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Summary. - See I?~trod~vtion,. 

1. - Introduction. 

We are cur ren t ly  invest igat ing na tu ra l  metr ic  s t ructures  possessed b y  cer tain 

cones, for ins tance the  cone of all  posi t ive-defini te  s y m m e t r i c  bi t inear forms on a 

vec tor  space. This cone plays a pa r t  in the  k inemat ics  of cont inuous media ,  and  its 

met r ic  s t ruc ture  can serve to  define physica l  ma te r i a l  p roper t ies  involving fading 

memory .  The  na tu ra l  metr ic  s t ruc ture  of such cones is closely re la ted  to the i r  na tura l  

order  s t ructure ,  and  we found that. we first h a d  to unde r s t and  the  order- isomorphisms 

before  ge t t ing  a grasp on the  isometrics.  The  results of the  invest igat ion of the  metr ic  

s t ruc tures  will be  p u b h s h e d  later .  

Our  work thus  led us to consider order- isomorphisms be tween  subsets of directed 

affine spaces. Grea t  interest  clearly a t taches  to conditions t h a t  ensure t h a t  such an  

order- isomorphism is ac tual ly  a restr ic t ion of an affine i somorphism be tween  the  whole 

spaces. The  earliest significant advance  in this direct ion appears  to  be  the  resul t  

t h a t  in the  Minkowskian space- t ime of Special Re l a t i v i t y  the  au tomorph i sms  of the  

c~usal-order s t ruc ture  are necessari ly au tomorph i sms  of the  affine s t ruc tu re  (and 

their  gradients  are posi t ive scalar mult iples  of or thochronous  Loren tz  t r ans forma-  

tions). This resul t  is due to  ALEKSAND~0V and OV~IN~IKOVA [2] and,  appa ren t l y  

independen t ly ,  to ZEE~_N [5]. 

The ALEKSANDRov-Ov~INNIKOvA-ZEEMAN resul t  has  been  general ized in m a n y  

directions. Of the  work  re levan t  to our  present  purpose,  we should men t ion  the  result  

of ALEKSAND~OV [1]: I n  a directed f ini te-dimensional  arlene space, every  order- 

au tomorph i sm of the  whole space is an affine au tomorph i sm,  p rov ided  t h a t  the  clo- 

sure of t he  direct ion-cone has  no e x t r e m e  r ay  t h a t  is not  included in the  l inear span  

of the  union of all the  others.  (We use the  t e rminology  of the  presen t  paper ;  we describe 

the  l as t -ment ioned  condit ion b y  saying <~ all ex t r eme  rays  are engaged ~.) RO~HATZS [4] 

ob ta ined  a similar  resu l t  for o rder -au tomorph isms  of the  interior  of the  direction 

cone and  also for t he  whole space, p rov ided  the  space is f ini te-dimensional  and  the  
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closure of the  direction-cone has no isolated ex t r eme  rays  (a condition unnecessar i ly  

s t ronger  t h a n  ~( engagedness ))). 

One of our results  (Corollary A1) is a general izat ion of Aleksandrov ' s  result  to 

order- isomorphisms be tween  suitable,  possibly proper ,  subsets of directed al~ne 

spaces (possibly distinct,  not  necessari ly finite-dimensional);  the  (( engagedness ~ con- 

di t ion plays  a cent ra l  par t .  We  are,  however ,  also in te res ted  in the  s t ruc ture  of order- 

i somorphisms when  the  (( engagedness ~> condition fails to hold;  Corollary 131 and  

Proposi t ion 4 give a comple te  descript ion of this s t ruc ture ;  such order- isomorphisms 

are in general  not  affine. 

We  are ac tua l ly  able to t r ea t  a p rob lem t h a t  is somewha t  more  general  t h a n  the  

one abou t  order-isomorphisms~ b y  considering inject ive mappings  t h a t  map  half- 

lines wi th  directions in a cer tain set N to half-lines wi th  directions in a set N'  t ha t  

contains no th ree  complanar  rays.  Such mappings  mus t  be  affine if £ satisfies the  

~ engagedness ~ condit ion (Theorem A), and  have  a well-defined s t ruc ture  in the  

general  case (Theorem B). We have  now found t h a t  this approach  to the  determi-  

na t ion  of conditions t h a t  make  all order- isomorphisms affine resembles  the  me thod  

used in the  r emarkab le  pape r  b y  B0~CKE~S and  HEGE~FELDT [3]. I t  differs in t h a t  

(a) our considerat ion of hMf-lines el iminates the  field-theoretic complications encoun- 

t e red  in [3], which deals wi th  whole lines; (b) our imposi t ion of a res t r ic t ion on ~ '  

considerably weakens the  requ i rements  on N;  (e) f ini te-dimensional i ty  is not  required,  

and  the  domain  of the  m a p p i n g  need  no t  be  the  whole space. 

Af te r  fixing our nota t ion  and  te rminology  in Sections 2 and  3, we give a precise 

s t a t e m e n t  of our p rob lem and  some of our resul ts  in Section 4. Section 5 is devo ted  

to  a geometr ic  proposi t ion t h a t  is the  key  to  the  res t  of the  paper .  Section 6 contains 

the  proof of Theo rem  A and some of the  prel iminaries for the  s tudy  of the  general  

case. The  general  case is deal t  wi th  in Section 7 and  8. 

We  are indebted  to a referee for calling some of the  references to our a t tent ion .  

2. - Notat ion  and termino logy .  

We use : =  to indicate  an equal i ty  in which the  le f t -hand side is defined b y  the  

r igh t -hand  side. R denotes  the  set of real  numbers ,  and  P the  set of non-negat ive  

real  numbers .  

I f  ~:  D --> D '  is a m app i ng  and  X a subset  of D, we wri te  F>(X) :-= {~(x)Ix e X} 

for the  image  of X unde r  ~. 

L e t  V be  a (real) vec tor  space. We  use such nota t ions  as - -  R : =  {-- u[u ~ R}, 

P R : = { t u [ u E R ~ t e P } ,  R - - S : = { ~ t - - v [ u e R ,  v a S } ,  when R and S are subsets 

of V. I f  ~ is a collection of subsets  of V, each containing 0 e  V, we wri te  

Z "  : :  Z is a finite subset of and R for an R 9},  and callthis the 

sum o] the sets in £ .  The  (linear) span of a subset  R of V, i.e., the  smallest  snbspace 

of V including R, is denoted  b y  Sp R. A subset  of V of t he  fo rm Pu for some u =/= 0 

is a ray; if R is a ray,  t hen  R = Pu for each u a R ~ { 0 } .  
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An  affine space E is a non-empty  set (also called E) endowed with structm'e by  

the  prescription of a (real) vector  space V and an injective and transit ive action of 

the  addit ive group of V on E. The vector  space V is the translation space of E.  I f  

v ~ V and x e E, we write x + v :~- v(x). I f  x, y e E, we write y --  x for the  unique 

element of V whose value at x is y, so tha t  x -k ( y -  x) ~ y. The dimension of E 

is defined by  dim E : ~  dim V. 

