge attributes correspond to off-diagonal SAAO features Xe

uv

= ∥Fuv, Juv,Kuv,Duv,Puv, Suv,Huv∥. By introducing an edge attribute
cut-off value for edges to be included, non-interacting molecular
systems separated at infinite distance are encoded as disconnected
graphs, thereby satisfying size-consistency.

The model capacity is enhanced by introducing nonlinear
input-feature transformations to the graph representation via radial
basis functions,

h
RBF
u = ∥ϕh1(X̃u),ϕh2(X̃u), . . . ,ϕhnr(X̃u)∥, (10)

e
RBF
uv = ∥ϕe1(X̃e

uv),ϕe2(X̃e
uv), . . . ,ϕemr

(X̃e
uv)∥, (11)

where X̃ and X̃
e
are n × d and m × e matrices with pre-normalized

attributes, as described in Sec. III. Sine basis functions ϕhn(r)
= sin(πnr) are used for node embedding. Motivated by the embed-
ding approach introduced by a recent atom-based GNN study,34 we
employ 0th order spherical Bessel functions for edge embedding,

ϕ
e
m(r) = jm0 (r/cX) ⋅ IX(r) =

√
2

cX

sin(πmr/cX)
r/cX ⋅ IX(r), (12)

where cX (X ∈ {F, J,K,D, P, S,H}) is the operator-specific upper cut-
off value to X̃e

uv. To ensure that the feature varies smoothly when a
node enters the cutoff, we further introduce the mollifier IX(r),

IX(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp(− c2

X

(∣r∣−cX)2
+ 1), if 0 ≤ ∣r∣ < cX

0, if ∣r∣ ≥ cX. (13)

Note that ϕem(r) decays to zero as an edge approaches the cutoff to
ensure size consistency, and the mollifier is infinite order differen-
tiable at the boundaries, which eliminates representation noise that
can arise from geometric perturbation of the molecule. To enforce
that the output is constant at machine precision when adding arbi-
trary numbers of zero edge features, which is critical for the extrac-
tion of analytical gradients and training potential energy surfaces, we
also introduced an “auxiliary edge” scheme to be integrated with the
message passing mechanism,

e
aux
uv =W

aux
⋅ e

RBF
uv , (14)

whereWaux is a trainable parametermatrix. The radial basis function
embeddings are transformed by neural networkmodules to yield 0th
order node and edge attributes,

h
0
u = Ench(eRBFuv ), e0uv = Ence(hRBFu ), (15)

where Ench and Ence are residual blocks
39 comprising three dense

NN layers. In contrast to atom-based message passing neural net-
works, this additional embedding transformation captures the inter-
actions among the physical operators.

The node and edge attributes are updated via the transformer-
motivated40 message passing mechanism in Fig. 2. For a given mes-
sage passing layer (MPL) l + 1, the information carried by each edge

is encoded into a message function m
l
uv and associated attention

weight ml
uv and is accumulated into node features through a graph

convolution operation. The overall message passing mechanism is
given by

h
l+1
u = h

l
u + σ
⎛⎝Wl

h ⋅

⎡⎢⎢⎢⎢⎣⊕i
⎛⎝ ∑v∈N(u)w

l,i
uv ⋅m

l
uv

⎞⎠
⎤⎥⎥⎥⎥⎦ + b

l
h

⎞⎠, (16)
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FIG. 2. Summary of the OrbNet MPL update. For the l + 1 MPL, the attributes of
a given node (blue) are updated due to interactions with nearest-neighbor nodes
(red and gold), which depend on both the nearest-neighbor node attributes and the
nearest-neighbor edge attributes. The node and edge features (i.e., hl

u, hl
v , and

eluv ) combine to produce a message ml
uv [Eq. (17)] and multi-head attention score

wl
uv [Eq. (18)], which undergo attention mixing. The attention-weighted messages

from each nearest-neighbor node and edge are combined and passed into a dense
layer, the result of which is added to the original node attributes to perform the
update [Eq. (16)].

