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1. Introduction

The notions of order and type of entire functions are classical in complex analysis.
They result from a comparison of a given function with standard functions. The
purpose of this paper is to generalise this comparison in such a way that order and
type become dual to each other in the sense of convex analysis (section 4), and to show
that the concept of order so obtained appears as the natural answer to a problem of
extrapolation: to extend convex functions from the union of two parallel hyperplanes
to as large a set as possible (section 7). Then we return to entire functions to consider
an analogous extension problem for them (section 8).

It is shown that the relative order of one function with respect to another can
always be calculated from the growth of its Taylor coefficients (section 6). This is true
for the type only if the growth is sufficiently regular (section 12). We also consider
a generalisation of the notion of regular growth of entire functions, and show that
Whittaker’s decomposition theorem holds for functions which are of irregular growth
(section 9).

In [6] I studied order and type from this point of view, using methods from
my paper [5]. For earlier developments see the references in that paper. See also
Kiselman [7, 8]. A different approach to the relation between maximum modulus
and Taylor coefficients is presented in Freund & Görlich [1].

This work has been partially supported by the Swedish Natural Science Research
Council.
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I am grateful to Harvir S. Kasana for discussions concerning Whittaker’s decom-
position theorem.

2. Order and type in classical complex analysis

Let h be an entire function in Cn. Its order and type are defined classically by
comparing h with the function exp(b|z|a) for various choices of the parameters a and
b. More precisely, one considers first estimates

|h(z)| 6 Cae|z|
a

, z ∈ Cn,

and defines the order ρ as the infimum of all numbers a for which such an estimate
holds (0 < a < +∞; 0 6 ρ 6 +∞). In the case where 0 < ρ < +∞ one then
considers all numbers b such that

|h(z)| 6 Cbe
b|z|ρ , z ∈ Cn,

for some constant Cb. The type (with respect to the order ρ) is then the infimum σ
of all such numbers b (0 < b < +∞; 0 6 σ 6 +∞).

For the order we have the formula

(2.1) ρ = order(h) = lim sup
r→+∞

sup
|z|=r

log log |h(z)|
log r

.

Now sup|z|=r log |h(z)| is a convex function of log r in view of the Hadamard three-
circle-theorem, so it is natural to consider the function

f(t) = sup
|z|=et

log |h(z)|, t ∈ R;

we shall call it the growth function of h. The definition of order then means that
we consider all numbers a such that

f(t) 6 eat + Ca, t ∈ R,

for some constant Ca, and then define the order as the infimum of all such numbers
a. (The role of the constant Ca is to eliminate all influence of values of f at any
particular point.) Similarly, the type (for order ρ) is the infimum of all numbers b
such that

f(t) 6 beρt + Cb, t ∈ R.

Now this leads naturally to the idea of comparing with some other function g
instead of the exponential function g(t) = et. So we might want to consider all
numbers a such that

(2.2) f(t) 6 g(at) + Ca, t ∈ R,

and then take the infimum of all a.
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For reasons which will become clear when we come to the duality between order
and type, it is desirable to change this inequality to

(2.3) f(t) 6
1

a
g(at) + Ca, t ∈ R.

Now in the classical case, when g(t) = et, the factor 1/a does not make any difference
whatsoever, for in this case we see that for any a > 0 and any b > a there is a constant
Ca,b such that

g(at) 6
1

b
g(bt) + Ca,b and

1

a
g(at) 6 g(bt) + Ca,b.

This implies that comparisons with g(at) and with g(at)/a give identical infima. But
of course there exist functions g such that this is not true (e. g., g(t) = t), and then
(2.2) and (2.3) lead to different definitions of the order.

3. Relative order and type of convex functions

Definition 3.1. Let f, g: E → [−∞, +∞] be two functions defined on a real vector
space E. We consider inequalities of the form

(3.1) f(x) 6
1

a
g(ax) + c, x ∈ E,

where a is a positive constant and c a real constant. We shall call the infimum of
all positive numbers a such that (3.1) holds for some constant c the order of f
relative to g, and denote it by ρ = order(f : g).

Examples. The motivating example is

order(t 7→ eAt : t 7→ et) = A

for all positive numbers A. Trivial examples are: order(a : b) = 0 if a and b are finite
constants; order(f : +∞) = 0; order(−∞ : g) = 0; order(f : −∞) = +∞ except if f
is identically −∞; order(+∞ : g) = +∞ except if g is identically +∞.

If g is convex, we know that

(3.2)
1

a
g(ax) 6

1 − t

a
g(0) +

· t

a
g(bx) =

(
1

a
− 1

b

)
g(0) +

· 1

b
g(bx), x ∈ E,

if 0 < a < b and ax = (1− t) · 0 + tbx, i. e., t = a/b. Here the sign +
·

denotes upper

addition, which is an extension of the usual addition from R2 to [−∞, +∞]
2
; it

satisfies (+∞) +
·

(−∞) = +∞. Similarly we define lower addition as the extension
of + which satisfies (+∞) +· (−∞) = −∞. If g(0) = +∞ the inequality (3.2) is

without interest, but if g(0) < +∞, it shows that the inequality (3.1) for a particular
a implies the same inequality with a replaced by b for any b > a. The set of all
numbers a, 0 < a < +∞, such that (3.1) holds is therefore an interval, either [ρ, +∞[
or ]ρ, +∞[ for some ρ ∈ [0, +∞].

So although Definition 3.1 has a sense for all f and g, it is often desirable to
assume that g is convex with g(0) < +∞: in this case the order determines the set
of all a for which (3.1) holds, with the exception of one point, the order itself.
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Lemma 3.2. Let fy denote the translate of f by the vector y: fy(x) = f(x − y). If
one of f and g is convex and real valued, then

order(fy : g) = order(f : gy) = order(f : g).

In particular order(fy : gy) = order(f : g) so that the order is translation invariant
and can be defined on affine spaces as soon as one of the functions is convex and real
valued.

Proof. If f is convex and real valued, we know that

f(x − y) 6
1

b
f(bx) +

(
1 − 1

b

)
f(z)

for any b > 1, if we choose z such that

x − y =
1

b
bx +

(
1 − 1

b

)
z,

i. e., if z = −y/(1− 1/b). If order(f : g) = ρ, there are numbers a arbitrarily close to
ρ such that

f(x) 6
1

a
g(ax) + c.

We then estimate f as follows:

f(x − y) 6
1

b
f(bx) +

(
1 − 1

b

)
f(z) 6

1

ab
g(abx) +

1

b
c +

(
1 − 1

b

)
f(z).

Since f(z) is finite and independent of x, this shows that order(fy : g) 6 ab, and
since b is arbitrarily close to 1, we see that order(fy : g) 6 ρ. If we apply this result
to fy, translating by the vector −y, we get equality.

Similarly, if g is convex and real valued, we can write

f(x − y) 6
1

a
g(a(x − y)) + c 6

1

ab
g(abx) +

1

a

(
1 − 1

b

)
g(z) + c,

where z = −ay/(1 − 1/b), thus independent of x. This shows that, in this case also,
order(fy : g) 6 ab with ab arbitrarily close to ρ.

It remains to consider order(f : gy). The arguments are the same as for
order(fy : g); we omit the proof.

It is easy to give examples of functions with values in ]−∞, +∞] such that the
order is not translation invariant:

Example. Let f be the indicator function of the ball rB, i. e., let f(x) = 0 when
|x| 6 r and f(x) = +∞ otherwise. Similarly let g be the indicator function of the
ball sB. In the case where 0 < s 6 r we get

s

r
6 order(fy : gy) =

s + |y|
r + |y| 6 1.

If s > r > 0, we have

order(fy : gy) =





s − |y|
r − |y| >

s

r
> 1 when |y| < r;

+∞ when |y| > r.

We now consider a generalisation of the notion of type in complex analysis.
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Definition 3.3. Given two functions f, g: E → [−∞, +∞] on a vector space E, we
consider inequalities

(3.3) f(x) 6 bg(x) + c, x ∈ E,

where b is a positive number. We define the type of f relative to g as the infimum
of all positive numbers b such that (3.3) holds for some constant c. We shall denote
it by σ = type(f : g).

Example. The motivating example is

type(t 7→ Aeρt : t 7→ eρt) = A.

The two functions here are the growth functions of the entire functions exp(Azρ) and
exp(zρ) if ρ is a natural number, and then A is the classical type with respect to
order ρ.

If g is bounded from below, the set of all numbers such that (3.3) holds is an
interval, for as soon as b1 > b we have

bg(x) + c = b1g(x) + c − (b1 − b)g(x) 6 b1g(x) + c − (b1 − b) inf g = b1g(x) + c1.

Therefore, although the definition has a sense for all functions, it is clear that it will
often be necessary to assume g bounded from below. In this case the type determines
all numbers b for which (3.3) holds, except the number σ itself.

Proximate orders are introduced to give functions of finite order normal type
(0 < σ < +∞); see Lelong & Gruman [10, Appendix II]. The type with respect to a
proximate order is a special case of Definition 3.3.

A generalisation of the classical order and type has been studied, e. g., by Sato
[11] and Juneja, Kapoor & Bajpai [3, 4]. For given integers p and q, they study the
(p, q)-order defined as

ρpq = lim sup
log[p] M(r)

log[q] r
= lim sup

log[p−1] f(t)

log[q−1] t
,

where M(r) = exp f(log r). (Sato considered this only for q = 1.) Here the brackets
indicate iterations of the logarithm function. Now it is easy to see that the (p, q)-
order is just order(fq : gp) where fq(t) = f(exp[q−1](t)) and gp(t) = exp[p−1](t). Both
fq and gp are convex. Their generalisation of the notion of type is, however, different
from that of Definition 3.3. The (p, q)-type is

Tpq = lim sup
log[p−1] M(r)

(log[q−1] r)ρ
= lim sup

log[p−2] f(t)

(log[q−2] t)ρ
.

For p > 3 this is not the relative type of one convex function with respect to another,
but rather an order: it is the order of f(exp[q−2] t1/ρ) with respect to exp[p−2](t).
Therefore our results on order generalise those of the authors mentioned, but our
type is different, and some of the earlier results on type can be interpreted as orders
in the framework of the present paper.
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4. Order and type in duality

The notion of order and type as defined in the last section are dual, or conjugate, to
each other in the sense of convexity theory. We shall express duality here in terms of
the Fenchel transformation: for any function f : E → [−∞, +∞] we define

(4.1) f̃(ξ) = sup
x∈E

(ξ · x − f(x)), ξ ∈ E′.

Here E is a real vector space, and E′ is any fixed linear subspace of its algebraic dual
E∗. The function f̃ is called the Fenchel transform of f ; other names are the

Legendre transform of f , or the conjugate function. It is easy to see that f̃ is
convex, lower semicontinuous for the weak-star-topology σ(E′, E) and that it never
takes the value −∞ except when it is equal to −∞ identically.

Points where f(x) = +∞ do not influence the supremum in (4.1). We shall use
this fact in the following way. Let dom f denote the set where f(x) < +∞, the

effective domain of f . Then for any set M such that dom f ⊂ M ⊂ E we have

(4.2) f̃(ξ) = sup
x∈M

(ξ · x − f(x)), ξ ∈ E′.

The inequality ξ · x 6 f(x) +
·

f̃(ξ) is called Fenchel’s inequality. Applying the
transformation twice we get

˜̃
f(x) = sup

ξ∈E′

(ξ · x − f̃(ξ)) 6 f(x), x ∈ E.

