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Abstract—Middleboxes or network appliances like firewalls,
proxies and WAN optimizers have become an integral part of
today’s ISP and enterprise networks. Middlebox functionalities
are usually deployed on expensive and proprietary hardware
that require trained personnel for deployment and maintenance.
Middleboxes contribute significantly to a network’s capital and
operation costs. In addition, organizations often require their
traffic to pass through a specific sequence of middleboxes for
compliance with security and performance policies. This makes
the middlebox deployment and maintenance tasks even more
complicated. Network Function Virtualization (NFV) is an emerg-
ing and promising technology that is envisioned to overcome these
challenges. It proposes to move packet processing from dedi-
cated hardware middleboxes to software running on commodity
servers. In NFV terminology, software middleboxes are referred
to as Virtualized Network Functions (VNFs). It is a challenging
problem to determine the required number and placement of
VNFs that optimizes network operational costs and utilization,
without violating service level agreements. We call this the VNF
Orchestration Problem (VNF-OP) and provide an Integer Linear
Programming (ILP) formulation with implementation in CPLEX.
We also provide a dynamic programming based heuristic to
solve larger instances of VNF-OP. Trace driven simulations on
real-world network topologies demonstrate that the heuristic can
provide solutions that are within 1.3 times of the optimal solution.
Our experiments suggest that a VNF based approach can provide
more than 4× reduction in the operational cost of a network.

I. INTRODUCTION

Today’s enterprise networks ubiquitously deploy vertically

integrated proprietary middleboxes or network appliances to

offer various network services. Examples of such middleboxes

include firewalls, proxies, WAN optimizers, Intrusion Detec-

tion Systems (IDSs), and Intrusion Prevention Systems (IPSs).

These middleboxes are used for realizing various performance

and security objectives [1], [2]. A recent study shows that the

number of different middleboxes is comparable to the number

of routers in enterprise and data center networks [2], [3]. Even

though middleboxes have become an integral part of modern

networks, they come with high Capital Expenditure (CAPEX)

and Operational Expenditure (OPEX). They are usually vendor

specific, vertically integrated, expensive, and require specially

trained personnel for deployment and maintenance. Moreover,

it is often impossible to add new functionality to an existing

middlebox, which makes it very difficult and cumbersome for

the network operator to deploy new services. In many cases,

the network operator is compelled to upgrade or purchase new

hardware for introducing new network services.

Another set of problems arise from the fact that most

often traffic flows are required to pass through multiple stages

of middlebox processing in a particular order, e.g., a traffic

flow may be required to go through a firewall, then an

IDS, and finally through a proxy [4]. This phenomenon is

very common for middleboxes and is typically referred to

as Service Function Chaining (SFC) [5]. The IETF Network

and Service Chaining Working Group has several IETF drafts

demonstrating middlebox chaining use-cases in operator net-

works [6], mobile networks [7], and data center networks [8].

The task of sequencing these in-network middlebox processing

is commonly referred to as middlebox orchestration. Currently,

middleboxes are placed at fixed locations within a network.

Traffic flows are routed through the required sequence of

middleboxes by manually crafting the routing table entries. It

is a cumbersome and error-prone process. Moreover, the fixed

location of middleboxes cannot be optimal for all possible

traffic patterns in the long run.

An emerging and promising technology that can ad-

dress these limitations is Network Function Virtualization

(NFV) [9], [10]. It proposes to move packet processing from

hardware middleboxes to software middleboxes or Virtual

Network Functions (VNFs) running on commodity (e.g.,

x86 based systems) servers. This approach will not hamper

performance as many state-of-the-art software middleboxes

have already shown the potential to achieve near-hardware

performance [11], [12]. NFV provides ample opportunities for

network optimization and cost reduction. Previously, middle-

boxes were hardware appliances placed at fixed locations, but

now we can deploy a VNF on any server in the network. VNF

locations can be determined intelligently to ensure efficient

traffic routing. NFV opens-up the opportunity to simultane-

ously optimize VNF locations and traffic routing paths, which

can significantly reduce the network OPEX.

VNF chains can be orchestrated by dynamically deploying

a composition of VNFs either on a single server or on a cluster

of servers. This approach can significantly reduce the OPEX

of a network. However, several issues need to be considered

before provisioning VNFs: (i) the cost of deploying a new

VNF, (ii) energy cost for running a VNF, (iii) the cost of

forwarding traffic to and from a VNF, and (iv) fragmentation

of the underlying physical resource pool. Placing just enough

VNFs to match traffic processing requirements may yield the

lowest deployment and energy cost, but steering traffic through

these VNFs will increase traffic forwarding cost and may

eventually lead to Service Level Objective (SLO) violations.

On the other hand, one may try to always forward traffic

through the shortest possible path by deploying VNFs in all

possible locations. This approach may avoid SLO violation
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penalty, but will surely lead to huge deployment and energy

costs. An optimal VNF orchestration strategy must address

these issues during the cost minimization process. Moreover,

it must avoid Service Level Objective (SLO) violations and

satisfy the capacity constraints of the physical servers and

physical links. We refer to this problem as the Virtualized

Network Function Orchestration Problem (VNF-OP). This

paper builds on our earlier work [13] and makes the following

contributions:

• We provide the first quantifiable results showing that

dynamic VNF orchestration can have more than 4×
reduction in OPEX compared to hardware middleboxes.

• The problem is formulated as an Integer Liner Program

(ILP) and implemented in CPLEX1 to find optimal solu-

tions for small scale networks.

• We prove the NP-hardness of VNF-OP by a reduction

from the Capacitated Plant Location Problem with Single

Source constraints.

• We propose a fast heuristic algorithm that can find

solutions within 1.3 times of the optimal.

• The heuristic’s performance in terms of solution quality

and scalability is evaluated using both real-world and

synthetic topologies and traffic traces.

• Finally, we compared the performance of our heuristic

with related work from literature [14].

The rest of the paper is organized as follows: we start by

explaining the mathematical model used for our system and by

formally defining the VNF Orchestration Problem (Section II).

Then the problem formulation is presented (Section III). Next,

a heuristic is proposed to obtain near-optimal solutions (Sec-

tion IV). We validate our solution through trace driven sim-

ulations on real-world network topologies (Section V). Then,

we provide a literature review (Section VI) and finally, we

conclude with some future research directions (Section VII).

II. MATHEMATICAL MODEL AND PROBLEM DEFINITION

In this section we introduce the mathematical model for our

system and formally define the VNF Orchestration Problem.

A. Physical Network

We represent the physical network as an undirected graph

Ḡ = (S̄, L̄), where S̄ and L̄ denote the set of switches and

links, respectively. We assume that VNFs can be deployed on

commodity servers located within the network. These network

locations are traditionally known as Point-of-Presences or

PoPs. The set N̄ represents these servers and the binary

variable h̄n̄s̄ ∈ {0, 1} indicates whether server n̄ ∈ N̄ is

attached to switch s̄ ∈ S̄.

h̄n̄s̄ =

{

1 if server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄,
0 otherwise.

