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We study the behavior of the string tension in the SU(3) lattice pure-gauge theory close to the
deconfining critical point. We find very large correlation lengths, increasing with the lattice size. This
result is strongly suggestive of a second-order phase transition, and excludes the presence of a strong

first-order transition.
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The conjecture that QCD liberates quarks at high
temperature, in connection with the existence of a phase
transition in a non-Abelian gauge theory, is thirteen
years old.! Universality arguments have been first advo-
cated in Ref. 2 in order to support a first-order transi-
tion. The argument uses the fact that the critical behav-
ior of 4D QCD is described by an effective 3D three-
state spin theory. Then universality arguments lead one
to argue that the transition has to be first order.

The problem is very specific to SU(3) gauge theory, or
better to its center Z3. In this case one can write a non-
symmetry-breaking “¢>” term in the potential, which ac-
cording to the Landau criterion would produce a first-
order transition. Also the 3D three-state Potts model,
which is supposed to support, in such a scenario, all the
universality arguments, is a very special case. The prob-
lem of the order of the transition of such a model is very
contoversial.>* Indeed it is well known that there are
transitions which change from first to second order when
apparently irrelevant terms are added to the action®*
(for example, in the Z3 model is 2D).

The other main evidence used in order to claim that

we are dealing with a first-order transition comes from
the early Monte Carlo (MC) simulation work.’ The
recognition of the order of a phase transition is extreme-
ly delicate if it is first order, but there is a nearby (in the
metastable region) second-order one. In most of the MC
simulations done for pure-gauge QCD two different cri-
teria were used to identify a first-order transition:
metastabilities near B8, and discontinuities in the thermo-
dynamical quantities. The observation of metastabilities
may hardly distinguish between a first-order transition
and a second-order one, especially if the quantity that we
consider has a behavior like | 7 — T, |#, with a small 8.
Indeed also near a second-order transition the equilibra-
tion time is divergent and very long relaxation times are
present. MC simulations in the 2D Ising model (8= ¢
for the magnetization) show clear signatures of metasta-
bility.® In principle the observation of discontinuities
would be a very clear cut evidence for a first-order tran-
sition. Unfortunately discontinuities can never be ob-
served in finite-volume simulations because the transition
is rounded. Only a careful (not yet done for QCD)
study of the dependence of the rounding with the volume

© 1988 The American Physical Society 1545



VOLUME 61, NUMBER 14

PHYSICAL REVIEW LETTERS

3 OCTOBER 1988

can tell us if the rounding is going to disappear in the
infinite-volume limit. We firmly believe that the order of
a transition can be determined numerically only by using
finite-size scaling analysis. Most of the data published
up to now can hardly be used to get firm conclusions
about the nature of the transition because of the absence
of any detailed comparison of results obtained on dif-
ferent finite volumes.

In this Letter we present a very different approach. It
consists principally in the measure of the correlation
length & (i.e., of the string tension o) close to B.. For a
first-order transition & remains finite at 8., and we ex-
pect that & is a discontinuous function of the coupling
when we go across the transition point. On the other
hand, for a second-order transition, £— oo. A similar
approach has been followed in Ref. 7, but the improve-
ments in techniques (smearing, source, . ..) that we use
and the high statistics that we can get are crucial in al-
lowing us to get good quantitative results.

In a finite lattice we have no chance to measure an
infinite &, and, as in thermodynamical measures, the
discontinuity becomes a continuous jump; but now it is
possible to relate a finite & with finite-lattice effects. If
we work in a toroidal space geometry (L XL X L' lattice,
with L'> L) & cannot exceed L by a large amount, and
so the finite-size effects can be monitored by carrying out
computations at different lattice sizes. If at B, we find
E~L, this is a clear signature of the fact that & is diverg-
ing in the thermodynamical limit.