Thus always
˜̃
f 6 f ; the equality

˜̃
f = f holds if and only if f is convex, lower

semicontinuous for the weak topology σ(E,E′), and takes the value −∞ only if it

is −∞ identically. More generally, it follows that
˜̃
f is the maximal convex lower

semicontinuous minorant of f which never takes the value −∞ except when it is the
constant −∞. For these properties of the Fenchel transform see Rockafellar [11]. Of

course
˜̃
f depends on the choice of E′; if E′ = {0}, then

˜̃
f is the constant inf f . If

E = Rn it is natural to take E′ = E∗ ∼= Rn; if E is a topological vector space one
usually takes E′ as the topological dual of E.

Proposition 4.1. Let f, g: E → [−∞, +∞] be two functions on a vector space E.
Then

type(g̃ : f̃) 6 order(f : g).

Proof. If order(f : g) < A, then f(x) 6 g(ax)/a + c for some number a < A, and

we deduce that f̃(ξ) > g̃(ξ)/a − c, which we write as g̃(ξ) 6 af̃(ξ) + ac. Therefore

type(g̃ : f̃) 6 a < A.

Proposition 4.2. If f, g: E → [−∞, +∞] are two functions on a vector space E,
then

order(g̃ : f̃) 6 type(f : g).

Proof. If type(f : g) < A there are numbers a < A and c such that f(x) 6 ag(x) + c.

We take the transformation to obtain f̃(ξ) > ag̃(ξ/a) − c, which can be written as

g̃(ξ) 6 f̃(aξ)/a + c/a. Therefore order(g̃ : f̃) 6 a < A.
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Theorem 4.3. Let f, g: E → [−∞, +∞] be two functions on a vector space E such

that
˜̃
f = f and ˜̃g = g. Then

order(g̃ : f̃) = type(f : g) and type(g̃ : f̃) = order(f : g).

Proof. We just combine Propositions 4.1 and 4.2.

Corollary 4.4. Let E = Rn and choose E′ = Rn. Let f, g: Rn → [−∞, +∞] be
two functions satisfying the hypotheses of the theorem. Assume in addition that f is
finite in a neighbourhood of the origin and grows faster than any linear function, and
that g is not the constant +∞. Then

order(f : g) = lim sup
ξ→∞

g̃(ξ)

f̃(ξ)
.

Proof. If f 6 M for |x| < ε we obtain f̃(ξ) > ε|ξ| − M . Therefore 0 < f̃ < +∞ in a

neighbourhood of ∞, and lim f̃ = +∞, so that the type is given by

type(g̃ : f̃) = lim sup
ξ→∞

g̃(ξ)

f̃(ξ)
.

5. The infimal convolution

The infimal convolution is an important operation in convexity theory. It is actually
dual to addition, so many problems can be reduced to simple questions using the
Fenchel transformation, but it is often preferable to work directly with it. In this
section we just recall the definition. Later, in sections 10 and 11, we shall return to
it to make a more detailed study.

The infimal convolution of two functions f, g: E → [−∞, +∞] is defined by

(5.1) f ⊓⊔ g(x) = inf
y

(
f(y) +

·
g(x − y)

)
, x ∈ E.

Here the sign +
·

denotes upper addition; see section 3. The Fenchel transform of an
infimal convolution is

(f ⊓⊔ g)˜(ξ) = f̃(ξ) +· g̃(ξ), ξ ∈ E′,

where +· is lower addition. (It might seem strange that we get lower addition here,

for in general f +
·

g is convex when both f and g are convex, but not f +· g. However,

in this case f̃ +· g̃ equals f̃ +
·

g̃ except when it is constant, so it is always convex.)

6. The order of an entire function

Let F ∈ O(Cn) be an entire function. We shall measure its growth by

(6.1) f(t) = sup
z

[log |F (z)|; z ∈ Cn, |z| 6 et], t ∈ R.
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Here |z| can be any norm on Cn, or even an arbitrary function which is complex
homogeneous of degree one and positive on the unit sphere. We shall refer to f as
the growth function of F . In view of Hadamard’s three-circle-theorem, f is convex
and increasing, and we shall write

order(F : G) = order(f : g)

by abuse of language if F,G are two entire functions and f, g are their growth func-
tions.

One may ask which convex increasing functions can appear as growth functions.
A necessary condition is that of Hayman [2]: for a transcendental entire function
F ∈ O(C), we have

lim sup
t→+∞

f ′′(t) > H,

where H is an absolute constant satisfying 0.18 < H 6 0.25. Kjellberg [9] proved that
0.24 < H < 0.25. (A similar statement holds for polynomials.) Another necessary
condition is as follows. Define

f1(t) = sup
j∈N

(jt − f̃(j)), t ∈ R.

(The epigraph of f1 is the smallest polygon which contains the epigraph of f and
whose sides have integer slopes.) Then there is a constant C such that

f(t) − C 6 f1(t) 6 f(t), t ∈ R.

Moreover the best constant C satisfies log 2 6 C 6 log 3 (Kiselman [7, Proposition
5.1]). These two results are not unrelated, for the latter implies that H > (8C)−1.
With C = log 3 this gives H > (8 log 3)−1 ≈ 0.11, which is much weaker than the
Hayman–Kjellberg result. On the other hand, that statement does not say anything
about tangents of integer slope.

If two entire functions F and G are given, we consider their expansions in terms
of homogeneous polynomials Pj and Qj :

F (z) =
∞∑

0

Pj(z), G(z) =
∞∑

0

Qj(z),

and ask whether we can determine order(F : G) from knowledge of the growth of
|Pj | and |Qj |. It turns out that this is so. For the classical order, when G = exp,
this is well known. We shall see in section 12 that this is not necessarily true for
type(F : G).

So let F be given with an expansion in terms of homogeneous polynomials Pj .
Cauchy’s inequalites say that

|Pj(z)| 6 exp(f(log |z|)),

but the homogeneity of Pj also gives

|Pj(z)| =
|z|j
ejt

Pj(etz/|z|) 6
|z|j
ejt

exp(f(t)) = |z|j exp(f(t) − jt)

8



for all real t and all z ∈ Cn. We take the infimum over all t and get

|Pj(z)| 6 |z|je−f̃(j).

We define the norm ‖Pj‖ of the homogeneous polynomial Pj as

‖Pj‖ = sup
|z|61

|Pj(z)|, j ∈ N.

(When n = 1 we have a Taylor expansion F (z) =
∑

ajz
j and ‖Pj‖ = |aj |.) We next

define a function p: R → ]−∞, +∞] as

(6.2) p(j) =

{− log ‖Pj‖ when j ∈ N;

+∞ when j ∈ R \ N.

We shall call p the coefficient function of F . Cauchy’s inequalities become just
‖Pj‖ 6 exp(−f̃(j)), or more concisely

(6.3) p > f̃ on R.

This implies of course that p̃ 6
˜̃
f = f . Note also that

exp p̃(log r) = sup
j∈N

sup
|z|6r

|Pj(z)|.

We now ask for inequalities in the other direction. To describe this result we
need an auxiliary function K which is defined as follows:

(6.4) K(t) =

{− log(1 − et), t < 0;

+∞, t > 0.

We have K(t) > − log(−t) when t < 0 (a good approximation for small |t|) and
K(t) > et for all t (a good approximation for t ≪ 0). The Fenchel transform of K is

K̃(τ) =





τ log τ − (τ + 1) log(τ + 1), τ > 0;

0, τ = 0;

+∞, τ < 0.

We note that

(6.5) −1 − log(τ + 1) 6 K̃(τ) 6 − log(τ + 1), τ > 0.

The inverse of K is given by K−1(s) = −K(−s) for s > 0: this means that the graph
of K is symmetric around the line s + t = 0. This symmetry corresponds to the
functional equation K̃(1/τ) = K̃(τ)/τ , τ > 0, for the transform.
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Theorem 6.1. Let F be an entire function in Cn and define f and p by (6.1) and
(6.2), respectively. Then

(6.6) p̃ 6 f 6 p̃ ⊓⊔ K on R.

Proof. We have just noted that Cauchy’s inequalities give p̃ 6
˜̃
f = f . To estimate f

from above we write

|F (z)| 6
∑

‖Pj‖ · |z|j 6
∑

exp(−p(j) + jt),

where t = log |z|. We shall apply Fenchel’s inequality jt 6 p(j) +
·

p̃(t) in the form

−p(j) + jt 6 js + p̃(t − s).

This gives

f(t) 6 log
∑

e−p(j)+jt
6 log

∑
ejs+p̃(t−s).

We observe that ∑

j∈N

ejs =
1

1 − es
= eK(s)

if s < 0, which is why we introduced K. Thus f(t) 6 p̃(t − s) + K(s) for all t ∈ R

and all s < 0. Now for s > 0, K(s) = +∞, so then the inequality also holds, and we
can let s vary over the whole real axis:

f(t) 6 inf
s

(
p̃(t − s) +

·
K(s)

)
= (p̃ ⊓⊔ K)(t), t ∈ R.

This proves the theorem.
The inequalities (6.6) say that the graph of f is in a strip whose lower boundary

is the polygon defined by p̃ and whose upper boundary is given by p̃ ⊓⊔ K. Since
K(− log 2) = log 2, the width of this strip is at most

√
2 log 2 ≈ 0.98 < 1.

Applying the Fenchel transformation to all members of (6.6) we get:

(6.7) p > ˜̃p > f̃ > ˜̃p + K̃,

where K̃ can be estimated by (6.5).
For lacunary series we can state:

Theorem 6.2. Let F be lacunary: Pj = 0 for j /∈ J . Then

p̃ 6 f 6 p̃ ⊓⊔ KJ on R,

where

KJ(s) = log

( ∑

j∈J

ejs

)
.

Proof. Just restrict summation in the proof of Theorem 6.1 to j ∈ J .
It could be noted here that for any convex function H which is positive on the

negative half-axis and tends to +∞ as t < 0, t → 0, there exists an infinite set J ⊂ N

such that KJ 6 H.
Theorem 6.1 implies that the norms of the homogeneous polynomials Pj can

serve just as well as the growth function f to determine the order of F relative to
any other function. More precisely we have:

10



Corollary 6.3. Let F be an entire function on Cn, let f be its growth function
defined by (6.1), and let p be its coefficient function defined by (6.2). Assume that F
is not a polynomial. Then

order(f : p̃) = order(p̃ : f) = 1.

Proof. From (6.6) we get immediately

order(p̃ : f) 6 1, order(f : p̃ ⊓⊔ K) 6 1.

Now p̃ ⊓⊔ K(t) 6 p̃(t + 1) + K(−1) and Lemma 3.2 shows that the translation of p̃
does not influence the order, neither does of course the additive constant K(−1).
Therefore

order(f : p̃) 6 order(f : p̃ ⊓⊔ K) 6 1.

It follows from Corollary 4.4 that order(f : f) = 1. By submultiplicativity,

1 = order(f : f) 6 order(f : p̃) · order(p̃ : f) 6 1,

so that all orders must be one. (When F is a polynomial, order(f : f) = 0 and
order(f : p̃) = order(p̃ : f) = 0.)