Let, R denote the set of resources (CPU, memory, disk, etc.)

offered by each server. The resource capacity of server n̄ is

denoted by crn̄ ∈ R
+, ∀ r ∈ R. The bandwidth capacity and

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

propagation delay of a physical link (ū, v̄) ∈ L̄ is represented

by βūv̄ ∈ R
+ and δūv̄ ∈ R

+, respectively. We also define η(ū)
as the set of neighbors for switch ū.

η(ū) = {v̄ | (ū, v̄) ∈ L̄ or (v̄, ū) ∈ L̄}, ū, v̄ ∈ S̄

B. Virtualized Network Functions (VNFs)

Different types of VNFs (e.g., firewall, IDS, IPS, proxy, etc.)

can be provisioned in a network. The possible VNF types are

represented by the set P . Each VNF type p has a specific

deployment cost, resource requirements, processing capacity,

and processing delay represented by D+
p , κrp ∈ R

+(∀r ∈ R),
cp (in Mbps), and δp (in ms), respectively. These quantities

are explained below:

• Deployment Cost (D+
p ) includes the cost of image

transfer and booting a VNF of type p on a server.

• Resource Requirement (κrp) is the amount of resource

of category r that must be allocated to a type p VNF.

• Processing Capacity (cp) represents the amount of traffic

(in Mbps) a type p VNF can process.

• Processing Delay (δp) is the average delay (in ms)

experienced by a packet when traversing through a VNF

of type p.

The actual values of the above mentioned quantities are

highly implementation specific and depend on a lot of fac-

tors. Here, we have assumed an approximate value for these

properties to simplify the mathematical model.

There can be certain hardware requirements (e.g., hardware-

accelerated encryption for Deep Packet Inspection (DPI))

that may prevent a server from running a particular type of

VNF. Furthermore, the network manager may have preferences

regarding provisioning a particular type of VNF on a particular

set of servers, e.g., Firewalls should be deployed close to the

network edge. So, we assume that for each VNF type there is

a set of servers on which it can be provisioned. The following

binary variable represents this relationship:

dn̄p =

{

1 if VNF type p ∈ P can be provisioned on n̄,

0 otherwise.

C. Traffic Request

We assume that the network operator is receiving requests

for setting up paths for different kinds of traffic (e.g., VPN

setup, security features, new application or service in a data

center, etc.). A traffic request is represented by a 6-tuple

t = 〈ūt, v̄t,Ψt, βt, δt, ωt〉, where ūt, v̄t ∈ S̄ denote the ingress

and egress switches, respectively. βt ∈ R
+ is the bandwidth

demand of the traffic. δt is the maximum allowed propaga-

tion delay according to Service Level Agreement (SLA). Ψt

represents the ordered VNF sequence the traffic must pass

through (e.g., Firewall  IDS  Proxy). lΨt denotes the

length of Ψt and ωt denotes the policy to determine SLO

violation penalties.

In our mathematical model, we transform a VNF sequence

Ψt into a directed graph Gt = (N t, Lt), where N t represents

the set of traffic nodes (switches and VNFs) and Lt denotes the
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Fig. 1. VNF Chain

links between them. Fig. 1 shows a sample VNF chains. Here,

traffic flows through the chain Firewall  IDS  Proxy.

Modeling the traffic flow in this way makes it easy for the

provisioning process to ensure that it passes though the correct

sequence of VNFs. We also define ηt(n1) to represent the

neighbors of n1 ∈ N
t:

ηt(n1) = {n2 | (n1, n2) ∈ L
t}, n1, n2 ∈ N

t

Next, we define a binary variable gtnp ∈ {0, 1} to indicate

the type of a node n ∈ N t

gtnp =

{

1 if node n ∈ N t is of type p ∈ P,
0 otherwise.

D. VNF Orchestration Problem (VNF-OP)

We consider a scenario where an operational network is

serving a set of traffics T̂ . It has a set of VNFs already

deployed and the routing paths for the traffics in T̂ are

also provisioned. Now, the network operator is receiving new

traffic requests and wants to provision the required VNFs and

routing paths for them. The network operator can choose to

provision resources for one traffic request at a time or leverage

a lookahead interval by accumulating a number of traffic

requests and provision resources in batches. Determining the

optimal number or volume of traffic or the length of the

lookahead interval for each batch is an interesting research

challenge that is beyond the scope of this work and we plan

to pursue it in the future. In the rest of this paper, we denote

a new traffic batch by T . Based on the operator’s choice, a

batch may contain just one or multiple traffic requests.

In the VNF-OP, we are given a physical network topology,

VNF specifications, current network status and a set of new

traffic requests. Our objective is to minimize the overall

network OPEX and physical resource fragmentation by (i)

provisioning an optimal number of VNFs, (ii) placing them

at the optimal locations, and (iii) finding the optimal routing

paths for each traffic request, while respecting the capacity

constraints (e.g., physical servers, links, and VNFs) and en-

suring that traffic passes through the proper VNF sequence.

OPEX: In this work, we consider the network OPEX to be

composed of the following four cost components:

• VNF deployment cost: we need to complete tasks like

transferring a VM image, booting it and attaching it to

devices before deploying a VNF. We associate a cost (in

dollars) with these operations.

• Energy cost: it represents the cost of energy consump-

tion by the active servers. A server is considered active

if it has at least one active VNF. Servers consume power

based on the amount of resources (e.g., CPU, memory,

disk, etc.) under use. A server is assumed to be in the

idle state if it does not have any active VNFs [15].

• Traffic forwarding cost: traffic forwarding cost may in-

cur from two sources: (i) leasing cost of transit links [16]

and (ii) energy consumption of the network devices (e.g.,

switches, routers, etc.).

• Penalty for SLO violation: this cost component repre-

sents the penalty that must be paid to the customer for

SLO violations, e.g., if a traffic experienced more that the

maximum allowed propagation delay.

Resource Fragmentation: We compute physical resource

fragmentation by measuring the percentage of idle resources

for the active servers and links. We want to minimize frag-

mentation as it eventually increases the possibility of accom-

modating more traffic on the same physical resources.

III. PROBLEM FORMULATION AND COMPLEXITY

ANALYSIS

VNF-OP is a considerably harder problem to solve than

traditional Virtual Network (VN) embedding problems [17].

There is no node ordering requirement in VN embedding,

while in VNF-OP we need to preserve the ordering of VNFs.

Moreover, in VNF-OP we need to respect the processing

capacity constraints of servers and the VNFs to be deployed.

How many VNFs are to be deployed is not known in advance,

rather it is an outcome of the optimization process. Multi-

dimensional Bin Packing [18] can also be used to solve

VNF-OP, but here we will end-up with a nested bin packing

problem. In the first layer traffics need to be packed into VNFs

and in the next layer VNFs need to be packed into the physical

servers. The fact that the number and locations of VNFs is not

known in advance, results in quadratic constraints for resource

capacity and renders the problem unsolvable even for very

small instances by existing optimization solvers. In this work,

we address these challenges by judiciously augmenting the

physical network, as explained in the rest of the section.

