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Frustration refers to competition between different interactions that cannot be simultaneously satisfied, a

familiar feature in many magnetic solids. Strong frustration results in highly degenerate ground states, and a

large suppression of ordering by fluctuations. Key challenges in frustrated magnetism are characterizing the

fluctuating spin-liquid regime and determining the mechanism of eventual order at lower temperature. Here, we

study a model of a diamond lattice antiferromagnet appropriate for numerous spinel materials. With sufficiently

strong frustration a massive ground state degeneracy develops amongst spirals whose propagation wavevectors

reside on a continuous two-dimensional “spiral surface” in momentum space. We argue that an important

ordering mechanism is entropic splitting of the degenerate ground states, an elusive phenomena called order-

by-disorder. A broad “spiral spin-liquid” regime emerges at higher temperatures, where the underlying spiral

surface can be directly revealed via spin correlations. We discuss the agreement between these predictions and

the well characterized spinel MnSc2S4 .

PACS numbers:

When microscopic interactions in a material conspire to “accidentally” produce many nearly degenerate low-energy states,

otherwise weak residual effects can give rise to remarkable emergent behavior. This theme recurs throughout modern condensed

matter physics. Quintessential examples include the cuprates, with several competing orders including high-Tc superconduc-

tivity, and exotic quantum (Hall) liquids in two-dimensional electron systems, arising from partial Landau-level occupation.

Insulating magnets constitute a particularly abundant source of such phenomena, as in numerous cases frustration generated

by the competition between different exchange interactions leads to large classical ground-state degeneracies. An important

experimental signature of such degeneracies is an anomalously low ordering temperature Tc relative to the Curie Weiss tem-

perature ΘCW ; indeed, values of the “frustration parameter” f = |ΘCW |/Tc larger than 5-10 are typically taken as empirical

evidence of a highly frustrated magnet.[1] This sharp suppression of Tc opens up a broad “spin-liquid” regime for temperatures

Tc . T . |ΘCW |, where the system fluctuates amongst the many low-energy configurations but evades long-range order.

Highly non-trivial physics can emerge here, as attested for instance in pyrochlore antiferromagnets by the experimental obser-

vation of hexagonal loop correlations in neutron scattering on the spinel ZnCr2O4[2], and theoretically by the establishment of

“dipolar” correlations.[3]

Low-temperature ordering in highly frustrated magnets often displays an exquisite sensitivity to degeneracy-breaking per-

turbations, notably dipolar interactions and minimal disorder in the spin-ice pyrochlores,[4], spin-lattice coupling in various

spinels[5], and Dzyaloshinskii-Moriya interactions in Cs2CuCl4[6]. However, the lifting of degeneracy need not require the

presence of such explicit perturbations. This can be achieved, rather remarkably, by fluctuations – a process commonly referred

to as “order-by-disorder”.[7] Here, degeneracy in the free energy is lifted entropically, resulting in ordering which counter-

intuitively is enhanced by increasing temperature. An analogous phenomenon occurs in quantum spin models at T = 0, where

quantum fluctuations provide the degeneracy-breaking mechanism [8, 9, 10]. Whether or not order-by-disorder transpires de-

pends crucially upon the degree of degeneracy: it is known to occur in various FCC antiferromagnets[11, 12], for instance, but

not in the more severely degenerate nearest-neighbor pyrochlore antiferromagnet[13, 14], where instead a classical spin-liquid

regime extends down to T = 0. While these ideas have existed for decades and enjoy broad acceptance in the theoretical

community, compelling experimental evidence for order-by-disorder in even one example is presently lacking.

Here we argue that entropic effects may play a key role in the physics of insulating normal spinels, with the generic chemical

formula AB2X4, that comprise antiferromagnets on a diamond lattice formed by magnetic, orbitally non-degenerate A sites

(see Fig. 1). Numerous strongly frustrated materials in this class have been recent subjects of intensive experimental study;

in particular, CoAl2O4 and MnSc2S4 for which f > 10 − 20 [15, 16] and f ≈ 10 [17], respectively, are expected to provide

ideal test grounds for the physics we describe. We introduce a simple classical model for these materials, consisting of a basic

“parent” Hamiltonian supplemented by small corrections, that exhibits complex behavior in accord with numerous experimental

observations. Remarkably, ground states of the parent theory are (for most of its phase space) highly degenerate coplanar

spirals, whose propagation wavevectors form a continuous surface in momentum space. Within our parent theory, order-by-

disorder occurs with a dramatically suppressed Tc relative to ΘCW , and above Tc a “spiral spin liquid” regime emerges where

the system fluctuations among these degenerate spirals. While the small corrections (which we describe) inevitably determine

http://arXiv.org/abs/cond-mat/0612001v1
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specific ground states at the lowest temperatures, entropy washes these out at higher temperatures, allowing the spiral spin liquid

and/or order-by-disorder physics inherent to the parent Hamiltonian to become visible. This energy-entropy competition is thus

manifest as an interesting multi-stage ordering behavior.

