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Order-of-magnitude differences in computational
performance of analog Ising machines induced by
the choice of nonlinearity
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Ising machines based on nonlinear analog systems are a promising method to accelerate

computation of NP-hard optimization problems. Yet, their analog nature is also causing

amplitude inhomogeneity which can deteriorate the ability to find optimal solutions. Here, we

investigate how the system’s nonlinear transfer function can mitigate amplitude inhomo-

geneity and improve computational performance. By simulating Ising machines with poly-

nomial, periodic, sigmoid and clipped transfer functions and benchmarking them with

MaxCut optimization problems, we find the choice of transfer function to have a significant

influence on the calculation time and solution quality. For periodic, sigmoid and clipped

transfer functions, we report order-of-magnitude improvements in the time-to-solution

compared to conventional polynomial models, which we link to the suppression of amplitude

inhomogeneity induced by saturation of the transfer function. This provides insights into the

suitability of nonlinear systems for building Ising machines and presents an efficient way for

overcoming performance limitations.
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W
ith the on-setting end of Moore’s law, we also start to
see an end to the continuous growth of both perfor-
mance and energy efficiency of conventional von-

Neumann-based digital computers1, which is creating a particular
challenge for performance and energy-intensive tasks such as
optimization and machine learning2,3. Based on the well-known
Ising spin model, Ising machines have emerged as a promising
non-von-Neumann computing scheme that can accelerate com-
putation of NP-hard optimization problems compared to con-
ventional digital computers4,5. By mapping the cost function of
optimization problems to an Ising Hamiltonian and implement-
ing this Hamiltonian with a physical spin systems, calculation of
optimal solutions can be achieved by the natural tendency of the
spin system to evolve to its lowest energy state. Compared to
conventional optimization algorithms such as simulated anneal-
ing, this natural analog computing concept can yield faster cal-
culation and better energy efficiency6–8. Various types of Ising
machines have been proposed based on optical, electronic, and
quantum systems4,9–13. Optical systems, in particular, have
attracted great attention due to their high analog bandwidth,
favorable energy dissipation, and inherent parallelism7,14–24. Such
systems have also been adapted into different physics-inspired
algorithms that have demonstrated equal performance with state-
of-the-art optimization algorithms25–28. A common feature
among many of these Ising machines is that they are gain-
dissipative nonlinear systems. Gain-dissipative systems generate
spin states through bifurcation-induced bistability that results
from the interplay of linear gain dynamics with a nonlinear
transfer function29. Originally, nonlinear systems based on
supercritical pitchfork bifurcations have been proposed, as they
naturally incorporate the Ising model and have demonstrated
efficient ground-state calculations for a variety of different opti-
mization problems25,26,29–31. However, numerous Ising machine
designs have since then demonstrated that a larger variety of
different nonlinear systems can be used to implement Ising
machines13,19,27.

This raises the fundamental question of what type of general
nonlinear systems are capable of implementing Ising machines
and which one is most suitable to achieve high computational
performance in finding optimal solutions, i.e., short time-to-
solution and high solution quality. A direct comparison between
different Ising machines can be quite challenging though, due to
the large differences in analog bandwidth and stability between
different designs. Such engineering challenges have to lead to
differing claims about the advantages of particular systems13,19,27,
while little insight has been gained thus far into what features
make a general nonlinear dynamical system suitable as an Ising
machine. This is of particular interest since the analog nature of
the spin system typically results in amplitude inhomogeneity,
which is known to lead to an incorrect mapping of the spin
system to the target Ising Hamiltonian and thus inhibits the
ability to find optimal solutions29. While active feedback systems
have been proposed to counteract this inhomogeneity25,26, such
systems require dynamically control the gain of each individual
spin, which creates a significant overhead and could negatively
affect the analog bandwidth.

In order to effectively enhance the computational performance
of analog spin systems, we consider the choice of the Ising
machine’s nonlinear transfer function as an efficient way of
mitigating amplitude inhomogeneity. By unifying different Ising
machine concepts into a generalized nonlinear dynamical system
that makes their computational performance directly comparable,
we identify general features in the system’s nonlinear transfer
function required for the implementation of Ising spins. Based on
this, we simulate Ising machines with polynomial, periodic, sig-
moid, and clipped functions. To understand the influence of the

nonlinear transfer function on the computational performance of
Ising machines, we perform various benchmarks of the different
nonlinearities based on NP-hard MaxCut optimization problems.
We find that, while conventional systems based on pitchfork
normal forms are often unable to find optimal solutions due to
amplitude inhomogeneity, clipped and sigmoid nonlinear transfer
functions can reach higher solution qualities and yield order-of-
magnitudes improvements in the time-to-solution for the same
problems. We link this enhanced computational performance to
the strong suppression of amplitude inhomogeneity by the non-
linear transfer function, which shows that errors induced by the
analog system can in part be compensated by choosing an
appropriate nonlinear system. Our findings propose a straight-
forward and efficient way for overcoming computational per-
formance deterioration due to amplitude inhomogeneity and
motivate that a much larger variety of physical system beyond the
current state-of-the-art can be considered for future generations
of Ising machines.

Results
Generalized Ising machine model. Ising machines are physical
systems that implement coupled binary spins σ i ¼ �1; 1f g, so
that their energy or gain are equivalent to the Ising Hamiltonian

HIsing ¼ � 1

2
∑
N

ij
J ijσ iσ j �∑

N

i
biσ i : ð1Þ

The spins are either in the spin up (σi= 1) or spin down state
(σi=− 1) and are coupled through the symmetric spin coupling
matrix Jij. In addition, biases bi can be applied to any spin. The
computational capabilities of the Ising machines arise from the
fact that the cost function of various NP-hard combinatorial
optimization problems can be directly mapped to such an Ising
Hamiltonian32 in a way that optimal solutions correspond to
global energy minima of eq. (1). The natural tendency of Ising
machines to evolve to their lowest energy configuration is then
used to find optimal solutions. A crucial challenge in building
Ising machines is to find physical systems with a high analog
bandwidth that can implement large networks of spins. A
common way to achieve this is by using gain-dissipative systems.
These are nonlinear systems with an analog spin variable xi that
exhibit a bifurcation structure with a symmetrical bistability.