A. Physical Network Transformation

We transform the physical network to generate an aug-

mented pseudo-network that reduces the complexity involved

in solving the VNF-OP. The transformation process is per-

formed in the following two steps as explained by Fig. 2:

1) VNF Enumeration: A part of a physical network topol-

ogy is shown in Fig. 2(a). Here, we have three switches (s1, s2
and s3) and a server n2 connected to switch s2. We enumerate

all possible VNFs in this step by finding the maximum number

for each VNF type that can be deployed on each server. We

calculate this number based on the resource capacity of the

server and the resource requirement of a type of VNF. For

example, if a server has 16 cores, and CPU requirement for

Firewall and IDS are 4 and 8 cores, respectively, we can deploy

4 Firewalls and 2 IDSs on it. In Fig. 2(b) we show enumerated

VNFs for server n2.

We denote the set of these VNFs (called pseudo-VNFs) by

M. Each VNF m ∈ M is implicitly attached to a server

n̄ ∈ N̄ . We use the function ζ(m) to denote this mapping.

ζ(m) = n̄ if VNF m is attached to server n̄
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Fig. 2. Network Transformation

We also define a function Ω(n̄) to represent this mapping

in the opposite direction:

Ω(n̄) = {m | ζ(m) = n̄}, m ∈M, n̄ ∈ N̄

Next, we define qmp ∈ {0, 1} to indicate the type of a VNF:

qmp =

{

1 if VNF m is of type p ∈ P,
0 otherwise.

As discussed earlier, a given type of VNF can be deployed

on a specific set of servers. To ensure this we must have:

qmp = dζ(m)p (1)

We should note that pseudo-VNFs simply represent where

a particular type of VNF can be provisioned. ym ∈ {0, 1}
indicates whether a pseudo-VNF is active or not.

ym =

{

1 if pseudo-VNF m ∈M is active,

0 otherwise.

2) Adding Pseudo-Switches: Next, we augment the physi-

cal topology again by adding a pseudo-switch between each

pseudo-VNF and the original switch to which it was con-

nected. This process is shown in Fig. 2(c). We perform

this step to simplify the expressions of the network flow

conservation constraint in the ILP formulation. This process

does not increase the size of the solution space as we consider

them only for the flow conservation constraint.

B. ILP Formulation

We define the decision variable xtnm to represent the map-

ping of a traffic node to a pseudo-VNF:

xtnm =

{

1 if node n ∈ N t is provisioned on m ∈M,

0 otherwise.

Next, we define another variable to represent the mapping

between a traffic node and a switch in the physical network.

ztns̄ =

{

1 if node n ∈ N t is attached to switch s̄,

0 otherwise.

ztns̄ is not a decision variable as it can be derived from xtnm:

ztns̄ = 1 if xtnm = 1 and h̄ζ(m)s̄ = 1

We can also derive the variable ym from xtnm as follows:

TABLE I
GLOSSARY OF SYMBOLS

Physical Network

Ḡ(S̄, L̄) Physical network Ḡ with switches S̄ and links L̄

N̄ Set of servers

h̄n̄s̄ ∈ {0, 1} If server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄

R Set of resources offered by servers

crn̄ ∈ R+ Resource capacity of server n̄, ∀r ∈ R

βūv̄ , δūv̄ ∈ R+ Bandwidth, propagation delay of link (ū, v̄) ∈ L̄

η(ū) Neighbors of switch ū

an̄ ∈ {0, 1} an̄ = 1 if Server n̄ is active

fūv̄ ∈ {0, 1} fūv̄ = 1 if physical link (ū, v̄) is active

Virtualized Network Functions (VNFs)

P Set of possible VNF types

D+
p , κr

p, cp, δp Deployment cost, resource requirement, processing

capacity and processing delay of VNF type p ∈ P

dn̄p ∈ {0, 1} dn̄p = 1 if VNF type p can be provisioned on server n̄

Traffic

ūt, v̄t,Ψt Ingress, egress and VNF sequence for traffic t

βt, δt, ωt Bandwidth, expected delay, SLA penalty for t

Nt {ūt, v̄t,Ψt}
Lt {(ūt,Ψt

1
), . . . , (Ψt

|Ψt|−1
,Ψt

|Ψt|
), (Ψt

|Ψt|
, v̄t)}

ηt(n) Neighbors of n ∈ Nt

gtnp ∈ {0, 1} gtnp = 1 if node n ∈ Nt is of type p ∈ P

M Set of pseudo-VNFs

ζ(m) ζ(m) = n̄ if VNF m ∈ M is attached to server n̄

Ω(n̄) {m | ζ(m) = n̄}, m ∈ M, n̄ ∈ N̄

qmp ∈ {0, 1} qmp = 1 if VNF m ∈ M is of type p ∈ P

Decision Variables

*xt
nm ∈ {0, 1} xt

nm = 1 if node n ∈ Nt is provisioned on m ∈ M

*w
tn1n2

ūv̄ ∈ {0, 1} w
tn1n2

ūv̄ = 1 if (n1, n2) ∈ Lt uses physical link (ū, v̄) ∈ L̄

Derived Variables

*ym ∈ {0, 1} ym = 1 if VNF m ∈ M is active

ztns̄ ∈ {0, 1} ztns̄ = 1 if node n ∈ Nt is attached to switch s̄

*x̂t
nm, ŵ

tn1n2

ūv̄ , ŷm denote value from the previous iteration

ym = 1 iff
∑

t∈T

∑

n∈Nt

xtnm > 0

We assume that x̂tnm represents the value of xtnm at the

last traffic provisioning event. To ensure that resources for

previously provisioned traffic are not deallocated we must have

xtnm ≥ x̂tnm, ∀ t ∈ T̂ , n ∈ N t,m ∈ M. Now, we define

ŷm ∈ {0, 1} that represents the value of ym at the last traffic

provisioning event as follows:

ŷm = 1 iff
∑

t∈T

∑

n∈Nt

x̂tnm > 0

Again, to ensure that resources for previously provisioned

traffics are not deallocated we must have ym ≥ ŷm, ∀ m ∈
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M. Next, we need to ensure that VNF capacities are not over-

committed. The processing capacity of an active VNF must

be greater than or equal to the total amount of traffic passing

through it. We express this constraint as follows:

∑

t∈T

∑

n∈Nt

xtnm × β
t ≤ cm, ∀ m ∈M|ym = 1 (2)

We also need to make sure that physical server capacity con-

straints are not violated by the deployed VNFs. We represent

this constraint as follows:

∑

m∈Ω(n̄)

ym × κ
r
m ≤ c

r
n̄, ∀ n̄ ∈ N̄ , r ∈ R (3)

Each node of a traffic must be mapped to a proper VNF

type. This constraint is represented as follows:

xtnm × g
t
np = qmp, ∀ t ∈ T, n ∈ N

t,m ∈M, p ∈ P (4)

Next, we need to ensure that every traffic node is provi-

sioned and to exactly one VNF.

∑

t∈T

∑

n∈Nt

xtnm = 1, ∀ m ∈M (5)

Now, we define our second decision variable to represent

the mapping between links in the traffic model (Fig. 1) to the

links in the physical network.

wtn1n2

ūv̄ =

{

1 if (n1, n2) ∈ Lt uses physical link (ū, v̄),
0 otherwise.

