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Order-Disorder Transition in Capillary Ripples

N. B. Tufillaro, @ R, Ramshankar, and J. P. Gollub

Department of Physics, Haverford College, Haverford, Pennsylvania 19041, and
Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 3 October 1988)

A well-defined order-disorder transition occurs in the capillary waves on a fluid layer driven by vertical
oscillation. The transition is characterized by a sharp decline in both the translational correlation length
and the long-range orientational order of the pattern, and an onset in the characteristic frequency f* of

chaotic fluctuations varying approximately as (4 — A4

)2, for driving amplitudes above a threshold Aa.

The transition is geometry dependent even when the container size is 50-100 times the wavelength.

PACS numbers: 47.20.Tg, 05.70.Fh, 47.35.+i

Instabilities in fluids often give rise to low-dimensional
chaotic dynamics when the characteristic size A of the
typical spatial structure is comparable to the dimension
L of the entire system. Examples of this phenomenon
have been noted in studies of surface waves, Rayleigh-
Benard convection, and other hydrodynamic systems.'
The opposite case of chaotic dynamics in systems large
compared to A has more recently become the subject of
intensive theoretical? and experimental® investigations.
One current concept is that the dynamics of defects in
otherwise regular patterns may be responsible for the de-
velopment of complex dynamics.*

In this Letter, we report on a type of nonequilibrium
order-disorder transition having some features of an
equilibrium phase transition. The transition is observed
in capillary ripples formed on a fluid surface subject to a
vertical excitation. The excitation frequency is chosen so
that the capillary wavelength A is short compared to the
system size. For rectangular geometries and driving am-
plitudes 4 somewhat above the onset of capillary waves,
there exists a highly ordered and stable square-sym-
metric pattern [Fig. 1(a)l. At a well-defined second
threshold A, an order-disorder transition occurs that in-
volves the formation of defects in the pattern, as has
been noted qualitatively elsewhere.’> A theoretical de-
scription in terms of amplitude equations has been pro-
posed. ¢

Here we present quantitative measurements revealing
the following features of the transition. Over a narrow
interval in A, the correlation length & falls from a value
comparable to the size of the system to a small value
£ =<X. The long-range orientational order in the pattern
decreases substantially, and exhibits large fluctuations in
the transition region. Finally, a characteristic frequency
for the pattern fluctuation varies approximately as
(4—A4)%. The phenomena depend on the geometrical
symmetry of the container.

The experimental apparatus used to excite capillary
ripples is similar to one described elsewhere.” An 8-cm
square Plexiglass container of depth 2 cm is filled with
n-butyl alcohol to a depth of 1 cm. The experiments are

conducted at 30°C. The cell is excited vertically with an
electromagnetic shaker driven by a frequency synthesiz-
er. Harmonics in the driving amplitude are negligible.
The forcing frequency is 320 Hz and the dominant capil-
lary wave frequency is the subharmonic®® at 160 Hz.
Similar phenomena to those described in this Letter are
observed for excitation frequencies between 150 and 500
Hz.

The surface of the liquid is visualized by projection of
a collimated white-light beam through the cell onto a
diffusely scattering Mylar sheet fastened to the top cover
of the cell. The patterns produced by refraction are then
sampled locally by photodiodes, and globally with a
video camera and digital imaging system (512x480 pix-
els). Images are typically taken from the central 20% of

(b) e = 0.11

( €e=0.14 (d)e — 0.35

FIG. 1. Images of capillary wave patterns for four driving
amplitudes e=(4 —A.)/A., where A, is the threshold for
waves. The region shown, about 20% of the cell, is 3.5%3.3

2
cm®.
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the cell area. The excitation amplitude, the primary
control parameter, is measured in normalized units €
=(4—A.)/A., where A, represents the onset amplitude
for the waves.

Capillary ripple patterns for various excitation ampli-
tudes are shown in Fig. 1. The ordered regime is illus-
trated in Fig. 1(a), for ¢ =0.03. The pattern of standing
waves is generally not perfectly aligned with the system
boundaries, which are outside the field of view in Fig. 1.
Long-wavelength modulations are visible at a slightly
higher amplitude as shown in Fig. 1(b) for €=0.11.
These modulations are believed to arise from a sideband
instability.® Where they intersect, the wave amplitude
can become small, thus providing a mechanism for defect
formation. When sufficiently dense, the defects lead to
destruction of the orientational order in the pattern [Fig.
1(c)]l. At higher ¢, the patterns are completely disor-
dered.

To investigate this process quantitatively the two-
dimensional discrete autocorrelation functions C(x,y) of
the images are computed. '® Two examples corresponding
to Figs. 1(a) and 1(c) are displayed in Fig. 2; the region
shown corresponds to half the real space image. In the
most ordered state, the envelope of C(x,y) is almost in-
dependent of the radial displacement from the origin; the
pattern shows long-range order. Just above the transi-
tion at Ay, on the other hand, the translational correla-
tion length is comparable to A.

In order to determine a correlation length &, we calcu-
late the average absolute deviation from the mean of
C(m,n) (on a ring of radius r and thickness Ar), which
we estimate by (| 8C|). This function, which is a mea-
sure of the contrast or envelope of C(x,y), may be satis-
factorily fitted by an exponential function of r over the
relevant range of excitation amplitudes. Examples of
these fits for various excitation amplitudes are presented
in Fig. 3(a). The resulting correlation length £(e) is
shown in Fig. 3(b). The dramatic decline near ¢=0.10
is clearly evident.

