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Abstract

Background: Registration, indexing and searching of chemical structures in relational databases is

one of the core areas of cheminformatics. However, little detail has been published on the inner

workings of search engines and their development has been mostly closed-source. We decided to

develop an open source chemistry extension for Oracle, the de facto database platform in the

commercial world.

Results: Here we present OrChem, an extension for the Oracle 11G database that adds

registration and indexing of chemical structures to support fast substructure and similarity

searching. The cheminformatics functionality is provided by the Chemistry Development Kit.

OrChem provides similarity searching with response times in the order of seconds for databases

with millions of compounds, depending on a given similarity cut-off. For substructure searching, it

can make use of multiple processor cores on today's powerful database servers to provide fast

response times in equally large data sets.

Availability: OrChem is free software and can be redistributed and/or modified under the terms

of the GNU Lesser General Public License as published by the Free Software Foundation. All

software is available via http://orchem.sourceforge.net.

Introduction
Registration, indexing and searching of chemical struc-
tures in relational databases is one of the core areas of
cheminformatics [1,2]. Research on the topic goes back to
the 1960s and probably before that [3]. However, little
detail has been published on the inner workings of search
engines and developments have been mostly closed-
source. This has led to the situation that despite more than
thirty years of research and publications very few open ref-
erence code is available for use and study. The cheminfor-
matics open source community [4] has been working
since the mid 1990s to overcome this problematic situa-
tion. Our group has contributed to this by creating and
developing the Chemistry Development Kit (CDK) [5,6],

now co-developed with collaborators world-wide as well
as NMRShiftDB, an NMR database which provides a
MySQL-based open source system for the registration and
searching of chemical compounds in a relational database
[7,8]. In the meantime, three projects dedicated to the
development of chemical registry and search capabilities
for PostgreSQL (project PGChem) [9], MySQL (project
MyChem) [10] and Oracle (project OrChem) [11] have
been established under the umbrella of the ChemiSQL-
Project (pronounced "chemiscule") [12]. Here we report
about our development of OrChem, an open source soft-
ware package which adds registration and chemical search
capabilities to the Oracle 11G database system. OrChem
is a mix of PL/SQL and Java that executes inside the data-
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base. Figure 1 gives an overview of OrChem's main com-
ponents, showing how the user interacts with OrChem via
PL/SQL packages that call out to so called "Java Stored
Procedures" [13]. Starting with Oracle 11 g there is a just-
in-time (JIT) compiler for the Oracle JVM environment. A
just-in-time (JIT) compiler is a program that converts Java
bytecode into machine language instructions which
makes Java run much faster than when the bytecode is
executed by an interpreter.

OrChem is built on top of the Chemistry Development
Kit (CDK) [5,6] and depends on this Java library in
numerous ways. For example, compounds are represented
internally as CDK molecule objects, the CDK's I/O pack-
age is used to retrieve compound data, and its subgraph
isomorphism algorithms are used for substructure valida-
tion. OrChem adds its own Java layer on top of the CDK
to implement fast database storage and retrieval. With the
CDK loaded into Oracle, a large cheminformatics library
becomes readily available to PL/SQL. With little effort
developers can build database functions around the CDK

and so quickly implement chemistry extensions for Ora-
cle. OrChem works in the same way, using the CDK where
possible.

Fingerprinting
OrChem uses chemical fingerprints to find compounds by
substructure or similarity criteria. Fingerprints are bitsets
in which each bit indicates the presence or absence of a
particular chemical aspect. During a similarity search the
fingerprints are used to calculate a Tanimoto measure
[14]. A Tanimoto similarity measure between two binary
fingerprints is defined by the ratio of the number of com-
mon bits set to one to the total number of bits set to one
in the two fingerprints [15]. For substructure searching the
fingerprint has a different function: it is used to screen
possible candidates before a computationally more
expensive isomorphism test.

For both substructure and similarity searching OrChem
uses the same fingerprint that currently measures around
800 bits in size and uses both structural keys and hashed

OrChem overviewFigure 1
OrChem overview.
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values. With structural keys each position in the bit string
corresponds to a pre-defined structure or molecular fea-
ture. A hashed fingerprint is produced by generating all
possible linear paths of connected molecules containing
between one and a defined number of atoms, and project-
ing the hash values of the resulting strings onto the small
set of bits in the fingerprint in a deterministic manner
[16].

