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I. INTRODUCTION 

In the present paper we discuss several underlying analogies between 

4-dim&sional gauge systems and 2-dimensional magnets. Our main purpose 

is to clarify the meaning of concepts like confinement and its relationship with 

order and disorder in the system. Most generally we shall be interested in 

studying the long distance behavior, i. e. long distance correlations, of these 

systems in order to understand their phase diagrams. It is well known thatmost 

4-dimensional gauge theories are similar to their 2-dimensional spin system 

counterparts in the sense that the renormalization group equations have the same 

structure in both systems, 
1 

they exhibit the same kind of instantons, 
2 

etc. 

Explicitly we show a remarkable analogy between the 3 + 1 Abelian Gauge theory 

and the 1 + 1 XY ferromagnet. Roughly speaking, the long distance behavior of 

both systems is similar when proper analogous quantities are discussed. For 

instance, the behavior of Wilson’s loop integral3 (for the gauge-theory) is similar 

to the behavior of the two point correlation function in the XY model4 once we 

recognize that a decay of the loop integral as the area of the loop means disorder 

in a gauge theory. On the other hand the XY model has a phase in which the 

correlation function falls off at large distanoes with a power law behavior4, which 

is also true for the Abelian Gauge theory. 

In general the systems shown in the following table exhibit analogous 

behaviors. 

1 ;Z;L / id2-Gauge Theories- / 

We shall restrict our discussion in this paper to the first two analogies. 
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These analogies were first pointed out by Migdal, who discussed them in 

the framework of his recursion relations. ’ 

2The Z2 gauge theory, which is a gauge theory in which the degrees of 

freedom are elements of the permutations group of two elements, was first dis- 

cussed and solved by Wegner. 
5 

All our discussions will be done by putting the fields on a lattice with the 

time direction continuous and the space directions being discrete. 
6 

In Part II 

we discuss the Transfer Matrix,” a formulation which we shall use as a tool to 

build up the Hamiltonian form of all the models. Later on in Part IIwe discuss 

the l-d quantum Ising Model in a transverse field’ and we introduce duality and 

dual order parameters. 
9 

Dual order parameters will be related to the existence 

of condensates of kinks (in magnetic systems) and magnetic monopoles (in gauge 

theories) which randomize the system. 

In Part III we discuss the Z2 gauge theory, in Part IV the.XY model and, 

finally, Part V is devoted to Abelian Gauge theory. 
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II. HAMILTONIAN THEORY OF THE ISING MODEL 

A. l-Dimensional Case 

We shall begin our discussion with theIsing model(I. M. ). Identify one of the 

lattice directions as the (euclidean) time axis. We will look for a limit in which 

this direction can be considered continuous. The Ising model in this limit becomes 

formally equivalent to a quantum-mechanical system with a well defined hamiltonian 

describing a continuous development in time. The method is most easily illus- 

trated using the transfer matrix formalism. 
7 

Let us construct the transfer matrix formalism for the l-dimensional 
10 

Ising model. The action is:~. 

A?= -p c 03(i) u3(i+l) + ho3(i) 
1 > 

(1.1) 
sites 

where (T = + 1 and i runs over all the sites. 
3 - 

The parameter h represents an 

external magnetic field. It is convenient to add a constant to the action to nor- 

malize the ground state energy to zero when h=O. We also rewrite the term 

proportional to h in a form which will prove more convenient. Thus 

2 
- 03(i+l) 1 I - h c3(i) + a,(i+l) 

Define 

2 
- u3 (it- 1) 1 [ - h 03(i) + a,(i+l) 

(1.2) 

(1.3) 

so that 

&! = C 9?(i,i+l) 4 (1.4) 
i 

The partition function is 

z= c exp -d 
configurations i i 

= c { P exp - Q?(i, (+l) 
I 

configurations 

(1.5) 
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11 
It is easy to see that this is the trace of the Nth power of the transfer matrix, 

T where the rows (columns) of T are labeled by the possible configurations of 

the inlEa (final) member of a neighboring pair of spins. 

T = exp(- (i,i+l) 

Z =TrTN 

(l-6) 

(l-7) 

where N is the total number of sites of the lattice. 

Now we shall imagine that the axis of the lattice is the time axis of 

quantum-mechanics. Thus T carries information from one time to a neighboring 

time, We will in fact identify it with the time evolution operator for a quantum 

system of a single spin. 

We want to take a limit in which neighboring lattice sites are treated as 

infinitesimal transformation of the form 

T=l-TH P-8) 

where T is infinitesimal and H is the hamiltonian. Of course this is not true in 

general (see eq. 1.6) but there exists a limit in which eq. 1.6 has the form 1.8. 

The limit is 

P 4-J (low temperature) 
(1.9) 

;Bh-, Ae-2P (Xis any constant) 

and 

7 = e-2P (1.10) 
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Then 

T= - 

1+ hr 7 

-7- 1 - AT 

(1.11) 

We can write T in terms of Pauli matrices acting on the hilbert space of 

the quantum spin 

T = 1+{Au3 ++ 

H = -al -ho3 (1.12) 

In taking the continuum limit we must imagine that the number of sites 

separating any two times increases as e w . This dependence of coupling constant 

(p) on lattice spacing is a simple example of the renormalization group. 

The correspondence between classical statistical mechanics and the 

equivalent euclidean quantum system are summarized in the following scheme. 

Quantum Sys tern 

1) Ground state 

2) Ground state expectation 

values of time ordered 

operators 

3) Ground state energy 

Statistical System 

Equilibrium state 

Averages on the ensemble 

Free energy 

B. The 2-Dimensional Case 

The 2-dimensional Ising model will be more interesting thanthe one dimensional 

case. The action of the anisotropic I. M. is 
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&?=C 4 
r I r. 

yj- o3 (9 -03 (r+fit) 
I 

2 

- P, 
[ 
o3(r) 03(r+nz) 

11 

(1.13) 

where r runs over all the sites of a 2-dimensional rectangular lattice and nt 

(g,) is the unit vector in the t (z) direction (see Fig. 1). The coupling constants 

in the directions t, z are p,, p, which are not necessarily equal. We will not 

bother with an external field in this case. 

Before dealing with the technical details of the transfer matrix we will 

qualitatively describe a limit in which the t-direction becomes continuous leaving 

discrete the z-axis. In this limit the IM becomes equivalent to a Hamiltonian 

quantum system consisting of a one dimensional (z) discrete system of interacting 

spins. 

The 2-dimensional IM has a phase transition. In the space of the param- 

eters P,, Pt th ere is a critical curve which separates the ordered (ferromagnetic) 

and disordered (paramagnetic) phases. This is shown in Fig. 2. The critical 

curve is given by7 

(sinh 2Pz)(sinh 2pt) = 1 (1.14) 

We will illustrate the main ideas in terms of the two point correlation 

<a,(o) 03(r)> = C (r). For pz = pt, c(r) has cubic symmetry (symmetry under 

rotations by 7$2). For large r, C(r) becomes invariant under arbitrary rotations. 

To illustrate this we draw the contours of the curves C,(r) = con& as circles in 

the case pz = pt (see Fig. 3). However in the anisotropic case (p, > pz) the 

contours at large r are deformedinto elipses with major axis along t ,(see Fig. 4). 
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Now imagine resealing the t axis in such a way that the elipses are trans- 

formed back into circles. This is shown in Fig. 5. In this way we can approx- 
4 

imately compensate the effects of the anisotropy by a resealing of t relative to z. 

The form of the correlation function in the new model is similar td the symmetric 

case. 

We can repeat this process until we reach a limit in which the lattice in the 

time direction becomes dense. This is the time-continuum limit. 

C. Transfer Matrix for the 2-Dimensional Case 

We will now construct the time continuum limit in a precise way using the 

transfer matrix method. Consider two neighboring rows of spins as in Fig. 6. 

The spins on the “earlier” (“later”) row are denoted by s(n) (o(n)) where n labels 

discrete location along the space z axis. The Lagrangian for this pair of rows 

is 

LZ?%= 4 r g 
[ 
s,(n) - a,@) 1 

2 pz 
- 2 z s,(n)s,(n+l) + a3(n)03(n+l) 

[ I 
(1.15) 

The rows and columns of the transfer matrix are labeled by the spin configura- 

tions of both layers. Since for N spins on a layer there are 2 
N 

configurations, 

the T-matrix is 2 
N N 

X 2 . 