An orbit in E under  the  action of a subspace U of V is called a flat: it is an afiine 

space with t ranslat ion space U. A one-dimensional flat is a line and a two-dimensional  

flat is a plane. The a]fine span of a non-empty  subset X of E is the  smallest flat tha t  

includes X. I f  x e E and R is a ray  in V, then  x -~ R is c~lled the half-line with apex x 

and  direction R;  its affine span is a line whose translat ion space is Sp R -~ R --  R. 

E v e r y  vector space V has the natural  s t ructure of an affine space: this s t ructure 

is obtained by  let t ing V be its own translat ion space and by  lett ing v ~-~ (u ~-~ ~e -F v) 

be the action of V on itself. Thus every concept and result concerning affine spaces 

applies, in particular~ to vector  spaces. 

Le t  E and E '  be affine sp~ces with translat ion spaces V and V'~ respectively. 

A mapping  g : E - + E '  is a]fine if there is a linear mapping i :  V--> V' such tha t  

~(x -F v) -- ~(x) ~ ~(v) for all x e X, v e V. 

The linear mapping ~, uniquely determined by  ~, is the gradient o/ ~. 

An order -~ on a set E is a reflexive, ant isymmetr ic ,  and transit ive relation on E. 

We read (~ x<~y ~) as (~ y follows x ~>. We say tha t  an order <~ is total on a subset /) 

of E if, for all x~ y e L, either x<~y or y<~x. Given any  x e E we call {y e EIx<~y} 

the  follower-set of x~ a, nd {y ~ Etx<~y and x V= y} the  strict-follower-set of x. The fol- 

lower-set of a subset D of E is the union of the follower-sets of all the elements of D. 

We say tha t  D is fdlower-saturated if it includes (and hence coincides with) its own 

follower-set. Given x~ y ~ E such tha t  x<~y, the order-interval from x to y is defined 

to be the set {z e E]x<~z<~y}. We say tha t  the  order <~ on E is directing if for all 

x, y ~ E there is z e E such tha t  x<lz and  y<~z. 

I f  D and D '  are sets provided wit]] orders <~ and <a'~ respectively, a mapping 

~:  D -+ D '  is an order-isomorphism if it is invertible and both  it and  its inverse are 

isotone;  i.e., if ~ is bijective and 

x ~ y  ~ cf(x)~'  ~(y) for all x, y ~ D .  

3.  - O r de r e d  a f l i n e  s p a c e s .  

Let  E be an affine space with translat ion space V. We say tha t  an order <~ on E 

is translation-invariant if 

x<:y ~ x -~- v<~y ~- v for all x, y e E,  v e V, 
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and tha t  it is connected if, for all x, y e E with x<w,  the  order-interval  from x to y 

includes the line segment f rom x to y. I f  <~ is a translat ion-invuriant  and connected 

order, then  K : = { y - - x l x  , y e E , x < ~ y }  satisfies (i): K - ~ K = K ,  (ii): P K = K ,  

(iii) : K n (-- K) = {0}. Conversely, if a subset K of V sutisfies (i), (ii), (iii), then  

x<~y :<=> y --  x ~ K for all x, y e E 

defines a translat ion-invariant  and connected order -~ on E. The subset K is called 

the direction-cone of <~. The follower-set of a subset D of E is given by  D -~ K;  thus 

D is follower-saturated if and only if D -~ K -~ D. 

We say tha t  E is an ordered a]]ine space if it is endowed with addit ional  s t ructure  

by  the prescription of a t ranslat ion-invariant  and connected order < ,  or of its direc- 

t ion-cone K. We now assume tha t  E is such a space. 

We say tha t  a ray  R c K is an extreme ray (o] K)  if R c S -k T is possible for rays 

S, T c K only if S = R or T = R. We say tha t  a half-line in E is an extreme hall-line 

i f  its direction is an extreme ray. The extreme half-tines have a purely order-theo- 

retic churaeterization, as follows. 

P~ol~osITIo~ 1. - Assume that K =/= {0}. A subset o / E  is an extreme bali.line with 

apex x e E i / a n d  only if it is maximal among the subsets H o/ the ]ollower-set o] x such 

that x e H and such that the order ~ is total on the order-interval ]rom x to y / o r  every 

y e l l .  

The proof is s traightforward and is left to the feuder. Observe tha t  the order- 

interval  from x to y is (x -k K) (~ (y --  K). 

We say tha t  the order <~ of E is closed if~ for all x, y e E,  the strict-follower-set 

of x includes the  strict-follower-set of y only when x<~y; i.e., if 

x .~y  .¢::> y -~ (K~{O}) ¢ x -[- (K~{O}) . 

I f  E is finite-dimensional, it is easily seen tha t  the order < is closed if and only if 

the  direction-cone K is a closed subset of V. 

The following result is an easy consequence of the well-known fact tha t  every 

compact  convex set in a finite-dimensional affine space is the convex hull of the set 

of its extreme points. 

Pt~OPOSITIO~ 2. -- I / E  is ]inite-dimensionat, then the order .~ is closed i /  and only 

i / t h e  direction-cone K is the sum of its extreme rays. 

RIP,ARK 1. -- I f  E is not finite-dimensional, it is still t rue tha t  <~ is closed if K 

is the sum of its extreme rays;  bu t  -~ may  be closed even when K has no extreme 

rays  at  all. 

Le t  E be an affine space with a translat ion-invariant  and connected order <: 

tha t  is not  necessarily closed, and let J be the direction-cone of ~ .  We can then 
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define a reflexive and  t rans i t ive  re la t ion <~ on E b y  

x < y  y + ( J \ ( O ) )  c x + for all x, y e 

I n  general ,  <~ is not  an t i symmet r i c ;  if i t  is, we say t h a t  the  order  <~, and  its dh-ection- 

cone J ,  are  genuine, and  we call the  order  <~ the  closure o] ~ .  Assume t h a t  <( is genuine;  

t h e n  its closure <~ is t rans la t ion- invar ian t  and  connected,  and  the  direct ion-cone 

of <~ is g : =  {u e Vlu -~- (J~{0})  c J} ;  i t  is easily seen t h a t  the  closure <~ is a closed 

order. I f  <: is itself closed, then  it is necessari ly genuine and  equal  to its own closure. 

I f  E is f inite-dimensional,  t h e n  K is the  (topological) closure of J .  I t  is not  ha rd  to 

see t h a t  the  t rans la t ion- invar ian t  and  connected order < is genuine if and  only if 

its direct ion-cone J includes no line; this is the  case if and  only if no follower-set  

x ~- J of any  point  x e E includes a line. 

We say t h a t  the  ordered affine space E is a directed a/line space if its order is direct- 

ing. This is the  case if and  only if the  direct ion-cone K spans the  whole t rans la t ion  

space  V: 

(3.1) V :  S p K  ~- K - -  K .  

RE~A~K 2. -- I t  is clear t ha t ,  if the  order  of E is not  directing, E is pa r t i t ioned  

into fiats wi th  t rans la t ion  space  Sp K ,  and  t h a t  the  res t r ic t ion of the  order  to  each 

of these flats is directing, while e l ements  in different flats of this par t i t ion  are unre la ted  

b y  the  order.  

