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A concept of order function is proposed to develop a general self·consistent theory of mutual 
entrainment in large populations of limit· cycle oscillators such that each element is uniformly coupled 
to every other. The onset of entrainment is revealed to be a bifurcation of the order function in 
functional space. Numerical evidence for the tbeory is also presented. 

Large populations of coupled limit-cycle oscillators have been useful models in 
studies of collective temporal rhythmicity observed in a variety of far from equilib
rium systems such as chemical reactors, engineering circuits, biological populations 
and diverse physiological organisms. I) As the coupling strength becomes large 
enough to compensate the desynchronizing effect due to the dispersion of natural 
frequencies, there appears a macroscopic cluster of mutually entrained oscillators 
with a common frequency, thus global oscillations of the population switched on. 

In order to investigate such a phenomenon, so-called phase models are most 
frequently used because of their simple forms, which are derived by means of averag
ing from underlying equations when the dispersion of natural frequencies as well as 
coupling is weak. 2)-4) Among them, a class of models wi th uniform couplings expressed as 

(1) 

for j=l, "', N (the range of j will be omitted hereafter) appears to be particularly 
simple, tempting one to attempt analytic investigations, where ej is the phase variable 
of the jth oscillator (normalized to unity), Qj its natural frequency which is assumed 
to be distributed over the population with a density denoted hereafter by /(Q), 620 

the coupling strength and h(e) the coupling function with period one. In fact, the 
simplest case h(e)=sin27re2

) and its phase-shifted versionS) are known to allow 
rigorous analytic treatments based on a self-consistent equation of an order parame
ter (ZI defined below) in the thermodynamic limit, N -HYJ, therefore having played an 
invaluable role in the study of macroscopic mutual entrainment (MME). Indeed, 
some insights have been obtained into the nature of MME through investigations of 
that case, e.g., close analogies to2

),6) and clear distinctions from6
) phase transitions in 

conventional cooperative systems. 
It is clear, however, that one needs to explore the case of h(e) more generally 

because otherwise one cannot know how universal the results obtained for the 
trigonometric coupling functions are. More importantly, the real nature of MME 
would never be clarified if one sticks to the convenient form of h(e). It should also 
be pointed out that coupling functions wou~d be more or less modulated by higher 
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harmonics in any real coupled-oscillator systems. 
In the following a self-consistent theory of MME will be developed for the phase 

model (1) in the infinite-size limit without specifying the form of h(B), though at least 
a certain property needs to be assumed if one wishes to keep self-consistency up to E 

infinitely large (see a remark below (13)). The central idea is to introduce a new 
concept of order function, H(B), which will be shown in a self-consistent way to obey 
an explicit functional equation involving essentially E, f(Q) and h(B) alone. Below 
the threshold of MME, where every oscillator runs with its intrinsic frequency, H(B) 
is identically z~ro, while in the supercritical regime it attains a nontrivial shape, 
governing the asymptotic dynamics of the system. It turns out that the onset of MME 
can be viewed as a bifurcation of a nontrivial order function in functional space. 

Entrainment discussed here is phase-locking with a common frequency, say, Qe, so 
that it is convenient to change variables by rpj=Bj-Qet. Moreover, one may expand 
h( B) as 

h(B)= ~ {hk(S)sin2JrkB+ hk(C)cos2JrkB} , (2) 
k=l 

where ho(C) is set to be zero since it can be removed by redefining Qj. Then, it is 
possible to rewrite (1) as follows: 

drp)dt=Llj-EH(rpj, t), (3) 

in which X k and Yk are the real and the imaginary part of the kth complex order 
parameter, Zk=N-1"J;/.!=lexp(2Jri'krpj) (i'=i=D, respectively. The basic hypothesis 
adopted here is the existence of limt_=H(rp, t)=H(rp) in the infinite-size system, which 
allows one to replace (3) by 

drpj/dt=Llj - EH(rpJ=F(rpj) (5) 

for t asymptotically large. The function, H, will be called the order function (OF) 
for convenience because it identically vanishes in the nonentrained regime where 
limt-=Zk(t)=O for all k;:;::l, while it begins to be nontrivially shaped above the 
threshold of entrainment, thus embodying the order created. 

