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314 STEIN ET AL.

Teachers who attempt to use inquiry-based, student-centered instructional tasks
face challenges that go beyond identifying well-designed tasks and setting them
up appropriately in the classroom. Because solution paths are usually not
specified for these kinds of tasks, students tend to approach them in unique and
sometimes unanticipated ways. Teachers must not only strive to understand how
students are making sense of the task but also begin to align students’ disparate
ideas and approaches with canonical understandings about the nature of mathe-
matics. Research suggests that this is difficult for most teachers (Ball, 1993,
2001; Leinhardt & Steele, 2005; Schoenfeld, 1998; Sherin, 2002). In this article,
we present a pedagogical model that specifies five key practices teachers can
learn to use student responses to such tasks more effectively in discussions:
anticipating, monitoring, selecting, sequencing, and making connections
between student responses. We first define each practice, showing how a typical
discussion based on a cognitively challenging task could be improved through
their use. We then explain how the five practices embody current theory about
how to support students’ productive disciplinary engagement. Finally, we close
by discussing how these practices can make discussion-based pedagogy manage-
able for more teachers.

A key challenge that mathematics teachers face in enacting current reforms is
to orchestrate whole-class discussions that use students’ responses to instruc-
tional tasks in ways that advance the mathematical learning of the whole class
(e.g., Ball, 1993; Lampert, 2001). In particular, teachers are often faced with a
wide array of student responses to cognitively demanding tasks and must find
ways to use them to guide the class toward deeper understandings of significant
mathematics. Here, we propose a model for the effective use of student responses
to such tasks in whole-class discussions that we argue has the potential for mak-
ing such teaching manageable for many more teachers. Our model provides
teacher educators with a set of five practices that they can use in their work with
K–12 pre- and in-service teachers to help them learn how to orchestrate discus-
sions that both build on student thinking and also advance important mathemati-
cal ideas. Researchers of classroom processes, teaching, and student learning of
mathematics will also be interested in the five practices model as a way of con-
ceptualizing investigations of classroom discourse.

We begin by discussing the importance and challenges of facilitating mathe-
matical discussions that are launched through cognitively demanding mathemati-
cal tasks—problems that promote conceptual understanding and the development
of thinking, reasoning, and problem-solving skills (Doyle, 1983, 1988; Henning-
sen & Stein, 1997; Hiebert & Wearne, 1993; Stein, Grover, & Henningsen,
1996). We then describe our five practices model using a concrete example of a
classroom discussion that was not as effective as it could have been to illustrate
how these practices can be used to more effectively facilitate mathematical dis-
cussions. Next, we ground the five practices in a theoretical framework for
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 315

promoting productive disciplinary engagement to explain how the practices work
together to help teachers create discussions that simultaneously build on student
thinking while leading toward the development of important mathematical ideas.
We close by discussing how the five practices model makes discussion facilita-
tion more manageable for teachers.

THE IMPORTANCE AND CHALLENGES OF FACILITATING 
MATHEMATICAL DISCUSSIONS

Mathematical discussions are a key part of current visions of effective mathe-
matics teaching (e.g., Cobb, Boufi, et al., 1997; Kazemi & Stipek, 2001;
Nathan & Knuth, 2003). In several countries, including the United States, the
expected role of the teacher is changing from “dispenser of knowledge” and
arbiter of mathematical “correctness” to an engineer of learning environ-
ments in which students actively grapple with mathematical problems and
construct their own understandings (Freudenthal, 1991; Gravemeijer, 1994;
Lewis & Tsuchida, 1998; National Council of Teachers of Mathematics
[NCTM], 1989, 1991; Stigler & Hiebert, 1999). In this vision, students are
presented with more realistic and complex mathematical problems, use each
other as resources for working through those problems, and then share their
strategies and solutions in whole-class discussions that are orchestrated by
the teacher. The role of the teacher during whole-class discussions is to
develop and then build on the personal and collective sensemaking of stu-
dents rather than to simply sanction particular approaches as being correct or
demonstrate procedures for solving predictable tasks (e.g., Fennema et al.,
1996). Such discussions are thought to support student learning of mathemat-
ics in part by helping students learn mathematical discourse practices (e.g.,
Chapin, O’Connor, & Anderson, 2003; Michaels et al., 2002), making
students’ thinking public so it can be guided in mathematically sound direc-
tions (e.g., Forman et al., 1998), and encouraging students to construct and
evaluate their own and each others’ mathematical ideas (e.g., Forman,
McCormick, & Donato, 1998).

A typical reform-oriented lesson that incorporates these kinds of whole-
class discussions often proceeds in three phases (Baxter & Williams, in press;
Lampert, 2001; Sherin, 2002). It begins with the launching of a mathematical
problem by the teacher that embodies important mathematical ideas and can be
solved in multiple ways (e.g., Lampert, 2001; Stroup, Ares, & Hurford, 2005).
During this “launch phase,” the teacher introduces the students to the problem,
the tools that are available for working on it, and the nature of the products
they will be expected to produce. This is followed by the “explore phase” in
which students work on the problem, often discussing it in pairs or small
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316 STEIN ET AL.

groups. As students work on the problem, they are encouraged to solve the
problem in whatever way makes sense to them and be prepared to explain their
approach to others in the class. The lesson then concludes with a whole-class
discussion and summary of various student-generated approaches to solving
the problem. During this “discuss and summarize” phase, a variety of
approaches to the problem are displayed for the whole class to view and
discuss.

