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Bioconductor is an open-source, open-development 
software project for the analysis and comprehension 
of high-throughput data in genomics and molecular 
biology. The project aims to enable interdisciplinary 
research, collaboration and rapid development 
of scientific software. Based on the statistical 
programming language R, Bioconductor comprises 
934 interoperable packages contributed by a large, 
diverse community of scientists. Packages cover a 
range of bioinformatic and statistical applications. 
They undergo formal initial review and continuous 
automated testing. We present an overview for 
prospective users and contributors.

Progress in biotechnology is continually leading to new 
types of data, and the data sets are rapidly increasing in 
volume, resolution and diversity. This promises unprec-
edented advances in our understanding of biological 
systems and in medicine. However, the complexity and 
volume of data also challenge scientists’ ability to ana-
lyze them. Meeting this challenge requires continuous 
improvements in analysis tools and associated software 
engineering.

Bioconductor1 provides core data structures and 
methods that enable genome-scale analysis of high-
throughput data in the context of the rich statistical 

programming environment offered by the R project2. It 
supports many types of high-throughput sequencing data 
(including DNA, RNA, chromatin immunoprecipitation, 
Hi-C, methylomes and ribosome profiling) and associ-
ated annotation resources; contains mature facilities for 
microarray analysis3; and covers proteomic, metabolomic, 
flow cytometry, quantitative imaging, cheminformatic 
and other high-throughput data. Bioconductor enables 
the rapid creation of workflows combining multiple data 
types and tools for statistical inference, regression, net-
work analysis, machine learning and visualization at all 
stages of a project from data generation to publication.

Bioconductor is also a flexible software engineering 
environment in which to develop the tools needed, and 
it offers users a framework for efficient learning and pro-
ductive work. The foundations of Bioconductor and its 
rapid coevolution with experimental technologies are 
based on two motivating principles.

The first is to provide a compelling user experience. 
Bioconductor documentation comes at three levels: 
workflows that document complete analyses spanning 
multiple tools; package vignettes that provide a narrative 
of the intended uses of a particular package, including 
detailed executable code examples; and function manual 
pages with precise descriptions of all inputs and outputs 
together with working examples. In many cases, users 
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ultimately become developers, making their own algorithms and 
approaches available to others.

The second is to enable and support an active and open scientific 
community developing and distributing algorithms and software 
in bioinformatics and computational biology. The support includes 
guidance and training on software development and documentation, 
as well as the use of appropriate programming paradigms such as unit 
testing and judicious optimization. A primary goal is the distributed 
development of interoperable software components by scientific 
domain experts. In part we achieve this by urging the use of com-
mon data structures that enable workflows integrating multiple data 
types and disciplines. To facilitate research and innovation, we employ 
a high-level programming language. This choice yields rapid proto-
typing, creativity, flexibility and reproducibility in a way that neither 
point-and-click software nor a general-purpose programming lan-
guage can. We have embraced R for its scientific and statistical com-
puting capabilities, for its graphics facilities and for the convenience 
of an interpreted language. R also interfaces with low-level languages 
including C and C++ for computationally intensive operations, Java 
for integration with enterprise software and JavaScript for interactive 
web-based applications and reports.

The user perspective
The Bioconductor user community is large and international 
(Table 1). Users benefit from the project in different ways. A typi-
cal encounter with Bioconductor (Box 1) starts with a specific sci-
entific need, for example, differential analysis of gene expression 
from an RNA-seq experiment. The user identifies the appropriate 
documented workflow, and because the workflow contains func-
tioning code, the user runs a simple command to install the required 
packages and replicate the analysis locally. From there, she proceeds 
to adapt the workflow to her particular problem. To this end, addi-
tional documentation is available in the form of package vignettes 
and manual pages. She can load further packages with additional 
functionality. When help is needed, the user can turn to the support 
forum with questions on the software and the underlying science, 
and she can attend training courses and conferences. Some users 
move from using to developing software, and Bioconductor encour-
ages this transition.

Case study: high-throughput sequencing data analysis. Analysis of 
large-scale RNA or DNA sequencing data often begins with aligning 
reads to a reference genome, which is followed by interpretation of 

the alignment patterns. Alignment is handled by a variety of tools, 
whose output typically is delivered as a BAM file. The Bioconductor 
packages Rsamtools and GenomicAlignments provide a flexible 
interface for importing and manipulating the data in a BAM file, 
for instance for quality assessment, visualization, event detection 
and summarization.