Superficially, the strong frustration inherent in materials such as MnSc2S4 seems rather puzzling. Indeed, the diamond lattice

is bipartite, and accordingly a model with only nearest-neighbor spin coupling J1, whether ferromagnetic or antiferromagnetic,

exhibits no frustration. Additional interactions must therefore be incorporated to account for the observed frustration. We first

consider the simplest modification that achieves this, and assume a Hamiltonian with additional second-neighbor antiferromag-

netic exchange J2:

H = J1

∑

〈ij〉

Si · Sj + J2

∑

〈〈ij〉〉

Si · Sj . (1)

Here the spins Si are modeled as classical three-component unit vectors (absorbing a factor of S(S+1) into the definition of Ji),

appropriate to the large spin values (S = 3/2, 5/2) for these materials. Throughout we set the lattice constant a = 1 and consider

J2 > 0 appropriate for antiferromagnetic exchange. While the sign of J1 can always be changed by sending Si → −Si on one

of the two diamond sublattices, for ease of discussion we will assume antiferromagnetic J1 > 0 unless specified otherwise.

Additional interactions such as further-neighbor exchange may also be present, but will be assumed small and returned to only

at the end of the paper. As we will see, the parent Hamiltonian Eq. (1) leads to a rich theoretical picture which we argue captures

the essential physics operating in these strongly frustrated materials.

To appreciate the frustration in H , it is convenient to view the diamond lattice as composed of two interpenetrating FCC

sublattices (colored orange and green in Fig. 1). From this perspective, J1 couples the two FCC sublattices, while J2 couples

nearest-neighbors within each FCC sublattice. The FCC antiferromagnet is known to be highly frustrated,[18] and hence J2

generates strong frustration which the competition from J1 further enhances. In fact, as argued long ago [19] and emphasized

in [17, 20], due to the similarity in exchange paths coupling first- and second-neighbor sites in such materials, J1 and J2 are

generally expected to have comparable strengths.

We begin by discussing the zero-temperature properties of Eq. (1). Exact ground states can be obtained for arbitrary J2/J1.

In the weakly frustrated limit with 0 ≤ J2/J1 ≤ 1/8, the ground state is the Néel phase, with each spin anti-aligned with

those of its nearest neighbors. For larger J2 the simple Néel phase is supplanted by a massively degenerate set of coplanar

spin spirals. As described above, and illustrated schematically in Fig. 1, each spiral ground state is characterized by a single

wavevector q lying on a two-dimensional “spiral surface”. This surface possesses a nearly spherical geometry for coupling

strengths 1/8 < J2/J1 < 1/4, and exhibits an open topology for J2/J1 > 1/4 where it develops “holes” centered around the

(111)-directions (see Fig. 2). In the limit J2/J1 → ∞, the surface collapses into one-dimensional lines, which are known to

characterize the ground states of the nearest-neighbor-coupled FCC antiferromagnet.[18]

At small but non-zero temperature, one must consider both the local stability and the global selection amongst these ground

states. The stability issue is quite delicate, since at T = 0 the spins can smoothly distort from one ground state to any other at no

energy cost. More formally, for any ground state at T = 0 there is a branch of normal modes whose frequencies ω0(q) have an

infinite number of zeros, vanishing for any q on the spiral surface. This leads to a divergence in a naı̈ve low-temperature expan-

sion in small fluctuations. To illustrate, let us start from an arbitrary ground state ordered at wavevector Q, with a corresponding

spin configuration Si, and expand the Hamiltonian in fluctuations δSi = Si − Si. To leading order in temperature the thermally

averaged fluctuation amplitude, by equipartition, is given by

〈δS2
i 〉 ∼ T

∫

d3q

ω2
0(q)

→ ∞, (2)

which diverges due to the infinite number of zeros in ω0(q). However, since only a finite number of these zero-frequency modes,

the “Goldstone modes”, are guaranteed by symmetry, thermal fluctuations can lift the remaining “accidental” zeros, potentially

stabilizing an ordered state.

This stabilization indeed occurs. Interestingly, modifications to ω0(q) by thermal fluctuations are non-perturbative in tem-

perature. We therefore obtain the leading corrections for T ≪ ΘCW within a self-consistent treatment as described in the

Supplementary Material. Provided J1 6= 0, we find that for q on the spiral surface the frequencies become

ω2
T (q) = ω2

0(q) + T 2/3Σ(q), (3)

where Σ(q) is temperature-independent and generically vanishes only at the spiral wavevectors ±Q, which are precisely the

locations of the Goldstone modes. Thus entropy indeed lifts the surface degeneracy, which cures the divergence in Eq. (2) and

stabilizes long-range order. Nevertheless, the order is in a sense “unconventional” in that anomalies in thermodynamic quantities
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appear due to the non-analytic temperature dependence in Eq. (3). In particular, the classical specific heat at low temperatures

scales as

Cclassical
v (T ) = A + BT 1/3, (4)

with A and B constants. A crude quantum treatment, obtaining the magnon spectrum ǫ(q) = ~ωT (q) by quantizing the classical

modes of Eq.(3), predicts the fractional power-law Cquantum
v (T ) ∼ T 7/3. This is intriguingly reminiscent of the approximately

T 2.5 behavior observed in CoAl2O4 [16] and related materials [17].

