Order-Isomorphisms in Affine Spaces (*) (*%).
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Sammary. ~ See Introduction.

1. — Introduection.

We are currently investigating natural metric structures possessed by certain
cones, for instance the cone of all positive-definite symmetric bilinear forms on a
vector space. This cone plays a part in the kinematics of continuous media, and its
metric structure can serve to define physical material properties involving fading
memory. The natural metric structure of such cones is closely related to their natural
order structure, and we found that we first had to understand the order-isomorphisms
before getting a grasp on the isometries. The results of the investigation of the metric
structures will be published later.

Our work thus led us to consider order-isomorphisms between subsets of directed
affine spaces. Great interest clearly attaches to conditions that ensure that such an
order-isomorphism is actually a restriction of an affine isomorphisin between the whole
spaces. The earliest significant advance in this direction appears to be the result
that in the Minkowskian space-time of Special Relativity the automorphisms of the
causal-order structure are necessarily automorphisms of the affine structure (and
their gradients are positive scalar multiples of orthochronous Lorentz transforma-
tions). This result is due to ALEKsANDROV and OvdmNiIKova [2] and, apparently
independently, to ZmEmAxX [5].

The ALEKSANDROV-OVOINNIKOVA-ZEEMAN result has been generalized in many
directions. Of the work relevant to our present purpose, we should mention the result
of ArExsaNprov[1l]: In a directed finite-dimensional affine space, every order-
automorphism of the whole space is an affine automorphism, provided that the clo-
sure of the direction-cone has no extreme ray that is not included in the linear span
of the union of all the others. (We use the terminology of the present paper; we describe
the last-mentioned condition by saying «all extreme rays are engaged ».) RoTHATS [4]
obtained a similar result for order-automorphisms of the interior of the direction
cone and also for the whole space, provided the space is finite-dimensional and the
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closure of the direction-cone has no isolated extreme rays (a condition unnecessarily
stronger than «engagedness»).

One of our results (Corollary Al) is a generalization of Aleksandrov’s result to
order-isomorphisms between suitable, possibly proper, subsets of directed affine
spaces (possibly distinet, not necessarily finite-dimensional}; the « engagedness » con-
dition plays a central part. We are, however, also interested in the structure of order-
isomorphisms when the «engagedness » condition fails to hold; Corollary Bl and
Proposition 4 give a complete description of this structure; such order-isomorphisms
are in general not affine.

We are actually able to treat a problem that is somewhat more general than the
one about order-isomorphisms, by considering injective mappings that map half-
lines with directions in a certain set R to half-lines with directions in a set R’ that
contains no three complanar rays. Such mappings must be affine if R satisfies the
« engagedness » condition (Theorem A), and have a well-defined structure in the
general case (Theorem B). We have now found that this approach to the determi-
nation of conditions that make all order-isomorphisms affine resembles the method
used in the remarkable paper by BorcabBRS and HEGERFELDT [3]. It differs in that
(a) our counsideration of half-lines eliminates the field-theoretic complications encoun-
tered in [3], which deals with whole lines; (b) our imposition of a restriction on R’
considerably wealkens the requirements on R; (¢) finite-dimensionality is not required,
and the domain of the mapping need not be the whole space.

After fixing our notation and terminology in Sections 2 and 3, we give a precise
statement of our problem and some of our results in Section 4. Bection 5 is devoted
to a geometric proposition that is the key to the rest of the paper. Section 6 contains
the proof of Theorem A and some of the preliminaries for the study of the general
case. The general case is dealt with in Section 7 and 8.

We are indebted to a referee for calling some of the references to our attention.

2. — Notation and terminology.

We use := to indicate an equality in which the left-hand side is defined by the
right-hand side. R denotes the set of real numbers, and P the set of non-negative
real numbers.

If ¢: D — D' is & mapping and X a subset of D, we write ¢>(X) := {pla)jw e X}
for the image of X under g¢.

Let V be a (real) vector space. We use such notations as — R:= {— u|u € B},
PR:= {tujuc R,tcP}, R— 8:= {u—vjucR,ve S}, when R and § are subsets
of V. If R it a collection of subsets of V, each containing 0e€V, we write

SR:= { > ug|F is a finite subset of R and uze R for all Re 37}, and call this the
ReR ReF
sum of the sets in K. The (linear) span of a subset R of V, i.e., the smallest subspace

of V including R, is denoted by Sp E. A subset of V of the form Pu for some u 0
is a ray; if R is a ray, then R = Pu for each we R\{0}.
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An affine space E is 2 non-empty set (also called F) endowed with structure by
the preseription of a (real) vector space V and an injective and fransitive action of
the additive group of V on H. The vector space V is the éranslation space of E. 1f
vV and € B, we write o -+ v 1= o(®). If 2, y € H, we write y — & for the unique
element of V' whose value at « is y, so that » -} (y — #) = y. The dimension of E
is defined by dim E = dim V.

An orbit in F under the action of a subspace U of V is called a flat: it is an affine
space with translation space U. A one-dimensional flat is a line and a two-dimensional
flat is a plane. The affine span of a non-empty subset X of E is the smallest flat that
includes X. If x ¢ F and R is a ray in V, then # - R is called the half-line with apexr
and direclion R; its affine span is a line whose translation space is Sp R = EKE— R.

Every vector space V has the natural structure of an affine space: this structure
is obtained by letting V be its own translation space and by letting v — (4 > u + v)
be the action of V on itself. Thus every concept and result concerning affine spaces
applies, in particular, to vector spaces.