During what we call “the first generation” of practice and research that
instantiated this vision, the role of the teacher with respect to building mathe-
matical ideas was ill-defined. Emphasis was placed on the use of cognitively
demanding tasks (e.g., Henningsen & Stein, 1997), the encouragement of
productive interactions during the explore phase (e.g., Yackel et al., 1990),
and the importance of listening respectfully to students’ reasoning throughout
(e.g., Fennema, Carpenter, & Peterson, 1989). During whole-class discus-
sions, the focus tended to be on creating norms that would allow students to
feel that their contributions were listened to and valued (e.g., Cobb, Wood,
&Yackel, 1993) and on the kinds of teacher questions that would prompt stu-
dents to explain their thinking (e.g., Hiebert & Wearne, 1993). Less attention
was paid to what teachers could actively do to guide whole-class discussions
toward important and worthwhile mathematics. In fact, many teachers got the
impression that in order for discussions to be focused on student thinking,
they must avoid providing any substantive guidance at all (cf. Baxter &
Williams, in press; Chazen & Ball, 2001; Lobato, Clarke, & Ellis, 2005;
Smith, 1996).

To provide an example of the kinds of discussions that often resulted during
this first generation, and which still continue in many teachers’ classrooms, con-
sider the following vignette that characterizes the kinds of mathematical discus-
sions that often occur in U.S. classrooms, even those using cognitively
demanding tasks as their basis for whole-class discussions.1

Leaves and Caterpillars Vignette

Students in David Crane’s fourth-grade class were solving the following problem:
“A fourth-grade class needs five leaves each day to feed its 2 caterpillars. How
many leaves would they need each day for 12 caterpillars?” Mr. Crane told his
students that they could solve the problem any way they wanted, but emphasized
that they needed to be able to explain how they got their answer and why it
worked.

As students worked in pairs to solve the problem, Mr. Crane walked around the
room making sure that students were on task and making progress on the prob-
lem. He was pleased to see that students were using lots of different approaches
to the problem—making tables, drawing pictures, and, in some cases, writing
explanations.
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 317

He noticed that two pairs of students had gotten wrong answers as shown below.

Mr. Crane wasn’t too concerned about the incorrect responses, however, since he
felt that once these students saw several correct solution strategies presented, they
would see what they did wrong and have new strategies for solving similar prob-
lems in the future.

When most students were finished, Mr. Crane called the class together to discuss
the problem. He began the discussion by asking for a volunteer to share their solu-
tion and strategy, being careful to avoid calling on the students with incorrect solu-
tions. Over the course of the next 15 minutes, first Kyra, then Jason, Jamal, Melissa,
Martin and Janine volunteered to present the solutions to the task that they and their
partner had created. Their solutions are shown in Figure 1.

During each presentation, Mr. Crane made sure to ask each presenter questions that
helped them to clarify and justify their work. He concluded the class by telling stu-
dents that the problem could be solved in many different ways and now, when they
solved a problem like this, they could pick the way they liked best because they all
gave the same answer.

To some, this lesson would be considered exemplary. Indeed Mr. Crane did
many things well, including allowing students to construct their own way of
solving this cognitively challenging task2 and stressing the importance of stu-
dents’ being able to explain their reasoning. However, a more critical eye might
have noted that the string of presentations did not build toward important mathe-
matical ideas. The upshot of the discussion appeared to be “the more ways of
solving the problem the better,” but, in fact, Mr. Crane only held each student
accountable for knowing one way to solve the problem. In addition, although
Mr. Crane observed students as they worked, he did not appear to use this time to
assess what students understood about proportional reasoning (Nelson, 2001;
Shifter, 2001) or to select particular students’ work to feature in the whole-class
discussion (Lampert, 2001; NCTM, 1991). And he gathered no information
regarding whether the two pairs of students who had gotten the wrong answer
(Darnell and Marcus, and Missy and Kate) were helped by the student presenta-
tions of correct strategies. Had they diagnosed the faulty reasoning underneath
their approaches?

Darnell and Marcus Missy and Kate
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318 STEIN ET AL.

In fact, we argue that much of the discussion in Mr. Crane’s classroom was
what Ball (2001) has called a “show and tell” in which students with correct
answers each take turns sharing their solution strategies (see also, Wood &
Turner-Vorbeck, 2001). There was little filtering by the teacher about which
mathematical ideas each strategy helped to illustrate, nor any attempt to highlight

FIGURE 1 Student Work Presented in the Hypothetical Classroom of Mr. Crane during the
Leaves and Caterpillar Vignette (Student Work from Smith, Hillen, & Heffernan, 2003).

Janine’s Work Kyra’s Work 

Jamal’s Work Martin’s Work 

Jason’s Work Melissa’s Work 
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 319

those ideas (Lampert, 2001; Schoenfeld, 1998). In addition, the teacher did not
draw connections among different solution methods or tie them to important dis-
ciplinary methods or mathematical ideas (Ball, 1993; Boaler & Humphries,
2005). Finally, there was no attention to weighing which strategies might be most
useful, efficient, accurate, and so on, in particular circumstances (Nathan &
Knuth, 2003). All were treated as equally good.

In short, providing students with cognitively demanding tasks with which to
engage and then conducting “show and tell” discussions cannot be counted on to
move an entire class forward mathematically. Indeed, this generation of practice
was eventually criticized for creating classroom environments in which near-
complete control of the mathematical agenda was relinquished to students (e.g.,
Ball, 1993, 2001; Chazen & Ball, 2001; Leinhardt, 2001). Some teachers went so
far as to misperceive the appeal to honor students’ thinking and reasoning as a
call for a complete moratorium on teacher shaping of the quality of students’
mathematical thinking. Due to the lack of guidance with respect to what teachers
could do to encourage rigorous mathematical thinking and reasoning, many
teachers were left feeling that they should avoid telling students anything (e.g.,
Baxter & Williams, in press; Chazen & Ball, 2001; Leinhardt, 2001; Lobato,
Clarke, & Ellis, 2005; Smith, 1996; Windschitl, 2002).