In the OrChem fingerprint the first approximately one
hundred bits are reserved for hashing three-atom SMILES
strings. If a compound contains for example "C-C:S" then
bit number 20 will be set, as the calculated hash value is
20 for this particular example. A hash value is calculated
consistently for each pattern encountered. We only take
three-atom SMILES into account because these yield a dis-
tinct yet relatively small amount of possible combina-
tions, all of which can be properly hashed into the limited
amount of bits reserved for the hashed key in the finger-
print.

Hashing in general decreases the accuracy of Tanimoto
scoring because different chemical aspects will hash to the
same bit position. However the benefit of hashing lies in
flagging relatively rare patterns. Rare SMILES patterns
would normally not be part of a structural key because
assigning an explicit bit would be wasteful, but by hashing
all size three patterns into a range of bit positions the
infrequent patterns still leave their mark and this can
speed up substructure searches. The OrChem fingerprint
was at first only structural and structure searches for an
unusual SMILES pattern like "O:C:O" saw many com-
pounds being screened in vain. The current fingerprint
hashes "O:C:O" to a bit position and this helps to narrow
down the set of candidates significantly.

Coming after the hashed part, the structural key in the
OrChem fingerprint starts around bit position one hun-
dred. The structural key was initially based on the
PubChem fingerprint [17,18] but the current version dif-
fers from it in various ways. OrChem for instance flags
specific SMILES patterns that have proved discriminating
for searching compounds like those in ChEMBL [19].
Numerous bits are reserved to capture ring aspects: clus-
ters of rings are detected and aspects of these clusters are
fingerprinted, like the occurrence of a ring size three
attached to a ring size five. With regards to the common
rings of size five and six, OrChem creates textual descrip-
tors for every connected set of three of these encountered
and incorporates this information into the fingerprint.
Example textual descriptors are "5DLM" and or "6SHH",
the meaning being as follows:

• Character 1: {"6","5"} indicates if the ring triplet
contains strictly 6-size rings or otherwise (up to three)
5-size rings

• Character 2: {"S","D"} indicates bond nature, S
means single bonds only, D double bonds (possibly
aromatic) also present

• Character 3: {"L","H"} indicates connectivity, H
means some atom participates in all 3 rings (tightly
coupled)

• Character 4: {"L","M","H"} indicates shared bonds
between rings in the triplet: Low = 0,1,2 Med = 3,4
High = 5..n

The aim of these descriptors is to characterize particular
constellations of common sized rings, to identify struc-
tures that look normal purely based on the ring sizes but
may be in fact rare due to the way the rings are connected
together in a cluster.

Future OrChem releases may see the structural key further
extended for improvement of specific search types. For
now, in summary the fingerprint captures the following
aspects:

• hashed three-atom SMILES strings

• element counts

• atom pairs

• atom nearest neighbours

• common SMILES patterns

• individual rings: size, aromaticity, elements

• ring clusters: cluster size, what ring sizes in the clus-
ter

• 5/6 size ring triplets: how are rings connected, how
many atoms and bonds are shared

• long carbon trails: longer series of (non aromatic)
carbon molecules

• infrequent SMILES patterns (grouped per bit)

Figure 2 shows the frequency distribution of OrChem fin-
gerprint bits for all compounds in the ChEMBL database.
The dual nature of the fingerprint is clearly visible: the first
part shows a randomly distributed hashed key, followed
by the ordered structural key. Ordering the structural key
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by occurrence of bits makes sense because the bits get
indexed using composite B-tree indexes. Clustering rare
bits at the tail of the fingerprint makes the corresponding
indexes small and provide an obvious pick for the Oracle
optimizer.

Similarity searching
With the fingerprint in place OrChem can perform fast
similarity searches. The algorithm for similarity searching
is taken from a paper by S. Joshua Swamidass and Pierre
Baldi [15].