We now address which state thermal fluctuations select. Although the energy E associated with each wavevector on the spiral

surface is identical, their entropy S and hence free energy F = E − TS generally differ. Typically, entropy favors states with

the highest density of nearby low-energy excitations. To compute the free energy at low temperatures, it suffices to retain terms

in the Hamiltonian which are quadratic in fluctuations about a state ordered at wavevector Q. The free energy can then be

computed numerically for each Q on the surface. The results for select J2/J1 are illustrated in Fig. 2, where the surface is

colored according to the magnitude of the free energy (blue is high, red is low, and the global minima are green). As indicated

in Fig. 3(a), the free energy minima occur at the following locations as J2/J1 varies: (i) along the (q, q, q) directions for

1/8 < J2/J1 ≤ 1/4 as in Fig. 2(a); (ii) at the six wavevectors depicted in Fig. 2(b) located around each “hole” in the surface for

1/4 < J2/J1 . 1/2; (iii) along the (q, q, 0) directions when 1/2 . J2/J1 . 2/3; and (iv) at four points centered around each

(q, 0, 0) direction as in Fig. 2(c) for larger J2. Eventually the latter points converge precisely onto the (q, 0, 0) directions, where

the nearest-neighbor FCC antiferromagnet is known to order [12].

We next turn to the evolution with increasing temperature, for which we rely on extensive Monte Carlo simulations and

analytic arguments. As one introduces frustration via J2, it is natural to expect a sharply reduced transition temperature Tc

relative to ΘCW , and this is indeed borne out in our simulations. Figure 3 (a) illustrates Tc versus J2/J1 computed numerically

for systems with up to N = 4096 = 8 × 83 spins. In the Néel phase, a sharp decrease in Tc is evident upon increasing J2. As

an interesting aside, for J2/J1 just above 1/8 two ordering transitions appear below the paramagnetic phase. This occurs due

to thermal stabilization of the Néel phase slightly beyond the value of J2/J1 = 1/8; the reentrant Néel order appears below

the dashed black line in Fig. 3(a). More interestingly, Tc clearly remains non-zero for J2/J1 > 1/8, in agreement with the

preceding order-by-disorder analysis. Throughout this region, the transition is strongly first order.

Due to the strong suppression of Tc when J2/J1 > 1/8, one can explore a broad range of the spin liquid regime in the

paramagnetic state above Tc and below |ΘCW |. Interestingly, the spiral surface, as well as entropic free-energy corrections,

can be directly probed via the spin structure factor. This is illustrated in Fig. 3(b), which displays the structure factor SAA(q)
corresponding to spin correlations on one of the two FCC sublattices. (Experimentally, SAA(q) can be obtained from the full

structure factor as described in the Supplementary Material.) The data correspond to N = 13824 spins with J2/J1 = 0.85,

relevant for MnSc2S4 as discussed below, at a temperature just above Tc. Here we plot only momenta contributing the highest

44% intensity (blue points have lower intensity, red higher, and green corresponds to the maxima); the similarity to Fig. 2(c) is

rather striking. The free-energy splitting manifest here persists up to T ≈ 1.3Tc, while the surface itself remains discernible out

to T ≈ 3Tc (see Fig.4(a)). The spiral ground states evidently dominate the physics for Tc . T . 3Tc, so that this regime can be

appropriately characterized as a “spiral spin liquid”.

To quantify the behavior in this regime analytically, we calculated the structure factor within the “spherical” approximation,

in which the unit-magnitude constraint on each spin is relaxed to
∑

i |Si|
2 = N . The classical spin liquids in kagome [21]

and pyrochlore [3] antiferromagnets are known to be well-described by this scheme. Here, we find that the structure factor is

similarly peaked on the spiral surface, with a width ξ−1 ∼ kBT that agrees quantitatively with the fitted value from numerics.

Moreover, the complete three-dimensional structure factor data collapse onto a (known) one-dimensional curve when plotted

versus the variable Λ(q) = 2
√

cos2 qx

4 cos2
qy

4 cos2 qz

4 + sin2 qx

4 sin2 qy

4 sin2 qz

4 . As illustrated in Fig. 4(a) for J2/J1 = 0.85,

the numerical data conform well to this prediction, essentially throughout the paramagnetic phase except very near Tc where

thermal fluctuations dramatically split the free energy along the surface. Note that the red analytical curves contain only a single

fitting parameter, corresponding to an unimportant overall scaling.