R E ~ A ~ :  3. - The  s t ruc ture  of space- t ime in the  theory  of Special  l~elat ivi ty is 

a four-dimensional  directed affine space whose direction-cone K has the  p rope r ty  t h a t  

K w (-- K)  is the  set on which a cer tain non-degenera te  quadra t ic  fo rm with  Sylves ter  

index 1 has its non-negat ive  values.  The  order  <~ of E is closed: it is usual ly  called 

the  causal order of space- t ime.  The  causal order  is the  closure of ano ther  genuine 

direct ing order  <(, usual ly  called the  chronological order of space-t ime.  I f  J is the  

direct ion-cone of ~ ,  t hen  J ~ { 0 }  is the  interior  of K ;  it  is the  set  of all vectors  in K 

at  which the  quadra t ic  fo rm has a posi t ive value.  The ex t r eme  half-lines of E wi th  

respect  to the  causal order  h a v e  a physical  in te rpre ta t ion  as light rays. 

4. - Statement  o f  the problem. 

We assume tha t  the  following are g iven:  directed affine spaces E and  E', with  

respec t ive  t rans la t ion  spaces V and  V' ;  and  fol lower-satura ted subsets D and  D '  

of E and  E ' ,  respect ively.  The  p rob lem we consider is: What is the structure o] an 

order-isomorphism ~o: D -> Dr? I n  part icular ,  Must q~ be the restriction of an amine 

mapping? We are able to give a comple te  answer  to this p rob l em when  the  direction- 

cone K of E is the  sum of its ex t r eme  rays.  
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L e t  :K and :K' be  the  sets of e x t r e m e  rays  of the  direction-cones K and  K '  of E 

and  E ' ,  respectively~ and  ~ssume tha t  K ~ ~ R. Then  the  following conditions are 

satisfied (use (3.1) for the  second one):  n~fft 

(~1) : I]  R ~ :K, then --  R ~ :K; 

(1~3): I]  R'~ S', T ' ~ '  are distinct~ then 

dim Sp (R ~ ~9 S '  w T ' )  ~ 3 ; 

(D): Eor all R ~ D ~ R - ~  D; and /or all R ' ~  ~ ' ,  D ' ~  R ' :  D'. 

I f  ~:  D -+ D '  is an  order-isomorphism~ it follows f rom Proposi t ion  :[ thn t  ~ has 

the  following p r o p e r t y :  

(H): For all x E D  and R ~ ~ we have 

~>(x ÷ R) - -  ~(x) e ~ '  ; 

so that the image under qJ o/every hal/-line in D with direction in :K is a hall-line in D r 

with direction in :£'. 

I t  tu rns  out  t h a t  for the  solution of our p rob lem only the  conditions (I~1)~ (R2)~ 

(R3)~ (D) are significant, and  t h a t  i t  is essentinlly sufficient to consider a rb i t r a ry  

in jec t ions  ~: D -~ D '  t h a t  satisfy (H). 

The  following concept  will be  crucial for the  s t a t e m e n t  of our results. L e t  8 be  

collection of rays  in ~ vec tor  space. A ray  R E $ is engaged in 8 if R c Sp U (8~{R}) .  

I f  R e 8 is not  engaged in 8, then  R is disengaged in 8. 

TtI]~o~E~ A. - Let E and E'  be amine spaces with repeetive translation spaces V 

and V' and let ~ and :K' be collections of rays in V and V', respectively. Assume that 

and :K ~ satis]y the conditions (R1)~ (R2)~ (R3), and that D and D ~ are non-empty sub- 

sets o] E and E'~ respeetively~ that satis]y (D). Assume, moreover~ that every ray o] :K 

is engaged in :~. Then every injection ~ : D -* D' with the property (H) is the restriction 

o] an a]]ine mapping ]rom E to E'.  

I%E~[A~K 4. -- This result  can be cast as a necessary and (trivially) suffmient con- 

dit ion b y  replncing the  last  sentence of the  s t a t emen t  by :  Then a mapping ~: D -+ D r 

is an injection with the property (H) if and only i] it is the restriction o] an injective amine 

mapping ]rom E to E '  whose gradient k satis]ies k>>(~)c ~ ' .  

COrOLLArY A1. - Let E and E'  be directed a]]ine spaces, and let D and D r be non- 

empty ]ollower-saturated subsets o] E and E'~ respectively. Assume that the direction- 

cone of E is the sum of its extreme rays, and that each such extreme ray is engaged in 

the set o] all. Then every order-isomorphism ~ : D -~ D r is the restriction of an amine 

mapping ]rom E to E'.  
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Suppose for a m o m e n t  t h a t  E is f ini te-dimensional;  b y  Proposi t ion 2, the  direction- 

cone of E is the  sum of its ex t r eme  rays  if (and only if) the  order  is closed. We can 

obta in  the  conclusion of Corollary A1 wi th  this a s sumpt ion  weakened ,  a t  the  cost of 

a minor  res t r ic t ion on D and  D r as follows. 

C01¢0LI~A]~¥ A2. - Let E and E'  be finite-dimensional directed a/fine spaces with 

genuine orders, and let D and D' be non-empty follower-saturated subsets o/ E and E r 

respectively such that each is either open or closed. Assume that each extreme ray of the 

direction-cone o/the closure o/the order of E is engaged in  the set of all such extreme rays. 

Then every order-isomorphism ~ : D -~ D' is the restriction of an a/fine mapping from E 

to E ~. 

PK00F. - Consider the  closures of the  orders of E and  E ' ;  t hey  also direct  E and  E r, 

respect ively,  and  b y  Proposi t ion 2 the  direct ion-cone of the  closure of the  order of E 

is the  sum of its ex t r em e  rays.  The  assumpt ion  on D and  D r ensures t ha t  each is 

fo l lower-satura ted with  respect  to the  corresponding closure order. Since the  clo- 

sure of an  order is defined in pure ly  order- theoret ic  te rms,  a mapp ing  ~:  D - +  D '  

t h a t  is an order- i somorphism wi th  respect  to  the  original orders is also an  order-  

i somorph ism wi th  respect  to  the  closure orders. The  conclusion then  follows f rom 

Corol lary A1 appl ied to the  clost~re orders.  [] 

The  general  cas% in which not  all  rays  of ~ are assumed to be  engaged in ~ is 

much  more  complicated,  and  will be  unalysed in Sections 7 and  8 (Theorem B and  

its corollaries). One interest ing consequence of tha t  anulysis deserves ment ion  here.  

C0~OLL.~Y B2. - Let E and E'  be directed affine spaces, and assume that the direc- 

tion-cone of E is the sum of its extreme rays. Then there exist non-empty follower-saturated 

subsets D and D r of E and E' ,  respectively, and an order-isomorphism from D to D' 

if  and only if  there exists an affine order-isomorphisra from E to E'.  

I~.E)IA~K 5. -- Corollary B2 implies t h a t  the  comple te  descr ipt ion of all order-  

i somorphisms q~: D --7 D '  for given directed affine spaces E and  E r reduces to  a deter-  

ruination of whe ther  there  exists an  affine order- i somorphism f rom E to E '  and  a 

comple te  descript ion of all order- isomorphisms be tween  two fo l lower-sa tura ted  sub- 

sets of E.  