The diagonal elements of T are given by setting s,(n) = a,(n) for all n. 

Thus 

T 
diagonal = exp ‘P, g 

I 
~3@b3tn+l) (1.16) 

The off-diagonal elements can be classified by the number of spin flips 

(the number of sites for which a,(n) = -s3(n)). 

T 
1 flip 

= exp [ 1 -Wt exp 

The single flip elements are 

(1.17) 
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where E (o, s) is the sum of the energy of the two independent rows. 

Similarly the n-flip elements are 

Tn = exp [-2np,] exp [-E(u, s)pz] (1.18) 

Now consider the limit 

Pt --) OQ 

PZ 1 
jXee2Pt (1.19) 

This limit is similar to that used in the l-dimensional case. In fact the replace- 

ment pz ---) oh is natural since the interaction with neighboring columns exerts a 

field on each spin. 

The limiting form of the matrix elements of T are 

T 
diag 

+ 1 + e-2Pt h z a3(n)03(n+1) 

TX-) e -2Pt + O(e -4Pt) 

T2-) e -4Pt + O(emGPt) 

(1.20) 

It is now possible to put T into the infinitesimal form 

T = l-TH 

We again identify the quantity e -2Pt 
as 7 - the infinitesimal spacing along the 

t-axis. 

T = 1 + T h g a3 (n)03 (n+l) + $ oI(n) 1 (1.21) 

+ 72 C 
nfm 

ul(n)ul(m) + . . . 
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The Pauli matrices ol have been used as spin flippers so that the n-flip terms 

of T contain n factors of o 1. However since T is an infinitesimal we may ignore 

2 4 
all terPPls of order 7 , 7 . . . by comparison with the order T term. The result 

is that the Hamiltonian H contains only no flip and single flip terms 

H = -g aI -XC a3(n)03(n+l) (1.22) . 

The connection between the spacing 7 and e -wt provides a quantitative estimate 

of the amount of resealing of t which is required to compensate the anisotropy 

when pt becomes large. 

The correlation functions will approach the limiting forms of the equivalent 

quantum system as p, 4 00, p, ---) Xe -2Pt . Suppose for example 

<OIT o,(o, o)03(n, t)/O> = r(n, t) (1.23) 

for the quantum system. Then in original discrete integer valued coordinates 

of the lattice the correlation function behaves like 

(1.24) 

where 

T = ,-2Pt 

In particular as pt --t OQ the spatial correlation length (decay length of the 

function C(n, 0)) tends to a limiting function of A. 

In the space Pz, pt there etists a set of curves along which the spatial 

correlation length is constant. In particular the critical curve is the curve where 

the correlation length is infinite. The above discussion shows us that for 

pt -VW these curves have the form (see Fig. 7) 

pz = hemBPt (1.25) 
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The parameter h can be used to label the curves. We can relate any point 

on the symmetric line pz=pt with a limiting theory by extrapolating along these 

curveS. The qualitative long range behavior is unchanged along a line of fixed 

A. The points on the symmetrical line correspond to different temperatures of 

the classical square Ising model. Thus we can relate each temperature of the 

isotropic model to a unique quantum model with a corresponding value of A. 

Generally large X (small X ) corresponds to large p (small p) . Thus we will refer 

to the large (small) X as low (high) temperature. 

D. Lattice Duality 

The 2-dimensional I. M. and equivalent l-dimensional quantum problem 

have the remarkable property of self duality. ’ The dual of a cubic lattice is a 

new lattice whose sites are located at the centers of the old cubes. In particular 

for a l-dimensional lattice the sites of the dual lattice correspond to the links 

of the original lattice (see Fig. 8). 

The original system can be redescribed by a new system with degrees of 

freedom attached to the dual lattice. 

For the one l-dimensional quantum Ising model with transverse field 

(Eq. 1.22) the dual lattice operators are called ~1. They can be written in terms 

of the original @s. 

cl,(n) = ~3(n+W3@) 

(1.26) 

The operators PI(n) describes the mutual state of two neighboring u’s. p3 flips 

all the spins to the left of the site n. 

The aoperators satisfy the following relations which specify their algebra 

completely 
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Cot(m) y(n)] = 6 for n+m 

oI2(n) = 1 

u32(li) =:1 

i 

(1.27) 

(1.28) 

From Eq. Is 1.26, 1.27, 1.28 it is easily seen that the p’s satisfy the same re- 

lations. Thus the variables on the dual sites are isomorphic to the original 

variables. 

The Hamiltonian in Eq. 1.22 can be expressed in terms of the /..L’s as 

H = -C p3tn) cl,(n+l) -X C i+) 
n n 

= x 
{ -T.pl(n) - + C p3tn) I-13tn+l) > (1.29) 

The remarkable thing about the Hamiltonian is that it has the same form in terms 

of the pL’s and the 0’s. The only differences are the overall factor of X in 1.29 

and the replacement h++l inside the brackets. 
x 

We may summarize this property 

by the formula 

H(o;A) = AH@, A-‘) (1.30) 

The self duality of H is a very powerful result. It shows that the high 

temperature behavior (XC 1) and low temperature behavior (A > 1) are in a sense 

equivalent. For example we can map any eigenstate of H(X) to a unique eigenstate 

of H(l/h). The energy spectrum has the property that if E(X) is the energy of 

some state then y is the energy of a related state of H(l/X). 

For example the energy gap between the ground and first excited states 

satisfy 

G(X) = $ G(X) (1.31) 
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The l-dimensional Ising model with transverse field is exactly soluable 

for the spectrum.8 The gap G(A) is given by 

- 

G(X) = 211-X1 (1.32) 

which is easily seen to satisfy (1.31). 

The symmetry point of the duality transformation is h=l. From (1.32) 

we see that the gap vanishes at this point signalling the presence of massless 

excitation and a divergent correlation length. In other words the point h=l sep- 

arates both the ordered and disordered phases, 

E. Order and Disorder Parameters 

The duality transformation relates the high and low temperature behaviors 

of the system. We will discuss the properties of these phases now. 

1) Large X (Small Temperature) 

For h >> 1 the term C {- Ao3(n)03(n+l)j dominates the Hamiltonian. The 

ground state for X=m is doubly degenerate with all spins parallel either up or 

down (see Fig. 9). By picking boundary conditions at EQ we may choose the ground 

state (a). Then the expectation value of o3 is 1. Defining 10% to be the ground 

state for given X we have 

,<o/u3J@m = 1 (1.33) 

More generally 

<(X3> = A@lU310>, + 0 (for X > 1) (1.34) 

The quantity <03> is known as the order parameter or magnetization. 

That the magnetization persists for non infinite h is not completely trivial. 

For example the ordinary l-dimensional Ising model is ordered for zero tem- 

perature but not for finite temperature. 
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To see that <a;> 4 0 for large but finite X we may apply perturbation theory 

to see how <a3> changes with l/X. 

For large X we write 

H/h = - C 03(n)03(n+l) - + 201(n) 

=Hb +-1H 
A 1 

(1.35) 

Applying standard perturbation theory we get 

(1.36) 

Hl flips one spin at a time. The state with the nth spin flipped is called (n>. 

lOA> =)O% $ g In> + . . . 

To order A 
-2 

we find 

(1.37) 

(1.38) 

+g g <nlo3(m) n> 

The factor fi -,$$)* 1s the normalization factor <~I~-’ to order Am2 and N is 

the total number of sites. For m+n, <n(03(m) 1 n> = +l, while for m=n, 

<n\03(m)jn> = -1. 

Thus 

1 + (N-l) 1 - - 
16h2 16A2 

(1.39) 
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The important feature of this result is that the N dependence of the order hW2 

correction cancels leaving a finite coefficient. This is true to all orders and 

therefore we expect a finite region of h to have a non-vanishing magnetization. 

This result may be contrasted with a calculation of the derivative of the magneti- 

zation with respect to temperature for the ordinary l-dimensional Ising model. 

There the N dependence does not disappear and the magnetization is not a smooth 

function of T for N + 00. 

It will prove to be interesting to define a dual order parameter or “disorder 

parameter” which actually measures the degree of disorder of the 03 variables. 

To do this we perform the duality transformation on the order parameter, <a3>. 