The regions of interest in such analyses are genes, transcripts, 
enhancers or many other types of sequence intervals that can be 
identified by their genomic coordinates. Bioconductor supports 
representation and analysis of genomic intervals with a “Ranges” 
infrastructure that encompasses data structures, algorithms and 
utilities including arithmetic functions, set operations and sum-
marization4 (Fig. 1). It consists of several packages including 
IRanges, GenomicRanges, GenomicAlignments, GenomicFeatures, 
VariantAnnotation and rtracklayer. The packages are frequently 
updated for functionality, performance and usability. The Ranges 
infrastructure was designed to provide tools that are convenient 
for end users analyzing data while retaining flexibility to serve as a 
foundation for the development of more complex and specialized 
software. We have formalized the data structures to the point that 
they enable interoperability, but we have also made them adaptable 
to specific use cases by allowing additional, less formalized user-
defined data components such as application-defined annotation.

Workflows can differ vastly depending on the specific goals 
of the investigation, but a common pattern is reduction of the 
data to a defined set of ranges in terms of quantitative and qualita-
tive summaries of the alignments at each of the sites. Examples 

Table 1 | Usage and impact-related statistics
Metric Statistic
Unique IP addresses downloading Bioconductor 
packages

323,119 within the 
last 12 months

Support site and/or mailing list contributors 1,331 within the last 
12 months

Support site visitors >8,200 unique per 
month

Developer mailing list subscribers 927

Full-text articles at PubMed Central mentioning 
Bioconductor

10,642

PubMed-indexed articles citing Bioconductor 
packages

22,838

TCGA Consortium papers using Bioconductor tools At least 12 of 15
Statistics are current as of December 2014. TCGA, The Cancer Genome Atlas. 

Figure 1 | Example uses of the Ranges algebra. A GRanges object, g 
(top), represents two transcript isoforms of a gene, each with two exons. 
The coordinates of unspliced transcripts are identified with the function 
range(g). Calculating the gene region involves flattening the gene 
model into its constituent exons and reducing these to nonoverlapping 
ranges, reduce(unlist(g)). Ranges defining disjoint bins, 
disjoin(unlist(g)), are useful in counting operations, e.g., in 
RNA-seq analysis. Putative promoter ranges are found using strand-aware 
range extension, flank(range(g), width = 100). Elementary 
operations can be composed to succinctly execute queries such as 
psetdiff(range(g), g) for computing the intron ranges. 

Gene model

Unspliced 
transcripts

Gene region

Disjoint bins

Promoter

Introns
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include detecting coverage peaks or concentrations in chromatin 
immunoprecipitation–sequencing, counting the number of cDNA 
fragments that match each transcript or exon (RNA-seq) and call-
ing DNA sequence variants (DNA-seq). Such summaries can be 
stored in an instance of the class GenomicRanges.

Coordinated analysis of multiple samples. To facilitate the analysis 
of experiments and studies with multiple samples, Bioconductor 
defines the SummarizedExperiment class. The computed summa-
ries for the ranges are compiled into a rectangular array whose rows 
correspond to the ranges and whose columns correspond to the dif-
ferent samples (Fig. 2). For a typical experiment, there can be tens 
of thousands to millions of ranges and from a handful to hundreds 
of samples. The array elements do not need to be single numbers: 
the summaries can be multivariate.

The SummarizedExperiment class also stores metadata on the 
rows and columns. Metadata on the samples usually include experi-
mental or observational covariates as well as technical information 
such as processing dates or batches, file paths, etc. Row metadata 
comprise the start and end coordinates of each feature and the 
identifier of the containing polymer, for example, the chromo-
some name. Further information can be inserted, such as gene or 
exon identifiers, references to external databases, reagents, func-
tional classifications of the region (e.g., from efforts such as the 
Encyclopedia of DNA Elements (ENCODE)5) or genetic associa-
tions (e.g., from genome-wide association studies, the study of rare 
diseases, or cancer genetics). The row metadata aid integrative 
analysis, for example, when matching two experiments according 
to overlap of genomic regions of interest. Tight coupling of meta-
data with the data reduces opportunities for clerical errors during 
reordering or subsetting operations.

