
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Order Matters: Semantic-Aware Neural
Networks for Binary Code Similarity Detection

Zeping Yu,1∗ Rui Cao,1∗ Qiyi Tang,1 Sen Nie,1 Junzhou Huang,2 Shi Wu1†

1Tencent Security Keen Lab, Shanghai, China
2Tencent AI Lab, Shenzhen, China

{zepingyu, ruicho}@foxmail.com, {dodgetang, snie, joehhuang, shiwu}@tencent.com

Abstract

Binary code similarity detection, whose goal is to detect simi-
lar binary functions without having access to the source code,
is an essential task in computer security. Traditional meth-
ods usually use graph matching algorithms, which are slow
and inaccurate. Recently, neural network-based approaches
have made great achievements. A binary function is first rep-
resented as an control-flow graph (CFG) with manually se-
lected block features, and then graph neural network (GNN)
is adopted to compute the graph embedding. While these
methods are effective and efficient, they could not capture
enough semantic information of the binary code. In this pa-
per we propose semantic-aware neural networks to extract the
semantic information of the binary code. Specially, we use
BERT to pre-train the binary code on one token-level task,
one block-level task, and two graph-level tasks. Moreover,
we find that the order of the CFG’s nodes is important for
graph similarity detection, so we adopt convolutional neu-
ral network (CNN) on adjacency matrices to extract the or-
der information. We conduct experiments on two tasks with
four datasets. The results demonstrate that our method out-
performs the state-of-art models.

Introduction

Binary code similarity detection is used for detecting
whether two given binary functions are similar. It has many
computer security applications, including code clone detec-
tion, vulnerability discovery, malware detection, etc. Tra-
ditional efforts adopt graph matching algorithm (Liu et al.
2006) to compute the similarity of two functions. However,
these graph matching-based methods are very slow, and may
be hard to adapt to different applications. Recently, a neu-
ral network-based method called Gemini (Xu et al. 2017)
has shown great advantages. Figure 1 (left) is an example
of a CFG, Gemini first transform it into an attributed CFG
with manually selected features (right) in each block. Then
Structure2vec (Dai, Dai, and Song 2016) is used to produce
the graph embeddings. At last a siamese architecture could
be added on the binary functions to compute the similarity
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;  int __fastcall _freading(FILE_0  *fp)

public  __freading
__freading proc  near

fp =  rdi ;  FILE_0  *

; __unwind {
mov edx,    [fp]

mov eax,    edx
and     eax,    8

jnz short   loc_776A0

and    edx,    804h

jnz short   locret_776A5

loc_776A0:

mov    eax,    1

xor eax,    eax

cmp qword  ptr [fp+18h],    0
setnz al

retn

locret_776A5:

retn
;  }  //  starts at 77680

__freading endp

[0, 3, 1, 0, 34, 3, 0, 0]

[0, 3, 0, 0, 17, 2, 1, 0] [0, 1, 1, 0, 4, 0, 1, 1]

[1, 2, 0, 0, 13, 1, 0, 1] [0, 3, 0, 0, 13, 2, 1, 0]

Figure 1: An example of a control flow graph (CFG) and its
manually selected block features.

score and reduce loss. (Xu et al. 2017) has shown that Gem-
ini outperforms traditional methods in terms of accuracy and
speed.

Even though neural network-based models have achieved
a lot, there are several important things that have not been
taken into consideration. Firstly, as shown in Figure 1, each
block is represented as a low-dimensional embedding with
manually selected features, which will cause the loss of
much semantic information. Secondly, the order of the nodes
plays an important role in representing binary functions,
while previous approaches did not design methods to ex-
tract it. To solve these two problems, we propose an overall
framework with three components: semantic-aware model-
ing, structural-aware modeling, and order-aware modeling.