Let B and B’ be affine spaces with transiation spaces V and V', respectively.
A mapping «: ¥ — F' is affine if there is a linear mapping A: V— V' such that

ol + v) — a(w) = A(v) for all e X, veV.

The linear mapping A, uniquely determined by «, is the gradient of c.

An order < on a get F is a reflexive, antisymmetric, and transitive relation on E.
We read «o<ty» as «y follows x». We say that an order < is fotal on & subset L
of E if, for all , y € I, either <y or y<uz. Given any x € K we call {y € Ela<1y}
the follower-set of o, and {y € Ele<ay and » = y} the sirici-follower-set of . The fol-
lower-set of a subset D of F is the union of the follower-sets of all the elements of D.
We say that D is follower-saturated if it includes (and henee ceincides with) its own
follower-get. Given w, ¥ € F such that sy, the order-inierval from x to y is defined
to be the set {z € Elr<iz<ay}. We say that the order <1 on F is directing if for all
®, 4 € F there is 2 € ¥ such that sz and y<az.

If D and D' are sets provided with orders <1 and <a’, respectively, a mapping
@: D — D' is an order-isomorphism if it is invertible and both it and ifs inverse are
isotone; i.e., if ¢ is bijective and

w<ay <> pla)<s’ @(y) for all », yeD,

3. — Ordered affine spaces.

Let B be an affine space with franslation space V. We say that an order < on E
is translation-invariont if

<y = & -+ v<ay +v for all @, ye E, veV,
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and that it is connected if, for all », y € E with x<sy, the order-interval from » to ¥
includes the line segment from % to . If < is a translation-invariant and connected
order, then K := {y — wx|x, y € E, x<ty} satisfies (i): K + K = K, (ii): PK = K,
(iii): K N (— K) = {0}. Conversely, if a subset K of V satisfies (i), (ii), (iil), then

p<ayi=y-—xcH forallw yek

defines a translation-invariant and connected order < on E. The subset K is called
the direction-cone of <a. The follower-set of a subset D of ¥ is given by D - K; thus
D is follower-saturated if and only if D + K = D.

We say that F is an ordered affine space if it is endowed with additional structure
by the prescription of a translation-invariant and connected order <i, or of its direc-
tion-cone K. We now assume that F is such a space.

We say that a ray R c K is an extreme ray (of K) if R c 8§ + T is possible for rays
8, TcKonlyif § = Ror 7 = R. We say that a half-line in ¥ is an extreme half-line
if its direction is an extreme ray. The extreme half-lines have a purely order-theo-
retic characterization, as follows.

PRroOPOSITION 1. — Assume that K == {0}. A subset of E is an extreme half-line with
apex x € E if and only if it is mazimal among the subsets H of the follower-set of @ such
that © € H and such that the order < is total on the order-interval from » to y for every
yeH.

The proof is straightforward and is left to the reader. Observe that the order-
interval from x to y is (® + K) N (y — K).

We say that the order < of F is closed if, for all », y € B, the strict-follower-set
of » includes the strict-follower-set of y only when s<y; Le., if

w<ay <>y + (EN{0}) c o + (E\{0}) .

If E is finite-dimensional, it is easily seen that the order < is closed if and only if
the direction-cone K is a closed subset of V.

The following result is an easy consequence of the well-known fact that every
compact convex set in a finite-dimensional affine space is the convex hull of the set
of ity extreme points.

PROPOSITION 2. — If B is finite-dimensional, then the order <1 is closed if and only
if the divection-cone K is the sum of its extreme rays.

REMARK 1. — If E is not finite-dimensional, it is still true that <1 is closed if K
ig the sum of its extreme rays; but < may be closed even when K has no extreme
rays at all.

Tet E be an affine space with a trapslation-invariant and connected order <
that is not necessarily closed, and let J be the direction-cone of <. We can then
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define a reflexive and transitive relation < on E by

w<ay <>y + (N0} ce + (IN\{0}) for all », yec K.

In general, < is not antisymmetrie; if it is, we say that the order <, and its direction-
cone J, are genuine, and we call the order <1 the closure of <. Assume that < is genuine;
then its closure -« is translation-invariant and connected, and the direction-cone
of <is K:={ueVu-+ (N0} cd }; it is easily seen that the closure < is a closed
order. If < is itself closed, then it is necessarily genuine and equal to its own closure,
If E is finite-dimensional, then K is the (topological) closure of J. It is not hard to
see that the translation-invariant and connected order < is genuine if and only if
its direction-cone o includes no line; this is the case if and only if no follower-set
# -+ J of any point @ € ¥ includes a line.

We say that the ordered affine space ¥ is a directed affine space if its order is direct-
ing. This is the case if and only if the direction-cone K spans the whole translation
space V:

(3.1) V=SpK=K-—K.

REMARK 2. — It is clear that, if the order of F is not direeting, ¥ is partitioned
into flats with translation space Sp K, and that the restriction of the order to each
of these flats is directing, while elements in different flats of this partition are unrelated
by the order.

REMARK 3. — The structure of space-time in the theory of Special Relativity is
a four-dimensional directed affine space whose direction-cone K hag the property that
KU (— K)is the set on which a certain non-degenerate quadratic form with Sylvester
index 1 has its non-negative values. The order <1 of F is closed: it is usually called
the causal order of space-time. The causal order is the closure of another genuine
directing order <, usually called the chronological order of space-time. If J is the
direction-cone of <, then JN\ {0} is the interior of K; it is the set of all vectors in K
at which the quadratic form has a positive value. The extreme balf-lines of E with
respect to the causal order have a physical interpretation as light rays.