A related criticism concerned the fragmented and often incoherent nature of
the discuss-and-summarize phases of lessons. In these “show-and-tells,” as
exemplified in Mr. Crane’s classroom, one student presentation would follow
another with limited teacher (or student) commentary and no assistance with
respect to drawing connections among the methods or tying them to widely
shared disciplinary methods and concepts. There was no mathematical or other
reason for students to necessarily listen to and try to understand the methods of
their classmates. As illustrated in Mr. Crane’s comment at the end of the class,
students could simply “pick the way they liked best.” This led to an increasingly
recognized dilemma associated with inquiry- and discovery-based approaches to
teaching: the challenge of aligning students’ developing ideas and methods with
the disciplinary ideas that they ultimately are accountable for knowing (e.g.,
Brown & Campione, 1994).

In a widely cited article, “Keeping an Eye on the Mathematical Horizon,” Ball
(1993) argued that the field needed to take responsibility for helping teachers to
learn how to continually “size up” whether important mathematical ideas were
being developed in these discussions and be ready to step in and redirect the con-
versation when needed. Unfortunately, guidance for how to do this remains scant.
In this article, we join Ball (1993, 2001) and others (e.g., Gravemeijer, 2004;
Lampert, 2001; Nathan & Knuth, 2003; Nelson, 2001; Wood & Turner-Vorbeck,
2001) who are seeking to identify ways in which teachers can effectively guide
whole-class discussions of student-generated work toward important and worth-
while disciplinary ideas. We call this “second generation” practice and view it as
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320 STEIN ET AL.

a form of instruction that re-asserts the critical role of the teacher in guiding
mathematical discussions. The hallmark of second generation practice is its focus
on using student-developed work as the launching point of whole-class discus-
sions in which the teacher actively shapes the ideas that students produce to lead
them toward more powerful, efficient, and accurate mathematical thinking.

The literature now includes several compelling illustrations of what expert
facilitators commonly do and must know to facilitate mathematical discussions
that are, in the words of Ball (1993), accountable both to the discipline and to stu-
dents (Ball, 2001; Chazen & Ball, 2001; Lampert, 2001; Leinhardt & Steele,
2005; Sherin, 2002). However, research has also demonstrated the significant
pedagogical demands that are involved in orchestrating discussions that build on
student thinking in this manner (e.g., Ball, 2001; Brown & Campione, 1994;
Chazen & Ball, 2001; Lampert, 2001; Leinhardt & Steele, 2005; Schoenfeld,
1998; Sherin, 2002).

First, compared with presenting a lecture or conducting a recitation lesson in
which mathematical procedures are demonstrated, facilitating a discussion
around a task that can be solved in numerous ways greatly reduces teachers’
degree of control over what is likely to happen in a lesson (e.g., Chazen, 2000).
This can be particularly daunting for teachers who are new to discussion-based
pedagogy, reducing their sense of efficacy for supporting student learning
(Smith, 1996). In addition, many models of expert practice in the literature
feature extremely skilled discussion facilitators: teachers who—with apparent
ease—make rapid online diagnoses of students’ understandings, compare them
with desired disciplinary understandings, and then fashion an appropriate
response. For teachers new to discussions or to the particular curriculum in which
they are hoping to use them, achieving this level of improvisation can feel unat-
tainable (Borko & Livingston, 1989; Heaton, 2000; Schoenfeld, 1998; Sherin,
2002). Indeed, research has shown that successful improvisation requires an
extensive network of content knowledge, pedagogical knowledge, and knowl-
edge of students as learners that is interwoven, and which is often limited for
many teachers (e.g., Borko & Livingston, 1989; Margolinas, Coulange, &
Bessot, 2005; Sherin, 2002).

Thus, as with other areas of expertise (e.g., Bransford, Brown, & Cocking,
1999; White & Frederiksen, 1993), experts are incomplete guides for teachers
who want to learn how to become discussion facilitators (hereafter referred to as
novices). While experts can help teachers to see the power of discussions that
simultaneously honor both student thinking and a mathematical agenda, they
often portray effective discussion facilitation as dauntingly complex while not
addressing the novice’s desire for easy-to-implement “how-to’s” for learning
how to facilitate such discussions. Moreover, they do not address the fact that
novices have different knowledge bases than experts that affect the practices they
can implement effectively. Without the expert’s reservoir of knowledge about
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 321

how to relate student responses to important mathematical content, novices cannot
improvise their way through such discussions as experts do (Schoenfeld, 1998).
Without solid expectations for what is likely to happen, novices are regularly sur-
prised by what students say and do, and therefore often do not know how to
respond to students in the midst of a discussion. They feel out of control and
unprepared, which then reduces their efficacy as teachers, making discussion-
based pedagogy a lot less attractive (Smith, 1996).

Instead, we argue that novices need a set of practices they can do to both pre-
pare them to facilitate discussions (Ghousseini, 2007; Lampert, 2007) and help
them gradually and reliably learn how to become better discussion facilitators
over time (Fernandez & Yoshida, 2004; Hiebert, Morris, & Glass, 2003; Stigler
& Hiebert, 1999). We propose our model of the five practices as one such tool,
which is designed specifically for whole-class discussions that are conducted
after students work on high-level cognitively-challenging tasks (Stein et al.,
2000).

FIVE PRACTICES FOR FACILITATING MATHEMATICAL 
DISCUSSIONS AROUND COGNITIVELY DEMANDING TASKS

In our model of five practices for discussion facilitation, the intent is to make dis-
cussion facilitation something that is manageable for novices, those teachers who
are new to this form of teaching. We do this by purposely de-emphasizing the
improvisational aspects of discussion facilitation in favor of a focus on those
aspects of mathematical discussions that can be planned for in advance
(cf. Fennema & Franke, 1992; Gravemeijer, 2004). Through planning, teachers
can anticipate likely student contributions, prepare responses they might make to
them, and make decisions about how to structure students’ presentations to
further their mathematical agenda for the lesson. By expanding the time to make
an instructional decision from seconds to minutes (or even hours) our model
allows increasing numbers of teachers to feel—and actually be—better prepared
for discussions.