Figure 1a shows a typical bifurcation diagram of a bistable
gain-dissipative system as a function of the bifurcation parameter.
Below the bifurcation point, the system has only one stable fixed
point S0 with an amplitude of xi(S0)= 0. Above the bifurcation
point, this trivial fixed point becomes unstable and two new fixed
points S1 and S2 emerge that lie symmetrically around S0.
Figure 1b shows the time evolution of the spin amplitude xi when
it is initially in the fixed point S0. When the system is below the
bifurcation point (black curve), the amplitude xi is fluctuating
around the trivial fixed point S0 due to the inherent noise of the
system. Above the bifurcation point (orange and blue trace), the
trivial fixed point becomes an unstable saddle, so that xi will
either grow or decrease away from S0 until it ends up in one of the
fixed points S1 or S2. This binary nature is exploited to implement
the Ising model. By extracting the sign of the spin amplitude, xi
can be mapped to an Ising spin through σi= sign(xi).

To implement the Ising Hamiltonian, Ising machines couple
several of such analog Ising spins together. Figure 1c shows a
schematic view of an Ising machine. Typically, an Ising machine
is a continuous feedback system, where several bistable gain-
dissipative systems are coupled with each other according to the
spin coupling matrix Jij. The dynamics of such a feedback system
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can then be modeled by the dimensionless differential equation

dxi
dt

¼ Fi xiðt � τÞ; α; β∑
j
J ijxjðt � τÞ; γζ iðtÞ

� �

: ð2Þ

Here, F is the nonlinear transfer function of the gain-dissipative
systems and α and τ are the linear gain and the time delay of the

feedback loop. The coupling between different spins occurs with
the coupling strength β. To model noise, a Gaussian white noise
term γζ is introduced with a zero mean and a standard deviation
of γ. For simplicity, we neglect the time delay τ in the following.
For optical and analog electronic systems in particular, this is
often a reasonable assumption due to the short time of flight of
light. The central questions that we are addressing in this work
are how the nonlinear transfer function F has to be chosen in
order to be suitable for Ising machines and how the particular
choice of a nonlinear system affects the computational perfor-
mance when solving optimization problems. In the following, we
show how suitable dynamical systems can be constructed from
general classes of nonlinear functions, namely polynomial,
periodic, sigmoid, and clipped functions and we compare the
computational performance of these different nonlinearities.

Ising machines based on polynomial functions. A basic way to
generate an Ising spin system with polynomial transfer functions
is the pitchfork normal form. The pitchfork normal form is
inherent in various optical systems and has been used to describe
Ising machines, e.g., for the classical approximation of degenerate
optical parametric oscillators8,17,24, Kerr-nonlinear microring
resonators21 and polariton condensates26. The nonlinear transfer
function of Ising machines based on the supercritical pitchfork
normal form is given by (arguments of F have been omitted for
clarity)

FiðfxigÞ ¼ ðα� 1Þxi � x3i þ β∑
j
J ijxj þ γζ iðtÞ ð3Þ

and consists of a linear growth term with the linear gain α, a cubic
saturation term and a coupling term with coupling strength β. In
the following, we first consider the dynamics of the uncoupled
system (β= 0). Figure 2a shows the right-hand side of eq. (3) at
α= 1.1 for an isolated spin (β= 0) as a function of the spin
amplitude xi. Characteristically, the transfer function contains

Fig. 2 Implementation of analog Ising spins with different nonlinear transfer functions. a Nonlinear transfer function as a function of the spin amplitude

for polynomial, sigmoid, periodic and clipped nonlinearities for isolated spins. b Bifurcation diagram and average saturation time for isolated spins for the

nonlinearities in a as a function of the linear gain α. c Visualization of the inequality (5) for the case of homogenous spin amplitudes (δ= 0, solid line) and

inhomogeneous amplitudes (δ > 0, dashed line). The dotted line indicates the left-hand-side of eq. (5) for an arbitrary α. Fixed points corresponding to

global minima (ground states GSIsing) and local energy minima (excited states ESIsing) of the Ising model are indicated by circles. For homogeneous

amplitudes, fixed points that lie below the dotted line fulfill the condition of eq. (5) and therefore exist.

Fig. 1 Schematic of analog Ising spin systems. a Bifurcation diagram of a

single gain-dissipative system as a function of the bifurcation parameter.

Unstable fixed points are indicated by a dotted line. b Time evolution of a

gain-dissipative system below the bifurcation point (black line) and above

the bifurcation into the spin up (blue line) and spin down state (orange line)

respectively. c Conceptual design of coupled gain-dissipative feedback

systems to form an Ising machine. Spin states are generated in parallel

gain-dissipative systems and coupled according to the coupling topology Jij.

The states are then fed back to the gain-dissipative systems to close the

feedback loop.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00655-8 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:149 | https://doi.org/10.1038/s42005-021-00655-8 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


three zero crossings, which correspond to three fixed points. S0 is
at the origin and S1 and S2 symmetrically surround the origin. In
between the fixed points, there is a local minimum to the left and
a local maximum to the right of the origin, which results in an S-
shaped transfer function. From linear stability analysis, it follows
that the central fixed point is unstable, while the two surrounding
fixed points are bistable.

The corresponding bifurcation diagram resulting from this
transfer function is shown in the top panel of Fig. 2b. The
uncoupled system possesses a pitchfork bifurcation with the
bifurcation point at α= 1 (indicated by the red dashed line).
Below the bifurcation point, only the trivial fixed point S0 is
stable. Above the bifurcation point, the trivial solution becomes
unstable and the two symmetrically bistable fixed points S1 and S2
arise. The amplitude of S1 and S2 is growing monotonically with α

and scales as S1;2

�

�

�

� /
ffiffiffiffiffiffiffiffiffiffiffi

α� 1
p

. In the bottom panel of Fig. 2b, we

consider the dynamical timescale of this system as a function of α
by measuring the saturation time tsat, i.e., the average time it takes
the spin amplitude to grow/decrease to half of the fixed points’
amplitude. Directly at the bifurcation point, we observe critical
slowing down of the temporal evolution of xi(t), where the
saturation time increases exponentially towards the bifurcation33.
This feature of the bifurcation can easily be understood by
considering the shape of the transfer function F(xi(t)). As
α approaches α= 1, the magnitude of the linear growth term in
eq. (3) becomes vanishingly small so that the growth rate of the
spin amplitude stagnates.