4. — Statement of the problem.

We assume that the following are given: directed affine spaces E and F', with
respective translation spaces V and V’; and follower-saturated subsets D and D’
of E and F', respectively. The problem we consider is: What is the structure of an
order-isomorphism @: D — D'? In particular, Must ¢ be the resiriction of an affine
mapping? We are able to give a complete answer to this problem when the direction-
cone K of F is the sum of its extreme rays.
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Let R and R’ be the sets of extreme rays of the direction-cones K and K’ of B
and E', respectively, and assume that K = > R. Then the following conditions are
satisfied (use (3.1) for the second one): &%

(R1): If Re R, then — Re¢ R;
(R2): V=SpUR = Z(R—R);
ReR
(R3): If R, 8', T'e R' are distinet, then

dimSp(RuUSUT)=3;

(D): For all ReR, D+ RBR=D; and for all R'eR', D'+ R' = D',
If ¢: D — D' is an order-isomorphism, it follows from Proposition 1 that ¢ has
the following property:

(H): For all 5D and Re R, we have
gz + R)— gy e R

8o that the image under ¢ of every half-line in D with direction in R is a half-line in D’
with direction in R'.

It turns out that for the solution of our problem only the conditions (R1), (R2),
(R3), (D) are significant, and that it is essentially sufficient to consider arbitrary
injections ¢: D —> D' that satisfy (H).

The following concept will be crucial for the statement of our results. Let S be
a collection of rays in a vector space. A ray R e 81is engaged in 8 if R SpuU (S\R}).
If Re § is not engaged in §, then R is disengaged in 8.

THEOREM A. — Let B and E' be affine spaces with repective translation spaces V
and V' and let R and R' be collections of rays in V and V', respectively. Assume that R
and R' satisfy the conditions (R1), (R2), (R3), and that D and D’ are non-empty sub-
sets of B and E', respectively, that satisfy (D). Assume, morecver, that every ray of &
is engaged in R. Then every injection ¢: D — D' with the property (H) is the restriction
of an affine mapping from B to B'.

ReEMARK 4. — This result can be cast as a necessary and (frivially) sufficient con-
dition by replacing the last sentence of the statement by: Then a mapping ¢: D — D'
is am injection with the property (H) if and only if it is the restriction of an injective affine
mapping from B to B’ whose gradient A satisfies A>{R)c R'.

CoroLLARY Al. — Let E and E’ be directed affine spaces, and let D and D' be non-
empty follower-saturated subseis of B and E', respectively. Assume that the direction-
cone of B is the sum of ils emtreme rays, and that cach such extreme ray is engaged in
the set of all. Then every order-isomorphism ¢: D —» D' is ihe vestriction of an affine
mapping from E to E'.
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Suppose for a moment that F is finite-dimensional; by Proposition 2, the direction-
cone of K is the sum of its extreme rays if (and only if) the order is closed. We ean
obtain the conclusion of Corollary Al with this assumption weakened, at the cost of
a minor restriction on D and D’ as follows.

CoROLLARY A2. — Let E and E' be finite-dimensional divected affine spaces with
genwine orders, and let D and D’ be non-empty follower-saturated subsets of I and B’
respectively such that each is either open or closed. Assume that cach estreme ray of the
direction-cone of the closure of the order of E is engaged in the set of all such extreme rays.
Then every order-isomorphism @: D — IV is the restriction of an affine mapping from B
to B’

Proor. ~ Consider the closures of the orders of F and E’'; they also direct £ and E’,
respectively, and by Proposition 2 the direction-cone of the closure of the order of ¥
is the sum of its extreme rays. The assumption on D and D’ ensures that each is
follower-saturated with respect to the corresponding closure order. Since the clo-
sure of an order is defined in purely order-theoretic terms, a mapping ¢: D — D’
that is an order-isomorphism with respect to the original orders is also an order-
isomorphism with respect to the closure orders. The conclusion then follows from
Corollary Al applied to the closure orders. [

The general case, in which net all rays of R are assumed to be engaged in R, is
much more complicated, and will be analysed in Sections 7 and 8 (Theorem B and
its corollaries). Omne interesting congsequence of that analysis deserves mention here.

COROLLARY B2. — Let B and B’ be divected affine spaces, and assume that the direc-
tion-cone of B is the sum of its extreme vays. Then there exist non-empty follower-satur ated
subsets D and D' of E and B, respectively, and an order-isomorphism from D to D'
if and only if there exists an affine order-isomorphism from E to E'.

REMARK 5. — Corollary B2 implies that the complete description of all order-
isomorphisms ¢: D — D’ for given directed affine spaces F and E' reduces to a deter-
mination of whether there exists an affine order-isomorphism from E to E' and a
complete description of all order-isomorphisms between two follower-saturated sub-
sets of H.

We shall see in Section 8 (Proposition 4) that unless all extreme rays are engaged
there are D and D’ as above and order-isomorphisms ¢: D — D' that are not the
restrictions of affine mappings.

