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Synopsis 

This dissertation examines order placement strategies across different trading 

platforms. The research provides empirical evidence on an important issue, given the 

growing diversity of market structures and the development of order placement 

strategies to adapt to these trading environments. Each chapter addresses a unique 

research question with scarce or conflicting prior research findings. The empirical 

evidence presented in this dissertation can be used by researchers, investors, and 

regulators to understand and manage developments in order placement strategies 

across financial markets. 

This first issue examined in this dissertation investigates the impact of an 

increase in the minimum tick size on market quality using the 3-Year Treasury bond 

futures (“3Y T-bond”) on the Sydney Futures Exchange (SFE) and the 5-Year Euro Bobl 

futures (“5Y Bob1”) on the Eurex. On May 11, 2009, the SFE increased the minimum 

tick size from 0.5 to 1 basis-point for the 3Y T-bond contract. The increase in tick size 

from 0.5 to 1 basis-point for the 5Y Bob1 contract occurred on June 15, 2009. To 

examine the impact of the increase in minimum tick on market quality, two 

subsamples three months before and after the change are examined. For the 3Y T-

bond, the pre-period is 13 May, 2008 to 13 August, 2008 and the post-period is May 

13, 2009 to August 13, 2009. For the 5Y Bob1, the pre-event sample period extends 

from 17 June, 2008 to 17 September, 2008 and the post-event sample period extends 

from June 17, 2009 to September 17, 2009. Changes in liquidity before and after the 

increase in minimum tick may reflect changes in market conditions as opposed to the 

change in tick size. To control for this possibility, the 10Y T-bond and 10Y Bund 
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contracts are used as control contracts. Results provide mixed evidence of the effect 

of the tick size change on market quality. The tick size increase is associated with an 

increase in depth at the best quotes and throughout the limit order-book for both 3Y 

T-bond and 5Y Bob1 contracts, which is consistent with prior studies. Bid-ask spreads 

(bid-ask spreads per minimum tick) for both 3Y T-bond and 5Y Bob1 contracts increase 

(decrease) after the change. However, the results for the control contracts imply that 

changes in the both 3Y T-bond and 5Y Bob1 contracts may not be due to the increase 

in tick size. Execution costs for both event contracts increase after the change, though 

the results for the control contracts suggest that this cannot be attributed to the tick 

size increase.   

The second issue investigates the relation between algorithmic trading volume 

and future market quality. An internal database is directly sourced from the Australian 

Securities Exchange (ASX). The dataset consists of trade by trade data for the top 100 

capitalised stocks listed on the ASX from July 2, 2007 to October 26, 2009. The unique 

feature of this dataset is that it consists of a field that identifies the source of each 

trade. Using this identifier, this study determines which trades are associated with 

human traders or computer based systems. To analyze the relation between 

algorithmic trading and subsequent market quality, the trading day is partitioned into 

multiple time intervals. The variables examined include the bid-ask spread, market 

depth, and short-term volatility. These variables are regressed on lagged algorithmic 

traded volume and a number of control factors. Over the whole sample period, results 

provide no evidence that algorithmic trading volume has an impact on market quality. 

However, when the sample is split into increasing and decreasing stock returns, results 

show that AT is negatively associated with future market quality when prices are 
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falling and has no relation when prices are rising. Finally, algorithmic trading’s negative 

association with future market quality can be explained by algorithmic traders 

engaging in positive feedback trading, where they systematically decrease their 

purchases of stocks during periods of falling prices, while increasing their level of 

selling. 

The third issue examined measures the magnitude of execution costs of 

outright options and options which constitute strategies (“strategy-linked options”) 

and examines if any differences in trade prices between these two groups is 

attributable to differences in market making costs on the Australian Options Markets 

(AOM). The data are obtained from an internal database from the AOM. The sample 

consists of trade by trade data for all equity options listed on the AOM. The sample 

period extends from January 1, 2007 to August 31, 2007. The difference in the 

percentage effective spread between option strategy trades and outright options is 

regressed on a range of option characteristics and hedging and adverse selection 

costs. Results reveal that execution costs for standard and tailor-made strategy-linked 

options are greater than outright options. Multivariate analysis shows that after 

controlling for a number of liquidity determinants, only tailor-made strategy-linked 

trades incur higher execution costs than outright options trades. Results also indicate 

that the difference in execution costs between tailor-made strategy-linked options 

and outright options is driven by the initial costs in delta hedging of option positions 

and not a result of higher adverse selection costs. 