Corollary 6.4. Let F be an entire function in Cn, with expansion

F (z) =
∑

Pj(z)

in terms of homogeneous polynomials Pj. Let f be its growth function defined by
(6.1) and let p be its coefficient function defined by (6.2). Let g: R → [−∞, +∞] be

any function which satisfies ˜̃g = g. Then

(6.8) order(f : g) = order(p̃ : g) = type(g̃ : ˜̃p).

When F is not a polynomial and g not identically +∞, the order is also given by

(6.9) lim sup
j→+∞

g̃(j)

p(j)
.

Proof. Using Corollary 6.3 we can write

order(f : g) 6 order(f : p̃) · order(p̃ : g) = order(p̃ : g)

provided F is not a polynomial. Similarly

order(p̃ : g) 6 order(p̃ : f) · order(f : g) = order(f : g).

The last equality in (6.8) follows from Theorem 4.3. If F is a polynomial, one can
verify (6.8) directly, using p̃ 6 f 6 p̃ + log N , where N is the number of terms in the
expansion (see Theorem 6.2). The only possibilities are then order(f : g) = 0, +∞.

11



We finally have, if F is not a polynomial,

type(g̃ : ˜̃p) = lim sup
g̃(τ)

˜̃p(τ)
= lim sup

g̃(j)

p(j)
.

The last equality holds because on the one hand ˜̃p 6 p, on the other hand ˜̃p = p in a

sequence of integers tending to infinity, and ˜̃p is affine in between these points.
Formula (6.9) generalises the classical formula for the order

ρ = lim sup
j log j

− log |aj |
of an entire function

∑
ajz

j . Indeed, when the comparison function is g(t) = et,
then g̃(j) = j log j − j.

The (p, q)-order of Juneja, Kapoor & Bajpai [3, Theorem 1] is determined in
terms of the coefficients by the formula

ρp,q = lim sup
log[p−1] j

log[q−1]
(
− (1/j) log |aj |

) ;

we state it only for p > q > 1 here. Sato [11] proved this for q = 1. In the latter case
(6.9) is a generalisation. For q > 2, however, this is not so, since then f(exp[q−1] t) is
used as the growth function and consequently defines another relation between the
coefficients aj (or p(j)) and f .

It could also be noted here that Corollary 6.4 generalises the classical result that
the order can be calculated from the dominant term in a series expansion

∑
ajz

j .
Indeed, with t = log |z| the maximal term is just

sup
j

|ajz
j | = exp sup

j
(jt − p(j)) = exp p̃(t).

Another classical result does not generalise easily, however. The classical order
is also given by

ρ = lim sup
log N(r)

log r
,

where N(r) is the rank of the maximal term. In our notation this would be one of
the numbers j = jt such that the equality jt = p(j) + p̃(t) holds. We can take it as a
one-sided derivative jt = p̃ ′(t) (the undeterminacy is unimportant). When p̃ is like
exp, its derivative is also like exp, so that

p̃(t) = (p̃ ◦ (p̃ ′)−1)(jt) ≈ jt,

yielding

ρ = lim sup
log jt

t
,

but in general p̃ ◦ (p̃ ′)−1 is far from the identity. More precisely, order(p̃ : g) 6

order(p̃ ′ : g) as soon as the function g satisfies the following condition: for any a > 1
there is a constant c such that

tg(t) 6
1

a
g(at) + c.

This follows easily from the inequality p̃(t) 6 p̃(0) + tp̃ ′(t). But the other inequality,
order(p̃ : g) > order(p̃ ′ : g), holds only under special conditions on p̃.

When we have two entire functions we can state:
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Corollary 6.5. Let F,G be two entire functions in Cn, with expansions

F (z) =
∑

Pj(z), G(z) =
∑

Qj(z),

in terms of homogeneous polynomials Pj, Qj. Let p and q denote their coefficient
functions defined by (6.2). Then

order(F : G) = order(p̃ : q̃) = type(˜̃q : ˜̃p).

Proof. The proof is analogous to that of Corollary 6.4.
We can also define a growth function related to the growth of an entire function

on polydisks, and to Taylor expansions in terms of monomials. Let us define

(6.10) f(x) = sup
|zj |6exp xj

log |F (z)|, x ∈ Rn,

if F is an entire function on Cn. Then f is convex in Rn. The function F has an
expansion

F (z) =
∑

k∈Nn

Akzk, z ∈ Cn,

where zk denotes the monomial zk1

1 · · · zkn
n of multidegree k = (k1, . . . , kn) and total

degree k1 + · · · + kn. Cauchy’s inequalities now say that, for r = (r1, . . . , rn) with
rj > 0,

|Ak|rk
6 sup

|zj |6rj

|F (z)| = ef(x), xj = log rj .

This gives |Ak| 6 exp(f(x)− k ·x) for all x ∈ Rn, and therefore, after variation of x,

|Ak| 6 exp(−f̃(k)), k ∈ Nn.

We introduce in analogy with (6.2)

(6.11) a(k) =

{− log |Ak| when k ∈ Nn;

+∞ when k ∈ Rn \ Nn.

Then a > f̃ and ã 6
˜̃
f = f . Next define Kn(x) = K(x1) + · · · + K(xn) for x ∈ Rn.

In complete analogy with Theorem 6.1 we have:

Theorem 6.6. Let F be an entire function in Cn and define the growth function f
and the coefficient function a by (6.10) and (6.11), respectively. Then

(6.12) ã 6 f 6 ã ⊓⊔ Kn on Rn.

A variant of the growth function can be defined as follows. Let u be a plurisubhar-
monic function on Cn which is extremal in the set a < u(z) < b: it is the regularised
supremum of all plurisubharmonic functions ϕ in a neighbourhood of the closure of
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{z; a < u(z) < b} which satisfy ϕ(z) 6 a when u(z) 6 a and ϕ(z) 6 b when u(z) 6 b.
We suppose that {z; u(z) < b} is bounded, and define for F ∈ O(Cn)

fu(t) = sup
z

(log |F (z)|; u(z) < t).

Then fu is easily seen to be convex on ]a, b]. (The growth function f defined by (6.1)
is with respect to the extremal plurisubharmonic function u(z) = log |z| provided |z|
is a norm or more generally log |z| is plurisubharmonic; if not, we can replace it by a
suitable plurisubharmonic minorant.)

We can for instance ask whether a holomorphic function on a complex analytic
variety X admits an entire extension of the same order: if F ∈ O(X), X ⊂ Cn,
does there exist an entire function G ∈ O(Cn) such that order(G : F ) = 1? Here it
might be natural to define the growth functions fu and gv of F and G with respect
to extremal functions u on X and v on Cn, respectively.

7. A geometric characterisation of the relative order

In this section we shall give a geometric interpretation of the relative order. Let E
be a real vector space. We consider two hyperplanes E × {0} and E × {1} in the
Cartesian product E × R. Now let two functions f0, f1: E → ]−∞, +∞] be given.
We consider them as defined on E × {0} and E × {1} respectively, and want to find
a function F : E × R → ]−∞, +∞] extending them, i. e., a function such that

F (x, j) = fj(x), x ∈ E, j = 0, 1.

If the fj are convex, a solution is of course the supremum of all convex minorants to
the function f(x, t) = ft(x) if t = 0 or t = 1, f(x, t) = +∞ otherwise. This solution
is the largest possible: it majorises all others. But it is of no interest outside the slab
{0 6 t 6 1}, since it is always +∞ there.

In general there is no unique solution, for we can always add t2 − t to any given
solution. We can however write down an explicit formula for an extremal solution.

Proposition 7.1. Let E be a real vector space and E′ a subspace of its algebraic
dual. Let f0, f1: E → ]−∞, +∞] be two given convex functions which are lower
semicontinuous with respect to σ(E,E′). We assume that they are not identically
plus infinity. Then the extrapolation problem

(7.1)

{
Find F : E × R → ]−∞, +∞] such that

F (x, j) = fj(x), x ∈ E, j = 0, 1,

has a solution

(7.2)

F (x, t) = sup
ξ

[
ξ · x − (1 − t)f̃0(ξ) − tf̃1(ξ); ξ ∈ dom f̃0 ∪ dom f̃1

]

= sup
ξ

[
ξ · x −

(
(1 − t)f̃0(ξ) +

·
tf̃1(ξ)

)
; ξ ∈ E′

]
, (x, t) ∈ E × R.

This solution is extremal in the sense that any convex solution G which is lower
semicontinuous in x satisfies G 6 F in {0 6 t 6 1} and G > F outside this slab.
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Proof. First a word about the definition of F . We note that the function t 7→ t ·(+∞)
is convex on the whole real line, if we define 0 · (+∞) = 0. We also note that in the
first expression defining F at most one of the three terms is infinite, for we have
−∞ < f̃j 6 +∞ everywhere, and at most one of them is allowed to be plus infinity
in the set of ξ which we use. Therefore F is well defined, and it is convex as a
supremum of functions of (x, t) each of which is an affine function plus possibly one
function of the form (t − 1) · (+∞) or (−t) · (+∞). Moreover, for t = j the function

F assumes the values
˜̃
f j(x) = fj(x), j = 0, 1, in view of (4.2). Therefore it is a

convex solution to the extension problem. It is of course not lower semicontinuous in
all variables, but it is lower semicontinuous in x for fixed t.

Now let G be another convex solution to the problem. Let us consider

G̃t(ξ) = sup
x∈E

(ξ · x − G(x, t)), t ∈ R, ξ ∈ E′.

It is concave in t for fixed ξ, for it is the marginal function of a concave function of
(x, t). It satisfies moreover G̃j(ξ) = f̃j(ξ), j = 0, 1. If we assume that G is lower
semicontinuous in x and > −∞, we also have

G(x, t) = sup
ξ

(ξ · x − G̃t(ξ)).

When 0 < t < 1 we have

dom((1 − t)f̃0 +
·

tf̃1) = dom f̃0 ∩ dom f̃1 ⊂ dom f̃0 ∪ dom f̃1.

The fact that G̃j = f̃j for j = 0, 1 implies that G̃t > (1 − t)f̃0 + tf̃1. This gives
G 6 F .

When t < 0 or t > 1 the concavity in t gives G̃t 6 (1 − t)f̃0 +
·

tf̃1 and then
G > F . This establishes the extremal character of the solution F .

We now ask how far outside the slab {0 6 t 6 1} we can obtain a real-valued
solution to the extrapolation problem. An answer is given by the next theorem.

Theorem 7.2. Let f0, f1: E → ]−∞, +∞] be two given convex and lower semicontin-
uous functions. Assume that f0(0) < +∞. If the extrapolation problem (7.1) admits
a convex solution F which is finite at a point (0, t) with t satisfying 1 < t < +∞,
then

order(f1 : f0) 6
t

t − 1
.

Conversely, if 1 6 order(f1, f0) = ρ < +∞, then the extrapolation problem has a
lower semicontinuous convex solution F with F (0, t) < +∞ for all t with 0 6 t <
ρ/(ρ − 1). Thus if we denote by b the supremum of all numbers t such that there
exists a solution F which is finite at the point (0, t), then

order(f1 : f0) = ρ =
b

b − 1
= b′.