The algorithm proves to work well and allows the search
to break out when a minimal given similarity is reached,
whilst completeness of the output is guaranteed. For
Orchem the similarity search has been implemented as a
Java stored procedure that returns an array of results. The
current function accepts SMILES and Molfiles for a query
and a cut-off value between 0 and 1 to indicate minimum
required similarity. Optional arguments allow the user to
indicate a cap to indicate the maximum number of results
required, and whether or not to display debugging infor-
mation. The select statement below shows a query exam-
ple to find compounds with a similarity of seventy percent
or more to the given SMILES string:

select *

from table(orchem_simsearch.search

('CCCCCC[C@H]1CC[C@H]2CCCC[C@]12C','SMILE
S',0.7))}

At the center of the similarity search is a table called
orchem_fingprint_simsearch, pictured in Table 1.
The implemented algorithm uses the bitmap indexed col-
umn bit_count to first inspect compounds for which
the number of bits set to one is the same as that of query
molecule. After that it works its way through compounds
with a bit count close to that of the query until it is done,
that is until the minimum similarity has been reached or
until the result set size satisfies the user. Column fp in the
similarity table stores a byte array representation of the
fingerprint. This raw data column allows the similarity

OrChem fingerprint distribution in Chembl databaseFigure 2
OrChem fingerprint distribution in Chembl database.

Table 1: Database table with fingerprints optimized for similarity 
searching

TABLE orchem_fingprint_simsearch

id VARCHAR2(32)

bit_count NUMBER(4)

fp RAW(100)
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search to quickly read bytes from the database, convert
these to Java bitsets and use those for bitwise comparisons
to obtain a Tanimoto similarity score.

Substructure searching
Prescreening

Chemical fingerprints can be used to quickly pre-screen
candidates likely to contain a given query as a substructure
[20]. Due to the degeneracy of bits in a fingerprint, this
leads to false positives. The screened set of candidates thus
needs further inspection by an isomorphism algorithm to
detect if the substructure is truly present or not. A sub-
structure search is therefore a two step process - ideally the
first step uses the fingerprint to screen accurately so that
the computationally more expensive second step will
have a high ratio of positive verifications. The other way
around, if the first step is not efficient, the second step will
have to inspect too many compounds that don't contain
the substructure at all.

The screening process is in essence a bitwise comparison
between the two fingerprints of a query and a candidate
structure. Any bit set to true in the query fingerprint must
be set to true in a candidate fingerprint. OrChem imple-
ments this comparison using a dedicated database table
that is partly listed in Table 2. Database table
orchem_fingprint_subsearch has a separate col-
umn for each bit in the fingerprint; this is different from
the table for similarity searching that has a single raw data
column to store an entire fingerprint. The reason behind
this difference is that for similarity searching the bitwise
operation is done in Java with binary bitsets, whereas the
substructure screening uses the separate bit columns to
construct a dynamic SQL clause instead. This bit-column
based "where" clause instructs the database to select com-
pounds for which bits in the fingerprint set to "1" include
those set to "1" in the query structure. For instance a sub-

structure search for "P = O" will have OrChem create a
SQL clause using the three bits that are set in the finger-
print of "P = O". The pre-screening query will resemble:

select ...

from orchem_fingprint_subsearch

where bit472='1' and bit477='1' and
bit480='1'}

The meaning of the bits is not relevant here, the point is
that the OrChem prescreening process is essentially done
through a SQL clause filtering for indexed bit columns
that correspond to bits set in the fingerprint of the query.
The bitwise comparison is thus replaced entirely by a sin-
gle SQL statement with no need for computationally
expensive Java.

Exact search for subgraph isomorphism

For each compound that passes the prescreening process,
a graph matching algorithm needs to establish whether
the query indeed occurs as a substructure or not. Mole-
cules can easily be interpreted as graphs with atoms being
nodes and bonds being edges. The graph matching in
Orchem is done by a CDK Java implementation of the VF2
algorithm [21]. VF2 is a graph matching algorithm that
has been shown to perform better than the Ullmann algo-
rithm for small graphs, and much better than Ullmann for
large graphs. Compared to the original VF algorithm, VF2
lowers the memory requirements from O(n2) to O(n)
with respect to the number of nodes in the graphs.

VF2 is a fast backtracking algorithm that tries to match
each node in a query graph to a node in a target graph.
OrChem further improves VF2 performance by reorganiz-
ing the query graph beforehand by sorting the nodes
(atoms) and edges (bonds). A primary sort is done based
on the uniqueness of elements and a secondary sort on
bond connectivity. Essentially the sort moves the rare
nodes up to be matched first: if the query structure is
C16H14N2O9S then it is best to let VF2 try to match sul-
fur first, then the nitrogens, then the oxygens et cetera. The
secondary sort on bond connectivity can be useful if the
query does not contain distinctive atoms but has distinc-
tive structures such as ring groups in which some atoms
are more connected than others.