REMARK 6. — Assume that the direction-cone K of the directed affine space F
is the sum of its extreme rays. To say that the extreme ray R is disengaged in the
set R of all extreme rays means, geometrically, that K is the sum, henece the convex
hull, of B and a cone in a supplementary subspace of codimension 1. This may be
judged to be a rather exceptional situation, so that Corollary Al describes a kind
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of general case; in particular, Corollary Al certainly applies whenever dim I > 2
and XK is rotund or smooth, and this includes the case of space-time of Special Rela-
tivity with its causal order. Among the exceptional situations is the one in which E
is finite-dimensional and K is a closed cone with a simplicial cross-section: in this
case, every ray of R is disengaged in R, and the order of ¥ is a lattice-order. In par-
ticular, if dim F = 2 we must have this special situation, and Corollary Al does not
apply; if dim K = 3, then Corollary A1l fails to apply only in this special case, when R
has exactly three members.

REMARK 7. — Let E be a directed affine space whose direction-cone is the sum of
its extreme rays. If eaeh extreme ray is engaged in the set of all, Corollary Al im-
plies that every order-automorphism of F is in fact an affine automorphism; this
means that the affine structure of F is completely determined by its order structure.
‘We shall see in Section 8 (Proposition 4) that this conclusion does not hold if there
are disengaged extreme rays.

5. — A result about three half-lines,
The following result is valid in an arbitrary affine space.

PRroPOSITION 3. — Lel three pairwise disjoint half-lines be given such that every point
of each lies on a line that meets the other two. Then all three half-lines are parallel to
one plane. Moreover, if two of them lie in one plane, the third also lies in that plane.

Figure 1
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Proor. — The assumption ensures that each of the half-lines lies in the affine
span of the union of the other two. It follows that if two of the half-lines lie in one
plane the third also lies in that plane; and that otherwise the dimension of the affine
span of the union of any two, and hence of all three, half-lines is 3. We assume this
latter alternative in the rest of the proof, and we let F be the three-dimensional affine
span of the union of the half-lines.

By the assumption, we may and do choose a line that meets the three hailf-lines
H,, H,, H, at points p,, p;, ps, respectively (see Figure 1). We may and do select
our numbering so that p; lies between p, and p,. Let P, be the plane through H,
parallel to H,, and let P, be the plane through H, parallel to H,. Then P, and P,
are distinet parallel planes, and a line meeting both H, and H, cannot lie in P, or
in P,. It therefore follows from the assumption that H, eannot meet P, or P,: for
if H, met P, at #, say, then the line through & that meets H, and H, would lie in P,.

Now H, contains the point p,, which lies in F between the planes P, and P,.
Since H,; does not meet P, or P,, it must lie in the «strip » of I between P, and P,.
It is evident that this can happen only if H, is parallel to P, and to P,; and H, and H,
are parallel to these planes by construction. O

6. — Proof of Theorem A.

We assume in this section that F and E' are affine spaces with respective translation
spaces ¥V and V', and that R and R’ are collections of rays in V and V', respectively.
We assume that R and R’ satisfy (R1), (R2), (R3), and that D and D' are non-empty
subsets of F and E', respectively, that satisty (D). (These are the assumptions of Theo-
rem A except for the « engagedness » condition.)

Let ¢: D — D' be a given injection with Property (H). We prove several lemmas.

LEMMA 1. — Let R, Se R, R+#S8. Then.
@+ utv)—g@-t+u)=qg@-+v)—ple) foral seD, ucR, vel.

Prooy. — The equality is trivially valid if » = 0 or v = 0; we therefore may and
do assume that %0 and v50. By (R1) we have S+ — R and hence v¢ R —
— B =8pR. It follows that o -+ j» - R, j=0,1,2, are three distinet parallel
half-lines that meet the half-line # -- S only at the points # -+ jv, j = 0, 1, 2, respec-
tively. Since ¢ has Property (H), ¢-(# + jv 4+ R), j = 0,1,2, and ¢s(z 4 8) are
half-lines and, since ¢ is injective, the three half-lines gs(z + jv -+ R), j = 0,1, 2,
are pairwise disjoint and meet the half-line ¢s(# -4 S) only at the points gz - j»),
j = 0,1, 2, respectively (see Figure 2). This means that the ray

8i=g(@+ 8) —p@) e R’
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@) + 8

gl + 20) + R,

olz + 2v)

p(@) + B,
Pl -+ u)
Figure 2

must be distinet from each of the rays
R :=gsw+jv+ R —pxt+jer, =012

We claim that the three half-lines g.(x + jv + R),j = 0, 1, 2, satisfy the hypothesis
of Proposition 3. Indeed, if 2 is a point on gs{x + kv + R), where k is 0 or 1 or 2,
then z = g{# - kv -+ w) for a suitable w € R, and hence # lies on the half-line ¢{® -
-+ w + 8), which meets all three half-lines under consideration at ¢z 4 w -+ o),
respectively. Proposition 3 implies that these three half-lines must be parallel fo one
plane, which means that dim Sp (R, U R, U R}) < 2. Sinee R,, Ry, B, € R', this is
consistent with (R3) only if at least two of R, Ry, R, are equal, which means that
at least two of the three half-lines are parallel, and hence lie in one plane. Using
Proposition 3 again, we conclude that all three half-lines lie in one plane. This plane
also includes the half-line g.(z 4 §). It follows that dim Sp (R,uU R, U 8)< 2.
Since §'e R’ and & is distinet from both R, and R;, this is consistent with (R3)
only if Ry = R;. It follows that the line through g(» 4 v) and @z 4 v - ) is
parallel to the line through ¢(x) and ¢(x + ).