From (1.26) we define the disorder parameter to be 

<p,(n)> = crnyn ulW> (1.40) 

This object generally vanishes in the ordered phase and has a non-vanishing 

expectation value in the disordered phase. To see intuitively why this is so, we 

consider the action of the operator p,(n) when applies to a basis state in the o 3 

representation. The result is to flip all the spins up to the site n (Fig. 10). There- 

fore when applied to a magnetized state p,(n) reverses the sign of the magnetization 

at an infinite number of sites. The resulting state is obviously orthogonal to the 

original. 

Accordingly for any magnetized state 

<p3> = 0 (1.41) 

On the other hand if the state is sufficiently disordered it may be possible for the state 

resulting from an infinite number of spin flips to have a projection onto the original state. 
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2) Small h (High Temperature) 

The ground state is that of Ho = - Co;(n) for h<<l. The al s are all 

aligneatvith positive value 1. Then we define the ground state for A=0 as a state 

I O>. such that 

o,WlO>, = IO>, (all n) (1.42) - 

Evidently the average of o3 (magnetization) satisfies 

$O/03(n)~O>, = 0 (1.43) 

In fact Eq. (1.33) is true for all A<l. This is true because the transformation 

u + -u 
3 3 

(1.44) 
u +u 
1 1 

is a symmetry of H. Unless this symmetry is spontaneously broken ~<O[(r3(O~~ 

must vanish. Now consider the disorder parameter for A=O. Since IO,> is an 

eigenvector of ol (see Eq. (1.42)) it follows that 

~Oo(~3(n)(Oo~ = 1 (1.45) 

By the same arguments as in Eq. (1.36) - (1.39) we can prove that the disorder 

parameter is not vanishing for a finite range of A. 

+l~3(n)10A~ + 0 (1.46) 

we summarize these results in Fig. 11. 

F. Kink Condensates and Disorder 

In the preceding section we showed that <p3(n)> measures the amount of 

disorder in the system. However we can reinterpret all these results in an 

interesting way. 
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The operator CL,(n) acting on an ordered state creates a spin configuration 

which we shall call a kink. This object has finite energy and the number of such 

an objezt is a conserved quantity. Thus we can regard these configurations as 

massive particles. 

Since a kink configuration is orthogonal to the ground state in an ordered 

phase there will be no kinks present in this phase. However we know that if h is 

very large but finite there will be a finite (and small) number of spins flipped. 

As we see from Fig. 12 a single spin flip is equivalent as a pair kink and antikink 

at two neighboring dual sites. At lower values of h there will be blocks of spins 

flipped, which are clearly equivalent to pairs kink-an&ink with some size. If h 

is big the distance between pairs will be much bigger than the size of the pair. 

However as A approaches to its critical value 1 the interpair distance becomes 

comparable to the pair size. Thus the phase transition is a kink condensation 

phenomena (Fig. 13). Moreover the kink-antikink pairs become. “ionized” at h = 1 

without any cost of energy. 

Kinks have very important features. Unpaired kinks cannot be present in 

any ordered phase of the system since they violate the imposed boundary conditions. 

They only can exist in the system paired with antikinks (in the ordered phase) or 

as a condensate in the disordered phase where the system does not care about 

boundary conditions. Moreover they are topological objects because they are 

large perturbations of the system which change the boundary conditions. Finally 

they disorder the system and above‘the critical temperature their presence as a 

condensate is responsible for the short range of the two point correlation function. 

Thus, if we are considering <03(o)03(n)>, an indefinite or random number of kinks 

occurring between the two points will destroy the correlation between the two spins. 



18 

III. GAUGE SYSTEMS IN 3+1 DIMENSIONS 

A. Gauge Invariance 

Fhe Ising model studied in the previous sections has a global symmetry 

consisting of flipping all the o;(n) simultaneously. We call this a global symmetry 

because the symmetry operation involves all the spins. 

Gauge Symmetries 3,536 are local symmetries in which the operation only 

involves degrees of freedom localized near some point. In this section we will 

consider the simplest example of a gauge system in 3+1 dimensional space time. 

We will call it the Z2 gauge system. 

Let us imagine a simple cubic lattice in d=4 dimensional space. The elements 

of the lattice are sites labeled by 4 integers X = (xl, x2, x3, x4) and links labeled 

by a site X and a unit vector $ pointing in one of 8 lattice directions. Alternatively 

the links can be labeled by a pair of nearest neighbor sites (Xl, X2). 

The spin degrees of freedom for the gauge system are defined on the links 

(see Fig. 14). 

Each site of the lattice is connected with 8 links (Fig. 15) and therefore to 

8 spins. A local gauge transformation at the site X flips all 8 spins leaving the 

remaining spins unchanged. 

Let us now build an action which is invariant under such gauge transformations. 

The terms of the action are identified with the faces or elementary boxes of the 

lattice (see Fig. 16). 

For each box, define an action 

(3-l) 

g = +bo42es 03”3a3a3 

where a303g303 represents the product of spins on the edges of the box. 
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Now consider the behavior of gbox under a local gauge transformation at 

X. If X is not a corner of “box” then none of the spins in LZbox are flipped and 

gbox i; unchanged. If X is a corner of box then two spins are flipped and 

9 box is again unchanged. Therefore sbox and 9 are invariant under local gauge 

transformations. A more general class of gauge invariant objects can be formed 

by considering arbitrary closed paths of links as in Fig. 17. The products of 

~3’ s on the links forming such paths are gauge invariant. 

Consider the expectation value of any gauge invariant object I? 

(3.2) 

The sum & is over all configurations of the o’s. This means that we will add 

contributions corresponding to configurations which are identical modulo a gauge 

transformation. Since both v! and I are gauge invariant we are counting the 

same contributions many times. One way to avoid that is to introduce a gauge 

fixing condition or constraint which selects out from each gauge equivalence class 

a single configuration a. The sum {Cl can be replaced by 
o- 

C N(ii) 
Pi 

where C means a sum over the unique representative of each class and N(G) is 
ia 

the number of equivalent configurations to 5. For an infinite lattice N(o) is 

infinite but for any finite lattice N{(T) is in fact independent of 0 so that restricting 

the sum to 0 merely introduces an irrelevant multiplicative factor. 

In what follows we will impose such a restriction on the configuration space. 

It can be shown that any configuration is gauge-equivalent to a configuration in 

which the spins on time-like links are fixed to be equal to 1. However this con- 

dition does not determine a unique configuration. Consider an arbitrary configur- 

ation of a3’ s on space-like links and 03=1 on time links. Now consider a trans- 

formation which is composed of an infinite product of local gauge transformations. 
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The product is over all the lattice sites which have given spatial location (x1,x2,x3) 

and all values of euclidean time x 4. The relevant sites are shown in Fig. 18. 

The eff;ct is to reverse only those spins on the 6 spatial links connected to 

(xl, x2, x3). In particular no time link is flipped. Thus the gauge fixing condition 

a3 = 1 (time links) (3.3) 

does not uniquely define a configuration within each gauge equivalence class. 

However, it can be seen that the number of configurations satisfying (3.3) is the 

same for each equivalence class. Thus imposing (‘3.3) on the configuration sum 

introduces a mere numerical factor. Henceforth Eq. (3.3) will be assumed. 

B. Hamiltonian Form 

As in the Ising case, we will introduce two coupling constants, one for 

space-time boxes and one for space-space boxes. The action for a given space- 

time box (see Fig. 19) is 

9 = P, {a; (1) g3 (2) c3W g3(4) 1 

= -P, {u3t1) u3w} 

4 I I 
2 

=+2 
(03(i1) - o,(3) - const (3.4) 

Thus for each spatial link the sum over x4 is a Ising-like action. We denote the 

space-time term of the action by 

4 

& i 

2 

’ 4 
-pj- 03(&x4) - 03(kx4+I) 

I 

where I labels spatial links. 

The space-space boxes contribute with a term 

-cp s s s a303a303 

(3.5) 

(3.6) 
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where the sum is over all spatially oriented boxes. Thus 

(3.7) 

The passage to a Hamiltonian formulation is performed by the same limiting 

procedure as for the Ising case, namely 

Pt +Oa 

P, --+ Xexp(-2Pt) (3.3) 

Thus, we find 

c 
H = links ol(‘) - 

AC 
boxes o3o3o3o3 

(3.9) 

where the sums are over spatial positions only. As in the previous case of the 

Ising model the o’s are Pauli spin operators acting in a Hilbert space. 

