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Order a7ln���1���a��� Contribution to Positronium Hyperfine Splitting
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The logarithmically enhanced a7 ln�1�a� contribution to the hyperfine splitting of the positronium
ground-state energy levels is calculated in the framework of dimensionally regularized nonrelativistic
quantum electrodynamics. The correction is negative and amounts to about 1�3 of the leading logarithmic
a7 ln2�1�a� one. The discrepancy between the experimental measurements and the theoretical prediction
is reduced.
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Positronium, which is an electromagnetic bound state of
the electron e2 and the positron e1, is the lightest known
atom. Thanks to the smallness of the electron mass me,
strong- and weak-interaction effects are negligible, and
its properties can be calculated perturbatively in quantum
electrodynamics (QED), as an expansion in Sommerfeld’s
fine-structure constant a, with very high precision, only
limited by the complexity of the calculations. Positronium
is thus a unique laboratory for testing the QED theory of
weakly bound systems. However, the theoretical analysis
is complicated due to annihilation and recoil effects.
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The positronium hyperfine splitting (HFS) Dn �
E�13S1� 2 E�11S0�, where E�11S0� and E�13S1� are the
energy levels of para- and orthopositronium, respectively,
is the most precisely measured quantity in positronium
spectroscopy as far as the absolute precision is concerned.
The most recent measurements of the HFS [1,2] yielded

Dnexp � 203.387 5�16� GHz, (1)

Dnexp � 203.389 10�74� GHz, (2)
respectively.

The present theoretical knowledge may be summarized
as
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where Dn
th
0 � 7mea4�12 is the leading-order result [3].

The first-order correction was calculated in Ref. [4]. The
logarithmically enhanced a6 ln�1�a� term was found in
Refs. [5,6]. The nonlogarithmic O �a6� term includes the
contribution due to the radiative correction to the Breit
potential [7], the three-, two-, and one-photon annihila-
tion contributions [8], the nonannihilation radiative recoil
contribution [9], and the pure recoil correction computed
numerically in Ref. [10] and analytically in Ref. [11]. In
O �a7�, only the leading double-logarithmic a7 ln2�1�a�
term is available [12].

Including all the terms known so far, we have

Dnth � 203.392 01 GHz, (4)

which exceeds Eqs. (1) and (2) by approximately 2.8 and
3.9 experimental standard deviations, respectively. In con-
trast to the well-known orthopositronium lifetime puzzle
(for the most recent developments of this problem, see,
for example, Ref. [13] and the references cited therein),
the experimental situation for the HFS is unambiguous. In
fact, the experimental error is compatible with a naive esti-
mate of the theoretical uncertainty due to as-yet unknown
higher-order corrections. Should this discrepancy persist
after the dominant terms of the latter have been calculated,
this would provide a signal for new physics. This makes
the HFS one of the most interesting topics in positronium
spectroscopy, both from the experimental and theoretical
points of view.

Thus, it is an urgent matter to improve the prediction
of the HFS as much as possible, and one is faced with
the task of analyzing the third-order correction, which is
extremely difficult. However, there is a special subclass
of the O �a7� contributions which can be analyzed sepa-
rately, namely those which are enhanced by powers of
ln�1�a� � 5. They may reasonably be expected to provide
an essential part of the full O �a7� contributions. This may
be substantiated by considering Eq. (3) in O �a6�, where
the logarithmic term is approximately 2.6 times larger
than the nonlogarithmic one. While the leading double-
logarithmic O �a7� contribution to Eq. (3) is known [12],
the subleading single-logarithmic one is yet to be found.
In fact, from the positronium lifetime calculation [13–15]
we know that the subleading terms can be as important
as the leading ones. The purpose of this Letter is to
© 2000 The American Physical Society
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complete our knowledge of the logarithmically enhanced
terms of O �a7� by providing the coefficient C in analytic
form.

The origin of the logarithmic corrections is the pres-
ence of several scales in the bound-state problem. The
dynamics of the nonrelativistic e1e2 pair near threshold
involves four different scales: (i) the hard scale (energy and
momentum scale like me); (ii) the soft scale (energy and
momentum scale like bme); (iii) the potential scale (en-
ergy scales like b2me, while momentum scales like bme);
and (iv) the ultrasoft scale (energy and momentum scale
like b2me). Here b denotes the electron velocity in the
center-of-mass frame. The logarithmic integration over a
loop momentum between different scales yields a power of
ln�1�b�. Since positronium is approximately a Coulomb
system, we have b ~ a. This explains the appearance of
powers of ln�1�a� in Eq. (3). The leading logarithmic cor-
rections may be obtained straightforwardly by identifying
the regions of logarithmic integration [6,12]. The calcula-
tion of the subleading logarithms is much more involved
because certain loop integrations must be performed ex-
actly beyond the logarithmic accuracy.