In semantic-aware modeling, we use NLP models to ex-
tract the semantic information of the binary code. The tokens
in the CFG blocks are regarded as words, and the blocks are
regarded as sentences. In previous works, (Massarelli et al.
2019) uses word2vec model to train the token embeddings
in the block, and then uses attention mechanism to obtain
the block embedding. (Zuo et al. 2018) borrows an idea from
neural machine translation (NMT) to learn the semantic rela-
tionship between cross-platform binary codes. In this paper,
we adopt BERT (Devlin et al. 2018) to pre-train the tokens
and blocks. Same as BERT, we mask the tokens to pre-train
on the masked language model task (MLM), and extract all
the neighboring blocks to pre-train on the adjacency node
prediction task (ANP). Instead of learning token embed-
dings and block embeddings separately, our method could
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;  int __fastcall  _freading(FILE_0  *fp)

public  __freading
__freading  proc  near

fp  =  rdi                           ;  FILE_0  *

; __unwind {
mov    edx,    [fp]

mov    eax,    edx
and     eax,    8

jnz      short   loc_776A0

and    edx,    804h

jnz     short   locret_776A5

loc_776A0:

mov    eax,    1

xor      eax,    eax

cmp    qword  ptr    [fp+18h],    0
setnz   al

retn

locret_776A5:

retn
;  }  //  starts at 77680

__freading   endp

;  int __fastcall  _freading(FILE_0  *fp)

EXOPRT  __freading
__freading 

fp  =  X0                          ;  FILE_0  *

; __unwind {
LDR    W1,    [fp]

MOV   X2,     fp
AND    W0,    W1,    #8

fp  =  X2                          ;  FILE_0  *

TBNZ   W1,    #3,     loc_6A66C

MOV    W3,    #0x804

TST      W1,    W3
B.NE     locret_6A668

loc_6A66C

MOV    W0,   #1
RET

;  }  //  starts  at  6A640

LDR    X0,    [fp,  #0x18]

CMP    X0,    #0
CSET   W0,   NE

locret_6A668

RET

0   1   1   0   0

0   0   0   1   1
0   0   0   0   1

0   0   0   0   0

0   0   0   0   0

0   1   1   0   0

0   0   0   1   1
0   0   0   0   0

0   0   0   0   1

0   0   0   0   0

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

Node 2 Node 3

Node 4

Node 5

Figure 2: Two CFGs and their adjacency matrices of function ” freading” on different platforms (x86-64 & ARM).

obtain token embeddings and block embeddings at the same
time. Additionally, because our final goal is to produce the
whole graph representation, we add two graph-level tasks.
One is to determine whether two sampled blocks are in the
same graph, and we call it block inside graph task (BIG).
The other is to distinguish which platform/optimization the
block belongs to, which is named graph classification task
(GC). We find that the additional tasks could help extract
more semantic information and learn block representation
better. After pre-training the block embeddings, we fine-tune
them on graph-level tasks.

In structural-aware modeling, we use MPNN (Gilmer et
al. 2017) with GRU (Cho et al. 2014) update function. (Xu et
al. 2018) has proved that graph neural networks could have
as discriminate power as Weisfeiler-Lehman test (Weisfeiler
and Lehman 1968). We find that using GRU at each step
could store more information than only using a tanh func-
tion.

In order-aware modeling, we try to design an architecture
to extract the node order information of the CFGs. Figure
2 shows a function’s two CFGs and the corresponding ad-
jacency matrices on different platforms x86-64 and ARM.
The two CFGs have similar node order. For example, in both
CFGs node 1 has a connection with node 2 and 3, and node
2 has a connection with node 4 and 5. Their adjacency ma-
trices are very alike. After exploring many cross-platform
function pairs, we find that many changes in node order
are small. Based on this observation, we propose a simple
method to capture the order information, that is, using CNN
on the adjacency matrices. We find that only a 3-layer CNN
performs well. We further explore other CNN models such
as Resnet (He et al. 2016), and discuss what CNN models
could learn from adjacency matrices.

Our contributions are as follows:

1) We propose a general framework to learn graph em-
beddings of CFGs, which could learn semantic information,
structural information, and order information.

2) In semantic-aware modeling, we adopt BERT to pre-
train token embeddings and block embeddings with masked
language model task (MLM) and adjacent node prediction

task (ANP). Additionally we add two graph-level tasks to
learn block representation better, which are block inside
graph task (BIG) and graph classification task (GC).

3) In order-aware modeling, we find that the node order
is useful. We adopt CNN models on the adjacency matrices
to extract the node order information of CFGs, which makes
great achievements. Then we explore what CNN could learn
from adjacency matrices.