The Hamiltonian (3.9) has a local gauge invariance as a consequence of the 

original gauge invariance of the Lagrangian. Consider the spatial site F’ = (x 13x2*x3) 

and define the operator 

G-r = 
r’ ls?<Sl i c (Q ) (3.10) 

where Qi are the 6 links attached to r. Gr is a unitary operator which has the 

following action on the U’s. 
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G,' ul(Q) Gr = u,(Q) 

G,-’ u3(Qi) Gr = -u3(Qi) 

(Qi attached to r ) 

G;' u3 (Q) Gr = u,(Q) 

all Q 

I 

(3.11) 

(Q not attached to r ) 

Thus, the action of Gr is to flip the a3’ s linked to site r and leave unchanged 

all ol’ s. Evidently the Hamiltonian (3.9) is invariant under Gr. 

It may also be proved that the ground state of H is invariant under gauge 

transformations. lo Calling the ground state lOA> 

GrlOA> = ioA> (all r) (3.12) 

This is very different from the global invariance of the Ising model. In that case 

the ground state for h>>l is doubly degenerate and the symmetry transformation 

takes one vacuum to the other. The stability of the spontaneously broken symmetry 

lies in the fact that it takes an infinite number of steps in perturbation theory 

(powers of Ho = -C (T 1) to mix the degenerate states. This is not the case here. 

For example, suppose the vacuum for X>>l was all 03=1. The perturbation 

-lTtis ol can act six times to flip the o spins linked to (xl, x2, x3) thus mixing 

the ground state with another in the same class. Thus even for X>>lthe spon- 

taneously broken ground state is unstable. 

Since we are interested only in gauge invariant operators acting on (O> the 

only states of interest will also be gauge invariant. Accordingly we consider as 

physically interesting only those states satisfying 
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or 

G(r) I@ = 1 $P (all r) (3.13) 

- 
l-I op,I$> = I@ 

l<i<6 -- 

Note that since H is gauge invariant, condition (3.13) is consistent with the 

dynamics. 

Eq. (3.13) has as a consequence the vanishing of expectation values of all 

g3(Q). Thus consider 

< W3(Q, I #> 

From (3.13) we write 

a) I c3(Q) I z,6 > = <$ I G-‘(r)~,(e)G(r) I $> (3.14) 

where r is one of the endpoints of the link I. But 

G-‘(r)c3(Q)G(r) = -a3(Q) ‘_ (3.15) 

so<$Ia3 I$> = 0. Therefore there can be no magnetization in any state satisfying 

gauge invariance. In particular no phase transition can lead to a magnetized 

phase. Nevertheless we shall see that a phase transition exists. 

C. Lattice Duality 

In the first part of this paper we have demonstrated the self duality of the 

Ising model in the Hamiltonian version. We shall now prove that the Z2 gauge 

system is also self dual in the Hamiltonian form. 
5 

We shall explicitly construct 

the variables on the dual lattice. We show that the Hamiltonian takes the same 

form in terms of the original and dual variables. To carry out this discussion 

we will need a compact notation to label spatial links. A link may be labeled 

by a site and a unit vector. The link (x, $) originates at x and ends at x+fii where 

i may be any of 6 unit vectors. The link (x, i?) is evidently equivalent to 
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(x+6 i, -iii) (see Fig. 20). The link variables will be denoted by o(x, &). 

The duality transformation turns out to be simplest in a different gauge than 

we hav^e used up to now. We define the “axial” gauge by 

o- =l 
3 

on those links oriented along the spatial x3 axis. 

(3.16) 

The independent variables in the axial gauge are the 03’s and C$ s on the 

x1, x2 (transverse) links. The C$ s on the x3 links are defined in terms of the 

independent variables by requiring Eq. (2.13) to be true. This can be done by 

defining 

“l(“1, x2, x3$ 83) = X IT, j,fJl ultx1,x2’x~‘iii) 
3 3 

(3.17) 

where ($(x1, 2, 3, 3 x x fi ) is the (dependent) variable for the link (xl, x2, x3, fi3) shown 

as solid in Fig. 21. The product is over all transverse links shown as broken 

lines in Fig. 21. ol(x, n3) satisfies the identify 

ply x2, x3, n3) = al(x1Yx2Fx3-1,s3) (3.18) 

The reader can now easily prove that 

(3.19) 

is an identity, 

The Hamiltonian in the axial gauge takes exactly the same form as Eq. (3.9). 

The only modification is that the 03(x, Ei,) are set equal to 1 and CJ~(X, c3) is defined 

by (3.17). 

Now we define the dual lattice. The sites of the dual lattice are placed at the 

body centers of the original lattice (centers of cubes). The dual links pierce the 

original boxes at their centers. The dual boxes correspond to the original links 

(see Fig. 22). 
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Next we must define dual lattice variables pl and p3 on the dual links. Each 

dual link corresponds uniquely to an original box. The variables pl are defined 

by - 

IQ= ~oooa 
3333 (3.20) 

where the 4 03’s belong to the edges of the box. 

For the p3 variables we distinguish the x3 and transverse links of the dual 

lattice. For the x3 links the definition of p3 is 1 since we are working in the axial 

gauge. For the transverse link the definition of cl3 is analogous to the Ising case. 

In the Ising model the dual variables p3 were defined by infinite products 

of “1’s from z= -M to the preceding site. The p3 on transverse links are again 

infinite products of “1’ s. To define this product we note that each transverse 

link (say in the x1 direction) may be identified with a box of the original lattice 

lying in the x2x3 plane (see Fig. 23). 

Now consider the product 

cl,q = x’ !,, yy X3’ 2 ^n) (3.21) 

3 3 

The links included in the product are indicated in Fig. 23 by heavy lines. 

An identical procedure is used for p3fi2). 

The following points can be proved very easily. 

(i) On transverse dual links the p3 and pl satisfy a Pauli algebra. 

(ii) If we consider the odual links originating at a dual site the product 

(3.22) 

(iii) For each dual box the product ~~~~~~~~ on the edges of the box is equal 

to the ol on the corresponding original link. This however is only true if we 

impose Eq. (2.13). 
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(iv) By definition pl on a dual link equals 03030303 for the corresponding box. 

Thus, it follows that the original Hamiltonian may be reexpressed in terms 

of the dual variables as 

(3.23) 

H=-. c lJ31J31J31J3-.A ,” c +1 
dual boxes dual link 

1 c ccl -5; p3p3p3p3 
dual boxes L 
, 

Thus H is self dual. As for the Ising case the self duality relates the physics 

’ of h>l with A<l. 

D. Small h Phase 

For h=O the Hamiltonian is 

Ho=- c 
links 

al (3.24) 

Ho has a well defined non-degenerate gauge-invariant ground state (Ohzo> 

such that 

u,<r, n) IO,=,> = 10h=O> (3.25) 

for all TE;:fi). 

The spectrum of excitations includes both gauge invariant and gauge non- 

variant states. These states are created by flipping the value of ol on any 

combination of links. However the gauge invariant subspace satisfying (3.13) 

corresponds to special configurations. To construct these states we begin with 

an arbitrary closed path of links. The path may intersect itself and may consist 

of several disconnected parts but it should have no ends. Now consider the state 

obtained by slipping the “1’s on these links. The result is a closed path of links 

with gl=-l. It is evident that as long as no endpoints occur then (3.13) is satisfied 

at every vertex. These then are a complete set of gauge invariant excitations. 

The energy of an excitation for h=O is simply 

E = 2n (3.26) 

where n is the total number of flipped ol’s. 
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In addition to the finite energy excitations there are a class of interesting 

excitations whose energy diverges linearly with the radius of the lattice. These 

consis; of infinite lines of inverted oi s called strings. The simplest such object 

is a straight line of flipped spins along one of the lattice axes. 

The energy of such a configuration is proportional to 2n where n is the linear 

dimension of the lattice. The energy per unit length of such a line is called the 

string tension. For A=0 the tension is 2. 

Now suppose h is small but finite. The term 

Hl = -A c u3030303 
boxes 

(3.27) 

will cause modifications of the ground state and excitations. Evidently the action 

of Hl on the ground state is to create closed boxes of flipped spins (Boxcitons). 