The performance of the Java VF2 implementation mainly
depends on the complexity and characteristics of the
molecular input graphs. The algorithm may need to get
recursively deep, or may need to explore many possible
mappings, making the graph matching algorithm the
computationally expensive part of the substructure
search.

Table 2: Database table with fingerprints optimized for 
substructure searching

TABLE orchem_fingprint_subsearch

id VARCHAR2(80)

atoms VARCHAR2(4000)

bonds VARCHAR2(4000)

bit0 VARCHAR2(1)

bit1 VARCHAR2(1)

etc...

bit799 VARCHAR2(1)
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Query example

The developer can submit an OrChem substructure search
through package orchem_subsearch:

select *

from table (orchem_subsearch.search

('S:C:C','SMILES',1000))

The example shows a substructure search for SMILES
"S:C:C" with a break out after 1000 results through an
optional argument that emulates the ROWNUM column.
Under the hood the SMILES string will be fingerprinted, a
prescreen query will be constructed based on it and then
executed with the Oracle Optimizer picking the most suit-
able index available for the bit columns. Each candidate
will be verified using VF2 and only valid superstructures
will be returned. The substructure search function is pipe-
lined, so rows are returned iteratively as they are produced
without having to wait for the entire collection to be con-
structed. This allows developers to build web interfaces
refreshing at a constant interval while presenting the
results returned so far to the user.

Performance
General

OrChem has been tested extensively on a release of the
ChEMBL database (former Starlite) with around 420,000
compounds. Additional tests were done on a random
PubChem data sample of 3.5 million compounds in order
to assess performance on a larger data set. All tests were
done on Oracle 11.1.0.7 installed on an eight CPU quad
core 32 Gb RedHat Linux server at the EBI. With regards to
performance, it is good to keep in mind that the initial run
of any Java stored procedure incurs a lot of overhead. Even
a first call to a simple 'helloWorld()' program takes a
while to complete, but following calls then respond
immediately. Orchem's search performance improves
after a few queries have been issued and the fingerprint
data starts to accumulate in the buffer cache where data
can be accessed faster than by reading from disk. The
tables that support similarity and substructure searching
are created with the cache option, so the more memory
assigned to the SGA the better the performance will be.

Similarity searching

Similarity searches typically show a more consistent per-
formance than substructure searches. To obtain a similar-
ity score it is sufficient to compare fingerprint bitsets, and
the time to complete a similarity search depends mainly
on the required minimum Tanimoto similarity. Tests on
ChEMBL show query throughput times in the order of
split-seconds to seconds for high (>0.75) similarity,
improving once the fingerprints start getting cached. Sim-

ilar tests on the PubChem sample (3.5 million com-
pounds) show a longer cache "warm up" time and give
throughput times in the order of several seconds or
longer, again mostly depending on the similarity cut-off.
Figure 3 illustrates performance for searching the
PubChem sample and also shows a table with average
numbers with regards to query throughput time and result
set sizes.

Substructure searching

As described before, substructure searching is done as a
two-step process with a prescreening step followed by a
VF2 isomorphism check. In the isomorphism algorithm
each screened database compound needs to be material-
ized as a CDK molecule to be able to compare it to the
query structure. It can however be expensive to materialize
thousands of molecules on the fly using database Molf-
iles, particularly with regards to calculation of aromaticity.
Instead, OrChem stores data for each molecule in col-
umns atoms and bonds of table
orchem_fingprint_subsearch during the finger-
printing process. These columns provide a quick way to
materialize a basic CDK molecule to be passed into the
VF2 algorithm. The data structures used are quite straight-
forward, for instance with data in column atom "C O"
interpreted as: "atom 0 is Carbon, atom 1 is Oxygen" and
bond column "0 1 D Y" then implying "there is a bond
between C (atom 0) and O (atom 1) that is double (D)
and aromatic is true (Y)". In this way, CDK molecules can
be generated very fast without the need for calculating any
properties during the search.

Parallel substructure searching

Oracle allows parallel execution of table functions [13]
and this feature can be used to speed up Or-Chem sub-
structure searching. A parallel table function returns a col-
lection and is executed in a two-stage operation. First, one
set of slave processes partitions the data as directed in the
function's declaration; then a second set of slave scans
executes the table function in parallel on the partitioned
data. The following statement illustrates the concept, with
f being the function to be run in parallel, taking a ref cur-
sor input argument to partition the data.

select *

from table(f(cursor(select * from tab)))

Although the VF2 isomorphism algorithm is an ideal can-
didate for a parallel approach, going parallel is not always
the best solution. OrChem can execute non-parallel queries
relatively fast providing the query structure itself has suffi-
cient unique features. The prescreening step for a discrim-
inating query will normally yield a small set of database
candidate compounds that can quickly be scanned with
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VF2. In such as case a non-parallel search can actually run
faster than a parallel search because there is not much VF2
workload and no parallel overhead is incurred. But most
importantly, the non-parallel search can use the regular B-
tree indexes on the bit columns in table
orchem_fingprint_subsearch whereas a parallel
query can not.