Assume now that H( rp) exhibits only one minimum and only one maximum within 
a unit interval as illustrated in Fig. 1. Then, the whole population is divided into two 
parts with qualitatively different behaviors: One is a group of mutually phase-locked 
oscillators satisfying EHm1n < Llj < EHmax with rpj converging to H-1(Ll)E)=¢j for t~oo, 
where rp(1)< rp!< rp(2) by the stability condition, F'(rpJ)<O (F'(rp)=dF/drp). The other 
is the collection of remaining oscillators whose rpj periodically rotates on the unit 
circle with the period Tj=sjC(Llj)-l as well as the invariant probability density 
C(LlJ(Llj - EH( rp) )-I, where 

(6) 

and sj=l if Llj>EHmax, =-1 otherwise. Then, it follows that P(rp), the distribution 
function of rpj over the population, is expressed as 
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P(<P)=PeC<P) + Pne(<P) , (7) 

where Pe and Pne respectively are contri
butions from the subpopulations of 
entrained and nonentrained oscillators: 

Pee <P)= E! (EH( <P))H'( <p) 
(<P(l)< <p< <P(2»), 

=0 (otherwise), 

PneC<P)= ( JiJ >6Hmax, i1 <€Hmm 

- C(Ll) 
x dLl / (Ll) Ll- EH( <P) , 

where !(Ll)=/(SJe+Ll). The asymptot
ic value of Zk for t -4 00 is then expressed 
by 

1215 

H· -----------------------------max 

1.jI(2) 1.jI*+ 1 

Fig. 1. Schematic form assumed for H. 

(8) 

Combining (8), (7), (4) (for t -4 (0) and (2), one is able to obtain the following equation 
of the OF: 

H(e)= - E l.::2ld
<P!(EH(<P))H'(<P)h(<P- e)-l>€Hmax,£1<€Hmln dLl!(Ll)C(Ll)1

1 
d<p }~~Hr~) 

= -11d<PP(<p)h(<P- e). (9) 

For any E, this nonlinear functional equation has the trivial solution, H(e)=O, 
which corresponds to the disordered state where no entrainment occurs. The onset 
of MME is nothing but the bifurcation of a nontrivial solution from it. In general 
such a solution may be found together with the threshold value of E, Ec, and the 
frequency of entrainment, SJe, by numerically solving (9), e.g., through its conversion 
to simultaneous equations for Fourier coefficients of H(e), where it is useful to note 
that by definition, only the harmonics contained in h(e) are relevant. Recall that at 
the beginning, H(e) was assumed to be of the form illustrated in Fig. 1. Therefore, 
consistency requires that solutions to (9) shaped otherwise, if any, be discarded. 

Since the OF governs the asymptotic dynamics of the population, all the informa
tion of the asymptotic state ought to be extracted from it. For example, the ratio of 
entrained oscillators, R, is evaluated with 

R= (€HmaxdLl!(Ll) , 
J€Hmtn 

(10) 

and the distribution of average frequencies, wj=limt_oo{ej(t)- e;(o)}/t, is described by 

(11) 

where (J(w) is the Dirac function. Zk as well as P(<P) also falls within one's reach by 
(7) and (8) once the OF is known. 

In previous studies of the model with h(e)=sin27re,2),5),6) Zl has been the most 
popular as an order parameter of MME mainly because it obeys a self-consistent 
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equation, thus easily analyzable. The present theory suggests, however, that the 
most appropriate one is any norm of the OF, e.g., 

(12) 

which never loses effect by definition of H, while no reason seems to exist denying the 
possibility that ZI accidentally vanishes despite the presence of order. 

A couple of remarks are now in order: (i) If H(O) is a solution of (9), so is H(O 
+ c) for arbitrary constant c because of the translational invariance of (1). (iO For 
e-Hx), all the oscillators get entrained with a common value of ¢j, implying that by (9) 

limH(O)=-h(-O) (13) 
6-= 

apart from the arbitrary phase constant. By this result, it follows that h(O) itself 
needs to be subject to the condition of Fig. 1 in order for theory to maintain consis
tency up to e arbitrarily large. 

For brevity, suppose that hk(C)=h2k(8)=O for all k~1 as well as lh/8)*l'hl,(8) for 
any different odd land l' (the superscript, "(8)", will be left out below), and also that 
I(Q) is symmetric, meaning that I(Q*+Ll)=/(Q*-Ll) for a certain Q*. Noting 
h( - 0)= - h(O) as well as the symmetry of I, one may put Qe=Q*. It is also derived 
from the definition of H that </P=-</;<!)=1/4 and Hm!n=-Hmax. Moreover, C(Ll) is 
easily proved to be odd. One can then show that the second term on the r.h.s. of (9) 
vanishes, obtaining 

H(O)= e l:::d<f; 1 (eH(<f;))H'( <f;)h(<f; + 0) . (14) 

The dominant part of H in the limit e~ ec+O, ii, is now found to satisfy 

Aii(O)=11/4d<f;ii'( <f;)h( <f;+ O)=.£{ii}(O) 
-1/4 

(15) 

with A={ec/(Q*)}-I. This linear eigenvalue problem is readily solved in relevant 
functional space: The spectrum of .£ and associated eigenfunctions are Ak=(7r/2)(2k 
-1)h2k-l and iik(O)=sin{27r(2k-l)O} for k=l, 2, .... One then chooses Al as A 
because otherwise broken is the premise posed by Fig. 1, thus finding 

(16) 

which is consistent with a previous result derived for the case h(O)=sin27rO.2) 
Remarkably, ec does not depend on higher harmonics of h(O). 