The density of boxcitons in the perturbed ground state is N A2. Furthermore the 

ground-state energy density is lowered. The G. S. energy per site is 

E = -3 - ; A2 - & h4 + . . . 

More interesting is the effect of the perturbation on the strings. The per- 

turbation in this case can act in two different ways. First it can excite a boxciton 

on a box which is disconnected from the string (see Fig. 25). 

These contributions are just renormalizing the vacuum. The other action 

is to deform the string by putting in a kink. This happens when the perturbation 

acts on a box containing a side on the string (see Fig. 26). Higher orders in A 

cause the string to fluctuate out of the straight line (see Fig. 27). -Thus as we 

let the perturbation to act on the string a large number of times, the string will 

start to percolate. This effect will be more important closer to the critical point. 
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The fact that strings at A finite are not straight lines makes ambiguous our 

definition of the string tension. We can define the string tension, for finite values 

of h, a; the energy of the string divided by N, the linear dimension of the lattice, 

i. e. the original string length. 

Now we can see that the whole effect of the boxitons acting on the string is 

just to deform the string as well as to lower its tension. 

We find 
2 

T=+ -gh4, . . . (3.29) 

From (3.29) it appears that T might vanish for some finite A. Suppose this 

occurs. We argue that this signals a phase transition. The reason is that the 

tension cannot become negative. If it did the string would lower its energy by 

growing longer. The ground state would be unstable with respect to the creation 

of infinitely long strings which fill space. Thus at the point where T vanishes 

a global change in the behavior of the ground state must occur. 

If we ignore higher orders in h then T vanishes at about h2 = 2.1. However 

for h2 = 2.1 the series is not yet converging. We can improve the situation by 

using pade approximants to extrapolate (3,. 29). This gives 

T=21-.67h 
2 

(3.30) 
l- .42h2 

which vanishes at h N 1.22. A more refined 

derivative of T and use pade approximants 
13 

method is to compute the logarithmic 

to determine the pole of 

(l+ 1.1h2+ . . . 

-2 1 

pade 4 l-1 lh2 . 

(3.31) 
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The pole (zero of T) occurs at 

h = .912 (3.32) 

The exact position of the phase transition (assuming one occurs) must be at 

A=l. This is because of the self duality relating h > 1 and A< 1. However the self 

duality does not tell us whether the transition is first order or second order. The 

apparent vanishing of T for A = 1 strongly suggests a second order transition. 

E. Large h Phase 

Now consider the limit h >> 1. We write 

H/h = - c o,(1k3(2)o,(3)~-t4) - ; lizs ul (3.33) 

Box 

For A=00 the second term of (3.33) may be ignored. In this case the ground state 

is determined by the term 

-c o3o3@3o3 
(3.34) 

Box 

The lowest eigenvalue of (3.34) occurs when all 03=1. However- the ground state 

is infinitely degenerate. To see this consider a gauge transformation on the state 

with 03(r) = 1. Such a transformation flips various u3’s but always leaving the 

value of (3.34) unchanged. Thus, there is a degeneracy due to the non gauge 

invariance of the state 03=l (all r). 

In the Ising model a analogous condition occurs for A=-. Here the ground 

state is two-fold degenerate. This is connected with the global Z 2 invariance. 

There is, however, an important difference between the models. In the Ising 

case, the two vacuums cannot mix in any finite order in perturbation theory in 

h -‘. In other words it requires aninfinite number of spin flips to go from one 

to the other. 
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In the Z2 gauge case, a gauge transformation flips only 6 spins. Therefore, 

to go from one degenerate vacuum to another requires only 6 orders in h 
-1 

. 

Accor-$ingly 6th order perturbation theory lifts the degeneracy. 

The correct vacuum for h=m is a gauge singlet. It is formed by superposing 

symmetrically the state c3(r) = 1 with all its gauge related counterparts. Of 

course for all gauge invariant quantities we can ignore this subtlety and use the 

state a3(r) = 1. 

The lightest excitations of the ground state for h=m are given by applying 

al(link) on some link. This flips the corresponding g3. 

To give a gauge invariant description of these excitations we must specify 

the values of some complete set of gauge invariant functions of the c3’ s. Most 

simply we can give the value of every box variable 03(l)c3(2)03(3)c3(4) or equiv- 

alently CL. For example suppose we apply ol(link) on the link shown in Fig. 28 

in dark print. This operation evidently inverts the four box variables on the four boxes 

containing the link. These are shown in the figure by unbroken light lines. The 

four boxes can be identified with four links of the dual lattice shown as dotted 

lines. These four dual links form a closed loop. Thus the resulting excitation 

is a closed ring of flipped r”; s dual to the excitations of the h=a~ ground state. 

Next, consider the dual of the infinite line of inverted “1’s. These excitations 

should be lines of boxes with the box product c33a3u3a3 = -1, namely lines of 

inverted pi’s (see Fig. 29). The small A excitations are lines of inverted ~1’s 

A line of inverted al’s is dual to a .half plane of inverted p3, as it is shown in 

Fig. 30. However this state is not gauge invariant. We can get a gauge invariant 

state dual to the line of inverted ~1’s if we notice that al is a gauge invariant 



operator dual to the box product ~~~~~~~~ which is a gauge invariant operator 

too. Thus the dual statement to cl=-1 is p3~3~3~3 = -1 on the boxes which is 

dual to the link with an inrerted CJYI. 

Therefore a line of boxes with the box product a3~30303 = -1 is a gauge 

invariant state which is dual to the line with ~1~ = -1. 

F. Correlation Functions 

In the preceding sections we stated that only gauge invariant operators will 

have a non-vanishing expectation value. Thus it is clear that the two point 

correlation function vanishes identically since a3(E,fi) a3 (r’,i?) is n0t.a gauge 

cu3(l;,6) a3 (F,i?)> = 0 (all A) (3.35) 

What we need is a suitable definition of the correlation functions. 

The correct object to study is the ground state expectation value of the product 

of ~3’ s along a closed loop 593 on the lattice. Let us call Cr( R) such a magnitude 

for a loop r with typical size R. Since Cl(R) is a gauge invariant quantity it 

may have a non-vanishing value. However C+(R) will depend in general on the 

details of the loop r . But we shall be interested only in its asymptotic behavior 

asR+00. In this limit we shall want to know if there is a phase in which C+(R) 

is asymptotically constant (this should be an ordered phase) or what kind of decay 

does it exhibit as R-, m otherwise. 

We shall show that C,(R) exhibits two different behaviors for A large and 

small although there is nothing like an ordered phase behavior in-both cases. 

The asymptotic behavior is 

(3.36) 
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where A and P are the area and the perimeter of the loop. Clearly e 
-A 

is analo- 

gous to the exponential decay in Ising-like systems and therefore we regard the 

A< 1 pi;‘ase as a disordered phase. However the phase h>l is not ordered since 

C,(R) vanishes as R-, m , but it decays much more slowly than in other phase. 

It is clear that the phase transition is not order-disorder, but it is a change in 

the behavior of the correlation function. 

It is easy to understand the behavior of the A<1 phase. Since the unperturbed 

ground state IO> is orthogonal to the state ’ H Q (0 >, then at zeroth order in 
loop 3 

perturbation theory 

<OlF u3(O’ = 0 A=0 (3.37) 

However we may get a non vanishing result if we go to some higher order in 

perturbation theory. The lowest order needed to get a non vanishing result is 

equal to the least number of elementary loops enclosed by r, which is exactly 

the area of I’. Thus 

c p) -hn=e -n 1 logh 1 
(3.38) 

for the lowest order in h. Here n is the area of r and X< 1. 

Let us consider the other behavior, A>l. Now the operator II c just counts 
r3 

the number of inverted spins along the loop r. More precisely, it counts if there 

is an odd or even number of inverted 03’s. 

The ground state at first order in h 
-1 

is 

A-l 
&o 

>+2 
L4 J 

(3.39) 

where In> is the state with all the boxes with flux (Q~(T~G~G~) equal to 1 but the nth 

box with flux -1. 
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Then 

unlinked 
t0 r t0 r 

A box is considered to be linked to the loop r if its inverted spin lies on r. 

There are four linked boxes per spin flipped lying on r. 