(We assume 1 6 ρ < +∞ and 1 < b 6 +∞.)
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Proof. If F is convex we have

F (x, 1) 6
1

a
F (ax, 0) +

· (
1 − 1

a

)
F (0, t),

where a > 1 is chosen so that

(x, 1) =
1

a
(ax, 0) +

(
1 − 1

a

)
(0, t) ∈ E × R,

i. e., a = t/(t − 1). Now if F (0, t) < +∞ this inequality shows that

f1(x) 6
1

a
f0(ax) + c,

in other words that order(f1 : f0) 6 a = t/(t − 1).
Conversely, if order(f1, f0) 6 ρ with 1 6 ρ < +∞, then the solution F defined

by (7.2) has the desired properties. We need only estimate F as follows. For any

a > ρ we know that f1(x) 6 f0(ax)/a + c which gives f̃1 > a−1f̃0 − c. In particular

we see that dom f̃0 ⊃ dom f̃1. For any t < a/(a − 1) we can write, letting ξ vary in

dom f̃0,

F (x, t) 6 sup
ξ

[
ξ · x − (1 − t)f̃0(ξ) − t

(
a−1f̃0(ξ) − c

)]
=

= sup
ξ

[
ξ · x − (1 − t + t/a)f̃0(ξ)

]
+ tc =

= (1 − t + t/a) sup
ξ

[(1 − t + t/a)−1ξ · x − f̃0(ξ)] + tc = δf0(x/δ) + tc,

where δ is the positive number 1 − t + t/a. Now, since we assume that f0(0) < +∞,
this shows that F (0, t) is finite for all t ∈ [0, a/(a − 1)[, and since a is any number
larger than ρ, the function is finite for all t ∈ [0, b[.

For real-valued functions the geometry is particularly simple:

Corollary 7.3. Let f0, f1: E → ]−∞, +∞] be two functions as in Proposition 7.1
and assume in addition that one of them is real valued. If the extrapolation problem
(7.1) admits a convex solution F which is finite at some point (x, t) with t satisfying
1 < t < +∞, then

order(f1 : f0) 6
t

t − 1
.

Conversely, if 1 6 order(f1, f0) = ρ < +∞, then the extrapolation problem has a
lower semicontinuous convex solution F which is real valued in the slab

E × ]0, ρ′[ = {(x, t) ∈ E × R; 0 < t < ρ′},

where ρ′ = ρ/(ρ − 1); 1 < ρ′ 6 +∞.

Therefore the relative order of f1 with respect to f0 is determined by, and determines,
the maximal slab E × ]0, b[ in which our extrapolation problem has a solution.

16



Proof. Suppose fj is real valued (j = 0 or j = 1). It is clear that if a solution F
is finite at some point (x, s) with s > 1, then F is finite in the convex hull of the
union of (x, s), some point (y, 0) where f0 is finite, and the hyperplane E×{j}. This
convex hull contains the slab E × ]0, s[. Thus Theorem 7.2 implies Corollary 7.3.

It follows again (cf. Lemma 3.2) that the notion of relative order is translation
invariant for real-valued convex functions (at least when 1 6 ρ + ∞). Indeed, the
slabs are invariant under transformations (x, t) 7→ (x − (1 − t)y − tz, t) for all y and
z; these transformations correspond to translations f0 7→ f0,y and f1 7→ f1,z.

8. An extension problem for holomorphic functions

In this section we shall first characterise the classical order in terms of an extension
property of holomorphic functions. Then we pass to the relative order.

Theorem 8.1. An entire function F ∈ O(Cn) is of order at most ρ (1 6 ρ < +∞)
if and only if there exists a holomorphic function H in the cylinder

Ω = {(z, w) ∈ Cn × C; |w| < eρ′},

where ρ′ = ρ/(ρ − 1), satisfying

(8.1) |H(z, w)| 6 e|z| for z ∈ Cn, |w| 6 1,

and

(8.2) H(z, e) = F (z) for z ∈ Cn.

Proof. Suppose such an H exists. Then putting

(8.3) h(s, t) = sup
[

log |H(z, w)|; |z| 6 es, |w| 6 et
]
, s ∈ R, t < ρ′,

we get a convex function of (s, t) which satisfies h(s, 0) 6 es and h(s, 1) > f(s).
Therefore, applying Corollary 7.3 with f0(s) = h(s, 0) and f1(s) = h(s, 1), we can
write

order(F : exp) 6 order(f1 : exp) 6 order(f1 : f0) · order(f0 : exp) 6 ρ.

In the other direction the results of section 7 give only convex, not holomorphic,
solutions to the extrapolation problem. But it turns out that there is an explicit
solution in terms of power series.

We expand F in a series of homogeneous polynomials:

F (z) =
∑

Pj(z).

Then we just define

H(z, w) =
∑

Pj(z)(w/e)mj ,
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where the integers mj are chosen large enough to make (8.1) true. This means that
we take

‖Pj‖e−mj 6
1

j!
.

On the other hand, we do not want to take them unnecessarily large, so we prescribe
that

log ‖Pj‖ + log j! 6 mj < log ‖Pj‖ + log j! + 1

unless Pj = 0 in which case the choice of mj is immaterial, so we may take mj = 0.
Since F is of order ρ, we know that for any a > ρ there is an estimate f(t) 6

eat + Ca, which implies that

f̃(τ) >
τ

a

(
log

τ

a
− 1

)
− Ca

and

(8.4) − log ‖Pj‖ = p(j) > f̃(j) >
j

a

(
log

j

a
− 1

)
− Ca.

This estimate shows that the series defining H converges uniformly on any compact
subset of Ω. In fact, the series defining H converges uniformly for |z| 6 R1 < R and
|w| 6 r1 < r if ‖Pj‖Rj(r/e)mj → 0. Substituting the expression for mj we see that
this is true if (log r − 1) log j! − p(j) log r + j log R → −∞. Now this holds for all
positive R if

(log r − 1) log j! − p(j) log r

j
→ −∞.

Using finally the estimate (8.4) for p and the inequality j! 6 jj for the factorial
function we see that this follows if

(log r − 1) log j − 1

a

(
log

j

a
− 1

)
log r → −∞,

which in turn is true if log r < a/(a − 1). Here the only condition is that a > ρ, so
the series defining H converges locally uniformly in the set log |w| < ρ/(ρ − 1).

Theorem 8.2. Let two transcendental entire functions F,G ∈ O(Cn) be given, and
let 1 6 ρ < +∞. We define an open set Ω in the space of n + 1 variables as

Ω = {(z, w) ∈ Cn × C; |w| < eρ′},

where ρ′ = ρ/(ρ− 1) (1 < ρ′ 6 +∞). For a holomorphic function H in Ω we denote
by hw the growth function of the partial function z 7→ H(z, w). Let K denote the
function defined by (6.4). Then the following five conditions are equivalent.
(a) order(G : F ) 6 ρ.
(b) There exists a holomorphic function H ∈ O(Ω) satisfying

hw 6 f ⊓⊔ K when |w| = 1, and g 6 hw ⊓⊔ K when |w| = e.
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(b′) There exists a holomorphic function H ∈ O(Ω) satisfying H(z, 1) = F (z),

f 6 hw ⊓⊔ K, and hw 6 f ⊓⊔ K when |w| = 1,

and

g 6 hw ⊓⊔ K when |w| = e.

(c) There exists a holomorphic function H ∈ O(Ω) satisfying H(z, e) = G(z) and

hw 6 f ⊓⊔ K when |w| = 1.

(c′) There exists a holomorphic function H ∈ O(Ω) satisfying H(z, e) = G(z),

g 6 hw ⊓⊔ K and hw 6 g ⊓⊔ K when |w| = e,

and

hw 6 f ⊓⊔ K when |w| = 1.

In particular, order(H(·, w) : F ) 6 1 for |w| = 1 and order(G : H(·, w)) 6 1 for
|w| = e if H is the holomorphic function whose existence is guaranteed by (b), (b′)
or (c′).

Proof. The proof that (b) implies (a) and that (c) implies (a) is just like the easy
direction in the proof of Theorem 8.1. If H is a holomorphic function satisfying (b)
or (c) we let h be the growth function of two real variables defined by (8.3); it is
related to the hw by the formula h(s, t) = sup|w|=et hw(s). By submultiplicativity we
then have

order(g : f) 6 order(g : h(·, 1)) · order(h(·, 1) : h(·, 0)) · order(h(·, 0) : f) 6 ρ.

It is also clear that (b′) implies (b) and that (c′) implies (c).
For the proof of (a) implies (b′) we expand F and G in terms of homogeneous

polynomials:

F (z) =
∑

j∈N

Pj(z), G(z) =
∑

j∈N

Qj(z),

and define

H(z, w) =
∑

j∈N

Pj(z)wmj + (w − 1)
∑

j /∈J

P ∗
j (z)wmj ,

where J is the set of all j ∈ N such that p(j) 6 ˜̃p(j) + log 3, p being the coefficient
function of F defined by (6.2). Moreover mj are suitable integers and P ∗

j homoge-

neous polynomials of degree j and norm ‖P ∗
j ‖ = 1

3 exp(−˜̃p(j)) > ‖Pj‖. Let pw denote
the coefficient function of the entire function H(·, w). Consider first |w| = 1: when
j ∈ J we have pw(j) = p(j), and when j /∈ J we can estimate as follows:

‖Pjw
mj + (w − 1)P ∗

j wmj‖ 6 ‖Pj‖ + 2‖P ∗
j ‖ 6 3‖P ∗

j ‖ = exp(−˜̃p(j)),
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so that pw(j) > ˜̃p(j) when j /∈ J . Therefore we have pw > ˜̃p everywhere and pw = p
in J , which implies p̃w = p̃ for |w| = 1. Thus in view of Theorem 6.1,

hw 6 p̃w ⊓⊔ K = p̃ ⊓⊔ K 6 f ⊓⊔ K as well as f 6 p̃ ⊓⊔ K = p̃w ⊓⊔ K 6 hw ⊓⊔ K.

This far the numbers mj play no role; we shall now choose them to get the right
kind of growth of H(·, w) for |w| = e. When |w| = e and j ∈ J we have pw(j) =

p(j)−mj 6 ˜̃p(j)−mj + log 3. The homogeneous part of degree j /∈ J in H(z, w) can
be estimated as

‖Pjw
mj + (w − 1)P ∗

j wmj‖ > emj (‖(w − 1)P ∗
j ‖ − ‖Pj‖)

> emj (e − 2)‖P ∗
j ‖ =

e − 2

3
exp(mj − ˜̃p(j)),

which gives

pw(j) = p(j) − mj 6 ˜̃p(j) − mj + log 3 6 ˜̃p(j) − mj + 2, j ∈ J,

pw(j) 6 ˜̃p(j) − mj − log

(
e − 2

3

)
6 ˜̃p(j) − mj + 2, j /∈ J.

We shall now choose the integers mj as follows. If ˜̃p(j) = +∞ (this can happen for

finitely many numbers j only), then also ˜̃q(j) = +∞ and we choose mj = 0. If ˜̃p(j) <

+∞ we choose mj as the smallest non-negative integer which is > ˜̃p(j) − ˜̃q(j) + 2.

Thus in all cases pw 6 ˜̃q for every w with |w| = e, so that q̃ 6 p̃w and we get

g 6 q̃ ⊓⊔ K 6 p̃w ⊓⊔ K 6 hw ⊓⊔ K, |w| = e.

Finally we have to make sure that H is holomorphic in all of Ω. To prove this it
is enough to prove that

‖Pj‖Rjrmj → 0 and ‖P ∗
j ‖Rjrmj → 0

as j → ∞ for all R and all r < eρ′

. This in turn follows if we can prove that

(8.5)
mj log r − p(j)

j
→ −∞ and

mj log r − p∗(j)

j
→ −∞.