In general, to parallelize any query Oracle must access at
least one of the tables through a full table scan or an index
through a range scan involving multiple partitions. In the

case of Orchem this means that table
orchem_fingprint_subsearch must be accessed
with full table scans, but this is not always the best option.
When queries are done on a database with several million
compounds the indexed approach can outperform the
parallel approach easily if the index can be used to quickly
narrow down a small set of candidates. Furthermore the
performance of a parallel query depends on a number of
factors, one of them being the hardware on which the
Oracle instance runs, with the more CPU cores the better.
The performance also depends on the size of the database,

Similarity search throughput time for different minimal Tanimoto similarityFigure 3
Similarity search throughput time for different minimal Tanimoto similarity. Explanation of graph: one hundred 
randomly sampled compounds were used to query for all similar compounds, repeated for different minimum Tanimoto simi-
larities. Searches were done in the PubChem sample of 3.5 million compounds. As the similarity cutoff increases, performance 
goes up: finding all compounds similar to compound X with at least a Tanimoto similarity of 0.8 (= 80% similar) is faster than 
finding (many more) compounds that are 50% similar.

Similarity Average compounds found Average throughput time (seconds)

0.5 14,541 18.3

0.65 1,936 10.6

0.8 226 5.8

0.95 13 1.4
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the type of the query (specific/generic) and the volume of
the result set. Tests at the EBI show that parallel queries in
general perform well on the ChEMBL dataset, even if a
query is very specific and an indexed approach would be
quicker. This can be explained by the fact that the specific
EBI hardware can run very fast full table scans on a dataset
the size of ChEMBL. For larger databases this no longer
holds true, as full scans become quite expensive even
when run in parallel.

The invocation of a parallel substructure search needs to
be done in two steps due to the underlying implementa-
tion - possibly in a later release this can be simplified.
Below is an example query as done on the command line.
First the substructure search is quickly set up, in this case
for SMILES "C:O:C:N". A key is retrieved and this key is
then used to perform the actual parallel search:

> var key number;

> exec :key :=

orchem_subsearch_par.setup('C:O:C:N','SMI
LES')

> select * from table

(orchem_subsearch_par.search(:key,1000)

The parallel table function works best for general queries
with high volumes of data being processed and many pos-
itive verifications being returned, the VF2 workload
shared over several slave processes. This can be observed
when selecting the first n results for a common substruc-
ture pattern like "C:C:C:C:N" with n set to a high value.
Figure 4 shows a graph for a "C:C:C:C:N" query done
against the PubChem sample: the parallel function iden-
tifies the first 5000 results in 3.5 seconds whereas the sin-
gle process takes 22.5 seconds. The parallel approach
clearly benefits from doing the VF2 isomorphism checks
spread over multiple parallel processes, which becomes
even more obvious when n is further increased to 25000.
However to add to the picture, figure 5 shows what hap-
pens with a similar test for "C:O:C:O". This structure hap-
pens to occur only once in the entire data set, and the non-
parallel function can use a fast index scan on the bit col-
umns of orchem_fingprint_subsearch to quickly
find three possible candidates with the right combination
of fingerprint bits. One compound is then verified by VF2
to be a superstructure of "C:O:C:O" (compound is shown
in the graph). The parallel approach at the other hand
needs to make full table scans, albeit in parallel, and takes
more than forty seconds to find the same single result. The
benefit of fast parallel VF2 execution does not apply now
and the elapse time is spent scanning rows that meet the

rare bit combination, without being able to use any index
for this. Finally in figure 6 we have a graph with through-
put times for a sampled set of sixty random structures
used to do a parallel substructure searching with different
breakout values. The graph shows quite a spread in total
throughput time, with the time to return up to 100,000
verified results varying between 20 seconds and more
than three minutes, all depending on the complexity of
the query, the quality of the fingerprint and the occur-
rence rate of the structure. Either way users can see results
streamed back before completion because data is piped
back as soon as it becomes available.