If we interchange R and 8, and « and v, in the preceding argument, we also con-
clude that the line through ¢(x + #) and @(# 4 u -+ v) is parallel to the line through
g(x) and @(w + v). Therefore (@), pl@ + 2), ¢l 4 v + v), p(@ -+ 4) are consecutive
vertices of a parallellogram. The conclusion of the lemma is an algebraic formula-
tion of this assertion. O

LEMMA 2. — Let 5 be a finite subset of R and let uy e R be given for eash Be F.
Then

(6.1) #(o + S us) = 9@) + 3 (gl + un) — p(@)

ReF ReF

for all x € D.
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Proor. — We proceed by induction. The assertion is trivial for F = 0. Suppose,
then, that ¥ is a non-empty finite subset of R, and that the assertion is valid when F
is replaced by any proper subset F’ of F. Choose § € F and set F':= F\{8}. The
induction hypothesis yields

oo+ 3 ua) = (o + us + 3 wa) =@+ w9 + 3 (pl@ + us + ua) — 9o + us) -

ReF ReF’ ReF’

By Lemma 1, we have ¢p(# + us 4 uz) — @@ -+ us) = @@ -+ uz) — p(@)for all B € 5,
and this yields (6.1), the desired result. O

LeMMA 3. — Let 3, y € D be given. Suppose

(6.2) y—x =2 (Pps— qs),

SeR,

where (ps|S € R) and (gs|S € R) are families with only finitely many non-zero terms and
satisfying ps, qs€ 8 for all SeR. Then

(6.3) @@ + Pr+ 4) — @@ + pr) = @y + gz + %) — @y + ¢z)
for each R e R and each u € R.

Proor. — Let Be R be given. Using Lemma 2, we find that

64)  glotut Ips) =g+ pat w0+ 3 (plo+ ps) — plo)
SeR SeRN\{R}

65 p(ytutTa)=ew+at 0+ 3 (ol + ) — o)
ReR SeRN\{R}

held for all w e R. It follows from (6.2) that the left-hand sides of (6.4) and (6.5)
are equal. Hence we have

9U + aetu) =g+t )= 3 ((p@+ ps)— o) — (¥ + 5 — ) -

SeRN{R}

Since the right-hand side does not depend on u, neither does the left-hand side;
(6.3) is an immediate consequence. O

Lemma 4. — There is a mapping @: R — R’ such that
ps(@ + R) = p(x) - @PR) for every xe D, Re R.

ProoF. — Let 4, y € D and R e R be given. By (R2), y — # has a representation
of the form (6.2) with (ps|S € R), (¢5|S € R) as described there. Property (H) implies
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that @s(@ -+ B), ¢:{# - pa-+ R), ¢=(y + R), o> -+ ¢z -+ R) are half-lines with direc-
tions in R’; the first of these half-lines includes the second, and the third the fourth;
and Lemma 3 asserts that the second and fourth have the same direction. It follows
that all four have the same direction; in particular,

e>@ + B)— o(@) = p-(y + B) — py) e R'.

Sinee #, y € D and R e R were arbitrary, this proves the existence of the required
mapping @: R —-R'. 0O

LeMma 8. — If the ray R € R is engaged in R, then there is a mapping wz: R — O(R)
such that

(6.6) (@ + u) — @) = wx{u) for oll xeD, uekR.
This mapping sotisfies

6.7) wp(tu) = twgu) for dll ue R, t€P.

PrOOF. — Since R is engaged in R, (R2) implies

V=SpuU (ONER) = 3 (5-8).

Hence, for each #, y € D, y — « has a representation of the form (6.2) withp, = gz = 0.
Lemmas 3 and 4 then give

o + u) — @(@) = gy + u) — py) e D(B) for all we R.

It follows that there is a mapping wz: R — O(R) satisfying (6.6).

Now let we R\{0} be given. Since ¢ is injective, we have wgz(u) € P(R)\{0},
50 that @(R) = Pwx(u); and there is a unique function ¢: P — P such that wg(tu) =
= o(t)wx(u) for all 1€ P; of course o(1) = 1. From (6.6), with some fixed =€ D,

wz(su + tu) = (pl@ + su + tu) — gl -+ tw) + (plo + tu) — p(@)) =

= wgx(su) + wg(tu) for all s, teP;

hence o(s -+ t) = a(s) + o(f) for all s, t€ P. In particular, ¢ is isotone. A standard
argument from elementary analysis shows that o(f) = fo(1) = ¢ for all { € P, and (6.7)
follows. [

We denote by Rethe set of all rays in R that are engaged in R, and we set

Ke:=ZR, Ve::SpUﬁe:SpKezKe—Ke.

ReRe



W. Nowwr - J. J. SCHAFFER: Order-isomorphisms in affine spaces 255

LeMMA 6. ~ There is a linear mapping Ae: Ve — V' such that
p@ 4+ v) — p(@) =Ae(v) for all xeD, ve Ke.

ProOF. — Let u € K. be given. Then u = > u, for some finite set F ¢ R, and some
ReF
family (uz|/R € F) with uz€ B for each R ¥. By Lemmas 2 and 5 we then have

@l -+ tu) — p@) = > wgltu) =1 3> wx(u) = t{pr + w) — @) for all we D, teP.