To understand the computational capabilities of Ising
machines, we now consider a network of pitchfork normal forms
that are coupled according to the coupling matrix Jij. The ability
of eq. (3) to implement the Ising model (1) can be understood by
deriving the Lyapunov function L({xi}). The Lyapunov function is
a measure of the stability of a particular amplitude configuration
{xi}, where stable configurations correspond to minima of L({xi}).
For the Ising machine, the Lyapunov function is obtained by
integrating the equation of motion (3) and summing over all
spins:

LðfxigÞ ¼ �∑
i

ðα� 1Þ x
2
i

2
� x4i

4

� �

� β

2
∑
ij
J ijxixj : ð4Þ

In the case of homogeneous spin amplitudes (∣xi∣= const.), we
find a direct correspondence of the Lyapunov function to the
Ising model. While the first two terms are constant regardless of
the amplitude configuration, the last term is formally equivalent
to the Ising Hamiltonian (1). By taking the sign of the spin

amplitude σ i ¼
jxij
xi
, the Lyapunov function thus contains the same

minima as the Ising model so that the ground state corresponds
to the global minimum of L({xi}). Since by definition
dL
dxi

¼ �FðxiÞ, the minima are stable fixed points of the coupled

system. As we detail in the methods section, the condition for
every fixed point to exist for homogeneous amplitudes is given
by29

α� 1≥
β

N
∑
ij
J ijσ iσ j : ð5Þ

This inequality is visualized in Fig. 2c. The solid line depicts the r.
h.s of eq. (5) as a function of the spin amplitude configuration {σi}
for an exemplary Lyapunov function. The l.h.s. of eq. (5) for an
arbitrary line gain α is indicated by the black dotted line. The
inequality dictates that only fixed points corresponding to local
minima below the dashed line exist. The Ising machine is,
therefore, unable to reach any of the energy minima above the
dotted line. This condition is exploited to effectively single out the
ground state. As α increases from the region where only the trivial

solution {xi}= 0 exists, the first non-trivial solution to exist is the
ground state (GS), while suboptimal solutions are still nonexistent
and can therefore be avoided.

However, it is important to note that the assumption of
homogeneous amplitudes cannot be made in general29. Due to
their analog nature, the spin amplitudes are inhomogeneously
distributed around the fixed points with a standard deviation δ.
As we show in the methods section, this leads to a modification of
the coupling matrix Jij of the implemented Ising model so that it
no longer corresponds to the intended target Hamiltonian (1).
The dashed line in Fig. 2c exemplifies the influence of amplitude
inhomogeneity (δ > 0) on the Lyapunov function. Compared to
the homogeneous case (δ= 0), the inhomogeneity can induce a
relative shift of the energy minima so that the ground state
minimum is no longer the lowest energy configuration or is
erased altogether. In this case, the lowest configuration corre-
sponds to an excited state (ES), while the ground state can only be
reached at much higher gain levels. This incorrect mapping of the
target Ising model can thus significantly deteriorate or even
diminish the probability of finding optimal solutions in
optimization tasks. To mitigate this issue, a proposed approach
is to modulate the gain of each individual spin individually to
force the spins to one common amplitude25,26,34. However, this
effectively doubles the number of dynamical equations and
requires the addition of an active feedback system to perform the
calculations of all gain coefficients, which can create a significant
overhead and potentially reduce the analog bandwidth. In the
following, we thus want to consider other types of nonlinearities
and investigate how they can be used to directly reduce the
negative effect of amplitude inhomogeneity.

Ising machines based on sigmoid functions. From the poly-
nomial model (3), we find that the shape of the nonlinear transfer
function is essential for generating analog Ising spins. Here, we
investigate how such spin systems can be generated by mimicking
the shape of the transfer function (3) with sigmoid functions.
While sigmoid functions have so far not been considered for Ising
machines, they are widely used in the context of Hopfield-Tank-
networks and other neuromorphic systems to mimic the activa-
tion function of neurons35. Efficient ways of implementing them
have been reported for both optical systems and electronic
systems36–41. Sigmoid functions are characterized by an S-shaped
nonlinearity and can be modeled by a variety of functions such as
the logistic function or the Gompertz function. Here, we consider
a sigmoid transfer function based on the hyperbolic tangent
function

FiðfxigÞ ¼ �xi þ tanhðαxi þ β∑
j
J ijxj þ γζ iðtÞÞ : ð6Þ

To facilitate a simple comparison to the polynomial model, we
expand eq. (6) into a Taylor series to the third order for small
spin amplitudes. As we derive in the methods section, in the weak
coupling regime α≫ β, this results in

FðxiÞ � ðα� 1Þxi �
α3x3i
3

þ β∑jJ ijxj. Compared to the polynomial

model, we recognize a close resemblance to eq. (3) with the same
linear and nonlinear terms in xi as well as a linear coupling term.
This suggests that the sigmoid model works as an approximation
of the polynomial model when the system is close to the
bifurcation point. We first consider the ability of the sigmoid
model to implement uncoupled Ising spins (β= 0). When
comparing the shape of this transfer function for an isolated
spin in Fig. 2a for α= 1.1 to that of the polynomial model, we
find close similarities in its shape and in the position of the fixed
points. In the bifurcation diagram in Fig. 2b, we observe the same
bifurcation point at α= 1 and a good agreement of the fixed
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points for α ≈ 1. For higher linear gain, the amplitude of the fixed
points starts to deviate due to the different coefficient in the third-
order polynomial term and due to the additional higher order
terms. Particularly, the absolute amplitude of ∣S1,2∣ does not
increase continuously but rather saturates for large α at ∣S1,2∣→ 1.
Despite this, the saturation time in Fig. 2b agrees well with the
polynomial model for all α. This is to be expected, since the
saturation time tsat primarily depends on the linear growth term,
which is identical between both models. When the spins are
coupled, the linear coupling term ensures a good approximation
of the Lyapunov function in eq. (4) to the Ising model for small
amplitudes. While the additional higher-order terms can cause
small deviations from the polynomial model, the linear coupling
term remains dominant so that good mapping to the Ising model
can be expected. Although the concept of using sigmoid functions
has been considered in neural systems before35, its ability to
generate a bistable bifurcation structure indicates that they are
also inherently suitability for generating Ising machines.