We also assume that ŵtn1n2

ūv̄ represents the value of wtn1n2

ūv̄

at the last traffic provisioning event. To ensure that resources

for previously provisioned traffics are not deallocated in the

current iteration we must have

wtn1n2

ūv̄ ≥ ŵtn1n2

ūv̄ , ∀ t ∈ T̂ , n1, n2 ∈ N
t|n2 ∈ η

t(n1)

and n2 > n1, ū, v̄ ∈ S̄ (6)

To ensure that each directed link in a traffic request is not

mapped to both directions of a physical link, we must have:

wtn1n2

ūv̄ + wtn1n2

v̄ū ≤ 1, ∀ t ∈ T,

n1, n2 ∈ N
t|n2 ∈ η

t(n1) and n2 > n1, ū, v̄ ∈ S̄ (7)

Now, we present the capacity constraint for physical links:

∑

ū∈S̄

∑

v̄∈S̄

(wtn1n2

ūv̄ + wtn1n2

v̄ū )× βt ≤ βūū,

∀ t ∈ T, n1, n2 ∈ N
t|n2 ∈ η

t(n1) and n2 > n1 (8)

Next, we present the flow constraint that makes sure that the

in-flow and out-flow of each switch in the physical network

is equal except at the ingress and egress switches:

∑

v̄∈η(ū)

(

wtn1n2

ūv̄ − wtn1n2

v̄ū

)

= ztn1ū
− ztn2ū

,

∀ t ∈ T, n1, n2 ∈ N
t|n2 ∈ η

t(n1) and n2 > n1, ū ∈ S̄ (9)

Finally, we need to ensure that every link in a traffic request

is provisioned on a path in the physical network:

∑

ū∈S̄

∑

v̄∈S̄

(wtn1n2

ūv̄ + wtn1n2

v̄ū ) ≥ 0,

∀ t ∈ T, n1, n2 ∈ N
t|n2 ∈ η

t(n1) and n2 > n1 (10)

Our objective is to find the optimal number and placement

of VNFs that minimizes OPEX and physical resource frag-

mentation in the network. We formulate them in detail below:

OPEX: We consider four cost components to contribute to

OPEX. These are as follows:

1. VNF Deployment Cost: the VNF deployment cost can be

expressed as follows:

D =
∑

m∈M|ym=1

D+
p × qmp × (ym − ŷm) (11)

2. Energy Cost: Without loss of generality we assume that

the energy consumption of a server is proportional to the

amount of resources being used. However, a server usually

consumes power even in the idle state. So, we compute the

power consumption of a server as follows:

En̄ =
∑

m∈Ωn̄

ym × qmp × e
r(crn̄, κ

r
p)

where

er(rt, rc) = (ermax − e
r
idle)×

rc

rt
+ eridle

Here, rt and rc denote the total and consumed resource,

respectively. eridle and ermax denote the energy cost in the idle

and peak consumption states for resource r, respectively.

Hence, the total energy cost is

E =
∑

n̄∈N̄

∑

m∈Ωn̄

ym × qmp × e
r(crn̄, κ

r
p) (12)

3. Cost of Forwarding Traffic: Let us assume that the cost of

forwarding 1 Mbit data through one link in the network is σ (in

dollars). We can compute the total cost of traffic forwarding

as follows:

F =
∑

t∈T

∑

n1∈Nt

∑

n2∈ηt(n1)
and n2>n1

∑

ū∈S̄

∑

v̄∈η(ū)

(

(wtn1n2

ūv̄ −

ŵtn1n2

ūv̄ )× βt × σ
)

(13)

4. Penalty for SLO violation: We can compute the actual

propagation delay experienced by a traffic as follows:

δat =
∑

n1∈Nt

∑

n2∈ηt(n1)
and n2>n1

∑

ū∈S̄

∑

v̄∈η(ū)

wtn1n2

ūv̄ δūv̄

Let ρt(ωt, δt, δta) be a function that computes the penalty

for SLO violation given the policy for determining penalty

(ωt), expected propagation delay (δt) and actual propagation

delay (δta) for traffic t. So, the total cost for SLO violations

can be expressed as follows:

P =
∑

t∈T

ρt(ωt, δt, δ
t
a) (14)

– Resource Fragmentation: Our second objective is to

minimize resource (e.g., server and links) fragmentation of

active servers and links. We express it using the same unit as
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the above mentioned costs. For this purpose, we assume that

pr denotes the price of unit resource of type r ∈ R. We also

denote ρβ as the price of unit bandwidth.

A physical server n̄ is considered active if it hosts at least

one active pseudo-VNF. The binary variable an̄ captures this

property:

an̄ =

{

1 if
∑

m∈Ω(n̄)

ym > 0,

0 otherwise.

Similarly, a physical link (ū, v̄) is considered active if it is

hosting at least one traffic flow. We use the binary variable

fūv̄ to represent this:

fūv̄ =











1 if
∑

t∈T,

(n1,n2)∈Lt

wtn1n2

ūv̄ > 0,

0 otherwise.

Now, we can compute the total cost for resource fragmen-

tation as follows:

C =
∑

n̄∈N̄

an̄
∑

r∈R

(

crn̄ −
∑

m∈Ω(n̄)

(κrp × qmpym)
)

pr+

∑

ū∈S̄

∑

v̄∈η(ū)

fūv̄

(

βūv̄ −
∑

t∈T

∑

n1∈Nt

∑

n2∈ηt(n1)
and n2>n1

(wtn1n2

ūv̄ × βt)
)

ρβ

(15)

Here, the first term represents the cost of server resource

fragmentation (e.g., CPU, memory, disk, etc.) and the second

term represents the cost of link bandwidth fragmentation.

Our objective is to minimize the total network operational

cost and resource fragmentation that can be expressed as a

weighted sum of the aforementioned costs.

minimize
(

αD+ βE+ γF+ λP+ µC
)

(16)

Here, α, β, γ, λ and µ are weighting factors that are used

to adjust the relative importance of the cost components.

VNF-OP is NP-Hard. We reduce the NP-Hard Capaci-

tated Plant Location Problem with Single Source constraints

(CPLPSS) [19] to the VNF-OP. In CPLPSS, we are given

a set of potential locations for production plants with fixed

costs and capacities. A commodity produced by these plants

is to be supplied to a set of customers with fixed demands and

associated transportation costs. Moreover, each customer must

be served by a single plant. The objective is to find a subset

of the plats that should be operated to minimize cost without

violating capacity and demand constraints.

Given an instance of the CPLPSS we can transform it to an

instance of VNF-OP in the following manner: (i) for each cus-

tomer we create the chain DS → plant → customer,

where DS is a dummy ingress switch, customer is the

egress switch, and plant is a VNF, (ii) set the bandwidth

of the chain to be equal to the customer demand, (iii) use the

transportation cost as the traffic forwarding cost, (iv) configure

each physical machine to deploy a single VNF of type plant,

and (V) set the processing capacity of each plant to be equal

to its production capacity. These operation can be performed

in polynomial time of the problem size. Now, if we can solve

this instance of VNF-OP, we will also get a solution for the

CPLPSS. However, CPLPSS is NP-hard, so the VNF-OP is

NP-hard as well.

IV. HEURISTIC SOLUTION

In this section, we present a heuristic to solve the VNF-OP.