We shall use the fact that type(˜̃p : ˜̃q) = order(g : f) 6 ρ, which yields an inequality
˜̃p 6 a˜̃q + Ca for every a > ρ. If mj = 0, the first expression in (8.5) is at most

−˜̃p(j)/j which certainly tends to −∞. If mj > 0, it can be estimated by (it suffices
to consider r > 1)

mj log r − p(j)

j
6

(˜̃p(j) − ˜̃q(j) + 3) log r − ˜̃p(j)

j
6

˜̃q(j)(a log r − log r − a) + O(1)

j
,

which tends to −∞ if log r < a/(a − 1).
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If mj = 0, the second expression in (8.5) is −p∗(j)/j = −(˜̃p(j) − log 3)/j which
tends to −∞; if mj > 0, it can be estimated by

mj log r − p∗(j)

j
6

(˜̃p(j) − ˜̃q(j) + 3) log r − ˜̃p(j) + log 3

j

6

˜̃q(j)(a log r − log r − a) + O(1)

j
,

which tends to −∞ as soon as log r < a/(a − 1); here again a is any number greater
than ρ. This proves that the series defining H converges locally uniformly in Ω and
finishes the proof of (b′).

The proof that (a) implies (c′) is similar to that of Theorem 8.1. This time we
define

H(z, w) =
∑

j∈N

Qj(z)(w/e)nj ,

where we shall choose integers nj . Then obviously H(z, e) = G(z). For |w| = e we
have pw(j) = q(j). This gives p̃w = q̃ and therefore, for all w with |w| = e,

hw 6 p̃w ⊓⊔ K = q̃ ⊓⊔ K 6 g ⊓⊔ K as well as g 6 q̃ ⊓⊔ K = p̃w ⊓⊔ K 6 hw ⊓⊔ K.

For |w| = 1, on the other hand, we obtain

‖Qj(w/e)nj‖ = exp(−nj − q(j)) 6 exp(−nj − ˜̃q(j)).

Thus, when |w| = 1 we have

pw(j) = q(j) + nj > ˜̃q(j) + nj .

We now choose nj so that pw > ˜̃p, which implies p̃w 6 p̃ and yields the estimate

hw 6 p̃w ⊓⊔ K 6 p̃ ⊓⊔ K 6 f ⊓⊔ K.

To be explicit, if ˜̃p(j) = +∞, then ˜̃q(j) = +∞ and we take nj = 0; if ˜̃p(j) < +∞,

we take nj as the smallest non-negative integer greater than or equal to ˜̃p(j) − ˜̃q(j).

This guarantees that pw > ˜̃p and gives the estimate above. On the other hand, nj

is not too large, which will ensure that ‖Qj‖Rj(r/e)nj tends to zero for every R and

every r < eρ′

and hence that H is holomorphic in Ω. The calculation is very similar
to the one we just carried out in the case of (b′) and is omitted.

9. Whittaker’s decomposition theorem

In analogy with (2.1) one defines classically the lower order of an entire function as

(9.1) λ = lim inf
r→+∞

sup
|z|=r

log log |h(z)|
log r

.

The obvious generalisation is:
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Definition 9.1. Whenever the order of g relative to f is defined, we define the

lower relative order of f with respect to g as

lower order(f : g) = 1/ order(g : f) ∈ [0, +∞].

According to the terminology of Whittaker [13] functions with λ = ρ < +∞ are said
to be of regular growth. He shows that if an entire function has gaps in the sense
that

F (z) =
∑

akzmk , z ∈ C,

with lim sup(log mk+1/ log mk) > 1, then F is not of regular growth. And conversely,
if a function is of irregular growth, then it can be represented, for every µ satisfying
λ < µ < ρ, as a sum F = F0 + F1 where F0 is of order at most µ and F1 has gaps as
indicated.

We shall prove here a complete analogue of Whittaker’s results for the relative
order. The results will also generalise Theorems 4 and 5 of Juneja, Kapoor & Bajpai
[3]. Since there is no such thing as absolutely large gaps in a world of relative
growth, the size of the gaps will have to be measured by that same function g which
we use to define order and lower order. If an entire function has gaps which are
large as measured by g, then it is of irregular growth with respect to g, meaning that
order(f : g) ·order(g : f) > 1, and conversely, if a function is of irregular growth with
respect to g, then it can be decomposed as in the classical case. The gaps will be
measured as follows.

Definition 9.2. Let ϕ be a function defined on R. Assume that ϕ > 0. Then the
ϕ-gauge of an interval [σ, τ ] is

(9.2) Jϕ(σ, τ) = sup
06s61

(1 − s)ϕ(σ) + sϕ(τ)

ϕ((1 − s)σ + sτ)
.

Example. If ϕ(τ) = τ log τ − τ , then Jϕ(σ, τ) ≈ log τ/ log σ for σ 6 τ , in the precise
sense that Jϕ(σ, τ) log σ/ log τ tends to 1 as σ → +∞ uniformly for all τ > σ. Since
this ϕ is the Fenchel transform of the classical comparison function exp, we see that
the results below will give Whittaker’s when g = exp.

Theorem 9.3. Let g: R → R be an increasing convex function which grows faster
than any linear function, and let F be an entire function with an expansion F =∑

Pmk
in terms of homogeneous polynomials of degree mk. We assume that order(f :

g) < +∞. Then

order(f : g) · order(g : f) > lim sup
k→+∞

Jg̃(mk,mk+1).

In particular, if F has gaps which are large as measured by g̃, then F is of irregular
growth relative to g.

Proof. Denote the limit superior in the statement by α (1 6 α 6 +∞). Given any
number β < α we can choose sk such that

(1 − sk)g̃(mk) + skg̃(mk+1)

g̃((1 − sk)mk + skmk+1)
> β
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for an infinite sequence of indices k. Let ρ = order(f : g) = order(p̃ : g) = type(g̃ : ˜̃p).

Then we know that g̃ 6 (ρ + ε)˜̃p for large arguments, so we can write

β 6 (ρ + ε)
(1 − sk)˜̃p(mk) + sk

˜̃p(mk+1)

g̃((1 − sk)mk + skmk+1)
= (ρ + ε)

˜̃p(jk)

g̃(jk)
,

where we have defined jk = (1 − sk)mk + skmk+1, and where the last equality holds

because ˜̃p is affine in the interval [mk,mk+1]; this follows from the fact that there are
gaps, which means that p is +∞ on the interior of that interval. Hence

order(g : f) = order(g : p̃) = type(˜̃p : g̃) >
β

ρ + ε
.

If we now let β tend to α we get order(g : f) · order(f : g) > α.

Theorem 9.4. Let F ∈ O(Cn) be an entire function and let g be any convex in-
creasing real-valued function on R. Assume that F is of finite order and of irregular
growth relative to g, i. e.,

+∞ > ρ = order(f : g) > λ = 1/ order(g : f) > 0.

Then for every µ satisfying λ < µ < ρ there is a decomposition F = F0 + F1

where order(F0 : g) 6 µ and where F1 has gaps which are of g̃-gauge at least µ/λ
asymptotically.

Proof. We define

J = {j ∈ N; p(j) > g̃(j)/µ}, F0 =
∑

j∈J

Pj .

Let p0 denote the function which agrees with p on J and is +∞ elsewhere. Then

p0 > g̃/µ on J and therefore everywhere, which implies ˜̃p0 > g̃/µ, and we see that
F0 has order at most µ:

order(F0 : g) = order(p̃0 : g) = type(g̃ : ˜̃p0) 6 µ.

We shall prove that F1 = F − F0 has gaps as indicated. Let p1 denote the function

which agrees with p on N\J and is +∞ elsewhere. Then ˜̃p1 is affine in every interval
which does not meet N \ J . By the definition of lower order, there exists a sequence
(jk) such that

˜̃p(jk) >
1

λ + 1/k
g̃(jk).

Let mk be the largest element in N \ J which is smaller than jk, and let nk be the
smallest element in N\J which is larger than jk. Since mk, nk are elements of N\J ,

we know that ˜̃p1(mk) 6 p1(mk) = p(mk) < g̃(mk)/µ and similarly at nk. Since the

interval ]mk, nk[ does not meet N \ J , the function ˜̃p1 is affine on [mk, nk]. Then if
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we define s so that (1 − s)mk + snk = jk we have (1 − s)˜̃p1(mk) + s˜̃p1(nk) = ˜̃p1(jk),
and

Jg̃(mk, nk) >
(1 − s)g̃(mk) + sg̃(nk)

g̃(jk)
>

(1 − s)µ˜̃p1(mk) + sµ˜̃p1(nk)

(λ + 1/k)˜̃p1(jk)

=
µ˜̃p1(jk)

(λ + 1/k)˜̃p1(jk)
=

µ

λ + 1/k
→ µ

λ
.

Thus the gaps as measured by g̃ are at least µ/λ asymptotically; we have proved our
claim.

We shall now discuss an analogous result for Taylor expansions
∑

Akzk. We
have to modify the measure of gaps. Let iA denote the indicator function of a set A;
it is zero in A and +∞ in the complement.

Definition 9.5. Let ϕ be a function defined on Rn. For M ⊂ Nn we define

(9.3) ϕM = (ϕ + iNn\M )˜̃,

the convex minorant of the function which agrees with ϕ in Nn \ M and is +∞ in
M as well as in Rn \ Nn. Then the ϕ-gauge of M is

Jϕ,M (ξ) = ϕM (ξ)/ϕ(ξ), ξ ∈ Rn, 0 < ϕ(ξ) < +∞.

Note that we define Jϕ,M only at points where 0 < ϕ(ξ) < +∞.

Theorem 9.6. Let g: Rn → R be a convex function, and let F ∈ O(Cn) be an entire
function with Taylor expansion F (z) =

∑
Akzk. We assume that 0 < g̃ 6 +∞ and

that F is of finite order relative to g. If F has gaps which are large as measured by g̃,
then F is of irregular growth relative to g. Quantitatively we express this as follows.
Let M denote the set of all k ∈ Nn such that Ak = 0. Then

order(f : g) · order(g : f) > lim sup
ξ→∞

Jg̃,M (ξ),

where ξ → ∞ means that g̃(ξ) → +∞.

Proof. We write g̃M = (g̃)M for the function defined by (9.3) with ϕ = g̃. Denote by
α the limit superior in the statement of the theorem (1 6 α 6 +∞) and fix a number
β < α. Then there is a sequence (ξj) such that 0 < g̃(ξj) < +∞, g̃(ξj) → +∞ and
such that

g̃M (ξj)/g̃(ξj) > β.

We know that
ρ = order(f : g) = order(ã : g) = type(g̃ : ˜̃a),

so that for any positive ε there is a constant c such that g̃ 6 (ρ+ ε)˜̃a+ c. Now ˜̃a 6 a,
so g̃ 6 (ρ + ε)a + c, which implies that

g̃ + iNn\M 6 (ρ + ε)a + c,
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for a = +∞ in M ∪ (Rn \ Nn). This gives, by the definition of g̃M ,

g̃M 6 (ρ + ε)˜̃a + c,

so

β 6
g̃M (ξj)

g̃(ξj)
6

(ρ + ε)˜̃a(ξj) + c

g̃(ξj)
.