Annotation packages and resources. Reference genomes, annota-
tions of genomic regions and associated gene products (transcripts 
or proteins), and mappings between molecule identifiers are essen-
tial for placing statistical and bioinformatic results into biological 
perspective. These needs are partly addressed by the Bioconductor 
annotation data repository, which provides 894 prebuilt 
standardized annotation packages for use with common model 

organisms as well as other organisms. Each of the packages presents 
its data through a standard interface using defined Bioconductor 
classes, including classes for whole-genome sequences (BSgenome), 
gene model or transcript databases (TxDb) derived from UCSC 
(University of California, Santa Cruz) tracks or BioMart annota-
tions, and identifier cross-references from the US National Center 
for Biotechnology Information, or NCBI (org). There are also facili-
ties for users to create their own annotation packages.

The AnnotationHub resource provides ready access to more 
than 10,000 genome-scale assay and annotation data sets 
obtained from Ensembl, ENCODE, dbSNP, UCSC and other 
sources and delivered in an easy-to-access format (e.g., Ranges-
compatible, where appropriate). Bioconductor also supports 
direct access to underlying file formats such as GTF, 2bit or 
indexed FASTA.

Bioconductor also offers facilities for directly accessing online 
resources through their application programming interfaces. 
This can be valuable when a resource is not represented in an 
annotation package or when the very latest version of the data 
is required. The rtracklayer package accesses tables and tracks 
underlying the UCSC Genome Browser, and the biomaRt package 
supports fine-grained on-line harvesting of Ensembl, UniProt, 
COSMIC (Catalogue Of Somatic Mutations In Cancer) and allied 
resources. Many additional packages access web resources, for 
example, KEGGREST, PSICQUIC and Uniprot.ws.

Figure 2 | The integrative data container SummarizedExperiment. Its assays 
component is one or several rectangular arrays of equivalent row and 
column dimensions. Rows correspond to features, and columns to samples. 
The component rowData stores metadata about the features, including 
their genomic ranges. The colData component keeps track of sample-
level covariate data. The exptData component carries experiment-level 
information, including MIAME (minimum information about a microarray 
experiment)-structured metadata21. The R expressions exemplify how 
to access components. For instance, provided that these metadata were 
recorded, rowData(se)$entrezId returns the NCBI Entrez Gene 
identifiers of the features, and se$tissue returns the tissue descriptions 
for the samples. Range-based operations, such as %in%, act on the rowData 
to return a logical vector that selects the features lying within the regions 
specified by the data object CNVs. Together with the bracket operator, such 
expressions can be used to subset a SummarizedExperiment to a focused set 
of genes and tissues for downstream analysis.

BOX 1  GETTING STARTED
Install R and Bioconductor following the directions at 
http://www.bioconductor.org/install. Optionally, choose an 
Integrated Development Environment (IDE), for example, 
RStudio (http://www.rstudio.com). Learn the basics of the R 
language, for example, with http://tryr.codeschool.com.

Explore the Bioconductor help, http://www.bioconductor.
org/help—which includes material from training courses, 
sample workflows, vignettes and manual pages—and the 
online support forum (https://support.bioconductor.org).

Identify and install Bioconductor packages using 
hierarchically organized “BiocViews” and text search (http://
www.bioconductor.org/packages/release/BiocViews.html) and 
by exploring ‘landing pages’ for package descriptions and links 
to vignettes, manual pages and usage statistics.

Get to work exploring sample data sets and adapting 
established workflows for your own analysis!
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make it easy and automatic to keep track of such issues. This also 
helps other analysts to determine whether and how a particular 
processed data set can be integrated with other data sets.

Visualization. Visualization is essential to genomic data analysis. 
We distinguish among three main scenarios, each having different 
requirements. The first is rapid interactive data exploration in “dis-
covery mode.” The second is the recording, reporting and discus-
sion of initial results among research collaborators, often done via 
web pages with interlinked plots and tool-tips providing interactive 
functionality. Scripts are often provided alongside to document what 
was done. The third is graphics for scientific publications and pre-
sentations that show essential messages in intuitive and attractive 
forms. The R environment offers powerful support for all these fla-
vors of visualization—using either the various R graphics devices or 
HTML5-based visualization interfaces that offer more interactivity—
and Bioconductor fully exploits these facilities. Visualization in 
practice often requires that users perform computations on the data, 
for instance, data transformation and filtering, summarization and 
dimension reduction, or fitting of a statistical model. The needed 
expressivity is not always easy to achieve in a point-and-click inter-
face but is readily realized in a high-level programming language. 
Moreover, many visualizations, such as heat maps or principal-
component analysis plots, are linked to mathematical and statistical 
models—for which access to a scientific computing library is needed.