Given a network topology, a set of middlebox specifications

and a batch of traffic requests, the heuristic finds the number

and locations of different types of VNFs required to operate

the network with minimal OPEX. We did not explicitly

consider resource fragmentation to keep the heuristic simple

and fast. However, our experimental results show that even

with this simplification, the heuristic produces solutions that

are very close to the optimal. The heuristic runs in two

steps. First, we model the VNF-OP as a multi-stage directed

graph with associated costs. Then we find a near-optimal VNF

placement from the multi-stage graph by running the Viterbi

algorithm [20]. In the following, we first describe the modeling

of VNF-OP using multi-stage graph (Section IV-A), followed

by the solution using Viterbi algorithm (Section IV-C). A

detailed discussion of the heuristic along with an illustrative

example is provided in the Appendix.

A. Modeling with Multi-Stage Graph

For a given traffic request, t = 〈ūt, v̄t,Ψt, βt, δt, ωt〉, we

represent t as a multi-stage graph with lΨt + 2 stages. The

first and the last (i.e., lΨt + 2) stages represent the ingress

and egresses switches, respectively. These two stages contain

only one node representing ūt and v̄t, respectively. Stage i

(∀i ∈ {2, . . . (lΨt + 1)}), represents the (i − 1)-th VNF in

the traffic request and the node(s) within this stage represent

the possible server locations where that type of VNFs can

be placed. Each node is associated with a VNF deployment

cost (Eq. 11) and an energy cost (Eq. 12) as described in

Section III-B.

An edge (v̄i, v̄j) in this multi-stage graph represents the

placement of a VNF at a server attached to switch v̄j , given

that the previous VNF in the sequence is deployed on a server

attached to switch v̄i. We put a directed edge between all pairs

of nodes in stage i and i+ 1 (∀i ∈ {1, 2, . . . (lΨt + 1)}). We

associate two costs with each edge: the cost for forwarding

traffic (Eq. 13) and the penalty for SLO violations (Eq. 14).

The traffic forwarding cost is proportional to the weighted

shortest path (in terms of latency) between the switches.

The penalty for SLO violations is obtained by the following

process: (i) we equally divide the maximum allowed delay

between the stages, (ii) we assign a SLO violation cost for

a transition between two successive stages in the multi-stage

graph whenever we incur more than the allocated delay due

to traffic transport and processing at the nodes. The total cost

of a transition between two successive stages is calculated by

summing the node and edge costs following Eq. 16. Finally,

a path from the node in the first stage to the node in the last

stage represents a placement of the VNFs. Our goal is to find

a path in the multi-stage graph that yields minimal OPEX.
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B. Heuristic Algorithm

Algorithm 1 gives the pseudcode of the heuristic solution.

The procedure ProvisionTraffic takes as input a traffic

request t and the network topology graph Ḡ annotated with

the resource capacities at each switch. We keep two tables,

cost and π, to keep track of the cost and the sequence of

middlebox placements, respectively. costi,j represents the cost

of deploying the j-th middlebox in the middlebox sequence

Ψt to a server attached with switch i. The cost computation

procedure is the same as described in Section IV-C. We use a

number of helper procedures for the ease of implementation.

The first helper procedure, IsResourceAvailable checks if

a middlebox mbox for a traffic request t can be placed at

switch i, satisfying the minimum bandwidth and resource

requirements. The second helper, GetCost, computes the cost

of placing middlebox mbox for a traffic request t at a server

attached to switch j. The previous node k that yields the

minimum cost for the current node in consideration j, is

tracked by the entry πk,j . Finally, we backtrace using entries

in π to obtain the desired middlebox sequence.

Running Time: Let the number of switches and the

maximum length of a middlebox sequence be n and m,

respectively. Algorithm 1 performs Θ(nm) computations at

the beginning to initialize the cost matrix. Then for each

element in the traffic sequence, the algorithm takes all possible

pairs of nodes u, v and computes the cost of deploying a

middlebox at the server attached to switch v given that the

previous middlebox in the sequence was deployed at a server

connected to switch u. Therefore, there is a total of Θ(n2m)
operations involved. With some pre-computation steps the

costs can be calculated and resource availability can be queried

in O(1) time. Therefore, Algorithm 1 runs in Θ(n2m).

Algorithm 1 ProvisionTraffic(t, Ḡ)

1: ∀(i, j) ∈ {1 . . . |Ψt|} × {1 . . . |S̄|} : costi,j ←∞, πi,j ←
NIL

2: ∀i ∈ |S̄| :

3: if IsResourceAvailable(ut, i,Ψt
1, t) then

4: cost1,n ← GetCost(ut, i,Ψt
1, t), π1,n ← n

5: end if

6: ∀(i, j, k) ∈ {2 . . . |Ψt|} × {1 . . . |S̄| × {1 . . . |S̄|} :

7: if IsResourceAvailable(k, j,Ψt
i, t) then

8: costi,j ← min{costi,j , costi−1,k +
GetCost(k, j,Ψt

i, t)}
9: πi,j ← i yielding minimum costi,j

10: end if

11: Π← NIL, C ←∞, ψ ←<>
12: ∀i ∈ |S̄| :

13: C ← min{C, cost|Ψt|,i + ForwardingCost(i, vt)+
SLOV iolationCost(i, vt, t)}

14: Π← i yielding minimum cost|Ψt|,i

15: ∀i ∈< |Ψt|, |Ψt| − 1 . . . 1 > : Append Π to ψ, Π← πi,Π
16: return Reverse(ψ)

C. Finding a Near-Optimal Solution

Viterbi algorithm is a widely used method for finding

the most likely sequence of states from a set of observed

states. To find such a sequence, Viterbi algorithm first models

the states and their relationships as a multi-stage graph.

Each stage consists of the possible states and a transition

cost is assigned between all pairs of states in successive

stages. Once the multi-stage graph is constructed, Viterbi

algorithm proceeds by computing a per node cumulative cost,

costu. This cost is computed recursively as the minimum of

costv + transition cost(v, u), for all v in the previous stage

as of u’s stage. costu represents the cost of including node u in

the final solution. This computation proceeds in the increasing

order of stages. After finishing the computation at the final

stage, the most likely sequence of states is constructed by

tracing back a path from the final stage back to the first that

yields the minimum cost.

We borrow the idea of how costs are computed from

Viterbi Algorithm and propose a traffic provisioning algorithm,

ProvisionTraffic (Algorithm 1). It takes a traffic request t

and a network topology Ḡ as input and returns a placement

of Ψt in Ḡ. For each node u in each stage i, we find a node

v in stage i − 1 that yields the minimum total cost costv,u
(costs are defined according to the discussion in Section IV-A).

We keep track of the minimum cost path using the table π.

After finishing computation for the final stage, we construct

the desired VNF placement by back tracing from the final stage

to the first stage, using the entries in π. During this process

we update residual resource capacities of the servers and the

residual bandwidth of the links after each path is allocated.

For each traffic request, the heuristic solution runs in Θ(n2m)
time, where n is the number of switches in the network and

m is the VNF sequence length.

D. Heuristic in Action

Fig. 3(a) shows an example network topology with six

switches, where the servers are connected to switch 2, 3 and

4. We need to find the path for a traffic which is going from

switch 1 to 6 and must pass through a firewall, then an IDS

and finally through a proxy.

First, we generate a multi-stage graph as shown in Fig. 3(b).