The fourth issue examines intraday variations in quoted depth on the Nasdaq, 

a competitive dealer market. The sample contains stocks listed on the Nasdaq-100 

index and covers the period November 30, 2008 to April 23, 2009. The trading day is 
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partitioned into 30-minute intervals, these one-minute intervals are averaged into 14 

separate 30-minute trading intervals, from 09:30 hours to 16:00 hours (i.e. from the 

open to the close of trading). The variables examined include the bid-ask spread, 

quoted depth, volume and volatility. Consistent with prior literature, results reveal a 

negative relationship between the intraday patterns in quoted depth and bid-ask 

spreads. At the open of trading, quoted depth is relatively low and bid-ask spreads are 

relatively wide. Near the close of trading, quoted depth increases and bid-asks spread 

narrow. The pattern in spreads and depth at the close of trading on the Nasdaq is the 

opposite of that reported on specialist and order-driven markets. Results also show 

that after controlling for volume and volatility, the patterns in quoted depth and bid-

ask spreads are qualitatively similar. The difference in the intraday pattern in quoted 

depth and bid-ask spreads on the Nasdaq relative to specialist and order-driven 

markets is attributed to Nasdaq dealers using both the price and the quantity of 

quotes to manage inventory levels at the close of trading and that this is associated 

with an increase in liquidity.  
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Chapter 1: Introduction 

 

The provision and availability of liquidity is a crucial determinant of the success of 

financial markets and a key issue in the market microstructure literature. Liquidity is 

of important concern, given the impact it has on a diverse range of stakeholders. From 

the perspective of market participants, a liquid market lowers transaction costs and 

increases price efficiency. For exchanges, liquidity affects the ability of exchanges to 

attract order flow from traders and to compete for order flow with other trading 

venues. For firms, liquidity affects both a firm’s cost of capital and optimal capital 

structure. A higher level of liquidity attracts more investors to a stock and that order 

arrival reduces the trading costs of investors because they are more likely to find 

counterparties willing to trade.  

Liquidity and trading costs on a financial market depend not only on the 

characteristics of the traded security, but also on the structure of the market and the 

order placement strategies of market participants. Market design affects the 

profitability of various trading strategies and hence affects price formation and 

implicit execution costs. Order placement relates to the effective timing of trades 

using appropriate order attributes. The way market design impacts order placement 

strategies and consequently liquidity is therefore a fundamental issue. Market 

structure defines the rules of trading that affect how market participants formulate 

their trading strategies (O’Hara, 1995). This dissertation focuses on two market types, 

namely order submission strategies in (1) limit order markets where market makers 
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are not present and (2) markets that employ designated market makers. Limit order 

markets do not depend on a designated market maker to provide liquidity, with the 

limit order book matching submitted orders at a particular price and quantity by 

investors. For instance, an investor submits a limit order to buy or sell a security at a 

particular price, whereas another investor creates a market order that matches 

against an existing limit order in the book. Conversely, designated market makers have 

an affirmative obligation to maintain a regular presence across the trading day 

supplying liquidity and is separately compensated to do so. Market makers derive 

profits through trading that provides “immediacy” to investors. For example, an 

investor who is keen to sell utilises a market maker’s standing ability to buy the asset 

for itself, immediately.  

Understanding the determinants of liquidity in limit order markets is important 

as liquidity may not be endogenously created at all times. That is, limit order markets 

face the problem of asynchronous order flow. For example, uncertain market 

conditions may reduce the likelihood of investors submitting limit orders due to the 

risk that the limit order will be mispriced. The probability of there being sufficient 

liquidity during the trading day depends on the order submission strategies of 

investors, such as whether an investor submits a market or limit order and cancels or 

amends an existing order. The literature on order placement strategies identifies a 

number of important factors affecting an investor’s order submission decision. These 

include the state of the order book at the time of order submission, level of liquidity 

supplier competition, expected time to and probability of execution, adverse selection 

costs and stock return volatility (Parlour, 1998, Foucault, 1999, Foucault, Kadan, and 

Kandel, 2005, Goettler, Parlour, and Rajan, 2005, 2009, Roşu, 2009). These factors 
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influence a trader’s ability to execute a desired quantity at favourable prices. An 

exchange’s trading platform affects these determinants and hence a trader’s order 

submission strategy. Consequently, an understanding of market design and their 

impact on order submission strategies provides insight into the factors influencing the 

provision of liquidity in limit order markets.  