A genomics-specific visualization type is plots along genomic 
coordinates. There are several packages that create attractive dis-
plays of along-genome data tracks, including Gviz and ggbio (Fig. 3). 
These packages operate directly on common Bioconductor data 
structures and thus integrate with available data manipulation and 
modeling functionality. A basic operation underlying such visu-
alizations is computing with genomic regions, and the biovizBase 
package provides a bridge between the Ranges infrastructure and 
plotting packages. Direct communication between R and genome 
browsers is implemented by the rtracklayer (for the UCSC Genome 
Browser) and SRAdb (for the Integrative Genomics Viewer) pack-
ages. The epivizr package implements interactive visualization of 
user data within a lightweight genome browser8.

Genomic data set sizes sometimes exceed what can be managed 
with standard in-memory data models, and then tools from high-
performance computing come into play. An example is the use of 
rhdf5—an interface to the HDF5 large data management system 
(http://www.hdfgroup.org/HDF5)—by the h5vc package to slice 
large, genome-size data cubes into chunks that are amenable for 
rapid interactive computation and visualization. Both ggbio and 
Gviz issue range-restricted queries to file formats including BAM, 
BGZIP/Tabix and BigWig via Rsamtools and rtracklayer to quickly 
integrate data from multiple files over a specific genomic region.

Reproducible research. It can be surprisingly difficult to retrace 
the computational steps performed in a genomics research proj-
ect. One of the goals of Bioconductor is to help scientists report 
their analyses in a way that allows exact recreation by a third 
party of all computations that transform the input data into the 
results, including figures, tables and numbers9. The project’s 
contributions comprise an emphasis on literate programming 
vignettes, the BiocStyle and ReportingTools packages, the assembly 
of experiment data and annotation packages, and the archiving 
and availability of all previously released packages. A number of 

Experiment data packaging and access. The Bioconductor experi-
ment data repository currently contains 224 packages. Experiment 
data packages have important roles as example data sets on which 
methods are demonstrated; some can be used for benchmarking 
and comparing methods, and some are reproducible descriptions 
of analyses reported in scientific papers (e.g., the data and vignette 
of the package Hiiragi2013 reproduce a recently reported tran-
scriptome analysis of single cells in mouse embryos6). Archives of 
published experiment data can be harvested using the GEOquery, 
ArrayExpress and SRAdb packages.

Integrative analysis. High-throughput assays such as sequencing, 
flow cytometry7 and mass spectrometry continue to decrease in 
cost and increase in quality. Analyses comprising several assays on 
the same set of samples are becoming more common. Integrative 
analysis of multiple data types is perhaps the least standardiz-
able task in genomic data analysis, where the need for a flexible 
working environment in a high-level language such as R is most 
apparent.

Integrative analysis of multiple assays generally relies on linking 
through genomic location or annotation. This includes associ-
ating genomic locations with transcripts and protein sequences, 
proteins with other gene products that function in the same path-
way or process, and many other possible associations. The com-
bined computation on multiple linked data types and annotations 
is the essence of integrative genomic analysis.

To perform such analyses, one must use compatible systems of 
identifiers, reference genomes, gene models, coordinate systems, 
and so on. For instance, the identification of RNA-editing sites 
requires that the user have an accurate genotype for the individual 
as well as RNA-seq reads aligned to that genotype, and variant 
calls from a DNA-seq experiment should retain not only informa-
tion about the alignment software but also the precise version of 
the genome that was used. Bioconductor software is intended to 

Figure 3 | Visualization along genomic coordinates with ggbio. The plot 
shows the gene Apoe alongside RNA-seq data from mouse hematopoietic 
stem cells (HSC) and four fractions of multipotent progenitor (MPP) cells22. 
The disjoint bins (center) were computed from the four transcript isoforms 
shown in the bottom panel. The y axis of the top panel shows the relative 
exon usage coefficients estimated with the DEXSeq method23. Regions 
detected as differentially used between the cell fractions are colored dark 
red in the center panel.
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Developers are constantly updating their packages to extend capa-
bilities, improve performance, fix bugs and enhance documenta-
tion. These changes are introduced into the development branch of 
Bioconductor and released to end users every 6 months; changes are 
tracked using a central, publicly readable Subversion software repos-
itory, so details of all changes are fully accessible. Simultaneously, 
R itself is continually changing, typically around performance 
enhancements and increased functionality. Owing to this dynamic 
environment, all packages undergo a daily testing procedure. Testing 
is fully automated and ensures that all code examples in the pack-
age documentation, as well as further unit tests, run without error. 
Successful completion of the testing will result in the package being 
built and presented to the community.