ReF ReF

Since the middle links in this chain of equalities do not depend on #, neither do the
ends. Since u e K. was arbitrary, there exists. a mapping »: K. - V' satisfying
(6.8) o{w -+ u) — @) = »(w) for all xeD, uc K.,
{6.9) w(tu) = tu(u) for all ue K, t P,

From (6.8) with 2 chosen in D,

(6.10)  x(u + v) = (pl@ + u + v) — @@ + v)) + (p@ + v) — p@) = »(w) + x(v)

for all w, ve Ke..

- Since Ve = K. — K., it follows easily from (6.9), (6.10) that » has a unique linear
extension Ae: Ve —> V'. Since x is the restriction of A, to K., the conclusion follows
from (6.8), 0O

Proor or THEOREM A. — If all rays of R are engaged in R, then Re = K and
Ke— Ke=Ve=8pUR=1V. Ifw, yec D, then y — # = u — v for suitable u, v € Ko,
and Lemma 6 implies

P(y) — p@) = (pl@ + ) — p@)) — (ply -+ v) — p)) =
= Ae(U) — Ae(0) = Ao(th — D) == Aoy — @) .

Since #, y € D were arbitrary, ¢ is the restriction to D (with codomain adjusted to D')
of an affine mapping from ¥ to E' with gradient .. 0O

7. — The general case.

In this section, we shall determine the form of an injection ¢: D — D’ satisfying (H)
without assuming that all rays in R are engaged in K. Our description will depend
on some arbitrary choices; these could be avoided at the cost of introducing ex-
traneous machinery.
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Throughout this section, all the assumptions made in the first paragraph of Sect-
ion 6 remain in force. We gset

(7.1) K := z R
ReR,

this is consistent with the discussion in Section 4, and (R2) implies V = K — K.

As in Section 6, R is the set of all rays of R that are engaged in R, and K. := > R,
Refe
Vei=8pU Re = Ko — Ke. We set Ra:= R\ Re, the set of all rays of R that are

disengaged in KR, and choose bz € R\ {0} for each R e Ra.

LEMMA 7. — There are unigue mappings we: V. —> Ve and fz: V — R for each B e Ry,
such that
v = We(0) -+ D fa(v)br  for every veV

ReRg
(all but finitely many summands are 0). All these mappings are linear.

Proor. — By the definition of « disengaged » and by the fact that V= K — X,
we find that (bgz|R € Rq) is an independent family and Sp {bz|E € Rq} is a supple-
ment of Ve in V. O

To formulate our results succinctly, we introduce some terminology. R has a
natural order, so that a set JcR is follower-saturated if and only if it satisfies
J 4+ P =J. A rescaling is a real-valued strictly isotone function ¢ whose domain
Dom ¢ and range Bng o are follower-saturated: it is an order-isomorphism as a map-
ping from Dom ¢ to Rngo. A rescaling ¢ is normalized if 0 € Dom o and ¢(0) = 0
and o(1) = 1.

We now choose @, € D, and set I, := (8z)(D — x,) for each R € Ra; we observe
that I, is a follower-saturated subset of R, on account of (D), and that it contains 0.

LueMMA 8. — Let o, be a normalized rescaling with Dom oy = I for each B e Ra.
Then the formula

Pul0) 1= we0) + 3 (0a(Bal + v — @) — oalBale — @) bn
REﬂ{d
defines a bijection w,: K —~ K for every e D.
ProoF. — For each R e R, and each s € I, the mapping ¢ og(s + 1) — or(s) 18

a bijection from P to P that maps 0 to 0. The conclusion is an immediate consequence
of Lemma 7, (7.1), and this fact.

LEMMA 9. — Assume that ¢: D — D' is an injection that satisfies (H). For every
R € Ra there is a unique b, € V' and a unique normalized rescaling op with Dom ox = I,
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such that

(1.2) @@ + thy) — ¢(@) = (0a(Bal® — &) + 1) — oa(Balm — m))) b,
for all xe D, teP.

Proor. — If b € V' and og: I, — R are such that 0,(0) = 0, 0x(1) == 1, and (7.2)
holds, we have in particular, using Lemma 7,

bxlz = (O‘R(l) - GR(O)) b;z = (P(We + ba) — @) ;
this shows the uniqueness of by. We therefore set
b;z = (@ + bg) — p(@,) .

By Lemma 4 and the faet that ¢ is injective, by € D(R)J0}, and hence
(7.3) Php= B(R) e R'.

Let z, y € D satisfy fple — @) = Fzly — %). Then fxly — #) = 0, and Lemma 7
implies that y — x has & representation (6.2) with pr = ¢, = 0. Lemmas 3 and 4
and (7.3) show that

9@ -+ tha) — (@) = ply -+ tha) — gly) € B(R) = P for all 1€ P.

Bince », y € D with fa(@ — @) = faly — ®,) were arbitrary, this shows that there is
a unique function ¢: I, XP — P such that

(7.4) @@ + thg) — p(@) = o(Br(@ — @), ) by  for all ze D, teP.
It selg, choose zeD such that Bi@— o)==+ (this is possible, since

Ip=(Br)>(D — @)). For every r € P we have B(% - 7bp — m,) = s + r, by Lemma 7.
Therefore (7.4) implies

ols + 7, 1) bp = @@ + 1ha - tha) — @@ + 7bs) =
= (pla 4 ¢ + 0bs) — p(@) — (pl@ + b2) — p(@) =
= (o8, 7 - 1) — o8, 7)) br  for all e P.