We shall see in Section 8 (Proposit ion 4) t h a t  unless all e x t r e m e  rays  are enguged 

there  are D and  D r as above  and  order- isomorphisms ~: D - >  D '  t ha t  a re  not the  

restr ict ions of aifine mappings .  

~S~ARI< 6. - Assume t h a t  the  direction-cone K of the  d i rec ted  affine space E 

is the  sum of its e x t r e m e  rays.  To say t h a t  the  e x t r e m e  r ay  R is disengaged in the  

set  ~ of all ex t r eme  rays  means,  geometr ical ly ,  t h a t  K is the  sum,  hence  the  convex  

hull, of ~ and  a cone in a supp lemen ta ry  subspace of codimension 1. This m a y  be  

judged to be  a ra ther  except ional  si tuation,  so t h a t  Corollary AX describes a k ind  
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of general  case; in part icular ,  Corollary A1 cer ta inly  applies whenever  d im E > 2 

and  K is ro tund  or smooth,  and  this includes the  case of space- t ime of Special Rela- 

t iv i ty  wi th  its causal  order. Among  the  except ional  si tuations is the  one in which E 

is f ini te-dimensional  and  K is a closed cone with  a simplicial cross-section: in this 

case, every  r ay  of :~ is disengaged in ~ ,  and  the  order  of E is a lat t ice-order.  I n  par-  

t icular,  if d im E = 2 we mus t  have  this special si tuation,  and  Corollary A1 does not  

apply ;  if d im E = 3, then  Corollary A1 fails to app ly  only in this special case, when :g 

has exac t ly  th ree  members .  

I~]~A~K 7. - Le t  E be a directed affine space whose direction-cone is the  sum of 

its e x t r em e  rays.  I f  each ex t reme  ray  is engaged in the  set of all, Corollary A1 im- 

plies t h a t  every  o rder -au tomorphism of E is in fact  an aifine au tomorph i sm;  this 

means  t ha t  the  affine s t ruc ture  of E is comple te ly  de te rmined  b y  its order s tructure.  

We  shall see in Section 8 (Proposit ion 4) t ha t  this conclusion does not  hold if there  

are disengaged ex t r em e  rays.  

5. - A result  about  three ha l f . l ines .  

The following result  is valid in an a rb i t ra ry  affine space. 

PI~0POSITION 3. - Let three pairwise disjoint half-lines be given such that every point 

of each lies on a line that meets the other two. Then all three half-lines are parallel to 

one pZane. Moreover, i / t w o  of them lie in one plane, the third also lies in that plane. 

. . . . . . . . . .  

0 

H 

0 

Figure 1 
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P~ooF. - The assumption ensures tha t  each of the  half-lines lies in the  afflne 

span of the union of the  other  two. I t  follows tha t  if two of the  half-lines lie in one 

plane the  th i rd  also lies in tha t  plane;  and tha t  otherwise the dimension of the  affine 

span of the  union of any  two,  and  hence of all three ,  half-lines is 3. We assume this 

la t te r  a l ternat ive  in the  rest  of the  proof, and we let  F be  the  three-dimensional  agine 

span of the  union of the  hail-lines. 

By  the  assumption,  we may  and do choose a line tha t  meets  the three  half-lines 

He, H~, H2 at points Pc, P~, P~, respect ively (see Figure 1). We may  and do select 

our number ing  so tha t  p~ lies be tween  Pc and p, .  Le t  P0 be the  plane through He 

paral lel  to H2, and let  P~ be the  plane through H~ parallel  to t ic.  Then  Pc and P2 

are dist inct  parallel  planes, and  a line meet ing  both  He and H2 cannot  lie in APe or 

in P~. I t  therefore  follows f rom the  assumption tha t  H~ cannot  mee t  Pc or P~: for  

if H~ me t  Pc at  x, say, t hen  the  line through x tha t  meets  He and H~ would lie in Pc. 

~qow H~ contains the  point  p~, which lies in /7 be tween  the planes Pc and Pc. 

Since H~ does not  meet/Do or P2, it must  lie in the  <~ strip ~> of F be tween P0 and P~. 

I t  is evident  t ha t  th i s  can happen  only if H~ is parallel to Pc and to P~; and He and H~ 

are parallel to these planes by  construction.  [] 

6.  - P r o o f  o f  T h e o r e m  A. 

We assume in this section tha t  E and E '  are affine spaces with respective t rans la t ion 

spaces V and  V', and tha t  :K and 3U are collections of rays in V and V', respectively.  

We assume tha t  :K and :~' satisfy (R1), (R2), (R3), and tha t  D and D'  are non -empty  

subsets of E and  E ' ,  respectively,  t ha t  satisfy (D). (These are the assumptions of Theo- 

rem A except  for the  <~ engagedness ~> condition.) 

Le t  ~v: D -+ D '  be a given inject ion with P r o p e r t y  (H). We prove  several lemmas. 

L]~M~A 1. -- Let R ,  S ~ :K, ~ =/= S. Then. 

~(x ÷ u ÷ v) - ~(x ÷ u) = ~(x ÷ v) - ~(x) for all x e D, u e 1¢, ~, e S. 

P~ooF.  - The  equal i ty  is tr ivial ly valid if u = 0 or v = 0; we therefore  m a y  and 

do assume tha t  u=/=0 and vsa0 .  By  (R1) we have  S s a - - R  and hence v ~ R - -  

--  R = Sp R. I t  follows tha t  so q- jv -4- R ,  j = 0, 1, 2, are three  dist inct  parallel 

half-lines tha t  meet  the  half-line x q- S only at  the  points x q- jr ,  j = 0, 1, 2, respec- 

t ively.  Since ~v has P r o p e r t y  (H), (v>(x -4- jv q- R),  j = 0, 1, 2, and F>(x q- S) are 

half-lines and,  since ~o is injective,  the  three  half-lines ~v>(x if- jv q- R),  j = 0, 1, 2, 

are pairwise disjoint and mee t  the  half-line ~>(x q- S) only at  the  points  ~v(x ~ jr), 

j = 0, 1, 2, respect ive ly  (see Figure  2). This means tha t  the  r ay  

S' : =  ~>(~ d- S) - ~v(~) e St' 
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~(x)-~ S~ ~ . . . . . . . . . ~  ~(x~-2v)-~-R~ 

~(x -l- ~ ~ ~ ~(x + v)+ ~ \ 

X 

~(x + ~ } ~ ~ ~ +  v + u ~  ~(x) + ~o 

~(x ÷ u) 
~(x) 

Figure 2 

must  be distinct from each of the rays 

f 

R~:=q>(x÷iv÷R)--~(x÷iv)e~', i=0,1,2. 