Following the method used by Occelli, Guzzelli, and
Pantaloni!! on a different system, we also measure the
degree of orientational order in the patterns by calculat-
ing the fourfold orientational correlation function of the

e = 0.07 e =0.14

FIG. 2. Two-dimensional autocorrelation functions C(x,y)
for the patterns in Figs. 1(a) and 1(c). The origin is at the
upper left.

kind first considered in the theory of two-dimensional
melting.'? It is computed by first locating all of the local
maxima of the image intensity (these are the wave an-
tinodes) and then connecting each point with its four
nearest neighbors. The resulting network of line seg-
ments (with gaps at the locations of defects) is taken to
represent the orientational relationships in the wave pat-
tern. (Alternatively, the network could be created by
Deluancey triangulation.'*) We then define 6(r') to be
the orientation angle in the plane (relative to the x axis)
of a line segment centered at r', and compute

G4(r) =(cos4{6(r') — 6(ry)}),

where the average is taken over all reference points rg
and points r' such that |r'—ro| =~ (to within one pixel).
This function measures the extent to which fourfold
orientational order persists for separations comparable to
r.

The resulting orientational correlation functions are
presented in Fig. 4(a). After an initial falloff, G4(r)
reaches a plateau that is approximately independent of r.
This indicates the presence of long-range orientational
order on a scale comparable to L. The height (G4) of the
plateau (also averaged over time) declines sharply near
€=0.10, as shown in Fig. 4(b). The location of the
order-disorder transition as manifested in (G4) is the
same as that for &, as may be seen by the comparison of
Fig. 4(b) with Fig. 3(b). (This behavior is in contrast to
that found for two-dimensional melting.) During the
transition, the density of defects also undergoes a rapid
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FIG. 3. (a) Average absolute deviation (qualitatively, the
envelope or contrast) of the autocorrelation functions for three
values of € as a function of r/A (6=0.07, squares; € =0.15, tri-
angles; € =0.35, circles). (b) Correlation length £ as a function
of e.
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FIG. 4. (a) Orientational correlation functions G4(r) for the
patterns shown in Fig. 1, as a function of r/A. (b) Average
height of the plateau in G4(r) as a function of € (squares).
The triangles show the rms fluctuation in the plateau height as
a function of e. The transition occurs near ¢=0.010 as in Fig.
3(b).

increase, but quantitative measurements of the defect
density are difficult to make.

In the region of the transition (G4) fluctuates substan-
tially in time because of the large size of the correlation
length, whereas farther above the transition the fluctua-
tions become small. These fluctuations arise from the
large size of the correlation length in the transition re-
gion. We have measured the fluctuations by computing
the root mean square deviation of the plateau height
(G4) over approximately sixteen patterns at each value of
€. The result is also displayed in Fig. 4(b).

Finally, it is interesting and important to compare the
spatial measurements to the time evolution of the pattern
as determined by a local probe in the optical image. The
time series has a broad spectrum and is chaotic but does
not have a small attractor dimension. We compute the
temporal autocorrelation function, and use the time to
the first half-maximum as a measure of the characteris-
tic time of the pattern fluctuations. The inverse f* of
this time is plotted as a function of ¢ in Fig. 5(a). In the
ordered region, the only time dependence is due to a slow
drift in the overall pattern at the rate of about 0.3 mm/s.
This gives a finite but small value of f* below the transi-
tion. As € is increased beyond e; =0.097 +0.004, /* in-
creases sharply, and is well approximated up to €=0.25
by the function f* =B(e—e¢;)?, where y=0.47 +0.07.
For larger ¢, f* increases more rapidly and the pattern
is completely disordered.

These phenomena are significantly dependent on the
geometry of the container, even though L>>A. In both
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FIG. 5. (a) Inverse f* of the autocorrelation time, as a
function of e, for the large square cell. The characteristic fluc-
tuation frequency increases sharply at the threshold €; of the
spatial order-disorder transition. (b) Same for a circular cell
of identical area. The square pattern is intermittent, and there
is no sharp transition.

circular and triangular cells the square pattern still
predominates, but is intermittent as a result of defects
originating from the wall. (In the rectangular geometry
internally generated defects destabilize the pattern, but
only for €>0.1.) Furthermore, there is no sharp transi-
tion in these other geometries, as shown in Fig. 5(b).
The destabilization associated with the circular geometry
may be similar to that found in thermal convection. 14

It is noteworthy that the transition in the characteris-
tic frequency of chaotic fluctuations [Fig. 5(a)] coincides
with the onset of spatial disorder (Figs. 3 and 4). These
chaotic fluctuations result from a different mechanism
than that seen in simple dynamical systems or small as-
pect ratio fluid systems, i.e., the lack of correlation be-
tween many discrete regions which are not separately
chaotic. This behavior is possibly an example of “defect
mediated turbulence.”* The observation of a well-
defined order-disorder transition in this system is unex-
plained at the present time. However, a sharp transition
to chaos has recently been noted in the mean-field theory
of a continuous-time dynamic network model in the
infinite-size limit. !

Spatial and temporal correlation techniques seem to
be appropriate methods for characterizing large aspect
ratio chaotic systems statistically, just as they are for
equilibrium condensed-matter physics and for conven-
tional turbulence. It will be necessary to study larger
systems to understand clearly what features are retained
as the ratio L/A becomes very large. For example,
though the translational correlation functions are satis-



VOLUME 62, NUMBER 4

PHYSICAL REVIEW LETTERS

23 JANUARY 1989

factorily described by exponentials, the present measure-
ments cannot positively exclude algebraic decay at large
distances in the ordered regime.
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(c) e =0.14 (d) e = 0.35
FIG. 1. Images of capillary wave patterns for four driving
amplitudes ¢=(4 —A.)/A., where A. is the threshold for

waves. The region shown, about 20% of the cell, is 3.5%3.3
2
cm?,
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FIG. 2. Two-dimensional autocorrelation functions C(x,y)
for the patterns in Figs. 1(a) and 1(c). The origin is at the
upper left.
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