This dissertation examines two elements of market design for limit order 

markets and their associated impact on market quality; the minimum price increment 

and algorithmic trading. One common feature in limit order markets is the presence 

of a minimum price increment, which is the minimum price difference in the bid-ask 

spread. As exchanges specify the minimum tick size, they can directly impact on 

available liquidity and the transaction costs imposed on investors. The overall impact 

of a tick size change is an empirical question. A larger tick size can encourage traders 

to post more limit orders, as the value for supplying liquidity is greater and the risk of 

front-running, that is those who move inside the bid-ask spread by submitting a limit 

order at a better price, is lower. Conversely, a larger tick size can come at a cost to 

liquidity demanders as the bid-ask spread is wider. Consequently, exchanges face a 

difficult task in balancing the competing interests of liquidity suppliers and investors 

(Harris, 1996). In addition to this difficulty, there is little experience to draw on in 

determining an optimal minimum tick size as exchanges rarely adjust their minimum 

price increment (Bollen et al., 2003). Research on the impact of changes in the 

minimum tick size provides important insight into its impact on market quality.  

In contrast to previous research examining the impact of a reduction on the 

minimum price increment, the first chapter contributes to the literature by being the 

first to investigate the impact of an increase in minimum tick size on market quality 
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for limit order markets. In response to the Global Financial Crisis that resulted in lower 

trading volumes on both exchanges, the Sydney Futures Exchange and the Eurex 

increased the minimum price increment for their medium term bonds in 2009. The 

increase in the tick size was designed to encourage greater liquidity in the futures 

markets. The literature suggests that a reduction in the minimum tick benefits small 

trades and liquid securities, as a lower bid-ask spread is likely to be more beneficial 

than reduced quoted depth (Bollen and Whaley, 1998). Futures markets offer another 

avenue to test this idea, as futures markets differ from equity markets in several 

important ways. Futures markets are more liquid than equity markets and are also 

dominated by institutional investors (Fleming, Ostdiek and Whaley, 1996; Frino and 

Oetomo, 2005). Analysing the increase in the tick size provides a unique opportunity 

to test whether an increase in the tick size can improve market quality for markets 

with high liquidity. 

Another important aspect of limit order markets is the use of high frequency 

trading (HFT) practices, where traders use algorithms to make trades at high speeds. 

The impact that HFTs can have on liquidity provision is potentially significant, with the 

Tabb Forum estimating that over 60 per cent of trading activity in the US was 

conducted by HFTs in 2012. Algorithmic traders may generate earnings from trading 

strategies through doing a large number of small-size, small-profit trades. Due to the 

use of computer algorithms, HFTs can detect and act upon trading opportunities at 

higher speeds than their human counterparts. As HFTs are not regulated, they are able 

to pursue all profit maximizing short-term investment opportunities.  

A number of studies suggest that HFTs act as pseudo market makers through 

earning profits supplying liquidity (Menkveld, 2012). One concern is that because they 
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are not designated market makers, HFTs may destabilise markets during periods of 

heightened uncertainty as they rapidly withdraw and/or consume liquidity. For 

example, Golub and Keane (2011) suggest that HFTs that engage in market making 

activities quickly remove their inventory holdings when there is a significant stock 

price movement against their stock position. The flash crash of May 6, 2010, in which 

the Dow Jones Industrial Average (DJIA) fell by 600 points within minutes, is often cited 

as evidence that algorithmic trading can be harmful for financial markets. The cause 

of the crash, according to the joint SEC/CFTC report, was a sell order initiated by a 

large fundamental trader at 2.32pm on the E-Mini S&P 500 futures contracts. This sell 

order was executed rapidly over the next twenty minutes. The report noted that 

computerized trading was a contributing factor of the Flash Crash, with HFTs being net 

sellers as prices declined, accentuating the fall in prices. No research examines how 

the impact of algorithmic trading on market quality during market declines, of which 

the flash crash was an extreme event, differs from that during market upturns. 