4) We conduct experiments on two tasks with four
datasets, and the results demonstrate that our proposed
model achieves much better performance than the previous
methods.

Related Work

Graph Neural Networks

Graph neural networks (Scarselli et al. 2008) propose to
learn the node representation and graph representation.
By adding deep learning components, there are many
graph models, such as graph convolutional network (GCN)
(Kipf and Welling 2016), GraphSAGE (Hamilton, Ying,
and Leskovec 2017), and graph attention network (GAT)
(Veličković et al. 2017). GCN uses a convolutional layer to
update the node embeddings. GraphSAGE adopts an aggre-
gating function to merge the node and its neighboring nodes.
GAT uses attention mechanism to receive more information
from the important nodes. MPNN designs an overall frame-
work for graph representation learning, which has a message
passing phase and a readout phase. The message passing
phase runs several steps to capture the information from the
neighboring nodes. The readout phase computes an embed-
ding for the whole graph. Except MPNN, graph networks
(GN) (Battaglia et al. 2018) and non-local neural networks
(NLNN) (Wang et al. 2018) are also overall frameworks for
graph learning.

BERT

BERT is the state-of-art pre-training model in NLP. BERT
makes use of Transformer (Vaswani et al. 2017), which is
an attention mechanism that learns contextual relations be-
tween words in a text. BERT use two strategies to train a
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Figure 3: Overall structure of our model. The model has three components: semantic-aware modeling, structural-aware model-
ing and order-aware modeling.

language model. One is the masked language model task
(MLM), which is a self-supervised prediction mask to en-
courage the model to capture useful knowledge about lan-
guage. The other is a classification task to make the model
distinguish the two sentences in training, which is called
next sentence prediction (NSP). BERT can be used for a
wide variety of language tasks by only adding a small layer
to the core model. On NSP task, [cls] token is usually re-
garded as the sentence embedding, and a mapping layer
could be added for fine-tuning. BERT pre-trained models
have achieved very good results on a wide range of down-
stream tasks, such as cross-lingual language model (Lam-
ple and Conneau 2019), question answering (Talmor et al.
2018), and text generation (Song et al. 2019).

Binary Code Similarity Detection

Binary code similarity detection is an important task in com-
puter security. Traditional methods use graph matching al-
gorithms to compute the graph similarity. However, these
methods are slow and inefficient. Several researches try to
use graph kernel methods (Weisfeiler and Lehman 1968;
Borgwardt et al. 2005). Recently (Xu et al. 2017) proposed
a GNN-based model called Gemini, which gets better re-
sults than the previous methods. But it uses manually se-
lected features to represent the CFG blocks, which may not
contain enough semantic information. (Zuo et al. 2018) uses
NLP models on this task. They treat a token as a word and
treat a block as a sentence, and use LSTM to encode the
semantic vector of a sentence. To make sure blocks with
the same semantic information have similar representations,
they use a siamese network and compute cosine distance for
CFG pairs. They consider two basic blocks that have been
compiled from the same piece of source code as equivalent.
To get the ground truth block pair, they modify the compiler
to add the basic block special annotator which annotates a
unique ID for each generated assembly block. However, this
method has two obvious shortcomings. One is that getting
similar block pair is an supervised process which needs ex-
pert experience and domain knowledge, and some blocks

cannot be uniquely annotated. The other is that different
models need to be trained for different platform combina-
tions in practical use.

Our Model

Overall Structure

The input of our model is the binary code functions’ CFGs,
in which each block is a token sequence with intermediate
representation. The overall structure of our model is shown
in Figure 3. On the semantic-aware component, the model
takes the CFG as input and uses BERT to pre-train the token
embeddings and the block embeddings. On the structural-
aware component, we use MPNN with GRU update function
to compute the graph semantic & structural embedding gss.
On the order-aware component, the model takes the adja-
cency matrix of the CFG as input, and adopts CNN to com-
pute the graph order embedding go. At last we concatenate
them and use a MLP layer to compute the graph embedding
gfinal.

gfinal = MLP([gss, go]) (1)

Semantic-aware Modeling

In semantic-aware modeling, we propose a BERT pre-
training model with 4 tasks for dealing with CFGs. This
model is of several advantages. First, we can extract block
embedding from different CFGs which generated from dif-
ferent platforms, different architectures, different compile
optimization options based on the same model. Second, we
can get both token-level, block-level and graph-level in-
formation from pre-training process, because we have one
token-level task, one block-level task and two graph-level
tasks. Third, the training process is based entirely on the
CFG diagram and does not require modification of the com-
piler or other operations to get similar block pairs.