Ising machines based on periodic functions. Periodic transfer
functions form another set of nonlinearities that can be efficiently
implemented with optical and electrical systems13,19. To generate an
Ising spin system with periodic transfer functions, the general shape
of the polynomial model (3) can be mimicked by appropriately
shifting cosine or sine functions. In the following, we consider a
nonlinear dynamical system based on a cos2 nonlinearity

FiðfxigÞ ¼ �x þ cos2 αxi �
π

4
þ β∑

j
J ijxj þ γζ iðtÞ

� �

� 1

2
: ð7Þ

The cos2 nonlinearity models Ising machines based on optical
intensity modulators19 but is also equivalent to electronic
oscillator-based Ising machines13. As with the sigmoid model,
we expand the transfer function in a Taylor series to the third
order. For small amplitudes and for the weak coupling regime,

this results in FðxÞ � ðα� 1Þx � 2α3x3

3
þ β∑jJ ijxj. Similar to the

sigmoid model, we find close resemblance to eq. (3), which
suggests a good approximation close to the bifurcation point.
Comparing the transfer function for an isolated spin to that of the
polynomial model in Fig. 2a, we find that both systems closely
resemble each other both in shape and in the position of the fixed
points. In the bifurcation diagram in Fig. 2b, we observe good
agreement with the polynomial model for the amplitude of the
fixed points when the system is close to the bifurcation point. For
higher values of α, the higher-order terms and the different
scaling with α causes deviations. As for the sigmoid model, the
absolute amplitude of the fixed points does not increase
continuously but rather saturates at around ∣S1,2∣→ 0.5. Still,
the saturation time tsat is identical to that of the polynomial
model over the entire range of α in Fig. 2b, which is expected due
to the matching linear growth term. For the coupled system, the
linear coupling term ensures the correspondence of the Lyapunov
function to the Ising model.

Ising machines based on clipped functions. As a last class of
functions, we consider transfer functions that are clipped. Clip-
ping is inherent in various electronic systems due to load lim-
itations of components and has for example been observed in
optoelectronic Ising machines19. Clipping has also been proposed
as an efficient way to emulate Ising machines with digital
hardware27. In the following, we consider a linear transfer

function that is clipped to a maximum value of xi
�

�

�

�≤ 0:4:

FiðfxigÞ ¼
ðα� 1Þxi þ β∑jJ ijxj þ γζðtÞ; for jxij≤ 0:4

0; for xi
�

�

�

�>0:4

(

ð8Þ

While the transfer function contains the same linear growth
term and coupling term as the polynomial model, clipping is
quite different from the nonlinear saturation terms discussed
before. For isolated spins, the transfer function depicted in Fig. 2a
only possesses one zero crossing and therefore only one fixed
point. The function is discontinuous at the clipping levels with a
sudden jump to zero beyond the clipping level, which pins
the spins to the clipping level at ∣S1,2∣= 0.4. This difference is
clearly reflected in the bifurcation diagram in Fig. 2b. Although
the clipped function possesses the same bifurcation point at α= 1
as the previous models for isolated spins, the amplitude of the
fixed points does not increase or decrease with α, but rather
immediately jumps to the clipping level at the bifurcation point.
Hence, while the linear growth term and therefore the growth rate
of the spin amplitude may be similar to the other models, the
saturation amplitude can be quite different at the bifurcation.
Setting the level to 0.4, therefore, ensures that the spin amplitude
remains comparable to the other models at a gain close to the
bifurcation point. As a consequence, the saturation time tsat in
Fig. 2b remains very similar to that of the other models with the
same critical slowing down at the bifurcation point. For the
coupled system, the clipped model possesses the same linear
coupling term as the polynomial model. Contrary to the sigmoid
and periodic models, no additional nonlinear coupling terms are
contained in the transfer function, which ensures the ability to
implement the Ising model for homogeneous amplitudes.

Parameter optimization for inhomogeneous spin amplitudes.
As described in the previous section, finding ground states with
analog Ising machines follows the same approach for arbitrary
Ising models in the case of homogenous spin amplitudes. Indeed,
for homogeneous amplitudes, the ground state is the first and
only solution to exist and can be reached by finding the bifur-
cation point, either by gradually increasing the gain or by ana-
lytical methods17,29. However, this simple scheme fails in general
due to amplitude inhomogeneity. With amplitude inhomogene-
ity, the ground state may not always exist directly at the bifur-
cation point, which requires to scan the gain above the
bifurcation point until the condition for existence is fulfilled.
Furthermore, the ground state can become multistable with other
excited states, which makes the ground-state search non-
deterministic and requires to find operating regions with higher
probability to find the ground state.