Now g̃(ξj) → +∞ so the constant c does not interfere. We get finally

order(g : f) = type(˜̃a : g̃) >
β

ρ + ε
.

Since β/(ρ + ε) is arbitrarily close to α/ρ, this finishes the proof.

Theorem 9.7. Let F ∈ O(Cn) be an entire function with growth function f defined
by (6.10), and let g be any convex real-valued function on Rn with g̃ > 0. Assume
that F is of finite order and of irregular growth relative to g, i. e.,

+∞ > ρ = order(f : g) > λ = 1/ order(g : f) > 0.

Then for every µ satisfying λ < µ < ρ there is a decomposition F = F0 + F1

where order(F0 : g) 6 µ and where F1 has gaps which are of g̃-gauge at least µ/λ
asymptotically in the sense that lim sup Jg̃,K(ξ) > µ/λ, where the limit superior is
taken to mean that g̃(ξ) → +∞ if λ > 0, and to mean that a(ξ) → +∞ when λ = 0.

Proof. Define

K = {k ∈ Nn; a(k) > g̃(k)/µ},

F0(z) =
∑

k∈K

Akzk, and F1(z) =
∑

k∈Nn\K

Akzk.

Let a0 be the function which agrees with a in K and is +∞ outside, and let a1 be
the function which agrees with a in Nn \ K and is +∞ outside. Then a > g̃/µ in K

so a0 > g̃/µ in K and therefore in all of Rn. This implies that ˜̃a0 > g̃/µ and hence

order(F0 : g) = order(ã0 : g) = type(g̃ : ˜̃a0) 6 µ.

In Nn\K we have the inequality µa < g̃; therefore also µa1 < g̃ there, for a1 = a
in Nn \ K. This implies µa1 6 g̃ + iNn\K . By definition of the function g̃K = (g̃)K

we therefore deduce

µ˜̃a1 6 (g̃ + iNn\K)˜̃ = g̃K .

So finally, for all ξ such that 0 < g̃(ξ) < +∞,

Jg̃,K(ξ) =
g̃K(ξ)

g̃(ξ)
> µ

˜̃a1(ξ)

g̃(ξ)
> µ

˜̃a(ξ)

g̃(ξ)
.

25



It remains to be proved that ˜̃a1/g̃ > 1/λ in a suitable sequence (ξj). In view of the
definition of the lower order there exists a sequence (ξj) such that

˜̃a(ξj) >
1

λ + 1/j
g̃(ξj) + j;

in particular ˜̃a(ξj) > j. Indeed, type(˜̃a : g̃) = order(g : ã) = order(g : f) = 1/λ. So

the expression ˜̃a1(ξj)/g̃(ξj) is at least

˜̃a(ξj)

g̃(ξj)
>

1

λ + 1/j

g̃(ξj)

g̃(ξj)
=

1

λ + 1/j
.

Thus lim sup Jg̃,K(ξj) > µ/λ as claimed; we have a(ξj) > ˜̃a(ξj) → +∞. If λ > 0 we

also have g̃(ξj) → +∞, for type(˜̃a : g̃) = 1/λ < +∞. In this case the limit superior
is the same as that in Theorem 9.6.

10. Inequalities for the infimal convolution

The type of a function is often a finer measure of its growth than the order. For this
reason we are obliged to study more carefully infimal convolutions of the form p̃ ⊓⊔ K
which appear in Theorem 6.1. This is the aim of the present section and the next.

Throughout this section E denotes a real vector space and E′ is an arbitrary
subspace of its algebraic dual. The Fenchel transform f̃ is defined on E′ by (4.1).

Lemma 10.1. Let f, g: E → [−∞, +∞] be two functions, and assume that f is
convex. Then

(10.1) f ⊓⊔ g(x) > f(x) − g̃(ξ)

for every x ∈ E such that f(x) is finite and every ξ ∈ E′ which is a subgradient of f
at the point x. In particular, if for every point x there is exactly one subgradient of
f in E′, we may denote it by f ′(x) and write

(10.2) f ⊓⊔ g > f − g̃ ◦ f ′ on E.

Example. The lemma gives

(
1
6x6

)
⊓⊔

(
1
4x4

)
>

1
6x6 − 3

4x20/3, x ∈ R,

and, by interchanging f and g,

(
1
6x6

)
⊓⊔

(
1
4x4

)
>

1
4x4 − 5

6x18/5, x ∈ R.

The first formula gives a good approximation for small x, the second for large x. To
illustrate this we plug in y = x3/5 in the definition of the infimal convolution, which
gives a bound from above:

(
1
6x6

)
⊓⊔

(
1
4x4

)
6

1
4x4 − 5

6x18/5 + 3
2x16/5 − x14/5 + 1

4x12/5, x ∈ R.

26



Proof of Lemma 10.1. If A(x) = ξ · x + c is an affine function, the convolution with
an arbitrary function g is

A ⊓⊔ g = A + C,

where C is the constant C = −g̃(ξ). This will give us an inequality for the convolution
with a convex function f . Let ξ be a subgradient of f at a point a with −∞ < f(a) <
+∞, i. e., assume that

f(y) > f(a) + ξ · (y − a) = A(y), y ∈ E.

Then the convolution f ⊓⊔ g can be estimated as follows

f ⊓⊔ g(x) = inf
y

(
f(y) +

·
g(x − y)

)
> inf

y

(
A(y) + g(x − y)

)
= A(x) − g̃(ξ).

We have A(a) = f(a) so that for x = a,

f ⊓⊔ g(a) > f(a) − g̃(ξ).

When considering the relative type of an entire function we are led to studying
the relative type of one infimal convolution f1 ⊓⊔ f2 with respect to another. Therefore
we give below a few results showing that sometimes the type does not change when
we convolve with a fixed function.

Lemma 10.2. Let fj, gj be four functions of which the gj are bounded below, j = 1, 2.
Then

(10.3) type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) 6 max
j=1,2

type(fj : gj).

If h is bounded below and type(f : g) = σ, then

type(f ⊓⊔ (σh) : g ⊓⊔ h) 6 σ.

Proof. For every b > type(fj : gj), j = 1, 2, there is a constant c such that fj(x) 6

bgj(x) + c. Then

f1(y) +
·

f2(x − y) 6 b(g1(y) +
·

g2(x − y)) + 2c,

and when we take the infimum over all y we get

f1 ⊓⊔ f2(x) 6 b(g1 ⊓⊔ g2)(x) + 2c;

hence type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) 6 b. Now b can be taken arbitrarily close to
max(type(fj : gj)).

If g and h are bounded below, the last part of the lemma is a special case of
what we have just proved, since type(σh : h) 6 σ. However, on inspecting the proof
we see that we need not assume g is bounded below, since now σh 6 bh + C for all
b > σ, not just for b > σ.
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Lemma 10.3. Let fj, gj be four functions of which f2 is bounded below and not

identically +∞. Assume that
˜̃
f1 = f1, ˜̃g1 = g1, and dom f̃1 ⊂ dom f̃2. Then

(10.4) type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) > min

(
type(f1 : g1),

1

type(g2 : f2)

)
.

If f =
˜̃
f , g = ˜̃g and h are three functions with h bounded below but unbounded above

and not equal to +∞ identically, σ = type(f : g), and

dom f̃ ⊂ dom(σh)˜ = σ dom h̃,

then
type(f ⊓⊔ (σh) : g ⊓⊔ h) > σ.

Definition 10.4. We shall call the number 1/ type(g : f) the lower type of f
relative to g.

Proof of Lemma 10.3. If

type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) >
1

type(g2 : f2)

we have finished. So consider the case when both types are finite and

type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) · type(g2 : f2) < 1.

Then there exist numbers b such that

type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) < b and type(g2 : f2) < 1/b.

We claim that for some such b there is a constant c such that

f1 ⊓⊔ f2 6 b(g1 ⊓⊔ g2) + c and g2 6
1

b
f2 + c.

In fact, since f2 is bounded below, the second inequality holds for all numbers b <
1/ type(g2 : f2), so that b can be chosen arbitrarily close to type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2).

On taking the Fenchel transformation we get

(10.5) f̃1(ξ) +· f̃2(ξ) > b
(
g̃1(ξ/b) +· g̃2(ξ/b)

)
− c

and

(10.6) bg̃2(ξ/b) > f̃2(ξ) − bc.

We conclude from (10.5) and (10.6) that

(10.7) f̃1(ξ) > bg̃1(ξ/b) − c − bc.
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Indeed, if f̃1(ξ) = +∞ or g̃1(ξ/b) = −∞ there is nothing to prove, and if not, f̃2(ξ)
and hence g̃2(ξ/b) are finite by hypothesis, and (10.7) follows on adding (10.5) and
(10.6). Taking the transform of (10.7) we see that f1 6 bg1 + c + bc. Now let b tend
to type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2). It follows that type(f1 : g1) 6 type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2).

In the last part of the lemma we have f1 = f , f2 = σh, g1 = g and g2 = h.
So f2 is bounded below, and the condition dom f̃1 ⊂ dom f̃2 is satisfied. Finally
type(g2 : f2) = type(h : σh) = 1/σ if h is unbounded above and not identically +∞.

Example. To illustrate the role of the hypothesis dom f̃1 ⊂ dom f̃2 in Lemma 10.3 we
shall consider positively homogeneous functions. Given a subset A of Rn we define
its supporting function as

HA(ξ) = sup
x∈A

ξ · x, ξ ∈ Rn.

This is just the Fenchel transform of the indicator function iA of A. Moreover

(HA ⊓⊔ HB)˜ = H̃A +· H̃B = iA +· iB = iA∩B ,

if A and B are closed convex sets, so (HA ⊓⊔ HB)˜̃ = HA∩B . If in addition one of A
and B is bounded, then HA ⊓⊔ HB is Lipschitz continuous, so that

HA ⊓⊔ HB = (HA ⊓⊔ HB)˜̃ = HA∩B .

Now let two compact convex subsets A1 and A2 be given such that 0 ∈ A1 ∩A2 and
A1 is not contained in A2. We assume that there exists a number s < 1 such that
A1 ∩ A2 ⊂ sA2 (A2 can for instance be half a ball of sufficiently large radius). We
now define f1 = HA1

, f2 = HA2
, g1 = g2 = sHA2

. Then

f1 ⊓⊔ f2 = HA1∩A2
6 HsA2

= g1 ⊓⊔ g2,

so that type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) 6 1. On the other hand, type(f1 : g1) = type(HA1
:

sHA2
) > 1 since A1 6⊂ sA2, and type(g2 : f2) = type(sHA2

: HA2
) = s < 1. This

shows that (10.4) cannot hold in this case; we have dom f̃j = Aj , so the hypothesis

dom f̃1 ⊂ dom f̃2 is violated.

Proposition 10.5. Let fj and gj be four functions, all bounded below and not iden-

tically +∞, satisfying
˜̃
f j = fj, ˜̃gj = gj, and dom f̃1 = dom f̃2, dom g̃1 = dom g̃2.

Consider the four numbers lower type(fj : gj), type(fj : gj), and denote them in
increasing order by α1 6 α2 6 α3 6 α4. Then

α2 6 type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) 6 α4,

α1 6 lower type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) 6 α3.

If for instance type(f1 : g1) = type(f2 : g2) = lower type(f2 : g2), then type(f1 ⊓⊔ f2 :
g1 ⊓⊔ g2) is determined.
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Proof. This is just a combination of (10.3) and (10.4), obtained by interchanging the
roles of fj and gj .