Thus if 4n is the number of boxes linked to r, we can write 

cr (R) = <Oh-d F oJ ohmI> = 
c2 

I+ 4- (N-4n) - 

Cr(R) E 1 - 2nh -2 = - e-2nh 
-2 

But if P is the perimeter of r, we have n=P 

Then 

Cr(R) z exp 

(3.41) 

(3.42) 

which is the I’perimeter decay” behavior. Therefore we can regard the phase 

transition as a change in the behavior of the correlation function since it decays 

exponentially as R for h> 1 while as R2 for hc 1. There are no truly infinite range 

correlations but the correlation range is wider for h>l than for h< 1. 

We can understand the perimeter behavior as a boundary effect. However as 

A is decreased more and more box-fluxes may be inverted and when A is close 

enough to the critical value 1 the regions with inverted flux become of the same 

size of the area of r. Thus a boundary effect is turned into an area effect. These 

large regions of inverted flux have boundaries which are lines of flipped spins. 

Near the critical point long lines of inverted spins go through the loop (see Fig. 32). 

These lines are closed at infinity and they are topological objects which cannot be 
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removed from the system. These kinks change the behavior of the correlation 

function when they condense. They play here exactly the same role as in the 

Ising godel. In the strongly coupled phase (h>l) they are massive. However 

at the critical point they become massless and therefore they condensate random- 

izing the system. It is clearly seen from their definition that they are large 

topological objects which change the boundary conditions and that cannot be removed 

by any finite number of spin flippings. 
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IV. THE X,Y MODEL 

A. Construction of the Hamiltonian 

In?he next systems we shall study, the symmetry operations, both global 

and gauge, are continuous. The group Z2 is replaced by the continuous rotation 

group 02. The first example with O2 symmetry is the 2-dimensional X-Y model 

of a magnet. 
4 

At each site of a 2-dimensional square lattice there .is a unit 

two-vector, a, described by an angle +(r) . All physical quantites are periodic 

in @. 

The interaction between sites is of the form g(r) . c(r+l) or cos [q(r)-$@‘)I . 

Thus for an anisotropic lattice the action is defined as 

d = - F pt cos[$(r) - @@+$)I 

- C Pz cos W(r) - Nr+fiz)l 
r 

(4.1) 

Evidently the action is minimized by configurations in which all the spins 

are parallel as for the Ising model, although this state is not unique. However, unlike 

the Ising case the degeneracy is infinite corresponding to the continuously variable 

direction of magnetization. The fact that the degenerate states are infinitely close 

to one another makes the two systems essentially different. This will be evident 

when we discuss the long range correlations in the system. 

To construct a time-continuum limit we can follow the method used for the 

Ising case. The same result can be obtained from a simpler and more familiar 

argument. Let us first allow pt + m, We also introduce a time lattice spacing 

a which in the present case behaves like l/p,. The reason for resealing the time 

direction is again to make the theory finite as pt+ m . 
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We write the time-link term as 

W3 
-i$qcos a 

- Q(r+fit 
a 

As pt + m the important values of $(r) and $(r+f$) will be those for which 

$(r)-4 (r+i$) + 0 as l/p,, which is equal to a. Thus we replace (4.2) by 

-6, [I -g ($1 

We may of course ignore the constant term. 

The sum over space-time location may be approximated by 

~=~~dt~ 
r Z 

Thus the time like terms in a are replaced by 

The space terms can be written 

-Ca+ { 
r 

cos $W-W+fiZ) i 

(4.2) 

(4 * 3) 

(4.4) 

(4.5) 

If pzgt is allowed to remain finite as pt+- then a is a constant h and (4.5) becomes 

Thus the full action is 

&f = + /dt z{$ - h cos[C$(z)-$(z+l)l} 
Z 

M-6) 

In this case the trajectories in p,,P, space corresponding to time-continuum 

limits are hyperbolas 

P&=h (4.6) 
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Finding the Hamiltonian from (4.7) is just the usual problem of passing from 

the Lagrangian to the Hamiltonian in mechanics except that the time variable is 

euclidean. Thus we obtain 

H=F{+ - A cos [q)(z) - @(z+l)] 
> 

Q-9) 

where L is the canonical momentum conjugate to $. Quantum mechanically it 

satisfies 

[L,e i@] =* ekie (4. 10) 

Since the variables $ are periodic it follows that L has a discrete spectrum 

which consists of all the integer numbers. 

B. Large A Behavior 

For A large the term -AC cos[@(z) - $(z+l)] forces the field $ to be very 

smooth. For the low energy configurations the field differences at neighboring 

sites will be so small that we may expand the cosine. Thus 

H= c$ +h[@(z) - @( z+l)l 2 hpj(z) - @I( z+l)l 
4 

2 4 
+ . . . 

For the lowest energy states it is a good approximation to truncate the series 

after the second term. To see this explicitly a change of variables will be useful. 

Define 

p = h-i L (4. 12) 

Evidently U and P are conjugate variables. In terms of the new variables H 

becomes 
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CP(z)? + [U(z) - U(z+1)12 

1 
--I 

12h" 
U(z) -KJ(z+l)l 4 -I- . . . 

-1 

(4. 13) 

In this form it is plausible that the quartic and higher terms can be neglected for 

the lowest energy states. It is also evidently useful to rescale the energy so that 
1 

hm2H becomes the new energy. 

Let us consider the ground state correlations (vacuum expectation values) 

defined by 

(4.14) 

which can be written as 

<Olexp --& [U(o) - U(z)] IO> 
Aa 

(4.15) 

We will approximate this quantity by the corresponding free field value defined 

by truncating (4.13). For a free field we can write 

<Olexp 1 
A$ 

[U(o) - U(z)] IO> = exp -1 
2hi 

<O’KJ(o) - U(z)] 210> 

(4.16) 

and for large z one easily finds 

<Ol NJ(o) -U(z)] 210 = const. loglzl 

Thus the correlation function behaves like 

<,iO@) e-i9 W 
> - I4 

-c/ayri (4.17) 

Thus for large h the correlation decays as a power of the distance. 4 This 

type of behavior is somewhat unusual. On the one hand the fact that the correlation 

goes to zero implies a lack of infinite range order or what is equivalent, no 

, 
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spontaneous magnetization. On the other hand the order is not of the usual short 

range type which decays as an exponential. Note that the power behavior depends 

.on h. 

C. The Small h Behavior 

For the limit A-, o the dominant term in H is 

py? 
Z 

and the ground state is the product state annihilated by each L(z). 

(4. 18) 

L(z)\O> = 0 (all z) (4. 19) 

For this ground state the correlation function identically zero for any non-vanishing 

separation. This is because exp i@ (0) increases the value of *#L(o) by one unit which 

is not compensated by exp [-i@(z)] if z#o. 

For small A we may use perturbation theory to compute the correlation 

function. To get a non-vanishing contribution to the correlation the perturbation 

must act at least z times. Accordingly the correlation will behave like 

(4.20) 

For this phase the correlation decays in the conventional way of a disordered 

system. 

The energy spectrum for small h consists of a ground state and massive 

excitations created by applying the operators exp[ir$(z)]. 

D. Kinks 

We have seen that the A >> 1 phase is not characterized by a non-vanishing 

order parameter. We will now show that a dual order parameter exists which 

also vanishes for h >> 1 but which is non zero for h<< 1. The existence of this 

dual order can be used to characterize the phase transition. Thus define 
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Kf(zo) = exp if c L(z) (4.21) 
z< z 

Le,t us consider the action of this operato; on the classical ground state for 

which $I (z)=O. Since L(z) and e(z) are conjugate, Kf rotates all the spins for 

z < z. by angle f (see Fig. 33). 

We shall now show that 

<O’Kf(z)(O> (4.22) 

is a suitable parameter to describe the phase transition and since it is related 

with the dual of the XY model, we call it the dual order parameter. Let us 

con@der first the large h phase. We calculate the correlation function 

<OIKf(s) Kf*(z)l 0> =+ C,(z-s) (4.23) 

where z>s, and we want to compute this function in the limit [z-s1 >> 1. In order 

to carry out this calculation it is useful to make a spin wave expansion of the 

field q(z) . Let a+(k), a-(k) be the creation and destruction operators of a spin 

wave of momentum k and let Wk- lkl be the dispersion relation for small k. 