Our approach is inspired from sentence embedding task
in NLP, because the blocks in CFGs are like sentences and
the tokens in blocks are like words. This task is to extract
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Figure 4: Bert with 4 tasks: MLM, ANP, BIG and GC.

embeddings for a sentence. There are two main methods
for this task. One is supervised methods such as text clas-
sification training (Joulin et al. 2016). Another is unsuper-
vised methods such as n-gram features and decoder-encoder
skip thought (Kiros et al. 2015). We use the improved model
based on BERT to extract block embedding on CFGs.

As shown in Figure 4, there are four tasks in our pre-
training process. For the token sequences inside the node,
we employ Masked language model (MLM) to extract se-
mantic information inside the block. MLM is a token-level
task, which masks the tokens on the input layer and predict
them on the output layer. Adjacency node prediction task
(ANP) is a block-level task. In graphs, the information of
the block is not only related to the information of the block
itself but also its neighbors, and we want our model to learn
this information. In ANP task, we extract all adjacent blocks
on a graph and randomly sample several blocks in the same
graph to predict whether two blocks are adjacent. The two
tasks (MLM & ANP) are similar to the MLM & NSP tasks
in the original BERT paper (Devlin et al. 2018).

In order to make better use of the information on the
graph, we add two auxiliary supervised tasks: block inside
graph task (BIG) and graph classification task (GC). BIG
task is similar with ANP. The differences are the ways of
sampling different block pairs. BIG task tries to make the
model judge whether two nodes exist on the same graph.
We randomly sample block pairs in/not in the same graph,
and predict them in BIG task. This task helps the model un-
derstand the relationship between block and graph, which
is helpful for our graph embedding tasks. In our scenario,
under different compilation options, the information of the
graph and the blocks may be different. In order to make the
model to distinguish these differences, we design graph clas-
sification task (GC). GC makes the model to classify blocks
in different platforms, different architectures, or different
optimization options.

Structural-aware Modeling

After obtaining the block embeddings from BERT pre-
training, we use MPNN to compute the graph semantic &
structural embedding of each CFG. The message passing
phase with message function M and update function U runs
for T time steps, and then the readout function R computes

the whole graph semantic & structural embedding gss.

mt+1
v =

∑

w∈N(v)

Mt(h
t
v, h

t
w, evw) (2)

ht+1
v = Ut(h

t
v,m

t+1
v ) (3)

gss = R(hT
v |v ∈ G) (4)

Here G means the whole graph, v means the node, and
N(v) means the neighboring nodes of node v. We use MLP
on message function M, and adopt GRU on update function
U to learn the sequential information of the time iteration.
(Xu et al. 2018) has proved that sum function is the best
choice for readout function R, so we use sum function, and
extract the graph representation of 0th step and Tth step. h0

v

means the initial block embeddings generated by BERT pre-
training, and ht

v means the block embeddings at step t.

mt+1
v =

∑

w∈N(v)

MLP(ht
w) (5)

ht+1
v = GRU(ht

v,m
t+1
v ) (6)

gss =
∑

v∈G

MLP(h0
v, h

T
v ) (7)

Order-aware Modeling

In this component we aim to extract the node order infor-
mation of the CFGs. We could think about what informa-
tion could be learned by CNN models. Figure 5 shows three
graphs (without semantic information in blocks) and their
adjacency matrices, which could be transferred into each
other by adding several small changes. In the three graphs,
each graph has a triangle. We could observe that the trian-
gle feature, which is squared in each adjacency matrix, has
some common characteristics in adjacency matrices. First
consider 5a and 5b, a new node is added onto the triangle,
but the node order of the triangle is not broken. Even though
the displacement changes, the triangle feature (the 1, 1, 0, 1
square) is not changed in the two adjacency matrices. CNN
could capture this information, because CNN has transla-
tion invariance when it has seen a lot of training data. Then
look at 5c, it seems that the added node 2 breaks the trian-
gle’s node order. However, when we remove the adjacency
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Figure 5: Example graphs and their adjacency matrices. The triangle feature of all the three graphs could be squared in their
adjacency matrices.