We cla.im tha t  the three half-lines ~>(x -~ jv + R), ] = 0, 1, 2, satisfy the hypothesis 

of Proposition 3. Indeed,  if z is a, point on ~>(x ~ kv ~- R), where k is 0 or 1 or 2, 

then  z = q~(x ~ kv -~ w) for a suitable w E R, and hence z lies on the half-line ~>(x ~-~ 

+ w ~ S), which meets all three half-lines under  consideration at  ~(x + w ~ jr), 

respectively. Proposition 3 implies tha t  these three half-lines must  be parallel to one 
f : : f 

plane, which means t ha t  dim Sp (R' o u R~ U R's) ~ 2. Since Ro, R~, R~ s £% this is 

consistent with (1%3) only if at  least two oi R'0, R~, R~ are equal, which means tha t  

at  least two of the three hMf-lines are parallel~ and hence lie in one plane. Using 

Proposition 3 again~ we conclude tha t  M1 three hMf-lines lie in one plane. This plane 

also includes the hMf-line ~>(x -~ S). I t  follows tha t  dim Sp (R' o u R'~ u S') g 2. 
! / 

Since S'E £ '  and S' is distinct from both R o and R1, this is consistent wi th  (g3) 
/ 

only if R: o = R~. I t  follows tha t  the line through ~(x -~ v) and ~(x -~ v -~ u) is 

parallel to the line through ¢(x) and ~(x -~ u). 

I f  we interchange R and S~ and u and v, in the preceding argument,  we also con- 

clude tha t  the line through F(x @ u) and F(x + u + v) is parallel to the line through 

~(x) and ?(x -~ v). Therefore ?(x), ~(x + v)~ ~(x ~- u -~ v), ~(x -~ u) are consecutive 

vertices of ~ parallellogram. The conclusion o~ the  lemma~ is an algebrMc formula- 

t ion of this a, ssertion. [] 

I ~ E ~ A  2. - ]Let ~ be a finite subset o] :~ and let u~ e R be given ]or each R ~ $% 

Then 

(6.1) + u . )  = + + - 

]or all x ~ D. 
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PRoof .  - We  proceed  b y  induction.  The  assert ion is t r ivial  for ~- ~ 0. Suppose,  

then ,  t ha t  ~- is a n o n - e m p t y  finite subset  of ~ ,  and  t h a t  the  assertio.n is val id  when ~- 

is replaced b y  any  proper  subset  ~ '  of 5 .  Choose S e ~- and  set ~ ' : - ~  5-~{S}. The 

induct ion hypothes is  yields 

%8))" 
/~e~ - B ~ '  ~ ~ '  

B y  L e m m a  1, we have  ~(x ÷ us ÷ u~) - -  ~(x ÷ u~) ~ ~(x ÷ uR) - -  ~(x) for all R ~ 5 ' ,  

and  this yields (6.1), the  desired result .  [] 

L E p t A  3. - Let  x, y ~ D be give~. Suppose  

(6.2) y -- x ~- ~ (Pc--  qs) , 

where (pzlS  ~ :~) and (qslS ~ :~) are ]amilies with only ]initely m a n y  non-zero terms and 

satis/ying pz ,  qs ~ S for all S ~ ~ .  Then  

(6.3) ?(x ÷ p~ ÷ u)--  ~(x ÷ p~) : ~(y ÷ q. ÷ u)--  ~(y ÷ qR) 

]or each R ~ ~ and each u ~ R.  

P~oo~ .  - Le t  R e :K be given. Using L e m m a  2, we find t h a t  

hold for all u ~ £g. I t  follows f rom (6.2) t h a t  the  lef t -hand sides of (6.4) and  (6.5) 

are equal. Hence  we have  

~ ( Y + q R ÷ ~ ) - - ~ ( x + p R ÷ u )  = ~ ( ( ~ ( x + p ~ ) - - ~ ( X ) ) - -  (~(y + q~) --  ~ (y) ) ) .  

Since the  r igh t -hand  side does not  depend on u, nei ther  does the  lef t -hand side; 

(6.3) is an i m m e d i a t e  consequence.  [] 

LE~IlgA 4. -- There is a mapp ing  ~5: :K --> :~' such that 

~>(x ÷ It) : q~(x) ÷ qb(R) for every x e D,  R e ~ .  

P~ooF. - Le t  x, y s D and  R e ~ be  given. By  (R2), y - -  x has a representa t ion  

of the  form (6.2) with (pslS e :~), (qs]S 6 ~ )  as described there.  P rope r ty  (H) implies 
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tha~ ~>(x @ / t ) ,  ~>(x -~- pa  @ R), ~>(y -~ R), ~>(y -~- qa @ R) are half-lines with direc- 

t ions in W ;  the  first of these hal~-]ines includes the  second, and  the  th i rd  the  fom~th; 

and  L e m m a  3 asserts t ha t  the  second and  four th  have  the  same direction. I t  follows 

tha t  all four have  the  same direction; in part icular ,  

F>(x -}- R) - -  ~(x) = ~>(y -}- R) - -  ?(y) e £ ' .  

Since x, y a D and  R e £ were arbi t rary ,  this proves  the  existence of the required 

mapp i ng  ¢ :  £ --~ £ ' .  [::1 

L ] ~ A  5. - I]  the ray R e £ is engaged in  £ ,  then there is a mapping  o9~: R -> O(R)  

such that 

(6.6) q~(x -}- u) -- q~(x) = ~o,(u) for all x ~ D,  u ~ R .  

This  mapp ing  satisfies 

(6.7) o~(tu) = te9~(u) ]or all u ~ R ,  t ~ P. 

P~oo~ ~. - Since R is engaged in £ ,  (R2) implies 

V = S p U ( : ~ \ { R } )  = ~: ( S - - S ) .  

I-Ience, for each x, y a D, y - -  x has a representa t ion  of the  fo rm (6.2) with p~ = qR - -  0. 

L e m m a s  3 and  4 t hen  give 

~(x + u) --  ~(x) = ~(y -~ u) --  ~(y) e O(R) for all u e R. 

I t  follows tha t  there  is a m app ing  coR: R -> ~b(R) satisfying (6.6). 

Now let  u e R~.{0} be  given. Since ¢ is injective,  we have  coR(u)e ¢(R)~{0},  

so t ha t  ¢ (R)  = P~oR(u); and  there  is a unique funct ion a :  1 ) -+ P such t h a t  co~(tu) = 

= a(t)a)~(u) for all t e P ;  of course a ( 1 ) =  1. F r o m  (6.6), wi th  some fixed m a D ,  

o.,~(su + tu) = (~(~ ÷ su + tu) - ~(~ + tu)) + (q~(~ + tu) - ~(x)) = 

= ~oR(su) ~ a~R(tu) for all s, t ~ P; 

hence a(s + t) = a(s) -~ a(t) for all 8, t e 1 ). I n  part icular ,  a is isotone. A s t anda rd  

a rgumen t  f rom e lemen ta ry  analysis shows t h a t  a(t) ~ ta(1) = t for all t a P, and  (6.7) 

follows. [:] 

We  denote  b y  £ e  the  set  of all  rays  in :~ t h a t  are engaged in £ ,  and  we set  

Ke : ~  ~ R,  Ve : =  Sp U ~e = Sp Ke = K e - -  Ke.  
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L ] ~ A  6. - There is a linear mapp ing  t e :  Ve ~ V / such that 

~o(x ÷ v) -- q~(x) -~2~(v) for all x e D, v e K e .  