whereml
uv is the message function computed on each edge,

m
l
uv = σ(Wl

m ⋅ ∥hlu ⊙ h
l
v ⊙ e

l
uv∥ + b

l
m), (17)

and the convolution kernel weights, wl,i
uv, are evaluated as (multi-

head) attention scores30 to characterize the relative importance of
an orbital pair,

w
l,i
uv = σa(∑∥(Wl,i

a ⋅ h
l
u)⊙ (Wl,i

a ⋅ h
l
v)⊙ e

l
uv ⊙ e

aux
uv ∥/ne), (18)

where the summation is applied over the elements of the vector in
the summand. Here, the index i specifies the attention head, ne is the

dimension of hidden edge features eluv,⊕ denotes the vector concate-
nation operation, ⊙ denotes the Hadamard product, and ⋅ denotes
the matrix-vector product.

The edge attributes are updated according to

e
l+1
uv = σ(Wl

e ⋅m
l
uv + b

l
e). (19)

W
l
m, W

l
h, W

l
e, b

l
m, b

l
h, b

l
e, and a

l are MPL-specific trainable param-

eter matrices, Wl,i
a are MPL- and attention-head-specific trainable

parameter matrices, σ(⋅) is an activation function with a normaliza-
tion layer, and σa(⋅) is the activation function used for generating
attention scores.

The decoding phase of OrbNet [Figs. 1(f)–1(h)] is designed
to ensure the size-extensivity of energy predictions. The employed
mechanism outputs node-resolved energy contributions for the
embedding layer (l = 0) and all MPLs (l = 1, 2, . . ., L) to predict the
energy components associated with all nodes and MPLs. The final
energy prediction EML is obtained by first summing over l [Fig. 1(g)]

for each node u and then performing a one-body sum over nodes
(i.e., orbitals) [Fig. 1(h)] such that

E
ML
=∑

u∈V

εu =∑
u∈V

L

∑
l=0

Decl(hlu), (20)

where the decoding networks Decl are multilayer perceptrons.

D. COMPARISON WITH OTHER METHODS THAT USE
QUANTUM MECHANICAL FEATURES

Several ML methods have been developed for the prediction of
high-level (i.e., coupled-cluster) correlation energies based on quan-
tum mechanical features from a mean-field-level (i.e., HF theory or
DFT) electronic structure calculation.24,28,41,42 An example from our
own work includes the molecular-orbital-based machine-learning
(MOB-ML) approach to predict molecular properties using local-
ized molecular orbitals for input feature generation.24–26 Localized
molecular orbitals are obtained via an orbital localization procedure
(Boys and IBO) with the orbitals obtained from a mean-field elec-
tronic structure calculation. Feature vectors are then calculated for
diagonal and off-diagonal molecular orbital pairs from matrix ele-
ments of the molecular orbitals with respect to various operators
(i.e., Fock, Coulomb, and exchange operators) within the basis and
using a feature sorting scheme. The Gaussian-process or clustering-
based regressors are trained for the pair correlation energy labels
associated with the MOB feature vectors.

Closer in spirit to OrbNet are NeuralXC27 and DeePHF28 that
employ AO-based features obtained from electronic structure cal-
culations to perform the regression and prediction of molecular
energies. Both NeuralXC and DeePHF utilize the electronic density
and orbitals obtained from either a Hartree–Fock (HF) (in DeePHF)
or low-level density functional theory (DFT) (in NeuralXC) calcu-
lation using cc-pVDZ or larger atomic-orbital basis sets. However,
these methods typically require a mean-field calculation in the same-
sized atomic orbital basis set as that of the high-level correlation
method (i.e., they do not directly make predictions on the basis of
features that are obtained in a minimal basis), and they have not
been applied for the prediction of DFT-quality results on the basis
of lower-level semi-empirical methods, such as GFN-xTB, as is done
here.