Many Bioconductor packages have extensive code examples and 
tests with which the authors can ensure that their software remains 
functional even as components up- and downstream change. Of 
equal importance is keeping the documentation synchronized with 
changes in the code. Although the testing system places a substantial 
load both on the central repository and on all developers, it pro-
vides a degree of software coherence and usability that is rare in soft-
ware projects with a diverse and distributed developer community. 
Of course, limitations exist: the reach and stringency of the tests, 
beyond the required minimum, vary depending on the package 
authors. The quality of the repository was highlighted in an edito-
rial in Nature Genetics17, which listed the Comprehensive R Archive 
Network (CRAN) and Bioconductor as the only software reposito-
ries endorsed by that journal, across all programming languages.

Interoperability. Interoperability between software components 
for different stages and types of analysis is essential to the success 
of Bioconductor. Interoperability is established through the defini-
tion of common data structures that package authors are expected 
to use18 (Table 2). Technically, Bioconductor’s common data struc-
tures are implemented as classes in the S4 object-oriented system 
of the R language. In this manner, useful software concepts includ-
ing encapsulation, abstraction of interface from implementation, 
polymorphism, inheritance and reflection are directly available. It 
allows core tasks such as matching of sample data and metadata to 

developments in the wider R community, including the knitr and 
rmarkdown packages and the integrated development environ-
ment RStudio, make it easy to author attractive vignettes. In addi-
tion to the traditional delivery format as a PDF file, the newer 
generation of tools allow use of HTML5 facilities for interactive 
visualization, including ‘drill-down’ to expand the view on a spe-
cific detail, faceted filtering and comprehensive hyperlinking. Full 
remote reproducibility remains a challenging problem, in particu-
lar for computations that require large computing resources or 
access data through infrastructure that is potentially transient or 
has restricted access (e.g., the cloud). Nevertheless, many exam-
ples of fully reproducible research reports have been produced 
with Bioconductor6,10–14.

Alternative and complementary tools. Using Bioconductor 
requires a willingness to modify and eventually compose scripts 
in a high-level computer language, to make informed choices 
between different algorithms and software packages, and to learn 
enough R to do the unavoidable data wrangling and troubleshoot-
ing. Alternative and complementary tools exist; in particular, 
users may be ready to trade some loss of flexibility, automation or 
functionality for simpler interaction with the software, such as by 
running single-purpose tools or using a point-and-click interface.

Workflow and data management systems such as Galaxy15 and 
Illumina BaseSpace provide a way to assemble and deploy easy-to-
use analysis pipelines from components from different languages 
and frameworks. The IPython notebook16 provides an attractive 
interactive workbook environment. Although its origins are with 
the Python programming language, it now supports many lan-
guages, including R. In practice, many users will find a combina-
tion of platforms most productive for them.

The developer perspective
The package ecosystem. All software distributed by Bioconductor 
is in the form of R packages. This simplifies software delivery, use 
and maintenance, but it puts a burden on the developers. They 
need to learn how to write R packages, including documentation 
and test cases (Box 2).

The first step to contributing is becoming familiar with the 
existing software offerings and the underlying science. Often 
this leads to the identification of needs for new methods or 
new software tools. Prospective developers should familiarize 
themselves with the “Developers” section of the project web 
page and, if they have the opportunity, attend one of the 
developer meetings. The project’s package guidelines include 
those of regular (CRAN) R packages, with additional emphasis 
on usage-oriented documentation, sharing of common data 
containers, and interoperability with other packages of the 
project for tasks that lie up- or downstream.

Once a package is ready for contribution, developers submit 
it to a package editor via the “Package Submission” web page. 
Feedback is given in 1–3 weeks, often with recommendations 
on improving the package’s code, user interface or 
presentation. Once the package is accepted, it is added to 
the build server and undergoes the daily checking procedure. 

From then on, the package is available in the development 
branch of the project, and it will become part of the next 
release. Releases are made every 6 months, usually in April 
and October.

