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Let(F, ^ , | | • 11) be a Banach lattice, and denote F\{0} by V. For the definition of a Banach
lattice and other undefined terms used below, see Vulikh [4]. Leader [3] shows that, if norm
convergence is equivalent to order convergence for sequences in F, then the norm is equivalent
to an M-norm. By assuming the equivalence for nets in F we can strengthen this result.

THEOREM. Let (F, ^ , | |- | |) be a Banach lattice; then the following statements are
equivalent:

(i) Norm convergence is equivalent to order convergence, for nets in V.
(ii) Vis finite-dimensional.

Proof, (i) implies (ii). If a, /?e V, write a =< /? to mean || a || ̂  || /? . Then (F ' , =Q is a
preordered set directed to the right. Let xa = a for all a e V; then [| • — limxa = 0, and so
0-limxa = 0. Hence (F, ^ ) has a strong unit, e say. Define || -||e by ||;
for xe V. By Birkhoff [1], || • || and || • ||e are equivalent norms. In fact (F, k , | | -]|e) is a
Banach lattice with unity e and so an M-space, Birkhoff [1]. So (F, ^ , 11 • | |e) is isomorphic with
(C(X), ^ , sup norm), X compact Hausdorff, by Kelley and Namioka [2].

Let x0 e X and let g be the characteristic function for the point x0. Define

F = {/eC(X):f^ 0 and f(x0) = 1};

then (F, ^ ) is directed to the right. Let / a = a for all aeF. Then, by Urysohn's Lemma,
fa{g pointwise. If geC(X), then 0-lim/a = g; otherwise 0-lim/a = 0. Now || • | | e - l im/ a = 0
is impossible; so geC(X). Hence {x0} is open; so A'is discrete and hence finite.

(ii) implies (i). The proof of this is trivial.

The author is grateful to the referee for suggesting an improvement to the paper.
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