In terms of featurization methods, OrbNet differs from Neu-
ralXC and DeePHF by providing a more information-rich quantum
mechanical representation. Unlike NeuralXC, OrbNet avoids shell-
averaging of the AOs, and unlike both NeuralXC and DeePHF, Orb-
Net includes all off-diagonal operator matrix elements (including
both intra- and inter-atom elements, as well as intra- and inter-shell
elements) within the features, thereby preserving information con-
tent while also enabling the description of long-range contributions.
Unlike DeePHF, OrbNet includes interactions between different
shells on the same atom and avoids the need for a pre-determined
weighting function based on inter-atomic distances. OrbNet addi-
tionally includes quantum-chemical matrices including F, J, and K

that are valuable components for energy prediction tasks. Other dif-
ferences arise in the way in which rotational invariance is enforced
within the features. In NeuralXC, the rotational invariance of the
features is guaranteed by summing all sub-shell components of the

AO-projected density dnl = ∑l
m=−l c

2
nlm (i.e., the trace of the local
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density matrix) such that the information content is not preserved.
In DeePHF, the rotational invariance of the features is enforced
by using the eigenvalues of the local density matrix instead of the
trace to build the feature vector for each shell. By contrast, Orb-
Net achieves the rotational invariance of features through the use
of SAAOs, which involve no loss of information content.

In terms of ML regression methods, OrbNet also differs
from NeuralXC and DeePHF. For NeuralXC, the ML regression
is performed using a Behler–Parrinello43 type dense neural net-
work. Similarly, for DeePHF, the ML regression is performed
using a dense neural network, with the labels associated with
a one-body summation over the atoms to yield the total cor-
relation energy. In contrast, OrbNet uses a GNN for the ML
regression. Specifically, we report results using a multi-head graph
attention mechanism and residual blocks to improve the repre-
sentation capacity of the model in order to learn complex chemi-
cal environments. Unlike the pre-tuned aggregation coefficients in
DeePHF, OrbNet also offers a flexible framework for learning orbital
interactions and could be naturally transferred to downstream
tasks.

III. COMPUTATIONAL DETAILS

Results are presented for the QM7b-T dataset25,44 (which has
seven conformations for each of 7211 molecules13 with up to seven
heavy atoms of type C, O, N, S, and Cl), the QM9 dataset45 (which
has locally optimized geometries for 133 885 molecules with up to
nine heavy atoms of type C, O, N, and F), the GDB-13-T dataset25,44

(which has six conformations for each of 1000 molecules from the
GDB-13 dataset46 with 13 heavy atoms of type C, O, N, S, and Cl),
DrugBank-T (which has six conformations for each of 168molecules
from the DrugBank database47 with 14 to 30 heavy atoms of type
C, O, N, S, and Cl), and the Hutchison conformer dataset from
Ref. 48 (which has up to ten conformations for each of 622molecules
with 9 to 50 heavy atoms of type C, O, N, F, P, S, Cl, Br, and I).
Except for DrugBank-T, all of these datasets have been described
previously; thermalized geometries from the DrugBank dataset are
sampled at 50 fs intervals from ab initiomolecular dynamics trajec-
tories performed using the B3LYP49–52/6-31g∗53 level of theory and
a Langevin thermostat54 at 350 K. The structures for the DrugBank-
T dataset are provided in the supplementary material, and all other
employed datasets are already available online.44,45,48 For results
reported in Sec. IV A, the pre-computed DFT labels from Ref. 45
were employed. For results reported in Sec. IV B, all DFT labels
were computed using the ωB97X-D functional55 with a Def2-TZVP
AO basis set56 and using density fitting57 for both the Coulomb
and exchange integrals using the Def2-Universal-JKFIT basis set;58

these calculations are performed using PSI4.59 Semi-empirical cal-
culations are performed using the GFN1-xTB method60 using the
ENTOS QCORE

61 package, which is also employed for the SAAO feature
generation.