In the following, we briefly outline the main features
of our method developed previously in Ref. [13], where it
was applied to the analysis of the subleading logarithmic
third-order corrections to the positronium ground-state de-
cay rates. This approach is similar to the one adopted in
Ref. [15]. We work in nonrelativistic QED (NRQED) [16],
which is the effective field theory that emerges by expand-
ing the QED Lagrangian in b and integrating out the hard
modes. If we also integrate out the soft modes and the po-
tential photons, we arrive at the effective theory of poten-
tial NRQED [17], which contains potential electrons and
ultrasoft photons as active particles. Thus, the dynamics of
the nonrelativistic e1e2 pair is governed by the effective
Schrödinger equation and by its multipole interaction with
the ultrasoft photons. The corrections from harder scales
are contained in the higher-dimensional operators of the
nonrelativistic Hamiltonian, corresponding to an expansion
in b, and in the Wilson coefficients, which are expanded
in a. In the process of scale separation, spurious infrared
and ultraviolet divergences arise, which endow the opera-
tors in the nonrelativistic Hamiltonian with anomalous di-
mensions. In fact, these divergences completely determine
the logarithmic corrections [13,18]. We use dimensional
regularization, with d � 4 2 2e space-time dimensions,
to handle these divergences, which are of the form 1�en

(n � 1, 2, . . .) as e ! 0 [11,19,20]. Compared to the tra-
ditional NRQED approach, endowed with an explicit mo-
mentum cutoff and a fictitious photon mass to regulate the
ultraviolet and infrared behavior [6,14,21], this scheme has
the advantage that contributions from different scales are
matched automatically.

In the effective theory, the HFS is generated by spin-flip
operators of the effective nonrelativistic Hamiltonian aver-
aged over the bound-state wave function. The hard-scale
corrections, which require fully relativistic QED calcula-
tions and are most difficult to find, do not depend on b

and do not lead to logarithmic contributions by themselves.
However, they can interfere with the logarithmic correc-
tions from the softer scales. The only results from rela-
tivistic perturbation theory that enter our analysis are the
one-loop renormalizations of the relevant operators in the
effective nonrelativistic Hamiltonian. The missing ingre-
dients can all be obtained in the nonrelativistic approxi-
mation. The leading-order O �a4� HFS is generated by the
O �b2� spin-flip part of the tree-level Breit potential, which
consists of the Fermi operator VF and the annihilation op-
erator Vann. The a7 ln�1�a� contribution, which we are
interested in, arises from several sources. A part of it can
be extracted from the positronium lifetime calculation [13].
This part corresponds to: (1) the second-order corrections
in nonrelativistic Rayleigh-Schrödinger perturbation the-
ory, which arise from (1a) the insertions of the tree-level
O �b2� spin-independent Breit potential and the one-loop
hard corrections to the leading-order spin-flip operators
and (1b) the insertions of the one-loop O �ab2� operators
related to the hard [22], soft [19], or ultrasoft [13,23] scales
[cf. Eqs. (13)–(15) of [13], respectively] and the lead-
ing-order spin-flip operators; (2) irreducible corrections to
the leading-order spin-flip operators, which include (2a)
O �ab2� and (2b) O �a2b� terms and can be obtained from
the corresponding equations of Ref. [13] by replacing the
leading-order decay operator V4�p, p0, S� by VF 1 Vann.
The hard renormalization coefficients of the leading-order
operators VF and Vann are 1 and 2�44�9 1 2 ln2�, respec-
tively [21,24]. They replace the renormalization coeffi-
cients Ap,o of V4�p, p0, S� in Ref. [13]. Another nontrivial
difference with respect to the positronium lifetime calcu-
lation [13] is that the Fermi operator can cause a DL � 2
transition of the spin-triplet state, so that D-wave inter-
mediate states contribute to second order in nonrelativistic
perturbation theory, by double insertion of VF . This gives
an additional contribution of 5�42 to the coefficient C.
Finally, there is a modification of the soft part of contri-
bution (1b) due to the spin-dependent part of the trans-
verse-photon-exchange contribution, which vanishes for
the annihilation channel. This gives an additional contri-
bution of 68�63 to the coefficient C. Using the results of
Ref. [13] and taking these modifications into account, we
obtain the following contribution to the coefficient C from
the sources enumerated above
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where the various contributions are given separately.
Note that contribution (1b) also includes the entire
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double-logarithmic term not presented in Eq. (5). The
structure of the overlapping divergences resulting in the
double-logarithmic contribution to the HFS is similar to
the positronium lifetime analysis [13].