Each package has a designated maintainer who must be 
responsive to an email address registered with the package. 
The maintainer is expected to react to errors and bugs 
associated with the package and typically also answers users’ 
requests for help with its use. When an active maintainer of 
a package cannot be identified, the package is orphaned and 
will no longer be part of subsequent releases.

Package maintainers usually keep developing and enhancing 
their package even after the initial submission. Some packages 
have undergone impressive extensions and maturation over 
the years. To make their updates, maintainers access the code 
source via the project’s version control system (Subversion; a 
git-bridge also exists).

BOX 2  HOW TO CONTRIBUTE?
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vetted and tested, developers can resort to implementation of criti-
cal code sections in other languages, such as C, to improve perfor-
mance. For instance, the Ranges infrastructure has gone through 
many iterations of this process. Alternatively, as we have done 
with the Rsamtools package, R’s foreign language interfaces can be 
exploited to access an established software library from within R. 
This has allowed high-level code written in R to seamlessly use the 
functionality of the SAMtools software19.

Reuse. Reusing software by interfacing to an existing library is 
one of the guiding principles of Bioconductor. Developing good 
software is difficult and time consuming, and if a well-tested, well-
supported implementation with a suitable license already exists 
for a task, we encourage developers to build upon it. Using R’s 
foreign language interfaces, they can invoke third-party software 
that is installed elsewhere on the system or they can include and 
redistribute it with their own Bioconductor package. Within the 
R ecosystem, the CRAN and Bioconductor repositories provide 
developers with access to a multitude of packages. These support 
rapid development because they are units that can be installed 
and used with little effort, and they encapsulate know-how that is 
often the concentrate of years of effort.

Performance and scalability. Effectively working with large data 
requires programming practices that match memory and pro-
cessor use to available resources. R is efficient when operating 
on vectors or arrays, so a pattern used by high-performing and 
scalable algorithms is to split the data into manageable chunks 
and to iterate over them. An example is the yieldSize argument 
of functions that process BAM, FASTQ or VCF files20. Chunks 
can be evaluated in parallel to gain speed. The BiocParallel pack-
age helps developers employ parallel evaluation across different 
computing environments while shielding users from having to 
configure the technicalities. It connects to back ends for shared 
memory and cluster configurations. The GenomicFiles package 
ties parallelization to chunkwise operations across multiple files. 
Bioconductor is available as a virtual machine image configured 
for high-performance computing in Amazon’s Elastic Compute 
Cloud (EC2).

A key aspect to the success of Bioconductor is the ability to reach 
both users and developers. For users, there are packages and work-
flows for many common use cases, as well as facilities to effectively 
communicate results through tables, visualization and reports. 
Analysis scripts are easily shared, thus facilitating reproducible 

be adopted across disciplines, and it provides a foundation on which 
community development is based.

It is instructive to compare such a representation to popular alter-
natives in bioinformatics: file-based data format conventions and 
primitive data structures of a language such as matrices or spread-
sheet tables. With file-based formats, operations such as subset-
ting or data transformation can be tedious and error prone, and 
the serialized nature of files discourages operations that require a 
global view of the data. In either case, validity checking and reflec-
tion cannot rely on preformed or standardized support and need to 
be programmed from scratch again for every convention—or are 
missing altogether. As soon as the data for a project are distributed in 
multiple tables or files, the alignment of data records or the consis-
tency of identifiers is precarious, and interoperability is hampered by 
having to manipulate disperse, loosely coordinated data collections.

Shared infrastructure for distributed development. The analy-
sis of biological data relies on reference resources, such as genome 
sequences, gene models, identifiers and annotation of genes and 
other genomic features. Standardized R representations of these 
resources are provided by the project to avoid redundancy of efforts 
and enable data integration.

Developers also benefit from fundamental software library func-
tions that support the operations they want to carry out. For exam-
ple, the Ranges infrastructure is used directly or indirectly by 43% 
of all Bioconductor packages, and nearly 60% depend on Biobase 
and over 70% on BiocGenerics. By using shared infrastructures, 
developers are relieved from the task of creating and maintaining 
such components themselves, and they can focus on their unique 
domain-specific contributions.