Example. Let ajk, bjk be positive numbers, j, k = 1, 2, and define fj(x) = x2
1/aj1 +

x2
2/aj2 and gj(x) = x2

1/bj1 + x2
1/bj2 for x ∈ R2. Then

f1 ⊓⊔ f2(x) =
x2

1

a11 + a21
+

x2
2

a12 + a22
,

g1 ⊓⊔ g2(x) =
x2

1

b11 + b21
+

x2
2

b12 + b22
.

The types and lower types are, for j = 1, 2,

σj = type(fj : gj) = max
k

(bjk/ajk), τj = lower type(fj : gj) = min
k

(bjk/ajk),

σ3 = type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) = max
k

(
b1k + b2k

a1k + a2k

)
,

τ3 = lower type(f1 ⊓⊔ f2 : g1 ⊓⊔ g2) = min
k

(
b1k + b2k

a1k + a2k

)
.

By varying the eight numbers ajk, bjk we can see that the inequalities in Proposition
10.5 cannot be improved. In fact, let σj be given and put ajk = aj , bjk = σjaj . Then

σ3 = max
k

(
b1k + b2k

a1k + a2k

)
=

σ1a1 + σ2a2

a1 + a2
= (1 − λ)σ1 + λσ2,

so that σ3 can be any number in the segment

]σ1, σ2[ = {(1 − λ)σ1 + λσ2; 0 < λ < 1}.
Next let σj and τj 6 σj be given and define b11 = σ1a11, b12 = τ1a12, b21 = τ2a21,
b22 = σ2a22. Then

σ3 = max

(
σ1a11 + τ2a21

a11 + a21
,
τ1a12 + σ2a22

a12 + a22

)
= max

(
(1−λ)σ1 + λτ2, (1−µ)τ1 + µσ2

)
,

showing that σ3 can be the largest of two numbers, one arbitrarily chosen in the
segment ]σ1, τ2[, and the other in the segment ]τ1, σ2[. This proves that σ3 can be
any number in ]α2, α4[. Similar examples can be constructed in one variable.

11. Inequalities for the infimal convolution, one variable

In this section we shall investigate more closely the type of an infimal convolution
f ⊓⊔ h with respect to f in the one-dimensional case. We shall assume generally that
f and h are defined on the real axis and that h > 0, h(t) = +∞ when t > 0; in other
words, that h > iR−

. Then, if f is increasing, we will always have f ⊓⊔ h > f so that

(11.1) type(f ⊓⊔ h : f) > 1 and type(f : f ⊓⊔ h) 6 1.

In fact,

f ⊓⊔ h(t) = inf
s

(f(t − s) +
·

h(s)) > inf
s

(f(t − s) +
·

iR−
(s)) = inf

s60
f(t − s) = f(t).

It turns out that equality in the second of the inequalities (11.1) holds under a
condition on h which is satisfied by the function K of (6.4), but that equality in the
first holds only under a special assumption on f . Let us therefore look at the second
case first.

30



Theorem 11.1. Let h: R → [0, +∞] be convex and increasing and satisfy h(t) →
+∞ as t < 0, t → 0. If

∑
h−1(cj) > −∞ for some c > 1, then type(f : f ⊓⊔ h) = 1

for every real-valued increasing function f which is unbounded above.

Proof. We have already remarked that type(f : f ⊓⊔ h) 6 1. Suppose that type(f :
f ⊓⊔ h) < 1/c < 1. Then there is some b < 1/c such that f(t) 6 bf(t+s) +h(−s) +C
for all t and all positive s. Repeating this we obtain

f(t) 6 bkf(t + s1 + · · · + sk) +
k∑

1

bj−1(h(−sj) + C).

Now choose sj such that h(−sj) = cj−1, i. e., −sj = h−1(cj−1), which implies that
s =

∑∞
1 sj = −∑

h−1(cj−1) < +∞. Therefore

f(t) 6 bkf(t + s) +
∞∑

1

(bc)j−1 +
∞∑

1

bj−1C = bkf(t + s) + A.

Now let k → +∞. If f is real valued we see that f(t) 6 A, i. e., f is bounded
above. If f is both unbounded above and real valued we therefore must have type(f :
f ⊓⊔ h) > 1/c. Now if the hypothesis is satisfied for some c > 1, it is also satisfied for√

c. Repeating this we see that the type is at least c−2−m → 1.
It is easily seen that the function K defined by (6.4) satisfies the condition in

the theorem, for K(−s) ≈ − log s when s > 0 is small, yielding a convergent series
with terms K−1(cj) ≈ − exp(−cj).

Corollary 11.2. With f and h as in the theorem and g an arbitrary function on R

we have

lower type(f : g) 6 lower type(f ⊓⊔ h : g) 6 type(f : g) 6 type(f ⊓⊔ h : g),

lower type(g : f ⊓⊔ h) 6 lower type(g : f) 6 type(g : f ⊓⊔ h) 6 type(g : f).

Proof. We only have to observe that

1 = type(f : f ⊓⊔ h) 6 type(f : g) · type(g : f ⊓⊔ h).

We now turn to the question of equality in the first inequality of (11.1). This is
somewhat more complicated. We first introduce a definition:

Definition 11.3. Let f, h: R → [−∞, +∞] be two functions. Assume that both are
increasing and that h > 0, h(t) = +∞ for t > 0. We shall say that f is h-regular

for type if type(f ⊓⊔ h : f) = 1.

Lemma 11.4. Let f and h be two functions as in Definition 11.3. Assume that
˜̃
f = f and

˜̃
h = h. Then the following three conditions are equivalent.

(A) f is h-regular for type.
(B) f is Mh-regular for type for every number M > 0.
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(C) For every a > 1 there exists a constant Ca such that f̃(aτ)/a > f̃(τ)− h̃(τ)−Ca.
If in addition f is real valued on some interval ]−∞, s[ with s 6 +∞, and f ′(t) → +∞
as t < s, t → s, then these conditions are also equivalent to the following (we let f ′

denote a one-sided derivative of f):

(D) h̃(f ′(t))/f(t) → 0 as t → s.

We note here that for h = K, condition (C) takes the form
(C ′) For every a > 1 there is a constant Ca such that

f̃(aτ)/a > f̃(τ) + log τ − Ca, τ > 1.

This is because −K̃(τ) is comparable to log τ by (6.5).

Proof. (A) implies (B). We note first that we always have 2h 6 h ⊓⊔ h. Therefore

f ⊓⊔ (2h) 6 f ⊓⊔ (h ⊓⊔ h) = (f ⊓⊔ h) ⊓⊔ h 6 (af + Ca) ⊓⊔ h

6 a(f ⊓⊔ h) + Ca 6 a(af + Ca) + Ca = a2f + aCa + Ca = bf + C ′
b.

Here a can come arbitrarily close to 1, so the same is true of b = a2. Thus f is
2h-regular for type. It is now obvious how to go on.

(B) implies (C). This follows easily on transforming f ⊓⊔ (ah) 6 af + Ca.
(C) implies (A). This also follows on taking the transformation.
(A) implies (D). Inequality (10.2) says that

f ⊓⊔ h > f − h̃ ◦ f ′.

We just combine this with (A): f ⊓⊔ h 6 af + Ca:

0 6 −h̃(f ′(t)) 6 (a − 1)f + Ca.

We must have f(t) → +∞ as t → s, and we obtain lim sup(−h̃(f ′)/f) 6 a − 1, a
number arbitrarily close to zero.

(D) implies (C). We estimate the convex function f̃ as follows (note that now

f̃(τ) is real valued for large τ):

1

a
f̃(aτ) − f̃(τ) >

1

a

(
f̃(τ) + (aτ − τ)f̃ ′(τ)

)
− f̃(τ) =

(
1 − 1

a

)
(−f̃(τ) + τ f̃ ′(τ)).

The last expression is (1− 1/a)f(t) if we choose the right t. And (D) means that for

τ large enough, this majorises −h̃(f ′(t)) = −h̃(τ). Thus (C) holds.

Theorem 11.5. If f, g: R → [−∞, +∞] are two increasing functions and one of
them is h-regular for type, then

type(f ⊓⊔ h : g) = type(f : g).

Proof. We always have type(f ⊓⊔ h : g) > type(f : g), so if f is h-regular it follows
that

type(f : g) 6 type(f ⊓⊔ h : g) 6 type(f ⊓⊔ h : f) · type(f : g) 6 type(f : g),
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which implies equality.
If g is h-regular we use Lemma 10.2:

type(f ⊓⊔ h : g ⊓⊔ (h/σ)) 6 σ = type(f : g),

so
type(f ⊓⊔ h : g) 6 type(f ⊓⊔ h : g ⊓⊔ (h/σ)) · type(g ⊓⊔ (h/σ) : g) 6 σ.

Theorem 11.6. If f, g: R → [−∞, +∞] are two increasing functions with
˜̃
f = f

and ˜̃g = g, and one of them is h-regular for type, then

type(f : g ⊓⊔ h) = type(f : g).

Proof. We always have type(f : g ⊓⊔ h) 6 type(f : g), so if g is h-regular we have
finished:

type(f : g) 6 type(f : g ⊓⊔ h) · type(g ⊓⊔ h : g) 6 type(f : g ⊓⊔ h) 6 type(f : g).

If f is h-regular we shall use Lemma 10.3: type(f ⊓⊔ (σh) : g ⊓⊔ h) > σ. So it
follows that

type(f : g) = σ 6 type(f ⊓⊔ (σh) : g ⊓⊔ h)

6 type(f ⊓⊔ (σh) : f) · type(f : g ⊓⊔ h)) 6 type(f : g ⊓⊔ h).

Corollary 11.7. If f or g is h-regular for type, and
˜̃
f = f , ˜̃g = g, then

type(f ⊓⊔ (ah) : g ⊓⊔ (bh)) = type(f ⊓⊔ (ah) : g) = type(f : g ⊓⊔ (bh)) = type(f : g)

for all positive numbers a and b.

To give an idea about the condition of h-regularity we shall now show how to construct
functions which do or do not have this property.

It is easy to construct functions that are not h-regular. They can be of arbitrarily
slow growth, faster than linear growth, and also of arbitrarily fast growth.

Proposition 11.8. Given a positive increasing function h which is plus infinity on

the positive axis and satisfies
˜̃
h = h, and given a function g: R → R which grows

faster than any linear function, there exists a function f : R → R with f(tk) = g(tk)
at a sequence which tends to infinity, and which is not h-regular for type.

Proof. We shall define the function f by putting it equal to g(tk) at the points tk
and taking it affine in between. The sequence tk is defined recursively by taking first
t0 = 0 and then, if tk is defined, by taking tk+1 so large that

τk =
g(tk+1) − g(tk)

tk+1 − tk
= f ′(tk)

satisfies −h̃(τk) > f(tk). Thus lim sup(−h̃(f ′(t))/f(t)) > 1, so that f violates condi-
tion (D) of Lemma 11.4.

Depending on a given function h, it is sometimes, but not always, possible to
construct h-regular functions which grow arbitrarily fast.
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Lemma 11.9. If ϕ is h-regular for type and g > 0, then f = g ⊓⊔ ϕ is h-regular for
type.