In order to optimize the performance of the Ising machines
using the different transfer functions, we perform scans of the
linear gain α, the coupling strength β and the noise strength γ. We
optimize the performance in regard to the success rate Pa as well
as the time-to-solution TTSa. The success rate Pa measures the
probability of reaching a specific solution a (e.g., the ground state)
at any point after initializing the Ising machine. The time-to-
solution, defined as

TTSa ¼ Ta

log ð0:01Þ
log ð1� PaÞ

; ð9Þ

measures the time required to reach the solution a with 99
percent probability. It is calculated from the success rate Pa and
the average time Ta to reach that solution. Ta is calculated by
tracking the energy during the evolution of the Ising machine and
corresponds to the point where the solution a is first reached,
either by converging or by a transient state. In Fig. 3a, we show
exemplary success rates and time-to-solutions for reaching the

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00655-8 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:149 | https://doi.org/10.1038/s42005-021-00655-8 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


ground state with the periodic model for a sweep of α and β.
Here, Pa is estimated by repeatedly initializing the Ising machine
and counting the number of instances in which the ground state
has been reached. The implemented Ising model is the random
graph g05100,5 contained in the Biq Mac graph library, which has
a known ground state at EIsing=− 39742. We have estimated the
bifurcation point of this graph from the point where the trivial
solution becomes unstable, which is indicated in the parameter
space by the red dashed line. Compared to the case of isolated
spins in Fig. 2b, where the bifurcation point is at α= 1, the
bifurcation point is shifted due to the coupling to the other spins.
If β is below the bifurcation point, the success rate is zero as the
system is unable to bifurcate and no solution besides the trivial
one exists. The corresponding time-to-solution is thus undefined.
The top panel of Fig. 3b shows an exemplary time series of the
Ising energy in this parameter region for α= 0.8 and β= 0.01. At
this point, the Ising energy randomly fluctuates around zero due
to noise.

As β is increased to be directly above the bifurcation point, we
observe that the success rate remains at zero. This indicates that
the first solutions are excited states and that the ground state
position is likely shifted due to amplitude inhomogeneity. Only
for higher β, the success rate gradually increases and the fixed
point corresponding to the ground state starts to exist. At this
point, Pa is at around 10 percent, which indicates multistability
with various other excited states. The middle panel of Fig. 3b
shows an exemplary time evolution of the Ising energy for a
successful calculation for α= 0.8 and β= 0.1. As the system is
initialized, the Ising energy immediately decreases until the
system eventually converges to a stable configuration at the
ground state energy after t ≈ 70. As a comparison in Fig. 3b,
we show a case in which the Ising machine reaches an excited
state instead. After initially decreasing, the Ising energy converges
to an energy of EIsing=− 349, which is only at 88 percent of the
ground state. For higher β, the likelihood of this undesired
convergence to excited states reduces and the success rate
increases to around 40%. The corresponding time-to-solution
decreases with this rising success rate from TTSGS ≈ 10000 to an
optimum of TTSGS ≈ 1000, as fewer repeated runs of the Ising
machine are required until the ground state is found. Eventually,
for very high β, it becomes impossible again to reach the ground
state and the success rate becomes zero. Figure 3a signifies the
sensitivity of Ising machine performance to changes in α and β.
For the g05100,5 graph, there is a clear gap between the bifurcation

point and the region where the ground state can be found.
Furthermore, the operating point with the lowest time-to-solution
is for values of β that are further away from the point where the
ground state first starts to exist. For each nonlinear transfer
function, a sweep of α and β is, therefore, necessary to determine
the optimal operating point.

We also consider the influence of the noise strength γ on the
overall performance. Contrary to recent high noise level proposals
for Ising machines with discrete spin systems43,44, we choose a
noise level that is much smaller than the amplitude of the fixed
points S1,2≫ γ, which corresponds to experimental realizations of
analog Ising machines. This ensures that the noise is not strong
enough to switch the configuration of individual spins and
therefore guarantees that the Ising machine always converges to a
stable configuration. The noise will therefore not directly
influence the linear stability and the overall success rate. To
assess whether the noise has any influence on the performance,
we perform sweeps of γ over two orders of magnitude. In Fig. 3c,
we measure the time-to-solution for different γ as a function of β
for the g05100,5 graph at α= 0.8. Due to the non-deterministic
nature of the ground state search, fluctuations of the time-to-
solution within a factor of 2 around the average are observed for
all noise levels. Interestingly, although γ is changed over two
orders of magnitude, we cannot identify a clear change in the
time-to-solution. We have verified this result for the different
nonlinearities with various Ising models and parameter config-
urations and observe the same trend. We conclude that as long as
the noise level is sufficiently small, we can assume that γ has a
neglectable influence on the overall computational performance.
In all following simulations, we have therefore fixed γ to a
constant value of γ= 0.005.

Benchmark of different nonlinearities. To consider the effect of
the nonlinear transfer function on the computational perfor-
mance of Ising machines, we benchmark the different systems
with various MaxCut optimization problems. MaxCut is a task to
maximize the cut number

C ¼ 1

4
∑
ij
J ij �∑

N

ij
J ijσ iσ j

� �

ð10Þ

when separating a graph structure into two parts and is known to
be an NP-hard problem45. For the benchmarks, we use instances
contained in the Biq Mac and the SuiteSparse Matrix Collection

Fig. 3 Influence of parameters on computational performance. a Success rate and time-to-solution for the random graph g05100,5 for a scan of α and β.

The pitchfork bifurcation point is indicated by the dashed line. The gray region indicates the points where the Ising machine is unable to converge to the

ground state. b Exemplary time evolution of the Ising energy below the bifurcation point (top panel, corresponds to (i) in a) at α= 0.01 and above the

bifurcation point at α= 0.15 for successful (middle panel, corresponds to (ii) in a) and unsuccessful (bottom panel) convergence to the ground state (GS).

c Time-to-solution as a function of the coupling strength β for different noise γ strengths at α= 0.8. In (a) and (b), γ is fixed at γ= 0.005.
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libraries. From the Biq Mac library, we consider the g05N,m subset
of random undirected graphs with an edge density of 50 percent,
for which the ground states are known42. Similar to Fig. 3a, we
test all 10 different instances for N= 60, N= 80, and N= 100
respectively by performing sweeps of α and β and measuring the
time-to-solution to reach the ground state TTSGS. In Fig. 4, we
consider the best time-to-solution that was achieved by the dif-
ferent nonlinearities during the scan of α and β. For the periodic,
sigmoid and clipped system, the time-to-solution is shown as a
ratio to the time-to-solution achieved by the polynomial model,
whose absolute value is shown as a reference (absolute values for
all models are given in the supplementary table 1). While all
nonlinearities are able to converge to the ground state, we observe
drastic differences for some specific problems. In these cases, the
polynomial model typically performs worse than the other

models with a time-to-solution that is one or two orders of
magnitude slower, which is beyond the noise-induced fluctua-
tions in Fig. 3c. We find that spins in all models still evolve on
very similar timescales (similar to the isolated spins in Fig. 2b).
However, we observe significantly lower success rates for the
polynomial model that cause large differences in performance.