Specifically, the five practices are: (1) anticipating likely student responses to
cognitively demanding mathematical tasks, (2) monitoring students’ responses to
the tasks during the explore phase, (3) selecting particular students to present
their mathematical responses during the discuss-and-summarize phase, (4) pur-
posefully sequencing the student responses that will be displayed, and (5) helping
the class make mathematical connections between different students’ responses
and between students’ responses and the key ideas. Each practice has been dis-
cussed separately by various authors; our contribution here is to integrate them
into a single package. As shown in Figure 2, we view each of the practices as
drawing on the fruits of the practices that came before it. For example, teachers’
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322 STEIN ET AL.

monitoring of students work during the explore phase will benefit from their pre-class
preparation of anticipating how students might approach the tasks. Similarly, the
practice of selecting particular students to present their work will benefit from
careful monitoring of the range of responses that students produce during the
explore phase. In addition, successfully using the five practices depends on
implementing a cognitively demanding instructional task with multiple possible
responses and having well-defined instructional goals, both of which are sup-
ported by teachers’ understanding of their students’ current mathematical thinking
and practices.

Together, we feel these practices help make it more likely that teachers will be
able to use students’ responses to advance the mathematical understanding of the
class as a whole. Each practice is described in more detail below, with the example
of Mr. Crane’s discussion illustrating how each could have contributed to a more
productive mathematical discussion in his class.

Anticipating Students’ Mathematical Responses

The first practice is for teachers to make an effort to actively envision how stu-
dents might mathematically approach the instructional tasks(s) that they will be
asked to work on (e.g., Fernandez & Yoshida, 2004; Lampert, 2001; Schoenfeld,
1998; Smith, 1996; Stigler & Hiebert, 1999). This involves much more than simply
evaluating whether a task will be at the right level of difficulty or of sufficient
interest to students, and it goes beyond considering whether they are likely to get
the “right answer.” Anticipating students’ responses involves developing consid-
ered expectations about how students might mathematically interpret a problem,

FIGURE 2 Schematic Diagrams of the Five Practices in which Each Practice Depends on
the Practices Embedded within it.

Anticipating

Monitoring

Selecting

Sequencing

Connecting
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 323

the array of strategies—both correct and incorrect—they might use to tackle it,
and how those strategies and interpretations might relate to the mathematical
concepts, representations, procedures, and practices that the teacher would like
his or her students to learn (Lampert, 2001; Schoenfeld, 1998; Yoshida, 1999,
cited in Stigler & Hiebert, 1999).

Consider how using the practice of anticipating might have affected the nature
of discussion in Mr. Crane’s class. Table 1 shows the variety of strategies that
students might use to solve the Caterpillar and Leaves problem (first column);
the names of the students whose work illustrated those strategies, including the
representation they used (second column); and how the strategies relate to one
another (third column).

As shown in the first two columns of the first row, anticipation would have
enabled Mr. Crane to recognize that the response given by Missy and Kate
reflects a common misconception that students of this age have with respect to
proportionality: they identify the relationship between the quantities, here the
numbers of caterpillars and leaves, as additive rather than multiplicative (e.g.,
Cramer, Post, & Currier, 1993; Hart, 1988; Noelting, 1980). Anticipating this in
advance would have made it possible for Mr. Crane to have a question ready to
ask or an activity that the students could do that might have helped them and
other students recognize why this approach, though tempting, does not make
sense.

Anticipation requires that teachers, at a minimum, actually do the mathemati-
cal tasks that they are planning to ask their students to do. However, rather than
finding a single strategy to solve a problem, teachers need to devise and work
through as many different solution strategies as they can. Moreover, if they put
themselves in the position of their students while doing the task, they can antici-
pate some of the strategies that students with different degrees of mathematical
sophistication are likely to produce and consider ways that students might misin-
terpret problems or get confused along the way, as some of Mr. Crane’s students
did. Each time they use a task, teachers can add to their fund of knowledge about
likely student responses.

In addition to drawing on their knowledge of their particular students’ mathe-
matical skills and understandings, teachers might draw on their knowledge of the
research literature about typical student responses to the same or similar tasks or
of common student understandings of related concepts and procedures (e.g.,
Fennema et al., 1996) . The practice of anticipating student responses can be fur-
ther supported when teachers use mathematics curricula that include typical stu-
dent responses to problems, as is done in many Japanese curricula (Fernandez &
Yoshida, 2004; Schoenfeld, 1998; Stigler & Hiebert, 1999) and in some American
curricula (e.g., Russell, Tierney, Mokros, & Economopoulos’ 2004, Investiga-
tions in Number, Data, and Space). In addition, there is a growing library of writ-
ten and video cases of mathematics teaching designed for teachers that often
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326 STEIN ET AL.

include extensive information about student responses to the instructional tasks
that are the basis of the lessons in the cases (e.g., Barnett, Goldstein, & Jackson,
1994; Boaler & Humphries, 2005; Smith, Silver, Stein, Boston, & Henningsen,
2005; Smith, Silver, Stein, Boston, Henningsen, & Hillen, 2005; Smith, Silver,
Stein, Henningsen, Boston, & Hughes, 2005; Stein et al., 2000). Building on such
preexisting resources provides especially helpful scaffolding for teachers who are
new to conducting whole-class discussions around cognitively demanding math-
ematical tasks.

Monitoring Student Responses

Monitoring student responses involves paying close attention to the mathematical
thinking in which students engage as they work on a problem during the explore
phase (e.g., Brendehur & Frykholm, 2000; Lampert, 2001; Nelson, 2001;
Schoenfeld, 1998; Shifter, 2001). This is commonly done by circulating around
the classroom while students work (e.g., Baxter & Williams, in press; Boerst &
Sleep, 2007; Lampert, 2001). The goal of monitoring is to identify the mathematical
learning potential of particular strategies or representations used by the students,
thereby honing in on which student responses would be important to share with
the class as a whole during the discussion phase (Brendehur & Frykholm, 2000;
Lampert, 2001). For example, rather than only noting how many students are
actually working on the problem or who seems to be frustrated, teachers should
also attend to the mathematical ideas that are in play in their work and talk. That
is, teachers should actively attend to the mathematics within what students are
saying and doing, assess the mathematical validity of students’ ideas, and make
sense of students’ mathematical thinking even when something is amiss (Nelson,
2001; Shifter, 2001).