For the results presented in this work, we train OrbNet mod-
els using the following training-test splits of the datasets. For
results on the QM9 dataset, we removed 3054 molecules due to a
failed a geometric consistency check, as recommended in Ref. 45;
we then randomly sampled 110 000 molecules for training and
used 10 831 molecules for testing. The training sets of 25 000 and

50 000 molecules in Sec. IV A are subsampled from the 110 000-
molecule dataset. For the QM7b-T dataset, two sets of training-
test splits are generated; for the model trained on the QM7b-T
dataset only (Model 1 in Sec. IV B), we randomly selected 6500
different molecules (with seven geometries for each) from the total
7211 molecules for training, holding out 500 molecules (with seven
geometries for each) for testing; for Models 2–4 in Sec. IV B, we
used a 361-molecule subset of this 500-molecule set for testing,
and we used the remaining 6850 molecules of QM7b-T for train-
ing. For the GDB13-T dataset, we randomly sampled 948 differ-
ent molecules (with six geometries for each) for training, hold-
ing out 48 molecules (with six geometries for each) for testing.
For the DrugBank-T dataset, we randomly sampled 158 different
molecules (with six geometries for each) for training, holding out
ten molecules (with six geometries for each) for testing. No training
on the Hutchison conformer dataset was performed, as it was only
used for transferability testing. Since none of the training datasets
for OrbNet includedmolecules with elements of type P, Br, and I, we
excluded the molecules in the Hutchison dataset that included ele-
ments of these types for the reported tests (as was also done in Ref. 48
and Fig. 4 for the ANI methods). Moreover, following Ref. 48, we
excluded sixteen molecules due to missing DLPNO-LCCSD(T) ref-
erence data; additional eight molecules were excluded on the basis
of DFT convergence issues for at least one conformer using PSI4. The
specific molecules that appear in all training-test splits are listed in
the supplementary material.

Table I summarizes the hyperparameters used for training Orb-
Net for the reported results. We perform a pre-transformation on
the input features from F, J, K, D, P, H and S to obtain X̃ and X̃

e
:

We normalize all diagonal SAAO tensor values Xuu to range [0, 1)
for each operator type to obtain X̃u; for off-diagonal SAAO ten-
sor values, we take X̃uv = − ln(∣Xuv∣) for X ∈ {F, J,K,P, S,H} and
D̃uv = Duv. The model hyperparameters are selected within a limited
search space; the cut-off hyperparameters cX are obtained by exam-
ining the overlap between feature element distributions between the
QM7b-T and GDB13-T datasets. The same set of hyperparameters
is used throughout this work, thereby providing a universal model.

To provide additional regularization for predicting energy vari-
ations from the configurational degree of freedom, we performed
training on the loss function of the form

L(Ê,E) = (1 − α)∑
i

L2(Êi,Ei)
+α∑

i

L2(Êi − Êt(i),Ei − Et(i)). (21)

For a conformer i in a minibatch, we randomly sample another con-
former t(i) of the same molecule to be paired with i to evaluate the
relative conformer loss L2(Êi − Êt(i),Ei − Et(i)), putting an addi-
tional penalty on the prediction errors for configurational energy
variations, where E denotes the ground truth energy values of the
minibatch, Ê denotes the model prediction values of the minibatch,
andL2 denotes the L2 loss functionL2(ŷ, y) = ∥ŷ−y∥22. For all mod-
els in Sec. IV A, we choose α = 0 as only the optimized geometries are
available; for models in Sec. IV B, we choose α = 0.9 for all training
setups.

All models are trained on a single NVIDIA Tesla V100-SXM2-
32GB GPU using the Adam optimizer.62 For all training runs, we set
the minibatch size to 64 and use a cyclical learning rate schedule63
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TABLE I. Model hyperparameters employed in OrbNet. All cut-off values are in atomic units.

Hyperparameter Meaning Value or name

nr Number of basis functions for node embedding 8
mr Number of basis functions for edge embedding 8
nh Dimension of hidden node attributes 256
ne Dimension of hidden edge attributes 64
na Number of attention heads 4
L Number of message passing layers 3
Lenc Number of dense layers in Ench and Ence 3
Ldec Number of dense layers in a decoding network 4

Hidden dimensions of a decoding network 128, 64, 32, 16
Σ Activation function Swish
σa Activation function for attention generation TanhShrink
Γ Batch normalization momentum 0.4
cF Cut-off value for F̃uv 8.0
cJ Cut-off value for J̃uv 1.6
cK Cut-off value for K̃uv 20.0
cD Cut-off value for D̃uv 9.45
cP Cut-off value for P̃uv 14.0
cS Cut-off value for S̃uv 8.0
cH Cut-off value for H̃uv 8.0

that performs a linear learning rate increase from 3 ×10−5 to 3 ×10−3

for the initial 100 epochs, a linear decay from 3 ×10−3 to 3 ×10−5

for the next 100 epochs, and an exponential decay with a factor of
0.9 every epoch for the final 100 epochs. Batch normalization64 is
employed before every activation function σ except for that used in
the attention heads, σa.