The finite-temperature field theory is defined on an
asymmetric periodic lattice of size Ly XL, XL.XL,,
where L, <L,=L,<L.. The temperature T=1/L;a
can then be controlled by changing B, so that the transi-
tion temperature will correspond to a given value g =p..
The Polyakov loop is defined as

P(x,y,z)=+Tr I_IIL U.x,y,z,t), (D
(=1L,
where U, is the link variable in the ¢ direction.

The expectation value of the Polyakov loop is the
relevant order parameter; it is zero when B<pf. and
different from zero when 8> B.. A serious problem on a
finite lattice is the absence of spontaneous symmetry
breaking. Because of tunneling effects the order parame-
ter is always zero. This problem can be circumvented by
some ad hoc prescriptions; for example, one can take the
absolute value of the order parameter before computing
the statistical average over configurations. Strictly
speaking, this is no longer an order parameter in this
case, because such an expectation value is nonzero both
above and below T.. In this context the determination of
B. has a certain level of arbitrariness on a finite lattice.

We decided to use a source; i.e., we fix the state of all
the x, y, and ¢ link variables at z=1 to the identity. In
this way we select, in the phase in which the symmetry is
spontaneously broken, a preferred vacuum. The source
method not only avoids the tunneling problem, but gen-
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erates a very strong signal that can be measured at large
distances from the source. In fact, we are able to fit an
exponential decrease of the Polyakov loop by discarding
up to six z slices, and using the data up to distance 24.
In this way we do not need any unphysical criteria for
determining B, but we just have to monitor variations of
physical quantities (such as £ or the order parameter it-
self).
Let us define

C(z)=-"<L1

X&=y

RcZP(x,y,z)>. (2)
Xy

For L, going to infinity, we know that

C(z) — Ae ™ +B, (3)

z - oo

where B is the value of the real part of the Polyakov loop
at a large distance from the wall, i.e., the spontaneous
magnetization, which is zero in the symmetric phase.
The mass m is the inverse of & or, in terms of o,
m=ocL,. With our boundary conditions the exponential
in (3) has to be replaced by cosh[—m (L, —z)].

We use the smearing procedure® to generate operators
weakly coupled to the high-energy fluctuations. More-
over we use the independence of the extrapolated mass
from the smearing number as an indication of a large-z
asymptotic behavior. With this technique we construct
progressively larger operators which have the same
transformation properties under Z .

The smearing procedure is very useful, but time con-
suming. The situation worsens at large g or close to S,
where it is necessary to carry out a large number of
smearing steps in order to get an optimal projection over
the ground state. This problem can be alleviated very
easily. After s smearing steps, in the measure process at
a given z, we can transform the tridimensional lattice
into a smaller one (3 L,x ¥ L,X 7 L,) by the blocking
transformation:

USTP(N;z) =UY 2n;z)US Qo+ p3z),

where n=(x,y,t), u is an unitary vector in the x, y, or ¢
direction, and U is the s-times smeared link. N
denotes a point on the coarse-grained lattice, which is 8
times smaller than the original one. After this step we
continue with the usual smearing procedure done on the
fields defined on the coarse-grained lattice. We will use
the index s to denote the quantities defined in (1) and
(2) when they are calculated by using the U variables.
We have carried out just one smearing step on the origi-
nal lattice, and after the blocking procedure described
above, nine more smearing steps on the blocked lattice.
This computation required about 4500 hours on a
256-Mflops Ape computer.” We used an overrelaxed
method '® for updating the gauge fields. We have done
some test runs by using the Metropolis and the quasi-
heat-bath methods, and the results are fully compatible.
We have used two different lattice sizes: 82x32x4
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FIG. 1. m“(z), see Eq. (4). Every line corresponds to a

given s. The error bars are displayed for s=11. The finiteness
of B at $=5.695 is reflected in a decrease of m ’(z) for large
Z.

and 12?2x48x4. For each g in the smaller (larger) lat-
tice we have run up to 170000 (240000) iterations dis-
carding 7000 (10000) for thermalization. Measures
have been taken every ten sweeps. For error calculations
we have considered subsamples of 10000 iterations as in-
dependent measurements. Close to S, we find a very
strong slowing down, with correlations up to the order of
10000 MC iterations.