Those teachers who have made a good faith effort during initial planning to
anticipate how students might respond to a problem will feel better prepared to
monitor what students actually do during the explore phase (Lampert, 2001;
Schoenfeld, 1998). Still, this can be challenging, especially if the strategies or
representations used by students are unfamiliar to the teacher (Ball, 2001;
Crespo, 2000; Shifter, 2001; Wallach & Even, 2005). One way to manage the
challenge is for teachers to jot down notes about the particular approaches and
reasoning strategies that students are using. In addition, some tasks involve
manipulatives, representations, response sheets, or computer-based records that
make it possible to identify students’ strategies by visually examining what they
have done with these materials. In other cases, teachers can assess students’
mathematical thinking by listening to a group’s conversations as they work, making
sure to hear “below the surface” features of students’ talk and representations so
as to see the mathematical promise in what students are doing and thinking, and
by asking students probing questions. It is also important for teachers to ask
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 327

questions that will help them assess students’ mathematical thinking—in particular
students’ understanding of key concepts that relate to the goal of the lesson. Such
monitoring is further supported when students have been taught representational
or communicative practices that will make their mathematical thinking more
accessible to others (e.g., see Lampert, 2001).

Returning to the Leaves and Caterpillars Vignette, we note that while Mr.
Crane did circulate around the classroom and understood both who had and had
not gotten correct answers and that a range of representations (tables, pictures,
etc.) had been used, the lack of organization of his sharing at the end of the class sug-
gests he had not monitored the specific mathematical learning potential available in
any of the students’ responses. For example, Mr. Crane did not recognize (or at
least make use of) the fact that both Kyra’s and Janine’s solutions were based on
the concept of unit rate (see row 4 of Table 1) as they figured out that each cater-
pillar eats 2.5 leaves per day, while Jason’s solution made use of the concept of a
scale factor (see row 5 of Table 1) when he reasoned that because the number of
caterpillars scaled up by a factor of 6, the number of leaves also would have to
scale up by this same multiplicative factor (Cramer & Post, 1993; Lesh, Post, &
Behr, 1988). Knowing this would have allowed Mr. Crane to have the class gen-
eralize from these students’ approaches to introduce these key mathematical
ideas about proportionality to the class.

In general, by taking time during the explore phase to monitor the mathematical
basis behind students’ responses, Mr. Crane would have had more information on
which to guide his instructional decisions during the whole class discussion and
beyond. In addition, working to understand students’ solutions as much as possible
during the explore phase would have give him minutes rather than simply sec-
onds to decide how to respond to students’ mathematical ideas during the discus-
sion. Finally, as we will now discuss, Mr. Crane and other teachers can use the
information that they obtain about student thinking during monitoring to plan
which responses they will feature in the ensuing class discussion. As Lampert
(2001, p. 140, emphasis ours) summarized it, “If I watch and listen during small-
group independent work, I am then able to use my observations to decide what
and who to make focal” during whole-class discussion.

Purposefully Selecting Student Responses for Public Display

Having monitored the available student responses in the class, the teacher can
then select particular students to share their work with the rest of the class in
order to get “particular piece[s] of mathematics on the table” (Lampert, 2001,
p. 146; also see Stigler & Hiebert, 1999). A typical way to do this is to call on
specific students (or groups of students) to present their work as the discussion
proceeds. Alternatively, a teacher might ask for volunteers but then select a par-
ticular student that he or she knows is one of several who has a particularly useful
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328 STEIN ET AL.

idea to share with the class. This is one way of balancing the tension between
“keeping the discussion on track and allowing students to make spontaneous con-
tributions that they consider … to be relevant” (Lampert, 2001, p. 174). Still, in
all these methods of selecting, the teacher remains in control of which students
present their strategies, and therefore what the mathematical content of the dis-
cussion will likely be.

Returning to the Leaves and Caterpillar Vignette, if we look at the strategies
that were shared, we noted earlier that both Kyra and Janine had similar strate-
gies that used the idea of a unit rate (see row 4, Table 1). Given that, there may
not have been any added value for students’ mathematical learning in having
both be shared. In fact, if Mr. Crane wanted the students to see the multiplicative
nature of the relationship between the leaves and caterpillars (Vergnaud, 1988),
he might have selected Jason (see row 5, Table 1) to present his strategy as it
most clearly involved multiplication.

Rather than placing the class and the teacher at the mercy of whatever strategies
student volunteers might present, the purposeful selection of presenters makes it
more likely that important mathematical ideas will be discussed by the class. The
teacher selects students to present whose strategies depend on those ideas, allowing
the ideas to be illustrated, highlighted, and then generalized. Teachers can also
ensure that common misconceptions are aired publicly, are understood, and are
corrected by selecting students like Missy and Kate to present strategies and relying
on them so that the class as a whole can then examine them in order to under-
stand why and how the reasoning does not work (Confrey, 1990). And, if neces-
sary, a teacher can introduce a particularly important strategy that no one in the
class has used by sharing the work of students from other classes (e.g., Boaler &
Humphreys, 2005; Schoenfeld, 1998) or offering one of his or her own for the
class to consider (e.g., Baxter & Williams, in press). Another way that teachers
can increase the repertoire of strategies available for public sharing is to offer
instructional support during the explore phase to students who appear to be on
the verge of implementing a unique and important approach to solving the prob-
lem, but who need some help to be able to actually achieve that and effectively
share it with their classmates.