Here, we are assuming that the firewall and proxy can be

deployed on any server, but the IDS can only be deployed

on servers connected to switches 3 and 4. Each node in the

multi-stage graph represents a decision about where to place

a VNF. For example, if we select node 4 in the stage labeled

“IDS”, it means that a VNF corresponding to an IDS will be

deployed on the server connected to switch 4. As explained

earlier, there is a cost associated with each node selection.

Now, we traverse this graph starting at node 1. The first

stage is trivial, we just compute the cost of deploying and

running (energy cost) a firewall at node 2, 3 and 4 and add

the cost of routing traffic from node 1 to each node. There is no

additional computation as there is just one incoming link for

each node. However, the operations for the subsequent stages

involve comparing the cost of reaching a particular node from

different nodes. For example, node 3 in stage “IDS” can be
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Fig. 3. Modeling with Multi-Stage Graph

reached from three different nodes. The operation performed

in this is stage is explained in Fig. 3(c).

We need to compute the cost of transition from nodes 2,

3 and 4 to node 3. These costs are shown on the left side

of Fig. 3(c). Now, if we select the link between node 4 and

node 3 then the Firewall will be deployed on node 4 and the

IDS will be deployed on node 3 and cost of deploying the IDS

will be 38. However, we have links with lower costs than this

one and at each stage we select the incoming link with the

minimal cost. So, here we will select the link between node

2 and 3 as it has the lowest cost of 15. We will also save a

pointer (back_ptr) to mark the node that was selected. We

continue in this manner until we reach the destination node

(node 6 in this example), then we follow the back_ptrs to

re-construct the solution.

V. PERFORMANCE EVALUATION

We perform trace driven simulations on real-world net-

work topologies to gain a deeper insight, and to evaluate

the effectiveness of the proposed solution. Our simulation

is focused on the following aspects: (i) demonstrating the

benefits of dynamic VNF orchestration over hardware mid-

dleboxes (Section V-C), (ii) comparing the performance of

the heuristic solution with that of the CPLEX based optimal

solution (Section V-D), (iii) comparing the performance of our

heuristic with state-of-the art (Section V-E), (iv) demonstrating

the scalability of our heuristic (Section V-F), and (iv) Analyz-

ing the behavior of the proposed solution for different traffic

volume (Section V-G). Before presenting the results, we briefly

describe the simulation setup (Section V-A) and the evaluation

metrics (Section V-B). Implementations of both CPLEX and

heuristic are available at http://goo.gl/Da7EZu.

A. Simulation Setup

1) Topology Dataset: We have used a wide range of net-

work topologies: (i) Internet2 research network (12 nodes, 15
links) [21], (ii) A university data center network (23 nodes,

42 links) [22] and (iii) Autonomous System 3967 (AS-3967)

from Rocketfuel topology dataset (79 nodes, 147 links) [23].

2) Traffic Dataset: We use both real traces and synthetically

generated traffic for the evaluation. We use traffic matrix traces

from [21] to generate time varying traffic for the Internet2

topology. This trace contains a snapshot of a 12 × 12 traffic

matrix and demonstrates significant variation in traffic volume.

For the data center network, we use the traces available

TABLE II
SERVER AND MIDDLEBOX DATA USED IN EVALUATION

Server Data [15]

Physical CPU Cores Idle Energy Peak Energy

16 80.5W 2735W

Hardware Middlebox Data

Idle Energy Peak Energy Processing Capacity

1100W 1700W 40Gbps

VNF Data [11], [27]

Network Function CPU Required Processing Capacity

Firewall 4 900Mbps

Proxy 4 900Mbps

Nat 2 900Mbps

IDS 8 600Mbps

from [22], and replay the traffic between random source-

destination pairs. Finally, for the Rocketfuel topology, we

generated a synthetic time-varying traffic matrix using the

FNSS tool [24]. It follows the distribution from [25] and

exhibits time-of-day effect.

3) Middlebox and Cost Data: We have generated a 3-

length middlebox sequence for each traffic based on the data

provided in [26] and [4]. We have used publicly available

data sheets from manufacturers and service providers to select

and infer values for server energy cost, SLO violation cost

(for violating maximum latency), resource requirements for

software middleboxes and their processing capacities. We also

obtained energy consumption data for hardware middleboxes

from a popular network equipment manufacturer. Table II lists

the parameters used for servers, VNFs and middleboxes. In the

rest of this section we use the term “middlebox” to refer to

both hardware middlebox and VNF.

B. Evaluation Metrics

1) Operational Expenditure (OPEX): We measure OPEX

according to Eq. 16, and compare CPLEX and heuristic

solutions by plotting the ratio of OPEX and its components.

2) Execution Time: It is the time required to find middlebox

placement for a given traffic batch and network topology.

3) System Utilization: We compute it as the fraction of used

CPU for a server. We also report the number of active servers.

4) Topological Properties of Solution: We report two topo-

logical properties of the middlebox locations: (i) percentage

of middleboxes placed withing k-hops from the ingress/egress

switches and (ii) path stretch, i.e., the ratio of path length

obtained by CPLEX or the heuristic to the shortest path length

for the traffic. The first metric gives us an insight into the

location of middleboxes with respect to the ingress/egress

switches, and the second one shows how many additional links
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(hence more bandwidth) are required to steer traffic through

middlebox sequences.

C. VNFs vs. Hardware Middleboxes

One of the driving forces behind NFV is that VNFs can

significantly reduce a network’s OPEX. Here, we provide

quantifiable results to validate this claim. Fig. 5(a) shows

the ratio of OPEX for hardware middleboxes to VNFs for

incoming traffic provisioning requests (about 132 requests per

batch) over a period of 10000 minutes. We show two compo-

nents of OPEX: energy and transit cost. There is no publicly

available data that can be used to estimate the deployment cost

of hardware middleboxes. So, for this experiment, we do not

consider deployment cost as a component of OPEX to make

the comparison fair. The SLO violation penalty is not shown

as it is zero for all time-instances. We implemented a different

CPLEX program to peak provision the hardware middleboxes

(peak traffic occurs at time-instance 7665). VNFs are provi-

sioned at each time-instance by our CPLEX implementation

corresponding to the formulation provided in Section III.

The bottom part of Fig. 5(a) shows that VNFs provide more

than 4× reduction in OPEX. The individual reductions in

energy and transit costs are also shown in the same figure.

The reduction in energy cost is much higher than that of the

transit cost. This is due to the fact that hardware middleboxes

consume considerably higher energy than commodity servers.

From Fig. 5(a) and Fig. 4(a), we can also see that with

the increase in traffic volume (after time-instance 4000) the

total cost ratio decreases. Interestingly, the energy cost ratio

decreases, but the transit cost ratio increases. Handling higher

traffic volume requires higher number of VNFs to be de-

ployed, which increases the energy consumption of commodity

servers, thus decreasing the energy cost ratio. However, VNFs

are provisioned at optimal locations by CPLEX, which causes

the transit cost to decrease and increases the transit cost

ratio. The cost ratio relationship between VNFs and hardware

middleboxes depends on a number of factors like processing

capacity, traffic volume, idle and peak energy consumption.