P~0OF.  - L e t  u e K~ b e  g iven .  T h e n  u = ~ u~ for  some  f in i te  se t  5 c ~e a n d  s o m e  

f a m i l y  (uRIR ~ Y )  w i t h  uR E R for  each  R e 5". B y  L e m m a s  2 a n d  5 w e  t h e n  h a v e  

cf(x ÷ tu) --  ~f(x) = ~, w~(tu) = t ~, co,('~) : t(q~(x ÷ u) --  cy(x)) for  a l l  x e D ,  t e t ~. 

S ince  t h e  m i d d l e  l inks  in  th i s  cha in  of equMi t ies  do n o t  d e p e n d  on x, n e i t h e r  do t h e  

ends .  S ince  u ~ K~ was  a r b i t r a r y ,  t h e r e  e x i s t s  a m a p p i n g  x:  K ~ - +  V'  s a t i s f y i n g  

(6.8) ? ( x  ÷ u) - -  ~0(x) ---- x(u) for  a l l  x e D,  u e K~, 

(6.9) ~(tu) -~ t~(u) for  a l l  u e K~, t ~ P. 

F r o m  (6.8) w i t h  x chosen  in  D ,  

(6.1o) ~(u + v) = (~(x ÷ u ÷ v ) -  ~(x ÷ v)) + (~(x + v) - ~(x)) = ~(u) + z(v) 

for  a l l  ~, v e K e .  

. S ince  Ve -~ Ke  -- Ke ,  i t  fo l lows eas i ly  f r o m  (6.9), (6.10) t h a t  z has  a u n i q u e  l i n e a r  

e x t e n s i o n  2e: Ve --> V' .  S ince  ~ is t h e  r e s t r i c t i o n  of 2e to  Ke,  t h e  conc lus ion  fo l l ow s  

f r o m  (6.8). [] 

P ~ o o s  oI~ T t t E o ~ E ~  A.  - I f  a l l  r a y s  of :~ a r e  e n g a g e d  in  :~, t h e n  :~e = :~ a n d  

Ke  - -  Ke  -~ Ve -~ Sp  W ~ = V. I f  x, y e D ,  t h e n  y - -  x = u - -  v for  s u i t a b l e  u,  v s K e ,  

a n d  L e m m a  6 i m p l i e s  

qJ(y) - -  ~(x) = (~(x ÷ u) - -  ~o(x)) - -  (q~(y ÷ v) - -  ~ ( y ) ) =  

:~ h e ( U ) -  )~e(V) : ~ e ( q ~ -  V) -~  ; ~ e ( y -  X,) . 

Since  x, y e D were  a r b i t r a r y ,  ~ is t h e  r e s t r i c t i o n  to  D (wi th  c o d o m M n  a d j u s t e d  to  D')  

of a n  affine m a p p i n g  f r o m  E to  E ~ w i t h  g r a d i e n t  ~e. [] 

7.  - T h e  g e n e r a l  c a s e .  

I n  th i s  sec t ion ,  w e  sha l l  d e t e r m i n e  t h e  f o r m  of a n  i n j e c t i o n  ~ :  D -+  D '  s a t i s f y i n g  ( I t )  

w i t h o u t  a s s u m i n g  t h a t  a l l  r a y s  in  ~ a r e  e n g a g e d  in X.  O u r  d e s c r i p t i o n  wi l l  d e p e n d  

on  s o m e  a r b i t r a r y  choices ;  t h e s e  cou ld  b e  a v o i d e d  a t  t h e  cos t  of i n t r o d u c i n g  ex-  

t r a n e o u s  m a c h i n e r y .  
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T h r o u g h o u t  this  section,  ~11 the as sumpt ions  m a d e  in the  first p~ rag raph  of Sect-  

ion 6 r e m a i n  in force.  W e  set  

K : =  Z ; 

this  is cons is ten t  wi th  t he  discussion in Sect ion 4, ~nd  (1~2) implies V ~ K -  K.  

As in Sec t ion  6, : ~  is t h e  set of ~11 r~ys of :K t h a t  ure engaged  in :K~ ~nd  K~ : ~  ~] R, 

V~:~Sp~K~--K~. We set ~a:~e~ the set of~11r~ys of ~th~t ~re 

disengaged  in :K, a nd  choose b ,  ~ R ~ { 0 }  for  each R e ~ a .  

L ] ~  7. - There are unique mappings  7~e: V ---> V e  and fl,: V ~ R ]or each R ~ ~a ,  

suvh that 

v ---- ~e(V) + ~ fi~(v) ba for every v ~ V 
tCe~d 

(all but f initely m a n y  s u m m a n d s  are 0). Al l  these mappings  are linear. 

P~ooF .  - B y  t he  defini t ion of (( d isengaged ~) ~nd  b y  the  f~et t h a t  V---- K -  K,  

we find t h a t  (bB]R ~ :Ka) is an  i n d e p e n d e n t  f ami ly  a n d  Sp {bRIR ~ :~a} is ~ supple-  

m e n t  of V~ in V. [] 

To f o r m u l a t e  our  resul ts  succinct ly ,  we in t roduce  some t e rmino logy .  R has a 

n a t u r a l  order ,  so t h a t  n set  J c R is fo l lower - sa tu ra ted  if ~nd only  if it satisfies 

J ~- P -~ J.  A rescaling is a rea l -v~lued s t r ic t ly  i so tone func t ion  a whose  d o m a i n  

D o r a  a ~nd  range  R n g  a are  fo l lower - sa tu ra t ed :  it is an  o rde r - i somorph i sm ~s ~ m u p -  

p ing  f r o m  D o m  a to  R n g  a. A reseuling a is normalized if 0 e Dora  a and  a(0) ~ 0 

und  a(1) ----- 1. 

W e  n o w  choose Xo ~ D, a nd  set  I~  :---- (fi~)>(D --  xo) for  euch R ~ :Ka; we obse rve  

t h a t  I~  is a fo l lower-s~tur~ted subset  of R~ on accoun t  of (D), and  t h a t  it contuins  0. 

L]~r~[~A 8. - Let  aR be a normalized resealing with Dora  aR ~ I~  ]or each R ~ :~a. 

Then  the formula 

~0x(~0) : =  7ge(V) -~ Z (0'R(/~R(~ -~- V-- Xo) ) -- (TR(~R(X-- ~0))) bR 
/~e:Ka 

de]ines a bijection yJ~ : K---> K /or every • ~ D. 

P R O O F .  - -  F o r  each R ~ :K d und  euch s E I~ ,  t he  m a p p i n g  t ~-> aR(s ~- t) - -  a,(s) is 

u b i jec t ion  f r o m  P to  P t h u t  maps  0 to  0. The  conclusion is an  i m m e d i a t e  consequence  

of L e m m a  7, (7.1), ~nd  this  fact .  

LE~IMA 9. - A s s u m e  that q~: D -+ D '  is an injection that satisfies (K). Fo r  every 

R e :~a there is a unique b~a ~ V'  and a unique normalized resealing a ,  w$th D o r a  aR ~ IR 
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such  that  

(7.2) ~(~ + ~b~) - ~(~) = ( ~ ( ~ ( ~ - -  ~o) + t) - ~ ( ~ ( ~ -  ~o))) b'~ 

]or all x ~ D ,  t ~ P .  

f 
P ~ o o r .  - I f  bR ~ V'  a nd  aR: I~  -+ R are such thu~ a , (0)  ~ 0~ aR(1) == 1~ ~nd (7.2) 

holds,  we  h a v e  in p~rticutur~ using L e m m ~  7, 

this  shows t he  un iqueness  of b~. W e  there fore  set 

b~ : =  9~(Xo -~ bn) - -  ~(Xo) • 

B y  L e m m a  4 a nd  t he  fac t  t h a t  ~ is inject ive,  b~ ~ q~(R)~{0}, and  hence  

(7.3) Pb~ == q~(R) e W .  