At the same time that care is taken to have certain responses publicly aired,
other responses might be avoided altogether or presented at a later point in time
when the class can more effectively deal with them (Schoenfeld, 1998). Simi-
larly, a response that is important but unexpected by the teacher can be delayed
from consideration until a later class when the teacher has had more time to think
about the mathematics underlying that response (Engle, 2004). Such revisiting of
students’ work and the ideas behind it is a particularly effective tool for newer
teachers who can then consult with their colleagues, teacher education instruc-
tors, curriculum materials, and other resources for deepening their understanding
of the mathematics that they are teaching and how students tend to think about it.
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 329

It is important, however, that teachers do not simply use the technique of
selecting to avoid dealing with those students or mathematical ideas that they
have more difficulty teaching. One way to avoid this is for teachers to regularly
review their monitoring notes to identify any patterns in who was called on and
who was not, and which ideas were discussed and which were not. Teachers can
then adjust their future practices accordingly, preparing to make and take up
opportunities to select those students and ideas that have not gotten as much con-
sideration as they should have.

Purposefully Sequencing Student Responses

Having selected particular students to present, the teacher can then make deci-
sions about how to sequence the students’ presentations with respect to each
other (Schoenfeld, 1998; West, 1994). By making purposeful choices about the
order in which students’ work is shared, teachers can maximize the chances that
their mathematical goals for the discussion will be achieved. For example, the
teacher might want to have the strategy used by the majority of students
presented before those that only a few students used to help validate the work
that students did and make the beginning of the discussion accessible to as many
students as possible (West, 1994). This can allow students to build a depth of
understanding of the problem that will be helpful later for making sense of more
unique or complex solution strategies. Similar benefits can be had by starting a
discussion with a particularly easy-to-understand strategy like Mr. Crane could
have done with Martin’s picture, which concretely depicted how the number of
leaves and caterpillars increased proportionally.

Another possibility for sequencing is to begin with a common strategy that is
based on a misconception that several students had so the class can clear up that
misunderstanding in order to be able to work on developing more successful
ways of tackling the problem (for an example of this in action see “The Case of
Marie Hanson” in Smith, Silver, Stein, Boston, Henningsen, & Hillen, 2005). For
example, there might have been some payoff for Mr. Crane in first sharing the
solution produced by Missy and Kate and then following it with the solution pro-
duced by Melissa, who also used addition but did so in a way that preserved pro-
portionality between the quantities.

In addition, the teacher might want to have related or contrasting strategies be pre-
sented right after one another to make it easier for the class to mathematically com-
pare them. For example, in his mathematical problem-solving course, Schoenfeld
(1998, p. 68) sometimes had students discuss particular problem solving
approaches not “in the order that they had been generated, but in an order
that allow[s] various mathematical ‘lessons’ to emerge more naturally from the
discussions.” In the case of Mr. Crane’s discussion, here is one reasonable
sequencing that he might have considered using:
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330 STEIN ET AL.

1. Martin: picture (scaling up–replicating sets)
2. Jamal: table (scaling up–growing the ratio)
3. Janine: picture and written explanation (unit rate)
4. Jason: written explanation (scale factor)

This sequencing begins with two different but relatively easy-to-understand scaling
up strategies and ends with a fairly sophisticated scale factor strategy, which
would likely support the goal of accessibility. In addition, by having the same
relatively accessible strategy—scaling up—be presented with two different rep-
resentations, this could support the goal of helping students to better understand
this particular strategy and the relationship between these representations, in this
case a model of the problem situation in Martin’s picture and Jamal’s somewhat
more abstract tabular representation.

Thus, rather than being at the mercy of when students happen to contribute an
idea to a discussion, teachers can select students to present in a particular
sequence to make a discussion more mathematically coherent and predictable.
However, as our list of possible sequences that Mr. Crane might have used indi-
cated, much more research needs to be done to compare these and other possible
sequencing methods with each other in order to understand what each best con-
tributes. However, it is clear that as with the other four practices, what particular
sequence teachers choose to use should depend crucially on both teachers’
knowledge of their students and their particular instructional goals.

Connecting Student Responses

Finally, teachers can help students draw connections between the mathematical
ideas that are reflected in the strategies and representations that they use (e.g.,
Ball, 2001; Boaler & Humphreys, 2005; Brendehur & Frykholm, 2000). They
can help students make judgments about the consequences of different
approaches for the range of problems that can be solved, one’s likely accuracy
and efficiency in solving them, and the kinds of mathematical patterns that can be
most easily discerned. They also can help students see how the same powerful
idea (e.g., there is a multiplicative relationship between quantities in a ratio) can
be embedded in two strategies that on first glance look quite dissimilar (e.g., one
performed using a picture/written explanation, another with a table; as in Janine’s
and Jamal’s work in Figure 2). So, rather than having mathematical discussions
consist of separate presentations of different ways to solve a particular problem,
the goal is to have student presentations build on each other to develop powerful
mathematical ideas.

Returning to Mr. Crane’s class, after having students compare and contrast the
use of scaling up in Martin’s picture and Jamal’s table, Mr. Crane might consider
comparing Jamal and Janine’s responses. As shown in Table 1, Janine’s unit rate
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ORCHESTRATING PRODUCTIVE MATHEMATICAL DISCUSSIONS 331

of 2.5 can be discerned in Jamal’s table by dividing the entry in the number of
leaves column by the entry in the number of caterpillars column. This would help
students to generalize the concept of a unit rate as something that can be seen
across multiple mathematical representations. Similarly, Mr. Crane’s students
could be asked to compare Jason’s work with both Jamal’s and Martin’s to see
that Jason’s scale factor of 6 is the same as the number of sets constructed by
Martin and the number of entries in Jamal’s table. Using Jamal’s table as a basis,
it could become increasingly clear to students the ways in which unit rates and
scale factors differ from but still relate to each other in a proportional situation. In
general, if Mr. Crane’s instructional goal for this lesson was having students flexibly
understand different approaches—scale factor, scaling up, and unit rate—then
having the students identify each of these ideas in each representation would be
an especially worthwhile kind of connection that could be made.