We conclude that
(s +71) = o(s,r + 1) — p(s,7) for all sely, r, icP.

17 ~ Annalt di Malematica
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This is a functional equation for g. An easy analysis shows that there is a unique
funetion ogz: Iz >R such that gz(0) = 0 and

(7.5) 0(8,1) = ogls +§)— oxl(s) for all sely teP.

Combination of (7.4) and (7.5) yields (7.2). Since ¢ is injective, so is op; since g is
non-negative-valued, oy is isotone, hence strietly isotone. (7.2) and (7.3) and Lemma 4
yield

Pb, = O(R) = gs(w + R) — ¢(@) C (Rng or— 0a(Balw — mg})) by, for each ze D,

s0 that ¢x(s) + Pc Bng o, for each s e Dom o,, and hence Rugoy + Pc Rugop.
Thus o is @ rescaling; ¢4(0) = 0 by definition; and (7.2} yields, by Lemma 7,

by = @@ + bz) — @las) = (0a(1) — 62(0)) b = 6a(1) bp
$0 that ¢x(1) = 1, and ¢y i3 a normalized rescaling. O

LeMMA 10. — Assume that ¢: D — D' is an injection that satisfies (H). FHor all
xzeD,

@(@) = (o) -+ Ae(7e(w — @) + 23’{ oa(Ba(® — 2,)) bz s
Refa
where e, by, oy are as in Lemmas 6 and 9.

Proor. — Let v € D be given. Then we(r — @,) == % — v for suitable u, v e Ko,
and fn(@ — ®,) = sp— tp for suitable sz, i€ P for each Rec Rq, with sp =1¢ =0
if Bp(® — 2,) = 0 (hence for all but finitely many B e Rq). By Lemma 7, fx(u) =
= fz(v) = 0 for all R e Ra, and

(7.6) Bo-+u -+ 3 Spbp=x+ v+ 3 lzbp.

ReRa ReRq

Lemma 9 implies, for each E e R,

i@, + o+ spbz) — @l + u) = (O'R(ﬁn('“) -+ SR) - 0&(58(%))) b;z = or{8z) b;e
@ -+ 0 + 1rbz) — p(@ -+ v) = (0a(Bal@ + v — @) + tr) — oa(Balz 4 © — m))) by =

= (G'R(Sg) — Gp(8p— tﬂ)) b;% .

By Lemmsas 2 and 6, therefore,

(1.7) ?(wa w3 saba) = 9o + ) + 3 (plo + © + s2bs) — gl + w)) =
ReRg ReRa
= (5) + Ae(t) + 3 0als2) bp

ReRa
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(7.8) cp(m+v+zzﬂb)—¢(x+@>+2(qo<w+v+tm>~ plo + ) =

ReRa Reflga

= p(®) + Ae(v) + E (G'R 8g) — Oa(s “""tR)) bR

Red

Combining (7.6), (7.7), (7.8) and noting the linearity of . and the choice of u, v, 5,
tz, we obtain

p(&) = @(@) + Ae(u) — Ae(v) + z Gx(8r— 1z) b;e ==

ReRa

o{®,) —£~.Ze(ﬂ:eas—%)+Egﬁ(537}—m‘,)b3 O

REd

LEMMA 11. — Assume that o D — D' is an injection that satisfies (H). If Ao and by
are as in Lemmas 6 and 9, then the linear mapping A: V — V' defined by

Aw) 1= Re(e(®)) + 3 Ba(w)bp  for all veV

ReRa

is injective and satisfies A(u) = Ae(u) for all ue Ve, Abg) = by for all Re Ra, and
2.>>{:R,) c R,

Proor. — Let o, be the normalized rescaling of Lemma 9 for each Re Ra. In
the language of Lemma 8, Lemma 10 implies that

@@ + v) — @@y + u) = A(quo(v) — vy, (u)  for all u, ve K.

Since y, : K — K is surjective and K — K = V and ¢ i8 injective, if follows that 1
is injective.

Let Re R be given. If Re Re, then A(R) = (1e)>(R) = @s(, + R) — @(#,) € R/
by Lemma 6 and Property (H); if R € Ra, then As(R) = A-(Pbz) = Pi(by) = Pb, € R’
by (7.3). Thus A.(R) e R’ in either case, i.e., Lx(R)c R/, O

THEOREM B. — The mapping ¢: D — D' is an injection satisfying (H) if and only if

{7.9)  o@) = (@) + Z(ne(:v — @) + X ox(Bal® — 2)) b ) for all » € D,

Red

where h: V — V' is an injective linear mapping such that Jo»(R)c R' and oy is ¢ nor-
malized rescaling with Dom o = I, for each R e Rq.

Proor. — The condition is necessary. Assume that ¢: D — D’ is an injection
satisfying (H), and let le, by, oz, and A be as in Lemmas 6, 9, 11. Then A: V — V"
is an injective linear mapping satisfying 4.-(R) c R’ (Lemma 11), each oy is a norma-
lized rescaling with the desired domain (Lemma 9), and Lemmas 10 and 11 together
imply (7.9).
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The condition is sufficient. Assume that ¢: D — D' satisfies (7.9) with 1 and op
as stated. If #, y € D are such that ¢() = ¢(y), (7.9) and the fact that 1 is injective
yield

oy — @) + > (oa(Baly — @) — oa(Brl@ — @) ba= 0.