Proof. The regularity condition we are studying is stable under infimal convolution:
if we have one function ϕ which satisfies ϕ ⊓⊔ h 6 aϕ + Ca, then every function
f = g ⊓⊔ ϕ with g > 0 does the same:

f ⊓⊔ h = (g ⊓⊔ ϕ) ⊓⊔ h = g ⊓⊔ (ϕ ⊓⊔ h) 6 g ⊓⊔ (aϕ + Ca) 6 a(g ⊓⊔ ϕ) + Ca = af + Ca.

(This calculation should be compared with the proof that if ϕ is a smooth function,
then the usual convolution f = g ∗ ϕ is smooth.)

Proposition 11.10. Assume h satisfies
˜̃
h = h and

(11.2)

∫ ∞

1

|h̃(τ)|
τ2

dτ < +∞.

Then there exist functions f which are h-regular for type, and which grow faster
than any given function. But if this condition is not satisfied, the h-regular functions
grow at most like the solutions to the differential equation −h̃(ϕ′) = ϕ, which are
real-valued on all of R.

Proof. It is well known that the solutions of an autonomous differential equation
H(f ′) = f with H > 0 blow up after a finite time if

(11.3)

∫ ∞

1

H(τ)/τ2dτ < +∞.

Translating one such solution ϕ we may assume that it is finite for τ < 0 and = +∞
for τ > 0. Now if the condition (11.2) is satisfied, there exists a smooth strictly

increasing function H such that (11.3) holds and −h̃(τ) = o(H(τ)) as τ → +∞. So
the solution ϕ to H(ϕ′) = ϕ satisfies condition (D) of Lemma 11.4. Now let g > 0
be any given function and define f = g ⊓⊔ (ϕ+). Since ϕ+ > 0 and ϕ = +∞ on the
positive half-axis we have f > g, and Lemma 11.9 shows that f is h-regular for type.

On the other hand it is known that the solutions of the differential equation
H(ϕ′) = ϕ are defined over the whole axis if

∫ ∞

1

H(τ)/τ2dτ = +∞.

Any function f which satisfies −h̃(f ′) 6 f has a majorant which is a translate of a

fixed solution to −h̃(ϕ′) = ϕ. Therefore it cannot grow arbitrarily fast if (11.2) is
violated.

It should be noted here that h = K satisfies condition (11.2). It is indeed easy
to find directly a function ϕ which is infinite on the positive half-axis and K-regular
for type. We just put ϕ(t) = −1/t for t < 0, ϕ(t) = +∞ for t > 0. Then its Fenchel
transform is ϕ̃(τ) = −2

√
τ for τ > 0 and ϕ(τ) = +∞ for τ 6 0. So

a−1ϕ̃(aτ) − ϕ̃(τ) = 2

(
1 − 1√

a

)√
τ > log τ − Ca, τ > 1,
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which means that ϕ satisfies condition (C′) above. As a consequence, there exist
functions which are K-regular for type and grow arbitrarily fast, viz. f = g ⊓⊔ ϕ (see
Lemma 11.9).

12. The type of an entire function

We shall see that knowledge of the function p̃ defined by the series expansion of an
entire function F (see (6.2)) is in general not enough to determine the type. In the
positive direction we can prove:

Theorem 12.1. Let F be a nonconstant entire function on Cn and let f be its
growth function defined by (6.1), and p its coefficient function defined by (6.2). Then

(12.1) type(p̃ : f) = 1 and type(f : p̃) > 1.

If in addition we assume that f or p̃ is K-regular for type, where K is the function
defined by (6.4), then

(12.2) type(p̃ : f) = 1 and type(f : p̃) = 1.

Proof. Cauchy’s inequalities p̃ 6 f immediately give type(p̃ : f) 6 type(f : f) 6 1
and type(f : p̃) > type(f : f). When f is nonconstant, type(f : f) = 1. Now
Theorem 11.1 says that type(p̃ : p̃ ⊓⊔ K) = 1, and this together with the inequality
f 6 p̃ ⊓⊔ K (Theorem 6.1) yields type(p̃ : f) > type(p̃ : p̃ ⊓⊔ K) = 1.

In the K-regular case we use that type(f : p̃) is equal to type(f : p̃ ⊓⊔ K) 6 1
(Theorems 11.6 and 6.1). Hence

1 = type(f : f) 6 type(f : p̃) · type(p̃ : f) 6 type(p̃ : f) 6 1

which implies equality. (Note that here we do not need to use Theorem 11.1.)

Corollary 12.2. Let F,G be two entire functions defined in Cn, let f , g be their
growth functions, and p and q their coefficient functions defined by the series expan-
sions (see (6.2)). Assume that one of f , p̃, g, q̃ is K-regular for type. Then

type(F : G) = type(f : g) = type(p̃ : q̃).

Proof. We have
p̃ 6 f 6 p̃ ⊓⊔ K 6 f ⊓⊔ K,

and similarly
q̃ 6 g 6 q̃ ⊓⊔ K 6 g ⊓⊔ K.

So everything follows from Corollary 11.7 (in the non-constant case).
The regularity condition of Theorem 12.1 is not always satisfied. We can con-

struct functions such that type(f : p̃) > 1.

Example. Consider an entire function F (z) =
∑

ajz
j with aj > 0 and such that

p(j) = − log aj is a convex increasing function of j. We assume that p is affine on
intervals [nk, nk+1]. Then it is easy to see that if these intervals are large enough,
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type(f : p̃) can be arbitrarily large, even equal to +∞. Let the slope of the coefficient
function on the interval [nk, nk+1] be tk, i. e.,

tk =
p(nk+1) − p(nk)

nk+1 − nk
.

Then p̃(tk) = jtk + log aj for j = nk, . . . , nk+1. For z = etk we get

F (z) >

nk+1∑

j=nk

aje
jtk = (nk+1 − nk + 1)ep̃(tk),

since the terms ajz
j are all non-negative when z > 0. This means that

f(tk) > log(nn+k − nk + 1) + p̃(tk) > σp̃(tk)

for any given positive number σ if we only choose nk+1 large enough, tk and nk

being already chosen. Therefore type(f : p̃) > σ. We can of course also obtain
f(tk) > kp̃(tk) so that type(f : p̃) = +∞. It is clear that this construction works
both for slowly growing and fast growing functions.

Example. Let F be the function of the last example, and let G be the lacunary
function G(z) =

∑
ank

znk ; i. e., we retain only the corners on the graph of p. Let
g be its growth function and q its coefficient function. Then, since p is affine on the
intervals [nk, nk+1], p̃ = q̃, so type(p̃ : q̃) = 1. Now for |z| = et, tk−1 6 t 6 tk, we can
estimate G as follows.

|G(z)| 6 ank
enkt +

k−1∑

0

anj
enjt +

∞∑

k+1

anj
enjt

6 ank
enkt +

ank−1
enk−1t

1 − λ
+

ank+1
enk+1t

1 − µ
6 ank

enkt

(
1 +

1

1 − λ
+

1

1 − µ

)
,

λ and µ being the ratios of the geometric series whose first two terms agree with that
of the respective series; more explicitly we use the simple inequality

∞∑

0

cj 6

∞∑

0

c0λ
j =

c0

1 − λ
=

c0

1 − c1/c0
,

which holds when − log cj is convex in j. Now

λ = exp(−(nk−1 − nk−2)(t − tk−2)) 6 exp(−(nk−1 − nk−2)(tk−1 − tk−2))

and

µ = exp(−(nk+2 − nk+1)(tk+1 − t)) 6 exp(−(nk+2 − nk+1)(tk+1 − tk)).

We can choose nk and tk such that

(nk − nk−1)(tk − tk−1) > ε > 0 and (nk+1 − nk)(tk − tk−1) > ε > 0.
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For example, if the nk are already chosen as in the previous example, then we can
choose tk, or, if we fix the sequence (tk) with tk > tk−1, then we can choose the nk.
There is a great freedom in the construction. We now see, writing C = (1 − e−ε)−1,
that

|G(z)| 6 (2C + 1)ank
enkt = (2C + 1)eq̃(t),

so that
g(t) 6 q̃(t) + log(2C + 1).

Thus type(g : q̃) 6 1. We see finally that the Fenchel transforms of the coefficient
functions of the two entire functions F and G are the same: p̃ = q̃, but type(F :
G) = type(f : g) = type(f : p̃) can be arbitrarily large. In particular type(F : G)
cannot be calculated from p̃, q̃.

This example is in contrast with the classical type which can be determined from
p̃ : it is (for order 1)

σ = lim sup
t→+∞

f(t)e−t = lim sup
t→+∞

p̃(t)e−t.

This follows from Corollary 12.2 because the exponential function is K-regular for
type as can easily be shown using, e. g., condition (D) of Lemma 11.4. This fact
already shows that the type can be determined from p̃ in all dimensions, but of
course the classical formula

type(f : exp) = lim sup
j|aj |ρ/j

eρ

is more explicit: it does not necessitate calculation of the transform p̃.

37



References

1. M. Freund and E. Görlich, ‘On the relation between maximum modulus,
maximum term, and Taylor coefficients of an entire function’, J. Approx. Thy
43 (1985) 194–203.

2. W. K. Hayman, ‘Note on Hadamard’s convexity theorem’. Entire functions
and related parts of analysis. Proceedings of Symposia in Pure Mathematics,
volume 11, 210–213 (American Mathematical Society, Providence, 1968).

3. O. P. Juneja, G. P. Kapoor and S. K. Bajpai, ‘On the (p, q)-order and
lower (p, q)-order of an entire function’, J. Reine Angewandte Math. 282 (1976)
53–67.

4. O. P. Juneja, G. P. Kapoor and S. K. Bajpai, ‘On the (p, q)-type and
lower (p, q)-type of an entire function’, J. Reine Angewandte Math. 290 (1977)
180–190.

5. C. O. Kiselman, ‘The growth of restrictions of plurisubharmonic functions’,
Mathematical Analysis and Applications, Part B, L. Nachbin (Ed.). Advances
in Mathematics Supplementary Studies, vol. 7B (1981) 435–454.

6. C. O. Kiselman, ‘The use of conjugate convex functions in complex analy-
sis’, Complex Analysis, J.  Lawrynowicz and J. Siciak (Eds.). Banach Center
Publications, vol. 11 (1983) 131–142.

7. C. O. Kiselman, ‘Croissance des fonctions plurisousharmoniques en dimension
infinie’, Ann. Inst. Fourier Grenoble 34 (1984) 155–183.

8. C. O. Kiselman, Konvekseco en kompleksa analitiko unu-dimensia (Depart-
ment of Mathematics, Uppsala University, Lecture Notes 1986:LN2, Uppsala,
1986).

9. B. Kjellberg, ‘The convexity theorem of Hadamard–Hayman’, Proceedings
of the symposium in mathematics at the Royal Institute of Technology in June
1973, 87–114 (The Royal Institute of Technology, Stockholm, 1974).

10. P. Lelong and L. Gruman, Entire Functions of Several Variables (Springer-
Verlag, 1986).

11. R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton,
1970).

12. D. Sato, ‘On the rate of growth of entire functions of fast growth’, Bull. Amer.
Math. Soc. 69 (1963) 411–414.

13. J. M. Whittaker, ‘The lower order of integral functions’, J. London Math.
Soc. 8 (1933) 20–27.

Author’s address: Uppsala University, Department of Mathematics,
P. O. Box 480, SE-751 06 Uppsala, Sweden.

38