The topological properties of VNF and hardware middlebox

placement locations are reported in Fig. 6. The CDF of hop

distance between the ingress switch and middlebox is shown

in Fig. 6(a). Higher percentage of VNFs are located within 2
hops of the ingress switch (mostly withing 1 hop), compared

to hardware middleboxes. Some VNFs are also located at 4
hop distance. This only occurs when placing a VNF farther

away reduces the OPEX by decreasing the energy cost. Similar

results are obtained for the hop distance between middlebox

and egress switch (Fig. 6(b)). These two figures also demon-

strate the fact that CPLEX places middleboxes in a more

balanced (symmetric) way on the path between the ingress and

egress switch. The path stretch for both hardware middleboxes

and VNFs are shown in Fig. 6(c). VNFs consistently achieve

a lower path stretch than hardware middleboxes, as VNF

locations are not static like the hardware middleboxes. They

can be provisioned on any server to reduce OPEX.
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D. Performance Comparison Between CPLEX and Heuristic

Now, we compare the performance of our heuristic with that

of the optimal solution. Fig. 5(b) and Fig. 5(c) show the cost

ratios for Internet2 and data center networks, respectively. The

traffic patterns for these two topologies are shown in Fig. 4(a)

and Fig. 4(b), respectively. The deployment cost and penalty

for SLO violation are not shown, as the deployment cost is

equal in both cases and the SLO violation penalty is zero for

all time-instances. From Fig. 5(b), we can see that the heuristic

finds solutions that are within 1.1 times of the optimal solution.

During peak traffic periods, the ratio of energy cost goes

below 1, but the ratio of transit cost increases. The optimal

solution adapts to high traffic volumes by deploying more

VNFs (increasing energy cost) and placing them at locations

that decrease the transit cost. As a result, the ratio of energy

cost decreases and the ratio of transit cost increases. However,

the total cost ratio stays almost the same (varying between

TABLE III
AVERAGE EXECUTION TIME

Topology CPLEX Heuristic

Internet2 (12 nodes, 15 links) 34.99s 0.535s

Data Center (23 nodes, 43 links) 1595.12s 0.442s

AS-3967 (79 nodes, 147 links) ∞ 2.54s

1 and 1.1). Similar results are obtained for the data center

network (Fig. 5(c)), where the cost ratio is also very close to

1 and varies between 1.1 and 1.3.

The average execution times of the heuristic and CPLEX

are shown in Table III. They were run on a machine with

10 × 16-Core 2.40GHz Intel Xeon E7-8870 CPUs and 1TB

memory. As we can see, our heuristic provides solutions that

are very close to the optimal one and its execution time is

several order of magnitude faster than CPLEX.

Fig. 7 shows results related to server resource utilization

for Internet2 and data center networks. Fig. 7(a) and Fig. 7(b)
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Fig. 9. OPEX Components for AS-3967

.

show the mean utilization and the total number of active

servers, respectively, for the Internet2 topology. Fig. 7(c)

shows the average utilization per server over all time-instances.

The mean utilization of the heuristic is less than that of

CPLEX, as CPLEX uses more servers than the heuristic

(Fig. 7(b)). CPLEX achieves lower OPEX by deploying more

VNFs during higher traffic periods to route traffic through

shorter paths. However, the solutions provided by the heuristic

are within 1.1 times the optimal results (Fig. 5(b)). In case

of the data center network, CPLEX uses less servers than

the heuristic (Fig. 7(e)) and the utilization is also higher

(Fig. 7(d)). The solution provided by the heuristic has higher

resource fragmentation than the CPLEX one (Fig. 7(f)). The

data center topology offers higher number of locations to

deploy VNFs compared to Internet2. Hence, the heuristic falls

a little short of the optimal placement as it explores a smaller

solution space. CPLEX finds the optimal value, but at the cost

of much higher execution time (Table III).

The topological properties for middlebox deployment for

Internet2 and data center networks are shown in Fig. 8. The

CDF of hop distance from the ingress switch to a VNF is

shown in Fig. 8(a). The hop distances for the heuristic is very

close to that of the optimal solution. In case of the data center

network, there is a relatively larger gap. This occurs due to

the higher path diversity offered by a data center network.

Each pair of nodes has more than one equal cost path. CPLEX

finds the optimal solution by exploring all of them. However,

the heuristic always picks the first shortest path. It does not

explore the alternate paths to keep the execution time within

practical limits (Table III). Similar results are observed for the

egress case (Fig. 8(b)). From Fig. 8(a) and Fig. 8(b) we can

also see that the CDFs are quite similar, which means that

both CPLEX and heuristic place VNFs uniformly on the path

between the ingress and egress switches. The path stretch is

shown in Fig. 8(c). As before, the heuristic’s performance is

close to that of the optimal solution. In case of the data center

network, the heuristic has a larger stretch, which is a result of

the path diversity issue discussed earlier.

The results for the AS-3967 topology are shown in Fig. 9

and Fig. 10. The traffic for this topology is show in Fig. 4(c).

As mentioned earlier, this traffic was generated using the

FNSS tool [24] and it exhibits time-of-day effect. We cannot

provide a comparison with the optimal solution as the CPLEX

program was not able to solve the problem for this topology. It

failed to fit the optimization model in its memory even though

the physical machine had 1TB of memory. The program

crashes after the total memory usage reaches around 300 GB.

We observed similar behavior when experimenting with high

traffic volumes. CPLEX was not able to solve the problem for

the Internet2 topology when traffic was increased to utilize

the network by more than 40%. We tuned different parameters

(e.g., solving the dual problem, storing branch and bound tree

data on disk, reducing the number of threads, etc.) of the

CPLEX solver according to the guidelines provided by IBM2,

but could not solve the problem. We plan to investigate this

issue further in the future. However, the heuristic solution was

able to solve the same problem in less than 3 seconds.

The transit and energy cost for the AS-3967 topology is

reported in Fig. 9. The transit cost is two order-of-magnitude

higher than the energy cost, which is expected for a larger

network with large amount of traffic. From Fig. 4(c) and Fig. 9,

we can see that our dynamic VNF orchestration approach

adapts nicely with the changing traffic conditions. It can

dynamically scale-up or scale-down the number of active

VNFs (demonstrated by the rise and fall of the energy cost).

It can also adapt the location of the VNFs according to the

variation in the traffic volume.

The results for system resource utilization and topological

properties for middlebox locations are shown in Fig. 10.

From Fig. 10(a) we can see that the mean utilization and num-

ber of active servers vary with fluctuation in traffic volume.

The mean utilization of the servers is around 80%, but there is

a small number of servers that are underutilized (Fig. 10(b)).

The CDF of percentage of middleboxes deployed within k-hop

distance from the ingress switch is reported in Fig. 10(c). More

than 90% middleboxes are deployed within 5 hops, which is

quite reasonable for a network with 79 switches and 147 links.

Similar results are obtained for the egress case as shown in the

same figure. Finally, the path stretch is shown in Fig. 10(d). We

can observe that 20% traffic passes through the shortest path

even after going though the VNF sequence. So, in 20% of the

cases VNFs are provisioned on the shortest path between the

ingress and egress switches that the traffic is passing through.