Another part of the a7 ln�1�a� contribution is
produced in the first order of the nonrelativistic
Rayleigh-Schrödinger perturbation theory by the one-loop
hard corrections to the O �b4� and O �ab3� spin-flip
operators, which give rise to the a6 ln�1�a� contribution
to the HFS. The relevant operators are generated by the
relativistic correction to the Coulomb-photon exchange,
the relativistic correction to the transverse-photon ex-
change, the kinematical retardation, and the one-loop
correction involving seagull vertex diagrams with one
Coulomb and one transverse photon. For our calculation,
we only need the three hard renormalization coefficients,
usually denoted as cF , cS , and cpp0 , which are related
to the anomalous magnetic moment of the electron and
are finite and scheme independent. By gauge invariance,
the coefficients cF and cS are the same as for the O �b2�
operators, while the coefficient cpp0 parametrizes the new
O �ab4� operator contribution to the transverse-photon
exchange [21]. The resulting contributions to the coeffi-
cient C are
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The remaining part of the a7 ln�1�a� contribution also cor-
responds to the first order of the nonrelativistic Rayleigh-
Schrödinger perturbation theory and is related to the
relativistic corrections to the operators contributing to the
HFS in lower orders. The relevant operators are gener-
ated by the diagrams with one or two transverse-photon
exchanges, where the momentum of the photon with
spin-independent interaction can be soft or ultrasoft, and
by the soft diagrams with one or two seagull vertices
involving either one Coulomb and one transverse photon
or two transverse photons. The resulting contribution to
the coefficient C reads

CIII � 2
41
63

. (7)

Adding Eqs. (5)–(7), we obtain

C �
62
15

2
68
7

ln2 � 22.6001 . (8)

Thus, the a7 ln�1�a� term in Eq. (3) has the same sign
as the a7 ln2�1�a� one and amounts to about 1�3 of the
latter. It reduces Dn by 323 kHz, while the a7 ln2�1�a�
term reduces Dn by 918 kHz. For comparison, we recall
that, in the counterpart of Eq. (3) appropriate for the muo-
nium HFS, the coefficient of the a7 ln2�1�a� correction
5096
reads 28�3 and C � 281�180 2 �8�3� ln2 � 20.2873
[25]. Our final prediction for the HFS reads

Dnth � 203.391 69�41� GHz. (9)

Here, the uncertainty due to the unknown nonlogarithmic
O �a7� term in Eq. (3) is estimated by using the value
D � 16.233p2 of the analogous coefficient in the case of
the HFS of muonium [21,26].

The unknown nonlogarithmic O �a7� term in Eq. (3) re-
ceives contributions from three-loop QED diagrams with a
considerable number of external lines, which are still be-
yond the reach of presently available computational tech-
niques. In this sense, we expect Eq. (9) to remain the best
prediction for the foreseeable future.

The new theoretical value in Eq. (9) exceeds the experi-
mental values in Eqs. (1) and (2) by approximately 2.6 and
3.5 experimental standard deviations, respectively. Thus,
the discrepancy between experiment and theory is some-
what reduced by the inclusion of the a7 ln�1�a� term, but
it still remains sizable.

We may speculate about the magnitude of the coefficient
D in Eq. (3). Note that two powers of a in the nonloga-
rithmic O �a7� term can be of nonrelativistic origin. Each
of them should be accompanied by the characteristic fac-
tor p, which happens for the logarithmic terms. Thus, a
plausible estimate of the coefficient D is a few units times
p2. In order to bring the theoretical estimate into agree-
ment with Eqs. (1) and (2), we need D � 2100p2 and
D � 270p2, respectively. On the other hand, the loga-
rithmic terms of the positronium HFS exhibit a structure
similar to the muonium case, so that it is not unreason-
able to expect the nonlogarithmic terms of the positronium
and muonium HFS’s to be of the same magnitude. This
would imply a significant contradiction between the cur-
rent experimental measurements and the theoretical pre-
diction. However, although this may seem unlikely, one
cannot completely exclude the possibility that the resid-
ual discrepancy will be removed by the inclusion of the
nonlogarithmic O �a7� term. We conclude that both the
calculation of the coefficient D as well as improved experi-
mental measurements are necessary in order to establish or
remove the residual discrepancy. Although there is no con-
ceptual problem on the theoretical side, from the technical
point of view, such a calculation represents a challenge for
QED bound-state perturbation theory.

Finally we would like to note that the technique devel-
oped in Ref. [13] and here can be applied to the analysis of
QCD heavy quark-antiquark bound states, where the loga-
rithmically enhanced corrections are known to be essential
[18,27].
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