Finally, we discuss implications for experiments, focusing on the well-characterized material MnSc2S4 . Below TN1 = 2.3 K,

experiments observe long-range spiral order with wavevector Qexp ≈ 2π(3/4, 3/4, 0), coexisting with pronounced correlations

with wavevector magnitude Qdiff ≈ 2π that persist to well above TN1 [20, 22]. A second transition occurs at TN2 = 1.9
K, below which the latter correlations are greatly suppressed. Assuming Qexp lies near the spiral surface, we estimate that

J2/J1 ≈ 0.85 for this material. By comparing the structure of the spiral ground state ordered at Qexp with the experimentally

determined spin structure [20], we further deduce that J1 must be ferromagnetic (i.e., J1 < 0) in MnSc2S4 . One can then extract

the magnitudes of the exchange constants from the measured Curie-Weiss temperature ΘCW ≈ −22.1 K; we obtain J1 ≈ −1.2
K and J2 ≈ 1.0 K. According to the numerical results of Fig. 3, the predicted ordering temperature for these parameters is

Tc ≈ 2.4K.

Obtaining a detailed comparison to the low-temperature experimental order requires perturbing our parent Hamiltonian. Quite
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generally, these corrections inevitably overwhelm the entropic free energy splittings discussed above at sufficiently low temper-

ature, since the latter vanish as T → 0. Happily, the simplest correction—a small antiferromagnetic third-neighbor exchange

J3—favors the observed (q, q, 0) spiral direction. The close proximity of the calculated Tc for J3 = 0 to the experimental TN1

suggests that J3 should indeed be small. For sufficiently small J3, the entropic splittings will outweigh this energetic correc-

tion at higher temperatures, giving way to an intermediate phase with long-range spiral order along the entropically favored

(approximately) (q, 0, 0) directions. As J3 increases (but remains small), this order-by-disorder phase will be weakened and

eventually removed, leaving only the more robust spiral spin liquid correlations above Tc. The Qdiff scattering deduced from

powder neutron experiments is consistent with weak order-by-disorder as well our predictions for the spiral spin liquid, and

further single-crystal experiments are needed to distinguish between these scenarios. For comparison with the latter, in Fig. 4(b)

we display the numerically powder averaged spherical model structure factor Save(Q) for J3 = |J1|/20 at several temperatures

above Tc. This reproduces well the experimental diffuse correlations near Qdiff as temperature smears the J3 splitting. In short,

the “competing order” observed at intermediate temperatures is precisely in line with theoretical expectations in our framework,

and thus in our view provides convincing experimental evidence for our model’s relevance to the physics of MnSc2S4 .

Looking forward, many other materials are anticipated to be well-described by our model, from the marginally frustrated

CoRh2O4 and MnAl2O4 with f ≈ 1.2 and f ≈ 3.6, respectively, to the highly frustrated CoAl2O4. Existing measurements

place a lower bound on the frustration parameter for CoAl2O4 of around 10-20; a broad peak in the specific heat evidently

preempts a sharp ordering transition in current samples [15, 16]. As described in the Supplementary Material, the available

low-temperature powder neutron data together with the large frustration parameter are consistent with this material residing in

the region J2/J1 ≈ 1/8, where the spiral surface begins to develop. Experiments with increased sample purity would likely

allow for a more direct comparison. Regarding future experiments more generally, most exciting would be single crystal neutron

data, which would allow a much more direct and detailed comparison of theory and experiment. One could carry out an analysis

similar to the one performed for the structure factor in our Monte Carlo simulations, as detailed in the Supplementary Material.

In this way, one might directly observe the spiral surface in the spiral spin liquid regime and perhaps find the first unambiguous

experimental signatures of order-by-disorder, both of which would be truly remarkable.

We would like to acknowledge Ryuichi Shindou, Zhenghan Wang, and Matthew Fisher for illuminating discussions, as well as

Tomoyuki Suzuki, Michael Muecksch, and Alexander Krimmel for sharing their unpublished results. This work was supported

by the Packard Foundation (D. B. and L. B.) and the National Science Foundation through grants DMR-0529399 (J. A.), and

DMR04-57440 (D. B. and L. B.).

Supplementary Material

LOW TEMPERATURE

Ground states

To find the ground states of our parent theory, it is useful to diagonalize the Hamiltonian by transforming to momentum space.

Since the diamond lattice is an FCC Bravais lattice with a two-site basis, this reveals two bands with energies

ǫ±(q) = 4J2[Λ
2(q) − 1] ± 2J1Λ(q). (5)

Here and below we assume antiferromagnetic J1,2 > 0; the function Λ(q) is defined by

Λ(q) = 2[cos2(qx/4) cos2(qy/4) cos2(qz/4)

+ sin2(qx/4) sin2(qy/4) sin2(qz/4)]1/2 (6)

as provided in the main text. The minimum eigenvalue is realized in the lower band ǫ−(q), and occurs at a single point (q = 0)

for J2/J1 < 1/8 but on a two-dimensional surface in momentum space for larger J2/J1.