IV. RESULTS

We present results that focus on the prediction of accurate
DFT energies using input features obtained from the GFN1-xTB
method.60 The GFN family of methods60,65,66 have proven to be
extremely useful for the simulation of large molecular systems
(1000s of atoms or more) with time-to-solution for energies and
forces on the order of seconds. However, this applicability can be
limited by the accuracy of the semi-empirical method,48,67 thus
creating a natural opportunity for “delta-learning” the difference
between the GFN1 and DFT energies on the basis of the GFN1
features. Specifically, we consider regression labels associated with
the difference between high-level DFT and the GFN1-xTB total

atomization energies,

E
ML
≈ E

DFT
− E

GFN1
− ΔE

fit
atoms, (22)

where the last term is the sum of differences for the isolated-atom
energies between DFT and GFN1 as determined by a linear model.
This approach yields the direct ML prediction of total DFT energies,
given the results of a GFN1-xTB calculation.

A. The QM9 dataset

We begin with a broad comparison of recently introduced ML
methods for the total energy task, U0, from the widely studied QM9
dataset.45 QM9 is composed of organic molecules with up to nine
heavy atoms at locally optimized geometries, so this test (Table II)
examines the expressive power of the MLmodels for systems in sim-
ilar chemical environments. Results for OrbNet are presented both
without ensemble averaging of independently trained models (i.e.,
predicting only on the basis of the first of trained model) and with
ensemble averaging the results of five independently trained models
(OrbNet-ens5). As observed previously,33 ensembling helps in this

TABLE II. MAEs (reported in meV) for predicting the QM9 dataset of total energies at the B3LYP/6-31G(2df,p) level of theory. Results from the current work are reported for a
single model (OrbNet) and with ensembling over 5 models (OrbNet-ens5). Boldface indicates the best model for each training set size and for each model class, i.e., with and
without ensembling.

Training size SchNet32 PhysNet33 PhysNet-ens533 DimeNet34 DeepMoleNet35 OrbNet OrbNet-ens5

25 000 . . . . . . . . . . . . . . . 11.6 10.4

50 000 15 13 10 . . . . . . 8.22 6.80

110 000 14 8.2 6.1 8.02 6.1 5.01 3.92
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and other learning tasks, reducing the OrbNet prediction error by
approximately 10%–20%.

In Table II, previously published methods utilizing graph rep-
resentations of atom-based features are also included, which are
SchNet,32 PhysNet,33 DimeNet,34 and DeepMoleNet.35 We note
that DimeNet employs a directional message passing mechanism,
and PhysNet and DeepMoleNet employ supervision based on prior
physical information to improve the model transferability, which
could also be employed within OrbNet; it is clear that without these
additional strategies and even without model ensembling, OrbNet
provides greater accuracy and learning efficiency than all previous
deep-learning methods.

B. Transferability and conformer energy predictions

A more realistic and demanding test of ML methods is to
train them on datasets of relatively small molecules (for which
high-accuracy data are more readily available) and then to test on
datasets of larger and more diverse molecules. This provides useful
insight into the transferability of the ML methods and the general
applicability of the trained models.