To better understand these differences, we consider the Biq
Mac instance g05100,5 as an example, where the time-to-solution
differs by around one order of magnitude between the polynomial
model and the other nonlinearities. In Fig. 5, we perform scans of
the coupling strength β through the parameter space from below
to above the bifurcation and analyze the fixed points that the
systems converge to. We select α= 0.8, as it corresponds to a
region where all models have been able to find the ground state
with success rates close to the optimum during the scans of α and
β. In the top panels, we calculate the success rate to reach the
three highest cut values for the different models (Fig. 5a–d). We
find that the polynomial model in Fig. 5a is unable to reach the
ground state at any point in the scan. We have verified this by
initializing the polynomial model in the correct ground state
configuration and observe that the system instead converges to
excited states of the implemented target Ising Hamiltonian. We
have also tested other instances in the α− β parameter scan,
where the ground state was reached by the polynomial model. We
have found that these instances are transient states that pass
through the ground state before converging to an excited state.
The probability of reaching the ground state through these
transient states is at just 2 percent per run and thus significantly
lower than the success rate of any of the other model, hence
causing the high TTS in Fig. 4. When considering the fixed points
of the polynomial model, we are therefore unable to find any
point in the parameter space at which the fixed point
corresponding to the ground state exists. For the other models
on the other hand, the ground state exists for increasing β and the
systems are all able to converge to the optimal solution at a much
higher success rate. We, therefore, find that the nonlinear transfer
function can considerably affect the ability to correctly imple-
mented the desired Ising model.

Since the failure of the mapping to the target Ising Hamiltonian
is typically associated with amplitude inhomogeneity of the fixed
point29, we quantify the amount of inhomogeneity for the
different models. We measure the standard deviation δðjx�i jÞ of
the absolute value of the amplitude jx�i j for the fixed points

Fig. 4 Computational performance in Biq Mac benchmark tasks. Time-to-

solution of the periodic, sigmoid and clipped model relative to the

polynomial model for the Biq Mac g05 MaxCut benchmark set with N= 60

(a), N= 80 (b), and N= 100 spins (c). The absolute value for the time-to-

solution for the polynomial model is indicated by the numbers above the

bars for the polynomial model.

Fig. 5 Relation between amplitude inhomogeneity and success rate for different nonlinearities. Success rate (top), standard deviation δ of the fixed point

(middle), and amplitude distribution (bottom) as a function of β for the polynomial (a), sigmoid (b), periodic (c) and clipped model (d). The success rate

shows the probability of reaching the three highest cut values with the ground state at C= 1436. The standard deviation and the amplitude distribution

have been calculated once the system reaches a steady state and are the average over the three highest cut values. The implemented MaxCut problem is

g05100,5 with α fixed at α= 0.8.
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corresponding to the three highest cut values. In the middle panel
of Fig. 5, we show δðjx�i jÞ as a function of β and compare it to the
success rate in the upper row of Fig. 5 for each model (a–d). For
the polynomial model, δðjx�i jÞ continuously increases with β and
eventually doubles relative to the value at the bifurcation point. In
the lower panel of Fig. 5a, we show exemplary amplitude
distributions for the polynomial model, which are smoothly and
broadly distributed around the fixed points of the isolated spins in
Fig. 2b. We observe how the distribution becomes broader for
high β as amplitude inhomogeneity increases. For the other
nonlinearities however, this trend is entirely reversed. While all
nonlinearities start at a similar level of amplitude inhomogeneity
at the bifurcation, the sigmoid, periodic and clipped models all
exhibit a decrease of δðjx�i jÞ with β. The distributions become
squeezed for high β so that almost all of the spins become pinned
to a level corresponding to the saturation levels in Fig. 2b and
amplitude inhomogeneity mostly vanishes. This is particularly
pronounced for the clipped models, where the distribution is the
narrowest of all the transfer functions. When comparing δðjx�i jÞ
with the success rate, we observe a clear correlation between the
ability to find the ground state and the amount of amplitude
inhomogeneity across the different models. As the inhomogeneity
decreases, the implemented Ising model becomes closer to the
target Hamiltonian and the ability to find the optimal solution is
restored. Interestingly, while the amount of inhomogeneity is
comparable between the different models, the success rate is not
identical. Although the clipped model has an overall lower
inhomogeneity, the success rate is highest for the periodic model.
The lower success rate for the clipped model indicates that the
spectrum of multistable excited states is different, either in the
total number of states or in the size of their attractors. This shows
that, while the suppression of inhomogeneity ensures the

existence of the ground state at very similar values for β for the
different models in Fig. 5, there can still be differences for the
excited states. These differences are likely caused by the additional
nonlinear terms in the Lyapunov function that are also discussed
in previous sections and in the methods section.

Overall, we find that the suppression of amplitude inhomo-
geneity leads to an overall improvement of the time-to-solution
over the polynomial model across the different problems in Fig. 4.
Still, the computational performance advantage over the poly-
nomial model only manifests itself for some of the problems. We
attribute this to the varying difficulty of the different graphs
contained in the Biq Mac library. For randomly generated graphs
with spin numbers limited to N= 100, there is a rather high
probability of generating easy instances that can be solved in
polynomial time46. We expect these easy instances to be more
robust against faulty mapping due to amplitude inhomogeneity,
while the differences in computational performance are more
pronounced for difficult problems. To test this, we perform
MaxCut benchmarks with graphs contained in the SuiteSparse
Matrix Collection47. Compared to the Biq Mac library, the
SuiteSparse Matrix Collection is a collection of sparse graphs with
both unweighted (Jij=− 1) as well as bimodal edges
(J ij ¼ �1; 1f g). The library contains both random and geometric

topologies with spin numbers between N= 800 and N= 5000.
Many of the instances contained in the SuiteSparse Matrix
Collection are considered difficult and exact solutions are often
not known.