Our strategy is to explicitly construct states that contain Fourier weight only at the minimum eigenvalue, and simultaneously

satisfy the unit-vector constraint for each spin. Such states are guaranteed to be ground states, as mixing any other Fourier

components necessarily increases the energy. For J2/J1 < 1/8 this prescription gives the expected Néel phase as the unique

ground state (apart from global spin rotations). For larger J2/J1 one can construct highly degenerate spiral ground states, each

characterized by a single wavevector lying on the “spiral surface” corresponding to the minimum of ǫ−(q). Denoting the two

FCC sublattices by A and B and the lattice site positions by rj , the spiral ground states explicitly take the form

S
A/B
j = ∓[x̂ cosϕ

A/B
j + ŷ sin ϕ

A/B
j ] (7)

ϕ
A/B
j = q · rj ± θ(q)/2, (8)
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with any wavevector q on the spiral surface. We have assumed a spiral in the x-y plane, though any two orthonormal unit vectors

above will clearly do. The angle θ(q) determines the relative phase shift between the A and B sublattices, and is given by the

argument of

cos
(q1

4

)

cos
(q2

4

)

cos
(q3

4

)

− i sin
(q1

4

)

sin
(q2

4

)

sin
(q3

4

)

. (9)

(Note that for ferromagnetic J1 < 0, the corresponding ground states are obtained by reversing the spins on one FCC sublattice.)

While this does not exhaust all possible ground states, others occur only at special values of J2/J1 or contribute only a finite

discrete set and are thus anticipated to be less important than these generic spirals. For instance, a discrete set of ground states

constructed from wavevectors on the surface differing by half a reciprocal lattice vector can be realized over a range of J2/J1.

Local stability

Henceforth we focus on the regime J2/J1 > 1/8. Given the massive spiral ground state degeneracy here, the question of

stability of long-range order becomes quite delicate. The goal of this subsection is to demonstrate that entropy stabilizes long-

range order at finite temperature by lifting the degeneracy in the free energy along the spiral surface, i.e., the system undergoes

a thermal order-by-disorder transition.

To this end, we start from an arbitrary ground state ordered at momentum Q with a spin configuration Sj and expand in

fluctuations by writing

Sj = ~πj + Sj

√

1 − ~π2
j . (10)

The fluctuation field ~πj is constrained such that Sj · ~πj = 0 so that the unit-vector constraint remains satisfied. After computing

the Jacobian for the variable transformation, the partition function becomes

Z =

∫

DSe−βH
∏

r

δ[S2
j − 1]

=

∫

D~πe−βH
∏

r

[

1 − ~π2
j

]−1/2
.

(11)

An expansion in small fluctuations can be controlled at low temperatures. Assuming the spins Sj lie in the x-y plane, we

parametrize the fluctuations as follows,

~πj = ẑφj + [ẑ × Sj ]χj , (12)

thereby automatically satisfying the constraint Sj · ~πj = 0. The partition function can now be expressed in terms of an action,

Z =

∫

DφDχe−S . (13)

Retaining the leading corrections to the Gaussian theory, the action can be written as S = S2 + S3 + S4, where

S2 =
β

2

∑

ij

[

J̃ijφiφj + Wijχiχj

]

−
1

2

∑

j

[φ2
j + χ2

j ]

S3 =
β

2

∑

ij

Kijφi

(

φ2
j + χ2

j

)

S4 =
β

8

∑

ij

Wij

(

φ2
i + χ2

i

) (

φ2
j + χ2

j

)

.

(14)

Here J̃ij is simply the exchange matrix Jij shifted by a constant, such that all the eigenvalues are non-negative and the

ground state space corresponds to the kernel of this matrix. We have also defined the matrices Wij = J̃ij

(

Sj · Si

)

and

Kij = J̃ij

[

ẑ ·
(

Sj × Si

)]

. The Jacobian factor has been absorbed into the action, giving rise to the last summation in S2.

According to Eq. (12), fluctuations out of the spiral plane are described by φj , while χj describes in-plane fluctuations.

Long-range order will occur if these fluctuations can always be made small by going to sufficiently low temperature. The
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latter generically have only a single gapless mode, corresponding to the symmetry-required Goldstone mode at zero momentum.

Consequently, fluctuations in χj are clearly well-behaved at low temperature. Subtleties with long-range order arise from the

φj fluctuations, which connect the degenerate ground states. At the Gaussian level and to leading order in temperature, the φj

propagator is

G0
ij = 〈φjφi〉0 = J̃−1

ij . (15)

In momentum space, the associated normal mode frequencies ω0(q) and ω1(q) are defined by

ω2
0,1(q) ≡ ǫ∓(q) − ǫmin

− , (16)

where ǫmin
− corresponds to the minimum value of ǫ−(q). It follows that the fluctuation amplitude for φj naively diverges,

〈φ2
j 〉0 ∼ T

∫

q

1

ω2
0(q)

→ ∞ , (17)

since ω0(q) vanishes for any q on the spiral surface due to the continuous ground state degeneracy.

Higher-order corrections in temperature, however, lift the surface degeneracy, thus curing the above divergence and stabilizing

long-range order. Perturbation theory in temperature suffers similar divergences as found above, and hence we employ a self-

consistent treatment to obtain corrections to the φj fluctuations. The φj propagator obtained from the full action S defined above

is

Gij = 〈φjφi〉 =
[

J̃ij + Σ̃ij

]−1

, (18)

where Σ̃ij is the self-energy. In particular, we are interested in the self-energy correction to ω0(p), which we will denote Σ̃(p),
for momenta p along the spiral surface.