To this end, we investigate the performance of OrbNet on
a series of datasets containing organic and drug-like molecules.
Figure 3 presents results in which OrbNet models are trained with

FIG. 3. Prediction errors for (a) molecule total energies and (b) relative con-
former energies performed using OrbNet models trained using various datasets.
The mean absolute error (MAE) is indicated by the bar height, the median of the
absolute error is indicated by a black dot, and the first and third quantiles for the
absolute error are indicated as the lower and upper bars. Model 1 uses train-
ing data from QM7b-T; Model 2 additionally includes training data from GDB13-T
and DrugBank-T; Model 3 additionally includes training data from QM9; and Model
4 additionally includes ensemble averaging over five independent training runs.
Testing is performed on data that are held-out from training in all cases. Training
and prediction employs energies at the ωB97X-D/Def2-TZVP level of theory. All
energies in kcal/mol.

increasing amounts of data. Using the training-test splits described
in Sec. III, Model 1 is trained using data from only the QM7b-T
dataset; Model 2 is trained using data from the QM7b-T, GDB13-T,
and DrugBank-T datasets; Model 3 is trained using data from the
QM7b-T, QM9, GDB13-T, and DrugBank-T datasets; and Model
4 is obtained by ensembling five independent training runs with
the same data as used for Model 3. Predictions are made for total
energies [Fig. 3(a)] and relative conformer energies [Fig. 3(b)] for
held-out molecules from each of these datasets, as well as for the
Hutchison conformer dataset.

As expected, it is seen from Fig. 3 that the OrbNet predictions
improve with additional data and ensemble modeling. The median
and mean of the absolute errors consistently decrease from Model 1
to Model 4 except for a non-monotonicity in the DrugBank-T mean
absolute error (MAE), likely due to the relatively small size of that
dataset. It is nonetheless striking that Model 1 that includes only
data from QM7b-T yields relative conformer energy predictions on
the DrugBank-T and Hutchison datasets (which include molecules
with up to 50 heavy atoms) with an accuracy that is comparable to
the models trained on more and larger molecules. Note that all of
the OrbNet models predict relative conformer energies with MAE
and median prediction errors that are well within the 1 kcal/mol
threshold of chemical accuracy, across all four test datasets. Predic-
tions for QM9 using Models 1 and 2 are not included since QM9
includes F atoms, whereas the training data in those models do
not; relative conformer energies are not predicted for QM9 since
they are not available in this dataset. Although the total energy pre-
diction error for OrbNet is slightly larger per heavy atom on the
Hutchison dataset than for the other datasets, the relative conformer
energy prediction error for the Hutchison dataset is slightly smaller
than for GDB13-T and DrugBank-T; this is due to the fact that the
Hutchison dataset involves locally minimized conformers that are
less spread in energy per heavy atom than the conformers of the
thermalized datasets. This relatively small energy spread among con-
formers in the Hutchison dataset is a realistic and challenging aspect
of drug-molecule conformer-ranking prediction, which we next
consider.

Figure 4 presents a direct comparison of the accuracy and
computational cost of OrbNet in comparison to a variety of other
force-field, semiempirical, machine-learning, DFT, and wavefunc-
tion methods, as compiled in Ref. 48. For the Hutchison con-
former dataset of drug-like molecules that range in size from 9 to
50 heavy atoms, the accuracy of the various methods was evalu-
ated using the median R2 of the predicted conformer energies in
comparison to DLPNO-CCSD(T) reference data and with the com-
putation time evaluated on a single central processing unit (CPU)
core.48

The OrbNet conformer energy predictions (Fig. 4, black) are
reported using Model 4 (i.e., with training data from QM7b-T,
GDB13-T, DrugBank-T, and QM9 and with ensemble averaging
over five independent training runs). The solid black circle indi-
cates the median R2 value (0.81) of the OrbNet predictions relative
to the DLPNO-CCSD(T) reference data, as for the other methods;
this point provides themost direct comparison to the accuracy of the
other methods. The open black circle indicates the median R2 value
(0.90) of the OrbNet predictions relative to the ωB97X-D/Def2-
TZVP reference data against which the model was trained; this
point indicates the accuracy that would be expected for the Model 4
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FIG. 4. Comparison of the accuracy/computational-cost trade-off for a range of
potential energy methods for the Hutchison conformer benchmark dataset. Aside
from the OrbNet results (black), all data were previously reported in Ref. 48,
with median R2 values for the predicted conformer energies computed relative
to DLPNO-CCSD(T) reference data and with the computation time evaluated on a
single CPU core. The OrbNet results (black) are obtained using Model 4 (i.e., with
training data from QM7b-T, GDB13-T, DrugBank-T, and QM9 and with ensemble
averaging over five independent training runs). The solid black circle plots the
median R2 value from the OrbNet predictions relative to DLPNO-CCSD(T) refer-
ence data, as for the other methods. The open black circle plots the median R2

value from the OrbNet predictions relative to the ωB97X-D/Def2-TZVP reference
data against which the OrbNet model was trained. Error bars correspond to the
95% confidence interval, determined by statistical bootstrapping.