In conclusion the given examples show how the database
content and the nature of the query determine the differ-
ence in performance between the parallel and the non-
parallel substructure search. Which one is fastest depends
mainly on the size of the database, the number of results
requested (limited or all) and the size of the prescreened
compound set. The smaller the pre-screened set is the less
attractive a parallel full scan normally is - but it is hard to
find exact rules. On top of that performance also depends
on other factors such as the server hardware and the qual-
ity of the query's fingerprint. To make the search process
more user friendly, we plan to find heuristic rules to be
incorporated into a generic search function that will

Performance of substructure search for "C:C:C:C:N" on 3.5 million compoundsFigure 4
Performance of substructure search for "C:C:C:C:N" 
on 3.5 million compounds.
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decide for the user whether to take a parallel approach or
not.

OrChem Installation
This paragraph briefly describes the OrChem installation
process. A complete step-by-step description of the instal-
lation can be found in manuals on the project's web pages
[11]. The first step is to create a new schema and necessary
database elements (tables, indexes, packages) and to load
required Java libraries into it. Users have to provide details
of the base table containing the actual compound data,
presumed to be present in another schema. Next a proce-
dure needs to run to create a fingerprint for every com-
pound. Each fingerprint captures the chemical aspects of
a compound and is stored in the database. The amount of
time it takes to create all fingerprints depends on the
amount and complexity of the compounds and on the
capacity of the database server. As a performance indica-
tion, at the EBI we fingerprinted over 400,000 compounds
in an hour, running a parallel process with DBMS_JOB on
an Oracle instance hosted on a multi-processor Linux
server. Once the fingerprinting procedure has finished,

installation is complete and OrChem can perform com-
pound searches.

OrChem future development
A number of features have been identified to be imple-
mented in coming releases:

• The current version of OrChem expects the user's
compound table to have MDL Molfiles to work with.
This will be extended to include other common data
formats such as CML.

• OrChem should be able to deal with R-group and
SMARTS queries and to ignore bond order on request.
These features have in common that wildcards should
be allowed to widen the search, and the challenge will
be to not only interpret these wildcards but also to
keep performance acceptable.

• At present, OrChem development has not put partic-
ular emphasis on stereochemical searches. OrChem
needs to be able to distinguish between stereoisomers

Performance of substructure search for "C:O:C:O" on 3.5 million compoundsFigure 5
Performance of substructure search for "C:O:C:O" on 3.5 million compounds.
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and provide substructure search criteria related to ster-
eoisomerism.

• More of the CDK needs to be exposed through PL/
SQL API's, for example CDK functions to calculate
QSAR/QSPR descriptors or chemical properties.

• The similarity search will benefit from an option to
run in parallel, and more types of similarity scoring
should be added to complement the current default
Tanimoto scoring.

• Along the same lines we might want to experiment
with different types of fingerprints.

• Pharmacophore searches could be added to take into
account 3D arrangements of molecular features.

Conclusion
We have presented OrChem, an open source extension for
the Oracle 11G database platform that adds registration
and indexing of chemical structures to support fast sub-
structure and similarity searching. OrChem provides core

cheminformatics functionality but is only in its first
release and by no means a finished product. Developers
who are interested to further extend OrChem are invited
to participate through Sourceforge to make it a truly col-
laborative project. We also encourage users to submit sug-
gestions and requests for functionality through the
mailing list "orchem-devel@lists.sourceforge.net".

Availability and requirements
Project name: OrChem

Project home page: http://orchem.sourceforge.net/

Operating system: Platform independent

language: Java 1.5 or higher

Database system: Oracle 11 g (with JRE 1.5)

Comm. restrictions: None

Parallel substructure search throughput time on 3.5 million compoundsFigure 6
Parallel substructure search throughput time on 3.5 million compounds. Explanation of graph: sixty sampled sub-
structures were used as a query for a parallel substructure search in the PubChem sample of 3.5 million compounds. The same 
searches were repeated with different maximum number of rows requested: 1000 (bottom), 10,000 (middle) and 100,000 
(top). The graph displays the total throughput time in seconds but users can view the intermediate output generally faster as 
the search function spools ('pipes') results as they become available. Fastest throughput times are observed for query struc-
tures that commonly exist in compounds, resulting in high a success ratio of the VF2 isomorphism algorithm.
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