To proceed, we first assume that thermal fluctuations indeed break the surface degeneracy, and then find the leading corrections

self-consistently. More specifically, we assume that Σ̃(p) ∼ T αΣ(p), where α < 1, Σ(p) is temperature-independent, and

Σ(±Q) = 0; the last condition simply asserts that the symmetry-required Goldstone modes at the ordering wavevectors are

preserved. With these assumptions, we obtain a self-consistent equation of the form

Σ̃(k) = T

∫

q

Γ(q,k)G(q) , (19)

with G(q) =
[

ω2
0(q) + Σ̃(q)

]−1

and Γ(q,k) temperature-independent. At low-temperatures, the integral is dominated by

momenta near the spiral surface due to the propagator G(q). By contrast, the function Γ(q,k) is well behaved and does not

lead to any additional singular behavior. Hence it is sufficient to replace Γ(q,k) → Γ(qs,k) under the integral, where qs lies

precisely on the surface in the direction of q. One can show that Γ(qs,±Q) = 0, so that the Goldstone modes are indeed

preserved within our self-consistent treatment. Furthermore, one can approximate G(q) ≈
[

κ (q − qs)
2

+ T αΣ(q)
]−1

in the

integrand. The temperature dependence can then be scaled out of the integral, implying a power α = 2/3 consistent with our

assumptions.

The divergent fluctuations are thus cured by the onset of a thermally induced splitting ∆ ∼ T 2/3 along the spiral surface.

Consequently, ordering at finite temperature will occur, despite the massive ground state degeneracy.

Global selection

In the previous subsection we found that thermal fluctuations stabilize long-range order at finite temperature. Here we address

the more specific (and simpler) question of which state among the degenerate set is favored. At finite temperature, entropy

selects the states minimizing the free energy F = E − TS (E is energy, S entropy), which usually are those with the highest

density of nearby low-energy states. Let us start from an arbitrary spiral with ordering wavevector Q, and expand in fluctuations

as outlined in the previous subsection. At low temperatures, for our purpose here it suffices to retain only the first two terms in

the Gaussian action S2. Integrating over the fluctuation fields, we then obtain the leading T - and Q-dependent contribution to

the free energy,

F (Q) = −T ln(Z)

∼ T
(

Tr
[

ln(J̃/2πT )
]

+ Tr [ln(W (Q)/2πT )]
)

,
(20)
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where Ĵ , Ŵ denote the matrices defined in the previous subsection and we have explicitly labeled the Q-dependence in Ŵ . The

first term is Q-independent and thus does not distinguish the states on the spiral surface. This is accomplished, however, by

the second term, which can be easily computed numerically as a function of Q to obtain the global free energy minima. The

resultant free-energy splittings are illustrated through the coloring of the surfaces in Fig. 2 of main text. Also, we display in Fig.

5 the free energy along high-symmetry directions as a function of J2/J1. Here, 111∗ refers to six momenta located along the

“holes” which develop in the surface for J2/J1 > 1/4, and 100∗ corresponds to four momenta located around the 100 directions

(see main text).

Specific heat

The anomalous low temperature dependence of the free energy will manifest itself in thermodynamic quantities. In this section

we show explicitly how the specific heat varies with temperature in this regime.

The heat capacity Cv = −T
(

∂2F
∂T 2

)

V,N
can be found from our low temperature expression for the free energy. Including only

the anomalous part of the self energy, while neglecting all analytic corrections higher order in T , we modify (20) to

F ∼T
(

Tr
[

ln[(J̃ + Σ̃)/2πT ]
]

+ Tr [ln(W (Q)/2πT )]
)

∼− A1T ln(T ) + A2T + T

∫

q

ln[(ω2
0(q) + T 2/3Σ(q))] .

(21)

To find the behavior of the integral at low temperatures, it is useful to consider

∂(F/T )

∂T
∼ −

A1

T
+

2

3
T−1/3

∫

q

Σ(q)

(ω2
0(q) + T 2/3Σ(q))]

(22)

scaling temperature out of the momentum integral on the right hand side. In the same manner we proceeded for the integral in

(19), we find
∫

q

Σ(q)

(ω2

0
(q)+T 2/3Σ(q))]

∼ T−1/3 so that
∂(F/T )

∂T ∼ −A1

T + 2
3T−2/3B. The low temperature form of the free energy

is

F ∼ −A1T ln(T ) + A2T + A3T
4/3 (23)

where A1,2,3 are constants. From this form it follows that the heat capacity is

Cclassical
v (T ) = A + BT 1/3 . (24)

HIGH TEMPERATURE

This section is concerned with analytically describing the spin correlations at temperatures above Tc. Remarkably, these allow

one to probe directly the underlying ground state surface in the “spiral spin liquid” regime occurring over a broad temperature

range. In the disordered phase above Tc, the spins fluctuate strongly, and it is reasonable that the unit length constraint on the

individual spins can be relaxed. Hence we employ the “spherical” approximation, replacing the local unit-vector spin constraint

with the global constraint
∑

j S2
j = N , N being the total number of sites. The spin correlations determined via Monte Carlo

numerics are described quantitatively within this scheme, except very near Tc where entropic effects are dramatic.