matrix’s second row and second column, the triangle feature
square still exists. This is like image scaling. If we regard the
triangle feature square as a 2*2 image, it is amplified into a
3*3 image in 5c. CNN could also learn this scale invariance
after seeing enough training data.

We have discussed that CNN may learn the small changes
of node order because of its translation invariance and scale
invariance. In our binary code similarity detection task, the
node order usually does not change a lot when the same
function is compiled on different platforms. Most node order
changes are adding a node, deleting a node, or exchanging
several nodes, so CNN is useful on our task. Except the accu-
racy improvement on learning node order information, CNN
has several additional advantages. First, comparing with tra-
ditional graph feature extracting algorithms, using CNN di-
rectly on adjacency matrices is much faster. Second, CNN
could be added on inputs with different sizes, so it could
model different-size graphs without pre-processing such as
padding and clipping.

go = Maxpooling(Resnet(A)) (8)

We use Resnet (He et al. 2016) on the adjacency matrices
A in our tasks. Resnet uses a shortcut connection to help the
information transmit easily and efficiently. We use a 11-layer
Resnet with 3 residual blocks. All the feature maps are 3*3
because we want to learn the small changes of the graphs.
Then we use a global max pooling layer to compute the
graph order embedding. Note that we do not use any pool-
ing methods unless on the last layer, because the inputs have
different sizes. In our experiments we observe that using the
power of adjacency matrices as additional inputs could help
improve performance. To prevent over-fitting, we do not use
them in this paper. (Nguyen et al. 2018) also adopts CNN
on graphs, but they try to use CNN to learn semantic fea-
tures. In our approach we want CNN to learn the node order
information, so only adjacency matrices are taken as inputs.

Dataset Task Training Validation Testing

gcc-O2 1 31,410 3,857 3,884
gcc-O3 1 16,059 4,155 4,077

gcc-x86-64 2 27,761 3,406 3,492
gcc-ARM 2 9,447 4,773 4,933

Table 1: Basic statistics of the datasets.

Experiments

Datasets

We evaluate our model on two tasks. The first task is cross
platform binary code detection (Pewny et al. 2015). The
same source code is compiled into different CFGs on dif-
ferent platforms. Our goal is to make sure the same source
code has higher similarity scores than others. Same as Gem-
ini (Xu et al. 2017), we use a siamese network on our graph
embedding model to reduce loss and use cosine distance to
compute the graph similarity. We choose x86-64 and ARM
as the two platforms, and compile on gcc with O2 and O3
optimization options. The second task is graph classifica-
tion, in this task we classify the optimization option of the
graph embeddings. We use softmax function and choose
cross entropy as loss function. We use x86-64 and ARM on
gcc with O0 - O3. Note that our method is also useful for
detecting binary codes on different compilers (eg: clang &
gcc), in this paper we do not choose it as a dataset. The basic
statistics of datasets are shown in Table 1.

Compared Methods

Because our model has three components: semantic-aware
modeling, structural-aware modeling, and order-aware mod-
eling, we conduct different experiments to find out the effect
of each part.
Graph kernel methods We choose the Weisfeiler-Lehman
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Model Task1-O2 Task1-O3

Weisfeiler-Lehman 0.2493 / 0.1810 0.1940 / 0.1565
Gemini 0.6069 / 0.5491 0.5430 / 0.4760
MPNN 0.6096 / 0.5507 0.5501 / 0.4802

word2vec 0.7003 / 0.6534 0.6198 / 0.5555
skip thought 0.6825 / 0.6238 0.5954 / 0.5226
BERT2 0.7591 / 0.7060 0.6507 / 0.5852
BERT4 0.7704 / 0.7233 0.6672 / 0.5989