The first analysis (method I) that we consider is based
on the effective masses as computed from operators of a
given smearing number s:

C¥(z2)

W) =In|—5——
mE T COG )

(4)

(or the generalization for a hyperbolic-cosinus behavior).
When B=0 the effective mass approaches 1/¢ when
z— 0. Conversely the behavior of m ¢’(z) for large z is
very sensitive to a nonzero B, allowing an accurate deter-
mination of S..

A second analysis (method II) is carried out by means
of global fits, discarding a large number of points in the
neighborhood of the wall, and fitting the remaining ones
to a three-parameter function: Acoshlm (%L, —z)]+B.

First, we need a precise determination of 8.. To do
that we have used two independent criteria. An applica-
tion of the method I is shown in Fig. 1. We clearly dis-
tinguish for B=5.695 the presence of spontaneous mag-
netization (i.e., B=0), while at $=5.690 we have not
found any sign of it. The presence of spontaneous mag-
netization can also be directly computed with a three-
parameter global fit (method II).

The precise determination of £ in the neighborhood of
B. is the main result of this paper. We note that all the
quantities computed with both methods are perfectly
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FIG. 2. Results for £ The squares correspond to the
82x 32 x4 lattice and the circles to the 122x48x 4 one.

compatible. The large & that we have measured in this
work (up to thirteen lattice units) is only accessible when
high statistics and improved techniques are used. We
have checked that when only small values of z are acces-
sible and the smearing procedure is not used, a smaller &
is found, and then the transition might appear as a first-
order one. Also, close to ., if the statistics is poor (and
L. short), one can mistake a slowly decreasing signal for
the effects of a spontaneous magnetization.

In Fig. 2 and in Table I we summarize the results for
¢. We found & as large as the transversal dimension Ly,
in both lattices, which is the behavior we expect in a
second-order transition, since in this case the lattice size
is the only bound for £. This is an indication of a diver-
gence in this quantity at B, in the thermodynamical lim-
it. At B, the relation that we found between & in the two
lattices is 1.42(18) in agreement with the predicted value

12 =1.5 in a second-order phase transition. Preliminary

TABLE I. Results for & in lattice units, from the analyses I
and II.

ﬂ é(l) 5(“)
82x32x4 lattice
5.675 6.0(4) 5.9(7)
5.680 6.3(3) 6.1(6)
5.685 7.7(4) 7.7(7)
5.690 9.3(7) 8.8(1.1)
5.695 s 6.2(2.3)
122x48 x4 lattice
5.675 5.6(5) 5.1(7)
5.680 6.8(6) 6.3(8)
5.685 8.6(6) 9.0(1.4)
5.690 13.4(1.3) 13.0(1.9)
5.695 s 3.9(1.3)
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results® at $=5.690 in a 16°x 64 x4 lattice confirm that
B =0 and also show an increase of &.

Our data conclusively show that & strongly increases
when we move toward the transition. We have not ob-
served any evident sign of discontinuities. At the transi-
tion, & increases as the transverse dimension of the lat-
tice and it is at least 3/T.a in the largest lattice that we
have considered. It is quite evident that data taken on a
lattice which is smaller than £ cannot be used in an argu-
ment for a first-order transition. Therefore, most of the
published conclusions on the order of the transition
should be reconsidered.

All of our data seem to show the existence of a
second-order phase transition, and no indications are
found for a first-order one. We stress, however, that it is
not impossible that a first-order transition happens when
& is very large (i.e., a weak first-order transition), but if
this were the situation in pure QCD, and the physical
correlated lengths were so large at the critical tempera-
ture, this could be decided only by carrying out computa-
tions on a much larger lattice. For the time being our
data exclude the existence of the strong first-order phase
transition which was claimed in the literature.
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