The partition function for this model is

Z =

∫

DSdλe−βH−iλ(
P

j S2

j−N) , (25)

where λ is a Lagrange multiplier enforcing the global constraint. To proceed we employ a saddle-point approximation, replacing

iλ → β∆(T )/2, where ∆(T ) is the saddle-point value to be determined. The spin correlation function is then

〈SiSj〉 = 3T [Jij + δij∆(T )]
−1

. (26)

Upon integrating over the spins, one obtains the saddle point equation for ∆(T ):

1

T
=

3

2

∫

q

∑

j=0,1

1

ω2
j (q) + ∆(T )

. (27)
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Equations (26) and (27) together determine the spherical model spin correlations. In particular, the momentum-space correla-

tion function for spins on the same FCC sublattice is given by

SAA(q) ∼ T

[

1

ω2
0(q) + ∆(T )

+
1

ω2
1(q) + ∆(T )

]

, (28)

while the correlation between spins on opposite FCC sublattices is

SAB(q) ∼ Te−iθ(q)

[

−1

ω2
0(q) + ∆(T )

+
1

ω2
1(q) + ∆(T )

]

. (29)

The full structure factor, as measured in experiment, is

S(q) = SAA(q) + Re[SAB(q)]. (30)

Notice that the spin correlation SAA(q) depends on momentum only through the function Λ(q). (SAB(q) has additional

momentum dependence through θ(q).) Hence it is highly desirable to isolate this contribution, as SAA(q) collapses onto

a known one-dimensional curve when plotted versus Λ(q). We have extracted SAA(q) in our Monte Carlo simulations for

J2/J1 = 0.2, 0.25, 0.4, 0.6, 0.85, and indeed find that in all cases for T > Tc the correlation function data collapse well when

plotted versus Λ(q). Furthermore, in all these cases one finds quantitative agreement with the analytic result Eq. (28), with only

a single fitting parameter corresponding to an overall scaling. The excellent agreement obtained here is illustrated in the main

text for J2/J1 = 0.85. The peaks in these figures correspond to values of Λ(q) defining the spiral surface, thus implying that

spin configurations near the surface dominate the physics. This is the spiral spin liquid regime.

Naively, isolating SAA(q) experimentally appears more difficult. Fortunately, this component can be extracted from the full

structure factor by using the fact that θ(q) = θ(q + K) + π, where K = 4π(1, 0, 0) is a reciprocal lattice vector. This leads to

the useful identity

SAA(q) =
1

2
[S(q) + S(q + K)]. (31)

It would be extremely interesting to perform a similar analysis on experimental neutron scattering data, which would require

single crystals. The spiral surface could then be extracted quite simply as follows. Display momenta in the first Brillouin zone

corresponding to the highest intensity points within some threshold—the surface is mapped out when an appropriate threshold

is chosen. Such an analysis was carried out for the Monte Carlo structure factor, the result of which are shown in the main text.

Obtaining single crystal samples is often challenging, so it is highly desirable (and of current experimental relevance) to

have a way of detecting the spiral surface in neutron data for powder samples. The full structure factor can be numerically

“powder-averaged” by performing an angular integration for a given wavevector magnitude Q:

Save(Q) =

∫

sin θdθdϕS(Q), (32)

where θ and ϕ are polar and azimuthal angles specifying the direction of Q. The spiral surface is then indirectly revealed as a

peak in Save(Q) over the range of Q for which the surface occurs. Existing neutron data for MnSc2S4 powder samples indeed

reveal a broad peak in the structure factor in agreement with our predictions for the spiral spin liquid regime. Furthermore,

excellent agreement with powder neutron data for CoAl2O4 can be obtained by assuming that J2/J1 ≈ 1/8 for this material.

Fig. 6 displays the predicted powder-averaged structure factor, which exhibits peaks and valleys that correspond well to those

observed experimentally [23]. The low-Tc in this vicinity of J2/J1 is further consistent with the large frustration parameter

observed for CoAl2O4.

MONTE CARLO METHODS

In our numerical simulations of Hamiltonian we used classical Monte Carlo techniques employing a parallel tempering scheme

[24] where multiple replicas of the system are simulated simultaneously over a range of temperature. Thermal equilibration can

be dramatically increased by swapping replicas between neighboring temperature points. An optimal set of temperature points

in the vicinity of the phase transition has been identified for each ratio of competing interactions J2/J1 applying a recently

introduced feedback technique [25, 26]. The implementation of these algorithms was based on the ALPS libraries [27].

[1] Ramirez, A. P. Strongly geometrically frustrated magnets. Annual Review of Materials Science 24, 453–480 (1994).



9

[2] Lee, S.-H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856 (2002).

[3] Isakov, S. V., Gregor, K., Moessner, R. & Sondhi, S. L. Dipolar spin correlations in classical pyrochlore magnets. Physical Review Letters

93, 167204 (2004).