However, there are many different ways that teachers might help a class
draw connections besides what we have specifically suggested for Mr. Crane’s
lesson. In the transition between two students’ presentations, a teacher can
allude to some of the ways that the two students’ strategies and mathematical
ideas might be similar to or different from each other in the types of representa-
tions, operations, and concepts that were used (Hodge & Cobb, 2003). Or
teachers can ask students to identify what is similar or different in the two pre-
sentations. All of these ways of helping students to connect their mathematical
responses with each other can help make discussions more coherent. At the
same time, doing this can prompt students to reflect on other students’ ideas
while evaluating and revising their own (Brendehur & Frykholm, 2000; Engle
& Conant, 2002).

Finally, teachers could plan additional lessons in which the demands of the
task might increase. For example, they may want to alter the initial problem to
discuss issues of efficiency and how different strategies may be best suited for
different problems. For example, students could be asked to determine how
many leaves would be needed each day for 50 or 100 caterpillars. While all of
the strategies used to correctly solve the initial problem may be considered rea-
sonable (given the relatively small numbers involved), strategies such as ones
used by Kyra, Martin, and Melissa become much less efficient as the numbers
increase. Similarly, the teacher may want to alter the problem so the unit rate
is more difficult to use (e.g., If 5 caterpillars eat 13 leaves then how many
leaves will 100 caterpillars eat?). In this case, the approach used by Janine and
Kyra might be more difficult since each caterpillar is now eating 26/10 leaves
per day—a much more difficult fraction part to work with, while the approach
used by Jason, finding the scale factor, would be much easier since it is an inte-
ger. Ultimately, the teacher may want to ask questions that require more flexi-
ble use of knowledge such as, “How many caterpillars could eat for a day on
100 leaves?”
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GROUNDING OF THE FIVE PRACTICES IN A THEORY FOR 
PROMOTING PRODUCTIVE DISCIPLINARY ENGAGEMENT

In this section, we step back from the example of Mr. Crane’s class to further
explore the conceptual grounding of the five practices. We do so by situating
them in a theoretical frame that addresses how productive disciplinary engage-
ment can be supported in the classroom (Engle & Conant, 2002).

Since the advent of more student-centered, inquiry-based forms of instruc-
tional practice, teachers have struggled with how to orchestrate discussions in
ways that both engage students’ sense-making in authentic ways and move the
class as a whole toward the development of important and worthwhile ideas in
the discipline. Two norms that teachers can embody in their classrooms to
address this challenge are student authority and accountability to the discipline
(Engle & Conant, 2002). The idea behind student authority is that learning envi-
ronments should be designed so that students are “authorized” to solve mathe-
matical problems for themselves, are publicly credited as the “authors” of their
ideas, and develop into local “authorities” in the discipline (see also Hamm &
Perry, 2002; Lampert, 1990b; Scardamalia, Bereiter, & Lamon, 1994; Wertsch &
Toma, 1995). A learning environment embodying the norm of accountability to
the discipline regularly encourages students to account for how their ideas make
contact with those of other mathematical authorities, both inside and outside the
classroom (see also Boero et al., 1998; Cobb, Gravemeijer et al., 1997; Lampert,
1990a; Michaels et al., 2002).

At the heart of the challenge associated with student-centered practice is the
need to strike an appropriate balance between giving students authority over their
mathematical work and ensuring that this work is held accountable to the disci-
pline. Nurturing students’ mathematical authority depends on the opportunity for
students to publicly engage in the solving of real mathematical problems,
actively grapple with various strategies and representations that they devise to
make headway on the problems, and judge the validity and efficacy of their
own approaches themselves (Engle & Conant, 2002; Hiebert et al., 1996). A
launch-explore-discuss lesson structure that uses cognitively demanding tasks
with more than one valid mathematical solution strategy tends to be very effec-
tive at supporting students’ authority. Individually and in small groups students
have opportunities to solve problems in their own ways and then they become
recognized as the authors of those approaches as they share them in small groups
and with the class as a whole.

However, at the same time, the teacher must move students collectively
toward the development of a set of ideas and processes that are accountable to the
discipline—those that are widely accepted as worthwhile and important in
mathematics as well as necessary for students’ future learning of mathematics
in school. Otherwise, the balance tips too far toward student authority and classroom
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discussions make insufficient contact with disciplinary understandings. Unfortu-
nately, there is nothing in the launch-explore-discuss lesson structure in and of
itself that particularly engenders such accountability as examples of “show and
tell” style discussions like the Leaves and Caterpillar Vignette demonstrate.

On the other hand, efforts to encourage students to be accountable to the discipline
can easily lead teachers to unwittingly undermine students’ authority and
engaged sense-making (e.g., Elmore, Peterson, & McCarthy, 2000; Engle &
Faux, 2006; Hamm & Perry, 2002). This may have happened in Mr. Crane’s
class if he continued to limit student presentations just to those that reached the
correct answer. This would have sent the message to students that strategies need
to be validated by the teacher deciding to select them for presentation rather than
through a process of mathematical reasoning in which students can participate.
Similarly, teachers who do allow the discussion of incorrect strategies may still
undermine students’ authority to evaluate the sensibleness of their and others’
ideas when they give subtle cues to their evaluations through differences in
pauses, facial expressions, elaboration, and questioning of student responses of
different levels of quality. In such cases, students tend to no longer report what
they actually think about a problem, but instead what they believe their teachers
will respond favorably to. Other teachers, concerned when their students reveal
misunderstandings, often find it difficult to resist the temptation to directly cor-
rect students’ answers, which can further undermine students’ mathematical
authority for using their own mathematical reasoning to evaluate the sensibleness
of their own and others’ ideas.