BeRa

By Lemma 7 and the fact each ¢, is injective we find me(y — 2) =0 and
Brly — @) = Baly — @) — Bal® — x) = 0 for every ReRa. By Lemma 7 again,
y—x=10. Thus ¢ is injective.

Let #€ D and Re R be given. If R e Re, (7.9) and Lemma 7 yield

(@ - B) — g(@) = A((me)>(R)) = Ix(B) e R .
If B e Ra, (7.9), Lemma 7, and the fact that oy is a rescaling yield

>(@ 4 B) — ¢@) = ¢>(@ + Pbz) — ¢l@) =
= ((@a)>(Bal@ — @) + P) — onBalw — @0))) bs) =
= Pibz) = Z:(Php) = A(RYe R'.

Thus g-(z + R)— @) € R’ in either case, and ¢ satisfies (H). O

8. — Non-affine order-isomorphisms.

We now return to the situation in which ¥ and B’ are directed affine spaces,
with respective direction-cones K and K’ and R and R’ are the sets of extreme rays
of K and K', respectively; and it is assumed that K i3 the sum of its extreme rays,
so that (7.1) holds. (If & is finite-dimensional, this assumption holds if and only if
the order is closed, as shown in Proposition 2.) As we noted in Section 4, R and &'
then satisfy (R1), (R2), (R3). The definitions at the beginning of Section 7 are ap-
plieable.

COROLLARY Bl. — Assume that D end D' are non-empty follower-saturated subsels
of B and E', respectively, and that ¢: D — D' is an order-isomorphism. Choose x, € D.
Then

81)  gl@) = pl@) + /’L(:rze(co — )+ S o Bal — @) bR) for all we D,

ReRg

where A: V —V' is the gradient of an affine order-isomorphism from E to E' and ox
is & normalized rescaling with Dom oy = I = (Ba)>(D — x,) for every R e Ra.
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Proor. — Since ¢ is an order-isomorphism and D and D’ are follower-saturated
@ P 7

(8.2) P>(@ + K) = gla) + K' .

Now D and D’ satisfy (D), and ¢ is an injection satisfying (H) (ef. Section 4).
Therefore Theorem B is applicable, and ¢ satisfies (7.9}, which is (8.1), with an injec-
tive linear mapping A: V — V' and with normalized rescalings ¢, with the desired
domains.

We claim that A.(K) = K'; this will complete the proof: indeed, the orders are
directing, so K’ spans V', hence A is surjective, hence invertible; since it satisfies
A>(K) = K', it is the gradient of an affine order-isomorphism from B to E'.

To prove our elaim, we observe that, in the language of L.emma 8, (8.1) implies

(8.3) @@y + v) — @lay) = Ay, (v)) for all ve K;
and combining (8.2) and (8.3) with the fact that ¢, : K — K is surjective, we find
K' = gslw, + K) — ¢l@) = ((y, >(K) = (EK). O

Corollary B2, the statement of which will be found in Section 4, is now an im-
mediate consequence of Corollary BI1.

‘We have a strong converse to Corollary B1; in formulating it, we have to respect
the restriction imposed by Corollary B2.

PrOPORITION 4. — Let A: V=V’ be the gradient of an affine order-isomorphism
from B to B'. For every non-empty follower-saturated subset D of H, every x, € D, every
xy € B', and every family of normalized rescalings o, with Dom oy == I 5 1= (BR)>(D — xy)
for each R e Ra, the formula

(8.4) @(x) 1= @, + Z(ne(w — @) + 2 or(Bal® — @,)) bR) for all xe D
ReRq

defines an order-isomorphism ¢: D — D' for a suitable non-empty follower-saturated
subset D' of E'.

ProoF. — Let D, w,, 4, and the o, be given, and let D’ be the range of the mapping
defined by (8.4). Then ¢: D — D', as defined by (8.4), is surjective. We shall show
that

8.5) p>(0 + K) = plz) + K’ for all xe D;
this will prove that D’ is follower-saturated, and that ¢ is an order-isomorphism

provided it is injective; bub the injectivity of ¢ follows exactly as in the proof of
Theorem B (sufficiency). It thus remains to prove (8.5).
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The assumption on 4 means that 1 is an invertible linear mapping that satisfies
J»(H)= K'. Let #eD be fixed. In the language of Lemma 8, it follows from (8.4)
that

@le + v) — @) = My, (v)) for all ve K.
Therefore the fact that y,: K — K is surjective (L.emma 8) implies

@@ -+ K) — ¢@) = A((p,)>(K)) = (K) = K',

and, since » € D was arbitrary, (8.5) is proved. O

REFERENCES

[1] [A. D. ALERSANDROV] A. D. ALEXANDROV, 4 contribution fo chromogeometry, Canad. J.
Math., 19 (1967), pp. 1119-1128.

[2] A. D. ALEgsaNDrROV - V. V. OVEINNIKOVA, Notes on the foundations of relativity theory,
Vestnik Leningrad Univ., 11 (1953), pp. 95-110 (Russian).

{31 H. J. Borcaers - G. ¢. HeeErrFELDT, Uber ein Problem der Relativilitstheorie: Wann
sind Punktabbildungen des R” linear?, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl IT
1972, pp. 205-229.

[4] O. 8. Rormaus, Order isomorphisms of cones, Proc. Amer. Math. Soe., 17 (1966),
pp. 1284-1288.

[6] E. C. Zeemax, Cousality implies the Lorenie group, J. Math. Phys., 5 (1964), pp. 490-493.