It is now easy to develop a bifurcation theory of the OF, which is now outlined for 
the particular class of h. First, it is shown that the bifurcation is supercritical as long 
as f"(Q*)<O and hl>O. Under these conditions, the standard technique of bifurca
tion theory7) yields from (14) 

H(O)= O'Asin27rO + 0'3(Bsin27rO + Csin67rO)+ ... , (17) 

where 0'=) e- ec and 

A = {(7rhl)3/2/(Q*)2} /) - f"(Q*) , 

_ 1 (7rhl)5/2/(Q*)3 { " * 1 I(Q*)j(4)(Q*)} 
B-TC + 4( - f"(Q*))3/2 31 (Q )-3 f"(Q*) , 
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C={(Jrh1)5/2f(Q*)S hs} / {2(hl-3hs)j -'-r(Q*)} . 

It is important to note that H(B) obtained this way certainly meets the condition of 
Fig. 1 for 0 small, guaranteeing self-consistency of the theory near the onset of MME. 

Figure 2 displays a piecewise-linear coupling function, which can be expressed as 
_ 8 00 (_I)k+l . 

h(B)-7 ~l (2k-l)2 sm{2Jr(2k-l)B} , 

hence (14)~(17) being applicable. Numerical simulations have been carried out by 
the Euler scheme with the time increment of .dt = 0.01 for N=100 and for i(.d)=(r/Jr) 
X (.12 + r2)-1 with r=O.4. The initial condition was set up by a uniform random 
number generator of the interval (0,1). Figures 3 and 4 demonstrate excellent 
agreement between simulations and theory except the vicinity of the threshold where 
finite-size effects come out inevitably large.6

) All the theoretical results were 
obtained by solving (14). Note that H(B) displayedin Fig. 4 indeed keeps the form 
of Fig. 1, assuring self-consistency. It is also evident in the same figure that the OF 
tends to approach - h( - B)= h( B) (depicted in Fig. 2) for increasing E, in accordance 
with (13). (See captions for details.) 

As will be fully discussed elsewhere, it is possible to relax the constraints on h( B) 
and f(Q) introduced above for brevity. By assuming that h(B) contains only odd 
harmonics in (2), hence not necessarily symmetric with respect to the origin, one can 
show for example that Ec and Qc=limc-ccQe are determined from 

Ec=2h1(S) /[Jrf(Qc){(hl(S»)2+(hl(C»)2}] , 

f(Qc)-ll°O d.d{j(Qc+.d)- f(Qc- .d)}/.d= -1l:h1(C) /hl(S) , 

(18) 

(19) 

where no symmetry is assumed for f(Q). Again, Ec is not affected by higher har
monics of h(B). These formulae are consistent with a previous result derived for the 
special case h(B)=sin2Jr(B+a).5) 

In summary, by introducing the order function, a way has been opened to a 
general theory of macroscopic mutual entrainment in uniformly coupled limit-cycle 
oscillators as modeled by (1). The functional equation of the OF, (9), has been 
derived in a self-consistent way, which 
enables one not only to investigate the 
properties of the asymptotic state of the 
system with its, in general, numerical 
solutions, but also to develop analytic 
theories to describe the onset of MME 
for some types of h(B). The present 
approach has provided a new picture for 
the onset of MME in uniformly coupled 
oscillators: It is a bifurcation of the OF 
in functional space. In the light of the 
general theory, the case h(B)=sin2JrB or 
its relative, to which previous studies 
have all been restricted, turns out to be 

o 
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Fig. 2. Piecewise·linear coupling function. 
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Fig. 3. Norm of the OF, (12), for h(e) displayed in 
Fig. 2. Open circles represent data obtained 
by simulations over 60:0;; t:o;; 240 with the earlier 
period neglected. The theoretical line is based 
on numerical solutions of (14) converted to 
equations of the first three harmonics (others 
were found negligibly small in the regime 
shown), except a close neighborhood of Ec( = 

0.98696···by (16»: Ec< 10<1.014, where (17) is 

-.5 o 
e 

.5 

Fig. 4. Growth of the OF for 10=0.995, 1.114, 1.273, 
1.432, 1.830 with the same details as in Fig. 3. 

sud;! a special case that the OF rigidly 
reiiiains trigonometric for all E, which is 
the reason why just an equation for the 
single complex number is sufficient for that 
case.2

),5) Extensions of the theory are now 
planned to such cases that the r.h.s of (1) is 

invoked because of slowing-down in conver
gence of the solutions. 

accompanied by some additional terms, 
e.g., - a sin 27rej and noise. Finally, two remaining subjects should be mentioned: 
One is to find the necessary and sufficient condition for self-consistency of the theory 
to.be kept for all E. Speculation sounds plausible that it would be h(e)'s being in the 
shape of Fig. 1, but can one raise this up to a theorem? The other is to rigorously 
establish the stability of the OF via the analysis of the time-dependent OF, H(e, t). 
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