E. Performance Comparison with Previous Work
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Fig. 10. Results for Rocketfuel Topology (AS-3967)

We demonstrate the effectiveness of our proposed heuristic

(NFO-DP) over prior work by comparing with a very recent

and relevant proposal. We implemented the binary search

based heuristic proposed in [14] (NFO-BS). We adjusted

the heuristic parameters according to the provided guideline

in the paper. We experimented with a moderate sized ISP

network topology with 79 nodes and 147 links (AS3967 from

RocketFuel topologies [23]). We varied the number of VNF

chaining requests from 10 to 100 and measured the execution

time along with the number of deployed VNFs. The results

are reported in Fig. 11. NFO-BS could not find a feasible

solution for more than 60 traffic requests within a time limit

of 24 hours. Moreover, the solution quality is not consistent, as

shown by the irregular line in Fig. 11. Our findings show that

on similar problem instances NFO-DP outperforms NFO-BS

in both solution quality and execution time.

F. Scalability of Heuristic
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Fig. 12. Scalability of Heuristic

In this scenario, we test the scalability of our proposed

heuristic by running it on larger network topologies and report

the execution time. For larger network topologies, we used

a 28-port fat tree [28] with around 1000 nodes and 10K
links as a data center network and an ISP network topology

with 315 nodes and 972 links (AS1239 from RocketFuel

ISP topologies [23]). For each of these topologies we varied

the number of VNF chaining requests from 10 to 100 and

reported the execution time. Fig. 12 shows the results of this

experiment. As we can see, even for a very large data center

network, our proposed heuristic could embed 100 requests

in under 6 minutes. It is worth mentioning that the heuristic

proposed in [14] could embed only less than 30 VNF chaining

request withing 6 minutes on a much smaller network.

G. Effect of High Traffic Volume

Now, we show the impact of higher traffic volume on our so-

lution. We perform this experiment by increasing the original
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Fig. 13. Cost Ratio (Heuristic / CPLEX) with Varying Load

traffic by 10% to 40% (in increments of 10%) for the Internet2

topology (Fig. 13). We observed a linear relationship between

OPEX and network utilization for both of our solutions. The

cost also grows almost at the same rate for both CPLEX and

heuristic as evident from Fig. 13(a). The heuristic is able to

follow the optimal solution very closely. Although it might

seem a bit unintuitive by looking at the ratio of the individual

cost components, it occurs as the transit cost is two order-of-

magnitude larger than the energy cost.

The server utilization increases sub-linearly with increasing

network load (Fig. 13(b)). The number of used servers remains

the same for different network loads, but more cores were

used since more VNFs were deployed. The larger error bar

for CPLEX indicates the deployment of more VNFs, which

increases the energy cost. However, more VNFs eventually

decreased the transit cost, which is the major contributor to

OPEX in this case.

VI. RELATED WORK

The initial drive for NFV was from several telecommunica-

tion operators back in 2013 [9]. The motivation behind NFV

is to break the barrier of proprietary hardwares and have more

flexibility in the network in terms of the placement of service

points, introducing new services and vendor independence. To

this date, research efforts have been made in different aspects

of NFV. In this section, we first discuss about state-of-the-art

NFV management and orchestration proposals (Section VI-A),
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then we describe some placement algorithms for VNFs and

VNF chains (Section VI-B), followed by some enabling tech-

nologies for NFV (Section VI-C).

A. Management and Orchestration of Network Functions

Some of the early works on managing Network Functions

(NFs), propose to outsource them to a cloud service [2], [29].

Such outsourcing is motivated in the literature by studying

experiences of different network operators. [2], [29] show

how the management complexities arising in today’s enterprise

networks can be mitigated by outsourcing.

A more formal management approach towards NFV is

taken by projects like Stratos [30], and OpenNF [31]. Stratos

proposes an architecture for orchestrating VNFs outsourced to

a remote cloud by taking care of traffic engineering, horizontal

scaling of VNFs etc. On the other hand, OpenNF proposes a

converged control plane for VNFs and network forwarding

plane by extending the centralized SDN paradigm.

Some recent works on managing NFs focus on traffic

engineering issues such as steering the traffic through some

predefined sequence of NFs. This problem becomes more

challenging when NFs along the sequence modify the packet

headers, thus changing the traffic signature. [32] and [4]

propose SDN based solutions to the traffic steering problem.

They propose tagging based mechanisms to identify a traffic

during its lifetime and also to keep track of the visited

sequence of middleboxes. The global network view of SDN

makes it easier to manage and assign tags to different traffics

and to ensure different policy enforcement on NFs.

B. VNF and VNF Chain Placement

Authors in [33] proposed a grammar for specifying VNF

chains and then provided a mathematical formulation for VNF

chain placement. Their formulation is quadratic and does not

allow VNF sharing between multiple tenants. In contrast,

we provide a linear formulation and allow for VNF sharing.

In [34], authors provided a LP-relaxation based approach

for finding inter-data center VNF chain placement. However,

due to LP-relaxation their solution has the flaw of violating

physical resource capacities by a factor of at most 16. Our

solutions do not have such flaws. A genetic algorithm for VNF

chain placement is proposed in [35], but it does not address

the issue of dynamically adjusting the placement of VNFs to

balance between network operating cost and performance.

C. Enabling Technologies for NFV

NFV proposes to run VNFs on commodity hardware as

virtual appliances. This flexibility raises the question of perfor-

mance. In recent years, a number of research efforts have been

targeted to achieve near line speed network I/O throughput

with commodity servers [36], [37]. Apart from accelerating

the packets along the network I/O stack, more recent works

have proposed changes to virtualization technologies to sup-

port the deployment of modular software NFs on lightweight

VMs [11]. Hundreds of these VMs can be instantiated on a

single physical machine within miliseconds to run different

VNFs. Substantial research efforts are also being put towards

programming models and deployment architecture for VNFs

as well. CoMb [38] and xOMB [39] propose an extensible and

consolidated framework for incrementally developing scalable

middleboxes. Both of these works leverage the idea of reusable

network processing pipelines for middlebox composition.

VII. CONCLUSION

Virtualized network functions provide a flexible way to

deploy, operate and orchestrate network services with much

less capital and operational expenses. Software middleboxes

(e.g., ClickOS) are rapidly catching up with hardware mid-

dlebox performance. Network operators are already opting for

NFV based solutions. We believe that our model for dynamic

VNF orchestration will have significant impact on middlebox

management in the near future. Our model can be used to

determine the optimal number of VNFs and to place them

at the optimal locations to optimize network operational cost

and resource utilization. Our trace driven simulations on the

Internet2 research network demonstrate that network OPEX

can be reduced by a factor of 4 over hardware middleboxes

through proper VNF orchestration.

In this paper, we presented two solutions to the VNF

orchestration problem: CPLEX based optimal solution for

small networks and a heuristic for larger networks. We found

that the heuristic produces solutions that are within 1.3 times

of the optimal solution, yet the execution-time is about 65 to

3500 times faster than that of the CPLEX solution. We intend

to extend this work in a number of ways. We plan to extend our

model for supporting both hardware and software middleboxes

in the same network. We want to explore the possibility of

introducing failure-resilience by deploying backup VNFs that

can take over the traffic processing tasks from failed VNFs.

We also plan to enhance the physical network transformation

process to further reduce the solution space and speed-up the

running time of the optimal solution.
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