implementation of OrbNet if it had employed coupled-cluster train-
ing data rather than DFT training data. We calculated timings for
OrbNet on a single core of an Intel Core i5-1038NG7 CPU at
2.00GHz, finding that the OrbNet computational cost is dominated
by the GFN1-xTB calculation for the feature generation. In con-
trast to Ref. 48 that used the XTB code of Grimme and co-workers,68

we used ENTOS QCORE for the GFN1-xTB calculations. We find the
reported timings for GFN1-xTB to be surprisingly slow in Ref. 48,
particularly in comparison to the GFN0-xTB timings. For GFN0-
xTB, our timings with ENTOS QCORE are very similar to those reported
in Ref. 48, which is sensible given that the method involves no self-
consistent field (SCF) iteration. However, whereas Ref. 48 indicates
GFN1-xTB timings that are 43-fold slower than GFN0-xTB, we find
this ratio to be only 4.5 with ENTOS QCORE, perhaps due to differences
of SCF convergence. To account for the issue of code efficiency in
the GFN1-xTB implementation and to control for the details of the
single CPU core used in the timings for this work vs in Ref. 48,
we normalize the OrbNet timing reported in Fig. 4 with respect
to the GFN0-xTB timing from Ref. 48. The CPU neural-network
inference costs for OrbNet are negligible contribution to this
timing.

The results in Fig. 4 make clear that OrbNet enables the
prediction of relative conformer energies for drug-like molecules
with an accuracy that is comparable to DFT but with a com-
putational cost that is 1000-fold reduced from DFT to realm of
semiempirical methods. Alternatively viewed, the results indicate

that OrbNet provides dramatic improvements in prediction accu-
racy over currently available ML and semiempirical methods for
realistic applications, without significant increases in computational
cost.

V. CONCLUSIONS

Electronic structure methods typically face a punishing trade-
off between the prediction accuracy of the method and its com-
putational cost, across all areas of the chemical, biological, and
materials science. We present a new machine-learning method
with the potential to substantially shift that trade-off in favor of
ab initio-quality accuracy at a low computational cost. OrbNet uti-
lizes a graph neural network architecture to predict high-quality
electronic-structure energies on the basis of features obtained from
low-cost/minimal-basis mean-field electronic structure methods.
The method is demonstrated for the case of predicting ωB97X-
D/Def2-TZVP energies using GFN1-xTB input features, although it
is completely general with respect to both the choice of high-level
(including correlated wavefunction) methods used for generating
reference data and the choice of mean-field methods used for fea-
ture generation. In comparison to state-of-the-art GNNmethods for
the prediction of total molecule energies for the QM9 dataset, it is
shown that OrbNet provides a 33% improvement in prediction accu-
racy with the same amount of data relative to the next-most accurate
method (DeepMoleNet).35 Additionally, in comparison to the wide
array of methods used for predicting relative conformer energies in
a realistic and diverse dataset of drug-like molecules, as compiled
by Folmsbee and Hutchison,48 it is shown that OrbNet provides a
prediction accuracy that is similar to DFT and much improved over
existing ML methods, but at a computational cost that is reduced by
at least three orders of magnitude relative to DFT. Natural future
directions for development will include the expansion of OrbNet
to a broader set of chemical elements, incorporation of directional
message-passing and model supervision using prior physical infor-
mation,33–35 and end-to-end refitting of the semi-empirical method
used for feature generation.22,69

SUPPLEMENTAL MATERIAL

The supplementary material includes the structures for the
DrugBank-T dataset, as well as specification ofmolecules that appear
in all training-test splits for the trained models.
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