In Fig. 6a, we show the relative distance ΔC= 100(1− C/Copt)
in percent of the best solution obtained by the different
nonlinearities C from the best-known value reported in literature
Copt

48,49. We find that all systems achieve solutions that are
within just a few percent of or at the best known solution.

Fig. 6 Computational performance in SuiteSpare Matrix benchmark tasks. a Distance of the best solution obtained by the polynomial, sigmoid, periodic,

and clipped model from the best known solution for the SuiteSparse Matrix Collection benchmark tasks. b Time-to-solution of the periodic, sigmoid and

clipped model relative to the polynomial model. The absolute value for the time-to-solution for the polynomial model is indicated by the numbers above the

bars for the polynomial model. In cases where the polynomial model reaches only 95 percent of the best solution, TTS95 is shown instead (indicated by

brackets around the TTS). Cases, where the polynomial model fails to reach 95 percent of the best solution, are indicated by NA.
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Remarkably, this makes them comparable to state-of-the-art
optimization methods such as simulated annealing or branch-
and-bound algorithms without having to employ complex
annealing schedules to further increase the solution quality.
Considering the performance differences between the nonlinea-
rities however, we can again observe that the polynomial model
performs worse with an average distance of ΔCpoly= 1.3 percent
from the best-known solution. The periodic and the clipped
model achieve an average distances of ΔCper= 1.1 and ΔCclip=

0.7 respectively, while the best performance is achieved by the
sigmoid nonlinearity with an average distance of ΔCsig= 0.6. This
performance difference is especially striking for the set of bimodal
problems with random connectivity and non-uniform node
degree (G18, G19, G20, G21, G39, G40, G41, G42), where we
observe improvements of up to four percent in the cut value over
the polynomial model. For such bimodal problems, the
probability of finding easy instances is significantly smaller than
for unweighted graphs48, so that they can generally be assumed to
be more difficult problems. We can thus observe a clear
advantage in computational performance for such difficult
problems that is gained by suppressing amplitude inhomogeneity
through the nonlinear transfer function.

This advantage is also reflected in the best time-to-solution
obtained by the different models, which is shown in Fig. 6b
relative to the polynomial model (absolute values for all models
are given in Supplementary Tables 2 and 3). Since the ground
state is not always reached for all problems, we consider the time-
to-solution to reach 98 percent of the ground state TTS98. For
instances where the solution of the polynomial model is more
than 2 percent away from the best-known solution, TTS95 is
shown instead (indicated by brackets around the time-to-
solution). Cases, where the solution quality of the polynomial
model is more than five percent away from the optimum, are not
considered in the following and indicated by TTS=NA in
Fig. 6b. Similar to the Biq Mac library in Fig. 4, we find that the
polynomial model performs worse on average, while the sigmoid
and the clipped model perform the best. For various problems,
improvements of up to three orders of magnitude in the time-to-
solution are obtained over the polynomial model. The largest
differences are observed for graphs with a random connectivity
and non-uniform node density, which can generally be
considered to contain more difficult instances46. This again
indicates a link between problem hardness and susceptibility to
amplitude inhomogeneity. For uniform node densities and non-
random connections on the other hand, which typically contain
more easy instances46, we observe a lower susceptibility to
amplitude inhomogeneity.

Discussion
We show how different gain-dissipative Ising machine designs
can be unified in a single nonlinear feedback system that is fully
described by three dimensionless parameters. Based on the gen-
eric pitchfork normal form, we describe how analog Ising spins
can be generated by mimicking the general shape of the nonlinear
transfer function of the polynomial model and discuss the per-
formance of Ising machines based on periodic, and clipped
functions. By analyzing the Lyapunov function of the different
nonlinear systems, we identify their ability to encode global
energy minima of the Ising model as fixed points, whose stability
is controlled by the linear gain. We find that different existing
Ising machine concepts are in principal equally capable of
implementing optimization problems and also demonstrate that
sigmoid functions can be used as an alternative way of imple-
menting analog spins that have not been considered in the con-
text of Ising machines yet. Since the physical implementation of

sigmoid functions has been investigated intensively as activation
functions of artificial neurons, this creates an interesting link
between Ising machines and neuromorphic computing concepts.

By performing benchmarks based on NP-hard MaxCut pro-
blems, we investigate the influence of the nonlinear transfer
function on the quality of the solutions and the time to reach
them. For both small and large-scale problems, we report sig-
nificant differences in the computational performance for the
different nonlinearities. While systems based on the pitchfork
normal form may not be able to find the ground state, Ising
machines using periodic, clipped, and sigmoid nonlinearities offer
better solution quality and a shorter time-to-solution for the same
problems. Compared to the polynomial model, we observe
improvements of up to three orders of magnitude in the time-to-
solution and up to four percent in the solution quality relative to
the optimal solution. With all systems evolving at the same
dynamical timescale, we identify faulty mapping to the target
Ising Hamiltonian as the cause for these performance differences.
Due to this faulty mapping, local minima of the Ising Hamilto-
nian are stabilized while the ground state solution becomes
destabilized. We link these mapping errors to amplitude inho-
mogeneity, which is caused by the analog nature of the spin
system. Periodic, sigmoid, and clipped transfer functions differ
from the polynomial model in that they saturate for a large gain.
This causes squeezing of the amplitude distribution and reduces
inhomogeneity as the gain is increased. We observe a direct
correlation between this reduced inhomogeneity and the ability to
find optimal solutions, which leads us to conclude that suppres-
sion of amplitude inhomogeneity through the transfer function
can significantly aid in enhancing the computational performance
of analog spin systems.