L e t  x, y ~ D  s ~ t i s f y f i ~ ( x - - x 0 ) = f i R ( y - - x o ) .  T h e n  fiR(y--  x) = 0, ~nd L c m m a  7 

implies t h a t  y - -  x bus ~ r ep re sen t a t i on  (6.2) w i th  p~ ~ qa = 0. L e m m a s  3 a n d  4 

and  (7.3) show t h a t  

q~(x -~ tb~) - -  of(s) = q~(y .~- tb~) - -  ~(y)  e qS(R) : Pb'~ for  ~11 t e P. 

Since x~ y e D wi th  flR(x - -  Xo) = fiR(Y - -  xo) were  a rb i t ra ry ,  this shows t h a t  t he re  is 

u n i q u e  f u n c t i o n  Q : I~  × P -~ P such t h a t  

(7.4) ~ ( x  ~- tb~) - -  ~ (x )  = ~ ( ~ ( x  - -  Xo)~ t) b'~ for all x e D,  t e P. 

I f  s ~ I ~ ,  choose x ~ D  such t h a t  f i ~ ( x - - x o ) =  s (this is possible,  since 

I e  = (fi,)>(D - -  x0)). F o r  eve ry  r e P we h a v e  f i , ( x  2 rb~ - -  xo) = s ~- r, b y  L e m m a  7. 

Therefore  (7.4) implies 

~(s -t- r, t) b'~ = c~(x -[- rb~ + tb~) - -  (2(x + rb , )  ~-- 

----- (V(x  -]- (r -[- t)b~) - -  F(x) )  - -  (V(x  + rb~) - of(x)) = 

= (e ( s ,  r + t) - ~(s~ r))  b~ f o r  a l l  t e ~. 

W e  conc lude  t h a t  

o(s  + r, t) = o (s ,  r + t) - -  ~(s ,  r) for  all s ~ I R ,  r , t ~ P .  

1 7  - A n n a l i  d i  M a l e m a t i c c t  
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This is a funct ional  equat ion for ~. An easy analysis shows tha t  there  is a unique 

funct ion an: I n - +  R such t h a t  a , ( 0 ) ~  0 and  

(7.5) O(s, t) = a~(s 47 t) - -  a~(s) for all s z I~ ,  t e P. 

Combinnt ion of (7.4) and  (7.5) yields (7.2). Since ~ is injective,  so is aa;  since ~o is 

non-negat ive-valued,  an is isoton% hence str ict ly isotone. (7.2) and  (7.3) and  L e m m a  4 

yietd 

Pb~ = ~b(R) -~ V>(x + / ~ )  - -  ~(x) c ( ~ n g  a ~ - -  an((3~(x - -  xo))) b~ for each ~ e D, 

so t h a t  an(s) -~ 1 ) c t~ng a~ for each s ~ D o m  an, and  hence ~ n g  an ~ P c l%ng aa .  

Thus  a~ is a rescaling; a~(0) ~ 0 b y  definition; and  (7.2) yields, b y  L e m m a  7, 

! 

b~ = q(Xo 47 bn) - ~(Xo) = (a , (~ )  - an(o)) b~ = a ~ ( ~ ) b ~ ,  

so t h a t  a~(1)----1, und a~ is a normal ized rescaling. [] 

L ~ A  10. - A s s u m e  that ~: D--> D '  is an injection that satisfies (H). 

x ~ D ,  

/¢etRd 

where ~e, b~, a~ are as in  .Lemmas 6 and 9. 

~ o r  all 

P~ooF. - Le t  x e D be given. Then  ~ e ( x - -  Xo) = u - -  v for suituble u, v e Ke~ 

and fi~(x-- xo) ~ sR--  tn for sui table sn~ tRe ]? for each R e ~ a ,  wi th  s ,  = tn = 0 

if ~ ( x  - -  xo) = 0 (hence for all bu t  finitely m u n y  / t  e :R~). By  L e m m a  7, fiR(u) 

=- fin(v) -~ 0 for all R ~ :Rd, and  

(7.6) xo 47 u ~- ~, s , b n =  x 47 v -~ ~, t~bn.  
2e~ d 2e~d 

L e m m a  9 implies, for each R e :Rd, 

~o(x 47 v 47 tnbn) - -  V(x + v) = (aR(~n(x 47 v - -  xo) -~ t , )  - -  a~(tS,(x 47 v - -  xo))) b'~ = 

= (an(s . )  - -  a . ( s . - -  tn)) b'~. 

By L e m m a s  2 and 6, therefor% 

(7.7) cf(xo 47 u 47 ~ s~ba) 
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= ~(x q- v) q- ~ (q~(x q- v q- t n b ~ ) -  ~(x q- v)) = 

Combining (7.6)~ (7.7), (7.8) and  not ing the  l inear i ty  of 2e and  the  choice of u~ v, sa, 

t ~  we obta in  

~O(X) = Qg(XO) -~- 2e(U) - -  ),e(~d) -~- ~ O'~(S R - -  tTt ) b~ = 
/te~a 

= v(-o) + 2o (~o (~ -  .%)) + ~: ~.(~.(.~ - ~o)) b~. [] 
Re~,d 

L s z ~  11. - Assume that q~: D --> D' is an injection that satis]ies (H). I]  2~ and b'~ 

arc as in Lemmas 6 and 9, then the linear mapping 2: V - >  V' de]ined by 

2(v) : =  2o(~o(~)) + ~: ~.(,) ~ /or all ~ ~ V 

is injective and satis]ies ~(u) = 2~(u) ]or all u e V~, 2(bR) -~ b~ for all R e f~a, and 

,~>>(.~) c ~ ' .  

P~ooF.  - L e t  ~ be  the  normal ized rescaling of L e m m a  9 for each R e :Ra. I n  

the  language of L e m m a  8, L e m m ~  10 imlJlies t h a t  

~(x0 -F v) - -  ~(xo q- u) --~ 2(~o(v ) - -  F~°(u)) for all u, v e K.  

Since F~0: K -> K is surjective and  K - -  K ~ V and  ~ is injeetive,  if follows tha~ 2 

is injective. 

L e t  R e ~ be  given. I f  R e  : ~ ,  t hen  2>(R) : (2")>(R) : ~>(Xo -F Jg) - -  ~(x0) e :~' 

by  L e m m a  6 and  P rope r t y  (It) ;  if R ~ :~a, then  2>(J~) : 2>(PbR) : P2(bR) : Pb~ e ~ '  

b y  (7.3). Thus 2>(R)e ~ '  in ei ther  case, i.e., 2>>(X)c ~ ' .  [] 

TItEO~E~I B. - The mapping q~ : D -+ D' is an injection satis]ying (H) i] and only if 

(7.9) = + 2(no( - + z Ior all . ,  

where 2: V --> V ~ is an injective linear mapping such that ).>>(~) c X'  and GR is a nor- 

malized rescaling with D o m  aR : IR ]or each R e ~ a .  