CNN3 (random) 0.0362 / 0.0020 0.0307 / 0.0015
CNN3 0.4142 / 0.3684 0.3074 / 0.2612
Resnet7 0.4330 / 0.3868 0.3229 / 0.2732
Resnet11 0.4419 / 0.3952 0.3271 / 0.2837
MPNNws 0.3361 / 0.3014 0.2161 / 0.1913
MPNNws+Resnet11 0.4457 / 0.3970 0.3348 / 0.2907

Our model 0.7922 / 0.7421 0.6855 / 0.6114

Table 2: Performance comparison of task 1 in terms of
MRR10 / Rank1.

kernel (Weisfeiler and Lehman 1968) to compute the simi-
larities of the graphs.
Gemini (Xu et al. 2017) uses Structure2vec to compute the
graph embedding of CFGs, in which each block is a 8-
dimensional manually selected feature.
MPNN To compare our semantic-aware & structural-aware
model with Gemini, we use MPNN (Gilmer et al. 2017) with
8-dimensional feature.
Word2vec Word2vec (Mikolov et al. 2013) is a fundamental
method to learn word embeddings in NLP. We take the sum
of the token embeddings as the block embedding.
Skip thought Skip thought (Kiros et al. 2015) is another
method to learn sentence embeddings in NLP. It takes the
middle sentence as input and uses sequence-to-sequence
model to predict its previous and later sentence.
BERT (2 tasks) We use BERT (Devlin et al. 2018) to pre-
train the block embeddings of CFGs. The two pre-training
tasks are the MLM task and the ANP task.
BERT (4 tasks) Except the MLM task and the ANP task, we
add two graph-level tasks (BIG and GC) to learn the graph-
level information.
CNN-based models To figure out the effect of order-aware
modeling, we only use CNN-based models on adjacency
matrices. We use 3-layer CNN, 7-layer Resnet, and 11-layer
Resnet to evaluate whether CNN-based models are useful.
To reduce parameters and prevent over-fitting, we do not use
larger CNN models.
CNN (random) To see whether CNN could capture the node
order information, we random shuffle each CFG and feed the
corresponding adjacency matrices into CNN.
MPNN (without semantic) (Xu et al. 2018) has shown that
GNN models could learn the structural information of the
graphs. We use MPNN without semantic information, each
block has the same original input (a random vector).
MPNN (without semantic) + CNN We concatenate the
CNN node order embedding and the GNN embedding, to see
whether these models could have better results when they are
used together.

Model Task2-x86-64 Task2-ARM

Weisfeiler-Lehman - -
Gemini 77.88 79.89
MPNN 79.65 80.62

word2vec 82.24 84.23
skip thought 80.43 83.74
BERT2 82.67 85.19
BERT4 83.74 86.33

CNN3 (random) 66.06 64.57
CNN3 82.11 83.70
Resnet7 82.56 84.13
Resnet11 82.64 84.24
MPNNws 76.29 76.90
MPNNws+Resnet11 82.92 85.05

Our model 86.14 88.41

Table 3: Performance comparison of task 2 in terms of accu-
racy (%).

Our model Our model is BERT (4 tasks) + MPNN + 11-
layer Resnet, which contains both semantic-aware model-
ing, structural-aware modeling, and order-aware modeling.

Training We implement the models with Tensorflow. Op-
timizer is Adam. Dimension for BERT pre-training embed-
ding is 128, while the whole graph embedding is 64. Max
sequence length for BERT pre-training is 128, transformer
depth is 12 and feed-forward dim is 256. We adopt grid
search to find the best hyper-parameters for each model with
validation set. Optimal settings for our model are: learning
rate is 0.0001, batch size is 10, iteration time steps is 5.

Evaluation metrics On task 1, our goal is to find the bi-
nary codes compiled by the same source code on different
platforms. This task is similar to the recommender system,
thus we use Rank1 and mean reciprocal rank (MRR) as the
evaluation metrics. Rank1 means whether the rank of the
true pair has the highest score. MRR is used for evaluat-
ing ranking tasks, which uses the multiplicative inverse of
the rank of the first correct answer. Task 2 is a classification
task, so we use accuracy to evaluate our model.