Merits of a high-level language
Functionality. Software engineering is a complex process. Common 
expectations of scientific software include functionality, flexibil-
ity and robustness. At the early stages of developing a scientific 
approach, these aims should take priority, and premature optimiza-
tion for speed or other hardware resources tends to be distracting. 
Working in a high-level language such as R is therefore a rapid and 
effective choice. There is plenty of time, once the right approach 
has been settled on, to worry about whether the computation really 
needs to be faster and where the bottleneck lies.

Extensibility. R provides a syntax for manipulating data. That syntax 
can be readily mapped to other languages. Once an idea has been 

Table 2 | Key data structures for experimental and annotation data in Bioconductor
Container (package) Data type
ExpressionSet
(Biobase)

Matrix-like data set, where quantitative values (e.g., gene expression) are measured for many features (e.g., genes or molecules; 
the rows) in multiple samples (columns). This is a standard container for microarray expression data, and it is also used for 
other data types, e.g., drug screens. The container also stores covariates that describe the experimental factors and technical 
parameters associated with each feature or sample.

SummarizedExperiment
(GenomicRanges)

Analogous to ExpressionSet; in addition, the features (rows) are associated with genomic coordinates.

GRanges
(GenomicRanges)

Genomic coordinates and associated categorical and quantitative information, e.g., gene symbol, coverage or P value.

VCF, VRanges
(VariantAnnotation)

Extensions of the SummarizedExperiment and GRanges classes to represent variant call format. Content includes reference and 
alternate base content, phasing, base-call uncertainty and locus-, sample- and experiment-specific metadata24.

BSgenome
(BSgenome)

Represents the genome sequence of an organism, tailored to efficient interactive manipulation with R. It can include information 
on conventional or user-defined mask structures and allows injection of symbols encoding sequence polymorphisms.
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(2014).

9.  Gentleman, R. Reproducible research: a bioinformatics case study. Stat. Appl. 
Genet. Mol. Biol. 4, Article2 (2005).

10. Anders, S. & Huber, W. Differential expression analysis for sequence count 
data. Genome Biol. 11, R106 (2010).

11. Laufer, C., Fischer, B., Billmann, M., Huber, W. & Boutros, M. Mapping 
genetic interactions in human cancer cells with RNAi and multiparametric 
phenotyping. Nat. Methods 10, 427–431 (2013).

12. Waldron, L. et al. Comparative meta-analysis of prognostic gene signatures for 
late-stage ovarian cancer. J. Natl. Cancer Inst. 106, dju049 (2014).

13. Riester, M. et al. Risk prediction for late-stage ovarian cancer by meta-
analysis of 1525 patient samples. J. Natl. Cancer Inst. 106, dju048 (2014).

14. McMurdie, P.J. & Holmes, S. Waste not, want not: why rarefying microbiome 
data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

15. Goecks, J., Nekrutenko, A., Taylor, J. & The Galaxy Team. Galaxy: a 
comprehensive approach for supporting accessible, reproducible, and 
transparent computational research in the life sciences. Genome Biol. 11, R86 
(2010).

16. Pérez, F. & Granger, B.E. IPython: a system for interactive scientific 
computing. Comput. Sci. Eng. 9, 21–29 (2007).

17. Anonymous. Credit for code. Nat. Genet. 46, 1 (2014).
18. Altschul, S. et al. The anatomy of successful computational biology software. 

Nat. Biotechnol. 31, 894–897 (2013).
19. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 

25, 2078–2079 (2009).
20. Lawrence, M. & Morgan, M. Scalable genomics with R and Bioconductor. Stat. 

Sci. 29, 214–226 (2014).
21. Brazma, A. et al. Minimum information about a microarray experiment 

(MIAME) - toward standards for microarray data. Nat. Genet. 29, 365–371 
(2001).

22. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and 
their immediate progeny via integrated proteome, transcriptome, and DNA 
methylome analysis. Cell Stem Cell 15, 507–522 (2014).

23. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from 
RNA-seq data. Genome Res. 22, 2008–2017 (2012).

24. Obenchain, V. et al. VariantAnnotation: a Bioconductor package for 
exploration and annotation of genetic variants. Bioinformatics 30, 2076 
(2014).

research. For developers wanting to create and disseminate novel 
ideas, there is a well-maintained infrastructure for robust code 
development. Our community strives to balance user needs while 
simultaneously working on the leading edge of innovation in 
genomic data science. We are driven by the strengths and dedica-
tion of our users and developers and are optimistic about the future 
of the project.
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