ORDER AND NORM CONVERGENCE IN BANACH LATTICES

by ANDREW WIRTH†

(Received 27 June, 1972; revised 19 September, 1972)

Let $(V, \leq, ||\cdot||)$ be a Banach lattice, and denote $V\setminus\{0\}$ by V'. For the definition of a Banach lattice and other undefined terms used below, see Vulikh [4]. Leader [3] shows that, if norm convergence is equivalent to order convergence for sequences in V, then the norm is equivalent to an M-norm. By assuming the equivalence for nets in V we can strengthen this result.

THEOREM. Let $(V, \leq, ||\cdot||)$ be a Banach lattice; then the following statements are equivalent:

- (i) Norm convergence is equivalent to order convergence, for nets in V.
- (ii) V is finite-dimensional.

Proof. (i) implies (ii). If α , $\beta \in V'$, write $\alpha \leqslant \beta$ to mean $||\alpha|| \ge ||\beta||$. Then (V', \leqslant) is a preordered set directed to the right. Let $x_{\alpha} = \alpha$ for all $\alpha \in V'$; then $||\cdot|| - \lim x_{\alpha} = 0$, and so 0-lim $x_{\alpha} = 0$. Hence (V, \le) has a strong unit, e say. Define $||\cdot||_e$ by $||x||_e = \inf \{\lambda : |x| \le \lambda e\}$, for $x \in V$. By Birkhoff [1], $||\cdot||_e$ and $||\cdot||_e$ are equivalent norms. In fact $(V, \le, ||\cdot||_e)$ is a Banach lattice with unity e and so an M-space, Birkhoff [1]. So $(V, \le, ||\cdot||_e)$ is isomorphic with $(C(X), \le, \sup norm)$, X compact Hausdorff, by Kelley and Namioka [2].

Let $x_0 \in X$ and let g be the characteristic function for the point x_0 . Define

$$F = \{ f \in C(X) : f \ge 0 \text{ and } f(x_0) = 1 \};$$

then (F, \ge) is directed to the right. Let $f_{\alpha} = \alpha$ for all $\alpha \in F$. Then, by Urysohn's Lemma, $f_{\alpha} \downarrow g$ pointwise. If $g \in C(X)$, then $0-\lim f_{\alpha} = g$; otherwise $0-\lim f_{\alpha} = 0$. Now $||\cdot||_{e} - \lim f_{\alpha} = 0$ is impossible; so $g \in C(X)$. Hence $\{x_{0}\}$ is open; so X is discrete and hence finite.

(ii) implies (i). The proof of this is trivial.

The author is grateful to the referee for suggesting an improvement to the paper.

REFERENCES

- 1. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications 25, 3rd Edition (Providence, R. I., 1967), 366-377.
 - 2. J. L. Kelley and I. Namioka, Linear topological spaces (Princeton, 1963), 236-242.
- 3. S. Leader, Sequential convergence in lattice groups, *Problems in Analysis* (ed. R. C. Gunning), (Princeton, 1970), 273–290.
 - 4. B. Z. Vulikh, Introduction to the theory of partially ordered spaces (Groningen, 1967).

MONASH UNIVERSITY

CLAYTON, VICTORIA, AUSTRALIA, 3168

† This research was supported by a Commonwealth Postgraduate Research Award.