Since 

P(z) = Q)(z) = h$L(z) 

we get the following expansions for q(z) and d(z) 

G(Z) =J> (a+(k) eikz + a-(k) esfkz) 

Wk 

b(z) = -i/z& pk (a+(k) eikz - a-(k) e 
-ikz 

The magnitude we want to compute is 

C,(z-s) = <O)exp % 
[’ 

c d(x) lo> 
Aa s<xjz I - 

(4.24) 

(4.25) 



41 

which is the same as 

C,(z-s) t7 exp 
l- 5 <oi(s~z G(x)po;!ee field 

-- 

(4.26) 

for the same arguments given above. 

After some algebra one finds that the leading contribution to 

<Ol c 
i 

h 2 lWfree 
s<x<z i -- 

as L = Iz-sI to infinity is 

(4,. 27) <oil 
\i-. 

c m2 P>free = 
<X<L i 

8 lo& 

0 -- 

then the correlation function Cf(L) falls off as 

2 
Cf(L) = exp 

7iL, 
- 4f log 2 

t 

= const. L - (4f2/$j (4 23) . 
h” 

in leading terms in L. This means that the order parameter <OIKf(z) IO> is 

exactly zero in this phase since 

CO1 Kf(O’ 2 = lim Cf(L) = 0 (4.30) 
L+m 

However the behavior of the correlation function is not of the typical for a 

disordered phase, i. e. exponential decay. 

Let us finally consider the small h phase where <O)Kf(O> is finite. 

Since the ground state for A=0 verifies that L(O> = 0 for all the lattice sites, 

it is clear that 

<O’K,lO> = 1 (4.31) 

at A=O. 
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Once again we may ask the question about if it is non zero only at h=O or if there 

is a finite neighborhood of A=0 where <OIKf)O> has a non+anishing value. This 

questi?% can be answered by computing <OJKflO> in perturbation theory. 

The calculation gives the result 

A2 
<OIKflO> = 1 -8 (2-cos f) + O(h4) (4.32) . 

for the lowest non trivial order in perturbation theory. Since the coefficient of h2 

is finite we argue again, the same as in the Ising model, that <OIKf IO> is not 

only non zero at h=O but is has a non-vanishing value at a finite neighborhood of 

h=O. This result makes it impossible to have a first order phase transition in 

h at h=O as it is the case of the l-dimensional Ising model as a function of temper- 

ature. 

As a conclusion we summarize the results just obtained drawing a qualitative 

picture of both phases. For large h the system has massless spin waves and 

exhibits an almost ordered phase in terms of the original system. In this phase 

the system has heavy kinks. By the other hand, for small A the spin waves become 

massive and the kinks become massless and, which is much more important, they 

condense giving rise to a non-vanishing dual order parameter <OIKf)O> which 

characterizes the phase. 
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V. ABELIAN GAUGE THEORY 

A. The Model 

As in part II a simple cubic 3-dimensional lattice replaces space. Time is 

continuous. The degrees of freedom are attached to the links 14 
and consist of 

planar rotators or phase angles $(r,$. The conjugate variables L(r, i$ 

[= -L(r+n, -?I)] have integer spectrum. 

The Hamiltonian for this system is given by the sum of two .terms which we 

call electric and magnetic. 

2 
H - 

electric - c .&- L(r,7!Q2 (5.1) 
links 

where g is a dimensionless coupling constant and a is the lattice spacing in some 

arbitrary units. 

The magnetic term is a sum of interactions, each associated with an 

elementary square box of the lattice. Let us consider a given box as shown in 

Fig. 34. The sides of the box are labeled 1,2,3,4 and are thought of as oriented. 

The magnetic interaction for this box is given by 

- $ cosr@(l) + $(2) + G(3) + $(4)1 

ag 

Thus the Hamiltonian is 

H =He+Hm 

2 

c s L(r,?Q2 - c 
1 = - cos [q(l)+. . .+$(4)1 

links Boxes g2a 

(5.2) 

B. Gauge Invariance 

For each site of the lattice we can define a gauge transformation which 

(5.3) 

rotates the phase angles of all 6 links radiating from that site. Thus 
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e i $(ro,;i) ~ e i $(ro,fi) + ih 6-m 4) 

TheseJransformations are expressed as unitary operators 

GPO) = exP[iA& Wo,fiiJ/ (5.5) 

The Hamiltonian is invariant under these transformations. Furthermore, 

as in the Z2 gauge theory we will consider the physical space of states to consist 

of the gauge invariant states. From (5.5) we see that a physical state is defined 

bY 

f L(ro,ni)l$> = 0 (,5. 6) 

i=l 

Later we will see that this is the lattice form of Gausses Law V E=O. 

It is easy to show that for any gauge invariant state the expectation value of 

,i$(r, 8 vanishes. 

Moreover the two point correlation function <Oie i[G(o, ‘)-$(R> ‘)I lo> vanishes . 

For the vacuum is defined to be a Gauge invariant state (O> we have lO>=GlO> 

for all G. 

Thus 

= <Ole i[$(o, $+A1 ,-wvw IO> 
(5 * 7) 

since L and $ commute at different lines. 

Then 

<Ol e Wh fOe-W~, @lo> = eiQOl ,Wol fi)e-WR, fi) lo> (5.8) 

for all values of A. Equation (5.8) implies thatI 

<o~eW% fQe-WR, G)lo> = o (5.9) 
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This means that the two point correlation function is not the right object 

to look at. Again, as in the Z2 gauge theory, the correct magnitude is the loop 

integrz, namely 

ei $3 
(5.10) 

where zr Cp means the sum of all the angles $ over all the links lying along the 

closed loop r. 

Following Wilson’s criteria3 we calculate 

<O(e ih $ r IO> (5 * 11) 

which is known as the loop integral. We shall show that this function is able to 

distinguish between two phases. First of all as the operator (5 . 10) is gauge 

invariant (5.11) may not be zero. Furthermore we shall show that in the small 

coupling phase it decays as e 
-perimeter 

and in the large coupling phase it goes 

as ,-Area . 
m agreement with the results already discussed in the Z2 Gauge theory. 

In addition we shall see a remarkable parallel between the behavior of the 3+1 

Abelian Gauge theory and the l+l XY ferromagnet. 

C. Small g Phase 

As in the XY model we have to rescale the variables in order to describe 

the small g phase. Thus we define the components of the vector potential by 

A(?, 6) = f 4 (vo (5.12) 

and the conjugate electric field E(‘?,fi) 

E(?,fi) = %- L (?‘,?i, 
a2 

so that 

[A(r,i?) ; E(?‘,^n’)l = 1 a; %,i;’ %?,?I 

(s * 13) 

(5.14) 
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The Hamiltonian now takes the form 

H = a3 c $fiink) 

links 

-a3 C 
2 a4 

g4! 
boxes 

+ a3 

( 1 FA 

a4 
+ O(g4) (5.15) 

where r is an elementary box of the lattice. For the long wavelengths we can 

approximate 

The long wavelengths physics is approximated by the continuum field theory 

H =i a3x (E2(x) + (VXIX)~} + O(g2a4) (6 . 17) 

(5.16) 

4 Gx-lif 

Thus the first two terms define conventional free field electrodynamics and the 

higher order non-renormalizable terms are believed to be unimportant for 

distances very much larger that the lattice spacing. 

We now~would like to calculate the loop integral 

(5 . 18) 

for a circular path r of radius R. 

It can be easily proven that 

(5.19) 

where x(z indicates the vector potential at the point Talong the closed curve 

Since Cr is Gauge invarian we choose to evaluate (5.19) in the Feynman 

gauge. The free field propagator is 



(5.20) 

T& integrals can be most easily done by defining angular coordinates on the 

circle. The final result is:.‘- 

. 

Cr =e-(5 I) ew (-$I) 

where I is the integral 

(5.21) 

(5.22) 

However I is singular since the integrand has singularities at 0 1-f3 2=0127r, 

Thus the integral has to be cut off by constraining both angles and angular differences 

to be bigger than $. With this cut off procedure the integral I can be expressed 

as 

I = + 210g a R+ 27iR 
7 + const. 

for R>>a. 

Thus the loop integral has the asymptotic form 

C,-.(R) = ei 

(5.23) 

(-5. 24) 

This is essentially a perimeter law modified by a falling power at large distances. 

This is very similar to the behavior of the XY model. 