This provides an intuitive explanation to some of the perfor-
mance differences that have been reported for existing Ising
machine concepts. In line with recent reports13,19,27, we find a
clear computational advantage for systems with a saturable
nonlinearity. The high sensitivity of computational performance
to the nonlinear transfer function, therefore, strengthens the
choice of such saturable nonlinearities for the design of analog
Ising machines instead of systems based on pitchfork normal
forms, while also motivating the search for other suitable non-
linear systems for future generations of Ising machines. Fur-
thermore, saturable nonlinearities present an intriguing
alternative to current approaches that aim to eliminate amplitude
inhomogeneity by controlling the linear gain of each individual
spin to force them to the same amplitude. While such systems
have shown significant improvements in the solution
quality25,26,50,51, the necessity to control the gain of each spin
creates a significant overhead and requires the addition of an
active feedback system to the analog Ising machine. Using the
transfer function to pin the spins to the same level instead pro-
vides a completely passive alternative that could retain the speed
advantage of a fully analog system. This approach is also com-
patible with recently proposed annealing schemes that could
further enhance the solution quality48,52,53. Finally, beyond the
considerations in this work, the sensitivity of computational
performance of Ising machines to the shape of the transfer
function could be further exploited to design nonlinear systems
that are optimized for performance in specific optimization tasks.
Combined with optical systems that are able to implement arbi-
trary nonlinear transfer functions37,38, this would bring Ising
machines closer to becoming fast and efficient accelerators for
difficult optimization tasks.

Methods
Condition for existence of fixed points. In the following, we show the derivation
of condition eq. (5) both for homogeneous and inhomogeneous distributions of the
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fixed point amplitude x�i for the polynomial model29. To consider both cases, we
assume that x�i can be written as x�i ¼ xσ i, where x is the absolute value of the
homogeneous spin amplitude (x ≥ 0) and σi is the spin state. To introduce inho-
mogeneity, we include an additional pre-factor νi for each spin so that x�i ¼ νixσ i .
νi has a mean of �νi ¼ 1 and follows a distribution with the standard deviation δ. In
case of a homogeneous amplitude distribution, δ= 0 and all νi are equal to one.
The fixed points of the system can be found by setting the equation of motion equal
to zero:

0 ¼ ðα� 1Þσ iνix � σ iν
3
i x

3 þ β∑
j
J ijσ jνjx : ð11Þ

In the case of x > 0, summation over all spins leads to:

x2

N
∑
i
ν
2
i ¼ ðα� 1Þ � β

N
∑
ij
J ijσ iσ j

νj

νi

: ð12Þ

In order for a fixed point besides the trivial solution (x= 0) to exist, the r.h.s. has to
be larger than zero (x > 0). This leads to the following inequality that describes the
condition of existence for fixed points:

α� 1≥
β

N
∑
ij
J ij
νj

νi

σ iσ j : ð13Þ

In the case of homogenous spin amplitudes (νj= νi), this corresponds to the
inequality in eq. (5). The right-hand side of eq. (13) contains the Ising Hamiltonian

(1) with the effective coupling matrix J 0 ¼ J ij
νj

νi
. This shows that for a homogeneous

amplitude distribution, the implemented Hamiltonian is equivalent to the target
Ising Hamiltonian, since J 0 ¼ J ij. For inhomogeneous amplitude distributions on

the other hand, the implemented Ising Hamiltonian differs from the target

Hamiltonian since every matrix element Jij is modified by a factor of
νj

νi
.

Approximation of the nonlinear transfer function for the sigmoid and periodic

models. To enable a direct comparison of the equations of motions for the periodic
and sigmoid models against the polynomial model, eq. (6) and eq. (7) are
approximated with polynomials. The polynomial approximation of the transfer
function for the sigmoid model

FiðfxigÞ ¼ �xi þ tanh αxi þ β∑
j
J ijxj

� �

ð14Þ

follows from a third-order Taylor expansion. Here, we consider a multivariable
Taylor series for the spin amplitude of the isolated system xi and the spins injected
by coupling with other spins xj for small values (xi ≈ xj ≈ 0). For simplicity, we
consider the sum of ∑jJijxj as a single variable. The resulting Taylor series to the
third order is:

FiðfxigÞ � ðα� 1Þxi þ β∑
j
J ijxj �

α3

3
x3i � α2βx2i ∑

j
J ijxj � αβ2xi ∑

j
J ijxj

� �2

� β3

3
∑
j
J ijxj

� �3

þ Oðxix4j Þ

ð15Þ
For the parameter scans of α and β, we assume that 0 ≤ α, β ≤ 1. Furthermore, we
consider the weak coupling regime where α≫ β. This means that the terms con-
taining β contribute significantly less to the transfer function then the term only
containing α, since α3≫ α2β≫ αβ2≫ β3. While these higher-order terms can
cause a deviation of the Lyapunov function for the intended Ising Hamiltonian, we
can assume that these deviations are small in the weak coupling regime and that
the linear coupling term β∑jJijxj is dominant. For the final transfer function, we,
therefore, neglect the third-order terms in xi, xj containing β. In a similar fashion,
the Taylor expansion of the transfer function for the periodic model results in:

FiðfxigÞ � ðα� 1Þxi þ β∑
j
J ijxj �

2α3

3
x3i � 2α2β3x2i ∑

j
J ijxj � 2αβ23xi ∑

j
J ijxj

� �2

� 2β3

3
∑
j
J ijxj

� �3

:

ð16Þ
As for the sigmoid model, we neglect the third-order terms in xi, xj containing β.

Numerical methods. Simulations of the time evolution for the differential equa-
tions (3), (6), (7), and (8) are performed using the Euler method. For the simula-
tions, a stepwitdth of Δt= 0.1 is chosen. The number of total time steps is constant
for all simulations and was chosen to be long enough to ensure convergence to a
steady state (3000 iterations for the BiqMac library, 5000 for the SuiteSparse Matrix
library). At the beginning of each simulation, the system is initialized in the trivial
fixed point {xi}= 0 and left to evolve with α and β at constant values during the
entire evolution. The time to reach a given solution (e.g., the ground state) for each
simulation is evaluated by tracking the Ising energy during the evolution and taking
the point when the system first reaches the desired solution (either by converging or
by a transient state). For the scans of α and β, the parameters were varied in the
range 0 ≤ α, β ≤ 1. For each parameter point, the success rate and the time-to-
solution were assessed from 50 independent simulations.
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