P~ooF. - The condition is necessary. Assume t h a t  ~: D - - > D '  is an  inject ion 

satisfying (H), and  let 2e, b~, aR, and  2 be  as in L e m m a s  6, 9, 11. Then  2: V--> V' 

is an inject ive l inear m app i ng  satisfying ~>>(:~) c :K' ( L e m m a  11), each aR is a norma-  

lized rescMing wi th  the  desired domain  ( L e m m a  9), and  L e m m a s  10 and  11 toge ther  

imp ly  (7.9). 
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The condition is su]]icient. Assume t h a t  ~: D - * D '  s~tisfies (7.9) wi th  Z and  a~ 

as s ta ted .  I f  x, y e D are  such t h a t  ~(x) ---- ~(y), (7.9) and  the  ~ c t  t h a t  Z is in jec t ] re  

yield 

~ o ( , -  ~) + Z ( ~ ( ~ ( , -  ~0)) - ~ ( ~ ( ~ -  ~o))) ~ = o. 

B y  L e m m ~  7 ~nd the  fact  each a~ is inject]re  we find ~ ( y - - x ) - - - - - 0  and  

fl~(y -- x) ---- ~ ( y  --  xo) --  ~ ( x - -  xo) -~ 0 for every  /~ e 5~a. B y  L e m m u  7 again, 

y -  x----0.  Thus ~ is inject]re .  

Le t  x e D and R e ~ be  given. I f  R e : ~ ,  (7.9) and  L e m m a  7 yield 

I f  R E :~d, (7.9), L e m m n  7, ~nd the  fact thnt  aR is a resc~ling yield 

~>(x + n) - ~(x) ---- ~>(x + Pb~) - 9(x) = 

= ((~. )~(~(~-  ~o) + P) - ~ ( ~ ( ~ -  ~o))) ~(b~) = 

Thus V>(x ~ R ) -  ~ ( x ) e  :~' in ei ther  case, and  ~ satisfies (It). [] 

8 .  - N o n - a f f i n e  o r d e r - i s o m o r p h i s m s .  

We now re tu rn  to the  s i tuat ion in which E and  E '  are directed aifine spaces, 

wi th  respect ive  direction-cones K and  K '  and  ~ ~nd :~' are the  sets of ex t r eme  rays  

of K and  K ' ,  respect ively;  and  it is assumed tha t  K is the  sum of its ex t r eme  rays ,  

so t ha t  (7.1) holds. ( I f  E is f inite-dimensional,  this assumpt ion  holds if ~nd only if 

the  order  is closed, as shown in Proposi t ion 2.) As we noted  in Section 4, :~ and  ~ '  

t hen  s~tisfy (1~1), (R2), (R3). [[he definitions a t  the  beginning of Section 7 are ap- 

plicable. 

COrOLLArY B1. - Assume that D and D'  are non-empty ]ollower-saturated subsets 

o] E and E' ,  respectively, and that ~: D -* D'  is an order-isomorphism. Choose x, ~ D.  

Then 

(s.1) ~(~)=~(~o) + ~ ( . o ( ~ - ~ ° ) +  ~ ~ ( ~ ( ~ - ~ o ) ) b ~ )  ]or a~ ~ . ,  
~te~d 

where ~: V - +  V' is the gradient of an af]ine order-isomorphism from E to E' an~ aR 

is a normalized rescaling with Dora  ~R-~ I~  :----(flR)>(D- xo) ]or every R e :~a. 
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P~ooF. - Since ~ is an order-isomorphism and D and D' are fol lower-saturated,  

(8.2) ~>(ao + K) = ¢(~o) + K ' .  

~ o w  D and D' satisfy (D), and  9 is an  inject ion satisfying (H) (cf. Section 4). 

Therefore  Theorem B is applicable, and q~ satisfies (7.9), which is (8.1), wi th  an injec- 

t i r e  l inear mapping ).: V -+  V' and  with normalized resc~lings ~ with the  desired 

domains. 

We claim tha t  ~>(K) ~ K ' ;  this will complete  the  proof:  indeed, the orders are 

directing, so K '  spans V r, hence ~ is surjective, hence invertible;  since it s~tisfies 

~>(K) = K' ,  it is the  gradient  of an affine order-isomorphism from E to E' .  

To prove our claim, we observe that ,  in the  language of L e m m a  8, (8.1) implies 

(8.3) ~0(x 0 ÷ v) -- ~(Xo) = A(%0(v)) for all v ~ K;  

and combining (8.2) and (8.3) with the  f~ct tha t  u- o: K -+ K is surjective~ we find 

K ' =  ~>(Xo ÷ K)  --  ~(Xo) = Z>((~J>(K))  = ) .>(K).  [] 

Corollary B2, the  s ta tement  of which will be found in Section 4, is now an im- 

mediate  consequence of Corollary B1. 

We have  a strong converse to Corollary B1; in formulat ing it, we have  to respect  

the  restr ict ion imposed by  Corollary B2. 

PROPOSITION 4. - Let ~: V-e-V' be the gradient of an a]fine order-isomorphism 

from E to E'. For every non-empty follower-saturated subset D o] E, every xo ~ D, every 
I l 

x o ~ E ,  and every family o] normalized resealings (~R with Dora 6R = I2 : ~  (fiR)>(D -- xo) 

]or each R ~ £a, the formula 

(8.4) ~ ( X ) : = 4  ÷ 2(7~e(X--Xo) ÷ ~aR(,SR(X--Xo))b, ) for all x + D  
1~eff¢4 

defines an order-isomorphism 9: D--> D' ]or a suitable non-empty follower-saturated 

subset D' of E'. 

! 

P~.ooF. - Le t  D, Xo, Xo, and the  aR be given, and let  D '  be the  range of the  mapping  

defined by  {8.4). Then  q~: D ---> D', us defined by  (8.4), is surjective. We shall show 

tha t  

(8.5) F>(x ÷ K) = ~(x) ÷ K '  for all x ~ D ;  

this will prove tha t  D'  is follower-saturated, and tha t  ~0 is an order- isomorphism 

provided it is injective;  bu t  the inject ivi ty  of ~o follows exact ly  as in the proof of 

Theorem B (sufficiency). It thus remains to prove (8.5). 
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T h e  a s s u m p t i o n  on ~ means  t h a t  ~ is ~n inver t ib le  l inear  m a p p i n g  t h a t  s~tisfies 

~,>(K) = K ' .  L e t  x e D be  fixed. I n  t he  la, ngu~ge of L e m m a  8, i t  follows f r o m  (8.4) 

t h a t  

~(x + v) - -  ~(x) = ~(~(v))  for  ~11 v ~ K.  

There fo re  the  f~et t h a t  y~: K -> K is sur jec t ive  ( L e m m a  8) implies 

~>(x + K)-- ~(x) Z>((~)>(K)) Z>(K) K' 

und,  since x e D wus ~rbitra~y, (8.5) is p roved .  []  
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