In both cases the asymptotic behavior at large distances of the correlation 

function is a power law modification of an ordered phase behavior. 
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D. Large g Phase 

To study the g >> 1 phase we write the Hamiltonian 

H’+ HE c e$kn) -$ c cos 

g links g boxes 
I (5.25) 

In the limit g +Q) the vacuum state IO> is determined by the first term in 

the Hamiltonian and therefore satisfies 

L(?,i;)lO> = 0 all links (5.26) 

The second term will be treated as a perturbation and it will excite boxes 

with circulating electric flux. 

This phase is very similar to the small A phase of the Z2 gauge theory. Here 

we have stable lines of electric flux whose energy is proportional to their length. 

We shall now calculate the loop integral in this phase. As in the Z2 case the 

IN 
lowest contribution in powers of $ is proportional to 4 

g 0 

, where N is the 

g . 

number of boxes of the minimal surface bounded by the loop. 

Thus 

Cr = const. = const. e- 
c.A.log g 

(5.27) 

where A is the area of the loop. 

We have seen that for weak coupling the correlation function behaves as 

e-perimeter 
while here is e 

-area 
. These two behaviors characterize to different 

phases of the theory which must be separated by a phase transition. 

E. Monopoles 

The loop integral characterizing the two phases can be rewritten, for small 

g, as 
. 

<Olelg $ . d:lO> (5.28) 
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where the integral indicates the total magnetic flux passing through the loop, 

The phase transition is caused by the increasing large scale fluctuations of the 

magnetic flux which randomize the integral for arbitarily large loops. The source 

of these fluctuations can be traced to the condensation of magnetic monopoles. 
16 

We shall first discuss what is a magnetic monopole on a lattice. Following 

Dirac l7 we define a magnetic monopole of the field configuration created by an 

infinitely thin solenoid with one end placed at infinity. To define a monopole on 

a lattice18 by embedding the solenoid along the Z axis with the finite end at the 

center of a cube. 

The monopole is described by the classical vector potential Acl(E-Fo), where 

F. is the position of the monopole. The classical 

by assigning a phase to each link according to the 
i?+_n 

lattice monopole Fig. 35 is defined 

rule 

(5.29) 

Let us consider the magnetic energy of the classical lattice monopole. Since 
. 

the field is static there is no electric contribution to the energy (E=A) 

The magnetic energy is 

E 
mag 

= + c (-w @)) 
w boxes 

(5.30) 

where we have subtracted the energy of the classical vacuum. The 1 g H + is the 

flux F of the classical field through the box. Let us divide the energy into two 

parts, a term for those boxes through which the solenoid passes and all others. 

For the first class of boxes the flux per box is just the total monopole charge /J. 

The energy stored in those boxes is 

+i l-mPg)) 
ag 

(5.31) 

where L is the length of the solenoid in lattice units and it is infinite. 
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Accordingly the magnetic monopole energy can only be finite if 

pg = 2nr (5.32) 

Thus is the famous Dirac’s quantization relation 
17 

which in the lattice formulation 

expreszes the condition of the energy of the monopole to be finite. 

In order to define the monopole condensate phase (g >> 1) it is convenient to 

introduce a monopole creation operator M+ (%) 

M+(yo) = ~c#QiW 

links 

L (link) 
1 

(5.33) 

This operator has the effect of translating the phase of every link by an amount 

+ cl. Thus it also shifts the magnetic flux on each box by Fcl. 

Acting on the vacuum of the small g phase it creates a state with a monopole 

with position ro. 

Let us consider <OlM’(?)lO> in the weak coupling vacuum. For this purpose 

we write 
i 

M+ = e / 
A$). E(r) d3r 

The electric field can be expanded in creation and annhilation operators for free 

photons and the expectation value computed to be 

1 --- 
Ail(F) Aal <Ei(r) Ej(r’)> d3r d3r’ 

<OlM+(?)lO> = e 
2 

(5.34) 

Explicit calculations with free fields show the exponent to be logarithmically 

divergent of the volume. This result is analogous to the behavior of the kink 

creation operator in the XY model. 

Next let us consider the behavior of this quantity in the g >> 1 phase. 

For g=- the vacuum state satisfies 

L)O> = 0 all links 

and therefore 

<Oj M+(o) IO> = 1 (5.35) 
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For weak coupling the order parameter <OlM+(o)lO> vanishes but for g + OQ 

we have seen that it is equal to one. To show that it is connected to a phase 

transition we have to show that the order parameter is non zero for some range 

of. the coupling constant. To test this statement we have to compute the derivatives 

of <OlM+lO> with respect to L 4 by strong coupling perturbation theory. If these 
g 

derivatives are finite we can say that in the neighborhood of g=m the ground state 

expectation value of M+ is non zero. Indeed strong coupling perturbation expansion 

gives the result 

<OlM+lO> = 1 - L c (1-cos F(box)) + 0 g-l6 
64g8 boxes 

(5.36) 

This result shows that for g >> 1 the system looks like as a monopole condensate , 

with a finite monopole density. In the large g phase the loop integral Cr has the 

asymptotic behavior 

‘r - exp { -Area) 

We can now understand this result as an effect due to the monopole condensate. 

In fact monopoles near the loop will change the phase of the loop integral in about 

7r per monopole (Fig. 36). In the phase where the monopoles form a condensate, 

they will change loop’s phase wildly or, what is the same, they will randomize 

the loop integral. The total effect will be to make the loop integral to fall off 

very fast. 

Thus, the phase in which monopoles form a condensate is the disordered 

phase of the system. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
I 

9. 

10. The object we are calling the action is actually the energy function of 

classical statistical mechanics. 

11. This is exactly correct for periodic boundary conditions. In the thermo- 

dynamic limit the precise boundary conditions are unimportant. 

:12. S. Elitzur, Phys. Rev. Dg, 3978 (1975). 

13. G. Baker Jr., Essentials of Padel Approximants, Academic Press (1975). 

14. Each lattice link can be denoted in two ways, (F, fi) and (r + ii, -fi). It is 

convenient to define $(r’, fi)- = - $(F+ A;-d). 

15. Eq. (5.9) holds for all gauge invariant states. 

16. S. Mandelstam, L. B. L. Preprint. 

17. P.A.M. Dirac, Proc. Roy. Sot. (London), A CXXX111:60 (1931). - 

18. A. M. Polyakov, Phys. Lett. E, No. 1, 82 (1975). 
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FIGURE CAPTIONS 

1. The space-time lattice. 

2. Phase boundary for the anisotropic 2-dimensional Ising model. 

3. The equal correlation contours for the symmetrical lattice are circles. 

4. The equal correlation contours become elipses for the anisotropical lattice. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

The elipses are deformed back into circles by squeezing the lattice in the 

time direction. 

Two neighboring rows of spins. 

Asymptotic behavior of the equal correlation length curves in the ptpz 

parameter space. Each curve is labeled by a single value of h. 

Dual lattices in l-dimension. 

The ground state of the quantum mechanical Ising model in a transverse 

field at large values of h is doubly degenerate. 

A kink applied at site n flips all the spins since -m up to site n. 

The effect of the dual transformation. 

Kinks in action. 

The sequence shows how kinks disorder the system. The disordered state 

is the kink condensate. 

The degrees of freedom of the gauge theory are defined on the links of the 

lattice. 

In 3+1 dimensions, each lattice site is connected with 8 links. 

The terms of the action are identified with the faces of the 4-d cubic lattice. 

A closed path of links. 

A time independent gauge transformation at spatial site (xl, x2, x3). 

A sp.ace-time box. 

How to label a link. 



21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 
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The operator al(x1,x2, 3, 3 x *I? ) is defined in terms of the o ‘s on the ?I 
1 1 

and 6 
2 

directions (broken lines). 

TEi’e dual lattice. 

o3 on a dual link is defined as a product of al’s on the solid links. 

A string-like excitation. 

A disconnected graph. 

The string is deformed by the perturbation. 

The string starts to percolate. 

An excited link (in dark) is dual to a box with inverted flux (dotted line). 

The string is dual to a tube of boxes with iwerted flux. 

A half plane of inverted p3 is dual to the string, although is not gauge a 

invariant state. 

A closed loop on the lattice. 

The kinks of the Z2 gauge theory in 3+1 dimensions are lines of inverted 

links which are closed at infinity. 

The kink creation operator rotates all the spins from -00 up to site z by the 

same angle f. 

The magnetic terms are associated with the boxes. 

The classical lattice monopole. 

A loop and the flux of a nearby monopole. 
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