[4] Bramwell, S. T. & Gingras, M. J. P. Spin Ice State in Frustrated Magnetic Pyrochlore Materials. Science 294, 1495–1501 (2001).

[5] Yamashita, Y. & Ueda, K. Spin-driven Jahn-Teller distortion in a pyrochlore system. Physical Review Letters 85, 4960–4963 (2000).

[6] Veillette, M. Y., Chalker, J. T. & Coldea, R. Ground states of a frustrated spin-(1/2) antiferromagnet: Cs2CuCl4 in a magnetic field.

Physical Review B (Condensed Matter and Materials Physics) 71, 214426 (2005).

[7] Villain, J., Bidaux, R., Carton, J. P. & Conte, R. Order as an effect of disorder. J. de Phys. 41 (1980).

[8] Rastelli, E. & Tassi, A. Order produced by quantum disorder in the Heisenberg rhombohedral antiferromagnet. Journal of Physics C:

Solid State Physics 20, L303–L306.

[9] Henley, C. L. Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056–2059 (1989).
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FIG. 1: The diamond lattice, composed of two interpenetrating FCC sublattices (colored orange and green). Second-neighbor antiferro-

magnetic exchange J2 generates strong frustration that is compounded by the competition from the nearest-neighbor exchange J1. For

J2/J1 > 1/8, this results in a large ground state degeneracy consisting of spin spirals whose propagation wavevectors lie on a two-dimensional

surface in momentum space. The arrows above denote the orientations of spins in the shaded planes for one such spiral with wavevector

q = 2π(1/4, 0, 0), illustrated for ferromagnetic J1 for clarity.

(a) (b) (c)

FIG. 2: “Spiral surfaces” comprising the degenerate spiral ground state wavevectors for coupling strengths J2/J1 of (a) 0.2, (b) 0.4, and

(c) 0.85, where the last value is appropriate for MnSc2S4 . Order-by-disorder occurs at finite temperature, as thermal fluctuations lift the

degeneracy in the free energy. The surfaces are color-coded according to the resulting low-temperature free energy at each wavevector, with

high values blue, low values red, and green the absolute minima.
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FIG. 3: (a) Numerical results for the ordering temperature Tc versus the coupling strength J2/J1 for systems with up to N = 8×L3 = 4096
spins. The ordering temperature rapidly diminishes in the Néel phase upon adding frustration via J2, and, significantly, remains finite for

J2/J1 > 1/8 where the spiral surface occurs in agreement with our order-by-disorder analysis. The entropically selected ordering at low-

temperatures is denoted along the horizontal axis; 111∗ and 100∗ refer respectively to the green points in Figs. 2(b) and (c). The “bumpy”

modulations in Tc originate from an unusual finite size effect, namely variations in the number of momenta in the Brillouin zone that for the

finite system approximate the spiral surface. (b) Regions of high-intensity in the magnetic structure factor in the paramagnetic phase just above

Tc. The data were obtained numerically for a system with N = 8 × 123 = 13824 spins at coupling strength J2/J1 = 0.85 appropriate for

MnSc2S4 . As evidenced by the remarkable similarity to Fig. 2(c), the structure factor not only clearly reveals the underlying spiral surface,

but also reflects the entropic corrections to the free energy along the surface.

0 0.5 1 1.5 2

Λ(q)

0

0.2

0.4

0.6

0

0.25

0.5

0.75

st
ru

ct
u

re
 f

ac
to

r 
  

S
 A

A
(q

) 
 [

ar
b

. 
u

n
it

s]

0

0.5

1

1.5

Monte Carlo data
analytical fit

T = 0.24 J
1

T = 0.43 J
1

T = 0.70 J
1

(a)

0.5 0.75 1 1.25 1.5
Q   [2π/a]

0 0

0.5 0.5

1 1

1.5 1.5

2 2

2.5 2.5

S
av

e(Q
) 

  
[a

rb
. 
u
n
it

s]

T / T
c
 = 1.1

1.5
2.9
4.7
8.9

(b)

FIG. 4: (a) Structure factor data SAA(q) versus Λ(q) in the paramagnetic phase with J2/J1 = 0.85, for which Tc ≈ 0.22J1 . Essentially for

all T > Tc, the numerical data agree quantitatively with the spherical model predictions (red curves), with one fitting parameter corresponding

to an overall scaling factor. The peaks in the upper two panels correspond to points near the spiral surface, which remains discernible up

to T ≈ 3Tc. (b) Powder-averaged structure factor in the spherical model with J2 = −0.85J1 and J3 = −J1/20. The data correspond to

temperatures ranging from just above Tc (black curve) to several times Tc (orange curve). Corrections due to J3 initially dominate the signal,

but are rapidly washed out as temperature increases, leaving the robust spiral spin liquid correlations. The data reproduce well the diffuse

scattering around Qdiff ≈ 2π observed in powder neutron experiments.
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FIG. 5: Free energy versus J2/J1 along high-symmetry directions in the Brillouin zone.
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FIG. 6: Powder-averaged structure factor in the spherical model with J2/J1 ≈ 1/8. The data reproduce well the diffuse scattering observed

in powder neutron experiments.