The model described herein supports accountability to the discipline without
undermining students’ mathematical authority through a set of teaching practices
that take students’ ideas as the launching point, but shape class discussions so that
over time important mathematical ideas are surfaced, contradictions exposed, and
understandings developed or consolidated. Building on the resources provided by
a variety of student responses to cognitively demanding tasks, the teacher selects
particular responses to be discussed in a particular order that will support his or
her instructional goals for students’ mathematical development.

While explicit and tractable to the teacher, these practices and their impact on
the shape of discussions are largely invisible to students. Students do not see
teachers doing their anticipating work in advance of the lesson, they do not know
exactly what they are doing while circulating around the room, and they may not
be fully aware of the basis behind teachers’ decisions about which strategies to
have presented and in which order. Thus, these teacher actions do not untowardly
impinge on students’ own growing mathematical authority in the ways that
teacher hints and corrections do. It is students’ ideas that provide the fodder for
discussions, with students publicly serving as the primary evaluators of them. At
the same time, careful selection and steering has been done by the teacher—mostly
under the radar—to move the class discussion in particular, mathematically
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productive directions. Thus, students can experience the magic of learning
through interaction and communication with their peers, the exhilaration of co-
constructing something new, and the payoff that comes from sustained listening
and thinking in a concentrated and focused manner. At the same time, the disci-
pline of mathematics has been represented through the teacher’s wise selection of
student ideas to discuss in a particular order and by prompts for students to make
important mathematical connections between them.

MAKING MATHEMATICAL DISCUSSIONS MORE 
MANAGEABLE FOR TEACHERS

The premise underlying this article is that the identification and use of the five
practices can make student-centered approaches to mathematics instruction more
accessible to and manageable for more teachers. By giving teachers a roadmap of
things that they can do in advance and during whole-class discussions, these
practices have the potential for helping teachers to more effectively orchestrate
discussions that are responsive to both students and the discipline. While the dis-
cussion herein featured an example from a fourth-grade classroom, the model we
are proposing can be used by teachers at all levels K–12 and by teacher educators
who are engaging their students in the discussion of a cognitively challenging
mathematical task.

In addition, we argue that the five practices can also help teachers gain a
sense of efficacy over their instruction (Smith, 1996) as they learn that there are
ways for them to reliably shape students’ discussions. In addition, teachers can
be confident that each time that they use the five practices with a particular task,
the discussion based on that task is likely to get more mathematically sophisti-
cated. In fact, we have encouraged teachers to think about the five practices as a
method for slowly improving the quality of discussions over time as their reser-
voir of experiences with specific tasks grows. For example, the first time a
teacher uses a particular instructional task, he or she may focus on anticipating
and monitoring in order to learn more about how his or her students tend to
respond to the task and what mathematical ideas can be brought forth from
students’ responses. The second time around the teacher can use that information
to make judicious choices about which approaches to be sure to select for class
discussion. In later lessons, the teacher can use the information gathered in the
previous go-arounds to begin developing effective methods of sequencing and
connecting. Thus, over time a teacher’s facilitation of a discussion around a
particular task can improve, with the speed of progress accelerating if he or she
works with other teachers, makes use of resources from research and curriculum
materials, and consistently builds on records of what he or she observed and
learned during each effort.
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The five practices should not be viewed as a “stand-alone” remedy for
the improvement of mathematics instruction. Rather they are one—albeit an
important—component of effective pedagogical practice. As such, the practices
need to be embedded in classroom norms that support inquiry learning, including
respect for others’ efforts and valuing the processes involved in mathematical
argumentation.

The practices are also not a comprehensive prescription for mathematics
learning. Learning mathematics well results from engagement in a sequence of
carefully planned and orchestrated lessons, in addition to polishing the peda-
gogy surrounding individual tasks. As Hiebert and colleagues (1997, p. 31)
have argued, “Teachers need to select sequences of tasks, so that, over time,
students’ experiences add up to something important.” While our focus here is
on preparing for and carrying out a single discussion, we recognize that such
discussions must be viewed as part of a larger, coherent, and comprehensive
curriculum.

Thus, the five practices do not provide an instant fix for mathematics instruc-
tion. Instead, they provide something much more important: a reliable process
that teachers can depend on to gradually improve their classroom discussions
over time. Along with others, we are coming to believe that the most practical
visions for deeply and pervasively reforming mathematics teaching are those that
support such slow and steady progress (Fernandez & Yoshida, 2004; Hiebert
et al., 2003; Stigler & Hiebert, 1999), and we offer the five practices here as one
helpful tool for realizing that vision for classroom discussions.

NOTES

1. This vignette is a composite of one type of discussion that we have regularly observed in mathe-
matics classrooms using cognitively demanding tasks. Although constructed around actual student
work (Smith, Hillen, & Heffernan, 2003), the specific events are hypothetical. However, the pur-
pose of the vignette is not to serve as data but instead to illustrate our ideas while illuminating
their practical import.

2. The Leaves and Caterpillars task is cognitively demanding for fourth graders as evidenced
by both assessment results and an analysis of the task according to the Mathematical Tasks
Framework (Stein, Smith, Henningsen, & Silver, 2000). In the seventh administration of
National Assessment of Educational Progress (NAEP), only 6% of fourth graders gave a correct
answer with a correct explanation to this task, while another 7% either gave a correct answer within
an explanation or showed a correct method with a computational error (Kenney & Linquist, 2000).
Most of the students (86%) gave an incorrect response. From the perspective of the Mathematical
Tasks Framework, this task was implemented as a higher-level “Doing Mathematics” task most
notably because “there is not a predictable, well-rehearsed approach or pathway explicitly sug-
gested by the task, task instructions, or a worked-out example,” the task “requires students to
access relevant knowledge and experiences and make appropriate use of them,” and Mr. Crane
required students to mathematically justify their solution methods (Stein, Smith, Henningsen, &
Silver, 2000, p. 16; see also Engle & Adiredja, 2008).
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