Results

Overall performance Table 2 and Table 3 show the over-
all performance of different models on two tasks. BERT 2 &
4 is short for BERT with 2 tasks (MLM & ANP) and with 4
tasks (MLM & ANP & BIG & GC), MPNNws is short for
MPNN without semantic. The first block contains previous
methods, the second block shows the results of semantic-
aware modeling, and the third block shows the effect of
order-aware modeling. Comparing with Gemini, our model
achieves much better performance on both tasks. MPNN
outperforms Gemini on all the datasets, this is because the
GRU update function could store more information, so in
all the other models we use MPNN. We could observe that
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Figure 6: Visualization of 4 CFGs and their block embed-
dings. Different classes clustered by K-means have different
colors.

NLP-based block pre-training features are much better than
manual features, and order-aware modeling also has good
results on two tasks. On cross platform binary code detec-
tion task, semantic information is more useful than order in-
formation. Different CFGs may have similar node orders, so
only using node order information is not enough. At last, our
final model outperforms all the other models. Next we will
investigate the effectiveness of each component separately.

Model variants for semantic-aware modeling To verify
whether BERT pre-training is necessary and effective, we
study several variants. First, NLP-based pre-training block
features (word2vec, skip thought, BERT 2 & 4) achieve bet-
ter performance than manual features, which demonstrates
that building complex models for CFG blocks is essential.
Comparing with word2vec and skip thought, BERT with
MLM and ANP tasks considers not only block-level predic-
tion, but also token-level prediction, and the bidirectional
transformer has more ability to extract useful information.
The BIG task and GC task are also useful, whose results has
1% - 2% increase. In these two tasks the block embeddings
could learn graph-level information, which could help with
graph-level tasks. We show the block embeddings in Figure
6. Four CFGs and their block embeddings are set in four
directions. We adopt K-means to cluster these block embed-
dings into four classes, and different clusters have different
colors (red, blue, green and purple). We could observe that
the blocks in the same graph trend to have the same color,
and different graphs have different main colors.

Model variants for order-aware modeling Only using
CNN-based models could achieve good results on both
two tasks. 11-layer Resnet is a little better than 3-layer
CNN and 7-layer Resnet. Comparing with MPNNws, CNN-
based models achieve much better performance. When
random shuffling the nodes, CNN could learn nothing.
This means CNN models could learn the node order
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Figure 7: An example of CFG changes, these two CFGs’
cosine similarity score is 0.971.

of graphs, and adding CNN on adjacency matrices is
meaningful for extracting node order information. More-
over, using MPNN and CNN together could have bet-
ter results, this means our structural-aware component is
also useful. To explore what the CNN models learned,
we show an example of CFG changes in Figure 7.
The two CFGs are compiled by the same source code,
whose name is ” ZN12libfwbuilder15RuleElementRGtw-
13validateChildEPNS 8FWObjectE”. To save space, we
show the graphs without semantic codes. The left one is
compiled on gcc and x86-64, while the right one is com-
piled on gcc and ARM. On different platforms, the code is
compiled into different CFGs: node 3 in the left graph is split
into node 3 and 4 in the right graph. In their adjacency ma-
trices, the node order of nodes ”1, 2, 3” and ”4, 5, 6” could
be captured. By extracting features from the adjacency ma-
trices, our CNN model learns that these two CFGs’ cosine
similarity score is 0.971, and the detecting rank among the
codes on the whole platform is 1. This means CNN could
extract the node order information from the adjacency ma-
trices, which matches our assumption.

Conclusion

In this paper, we propose a novel framework for binary
code graph learning, which contains semantic-aware com-
ponent, structural-aware component and order-aware com-
ponent. We observe that semantic and node order informa-
tion are both important for representing CFGs. To capture
the semantic feature, we propose BERT pre-training for the
blocks of CFGs with two original tasks MLM & ANP, and
two additional graph-level tasks BIG & GC. Then we use
MPNN to extract the structural information. We further pro-
pose a CNN-based model to capture the node order informa-
tion. We have conducted experiments on two tasks with four
datasets, and the experiments demonstrate that our proposed
model outperforms the state-of-art methods.
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