Addressing this gap in the literature allows for a better understanding of risks to the 

provision of liquidity in limit order markets.  

The second chapter addresses this gap in the literature by examining whether 

the relation between algorithmic trading and subsequent market quality differs across 

up and down markets on the Australian Stock Exchange. Analysing algorithmic trading 

on the ASX provides an opportunity to test this relationship as unlike the data used in 

other studies, this dataset identifies each specific type of participant involved in a 

trade. That is, each trade consists of an identifier which allows categorisation as either 

a computer automated or human-based trade. It further categorises each computer 

automated trade as either a general algorithmic trader or Broker Engines. 
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This thesis also examines the order submission strategies of designated market 

makers. As market makers have an obligation to supply liquidity, market makers adjust 

the bid-ask spread to offset three kinds of market making costs that have been 

identified in the literature of market microstructure; order-processing costs, 

inventory-holding costs and adverse selection costs (Stoll, 1978). In addition to 

adjusting the bid-ask spread, market makers also adjust their liquidity by changing the 

quantity dimension, the level of quoted depth (Harris, 1990). This thesis looks at the 

determinants for market makers adjusting bid-ask spreads and quoted depth, 

providing a better understanding of the factors affecting liquidity provision by market 

makers and its associated impact on market quality.  

If an investor has private information about the fundamental value of a 

security (i.e. they are an informed trader), these investors will only trade when they 

know they will earn a return. This can include information about the timing of a news 

announcement and its potential impact on stock prices and returns. When trading 

against and informed trader, the market maker will earn a return below the market 

return. Therefore, market makers will moderate the size of the bid-ask spread based 

on the number of informed traders in the market. There is conflicting evidence on the 

extent to which market makers adjust bid-ask spread as a result of adverse selection 

costs (Vijh, 1990; Neal, 1992; Ahn et al.; 2008, Bartram et al., 2008). The options 

market provides an avenue to examine whether adverse selection costs are an 

important component when market makers determine bid-ask spreads. This is 

because the bid-ask spread is unlikely to vary as a result of inventory holding costs as 

these can be hedge in the underlying market.  The literature suggests that informed 

traders may be more likely to act on their private information in the options market 
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as the leverage implicit in an options contract can generate significant returns (Biais 

and Hillion, 1994; Easley, O’Hara, and Srinivas, 1998). Relative to outright options, 

options strategy trades are likely to contain information about future realized volatility 

(Fahlenbrach and Sandas, 2010). Analysing the determinants of execution costs for 

option strategy trades can shed insight how market makers adjust bid-ask spreads and 

whether this is driven by informed trading. Therefore, the third chapter contributes to 

the literature by examining the relationship between the execution costs of option 

strategies and the determinants of market making costs on the Australian Options 

Market, which is a quasi-limit order book market where liquidity is supplied by public 

limit orders and designated market makers. 

In contrast to adverse selection costs, there is evidence that market makers 

adjust bid-ask spreads in relation to inventory costs. Inventory-based models of the 

bid-ask spread concentrate on the risk faced by market makers stemming from holding 

an undiversified portfolio (Tinic, 1972). Spreads exist to compensate market makers 

for the risk of holding unwanted inventory. This cost is equivalent to the expected 

difference in revenue from holding a well-diversified portfolio (Stoll, 1978). The cost 

of holding unwanted inventory has implications for how spreads change in response 

to changes in inventory holdings. Inventory-based models suggest that risk-averse 

market makers want to end the trading day with the desired level of inventory and 

thus may actively seek order flow before the close in an attempt to resolve any 

inventory imbalances accumulated during the day (Amihud and Mendelson, 1982). 

Analysis of intraday patterns in competitive dealer markets (markets where liquidity 

is predominantly supplied by market makers) show that market makers compete for 

order flow with other market makers by narrowing the bid-ask spread. A market 
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maker resolve inventory balances by both narrowing the bid-ask spread and increasing 

quoted depth (Harris, 1990). The combination of the spread and depth is needed to 

infer overall changes in liquidity (Lee et al., 1993). Consequently, an examination of 

both spreads and depth at the close of trading is needed to conclude that market 

makers adjust for inventory imbalances and that this results in an overall improvement 

in liquidity. This study examines the close of trading on the Nasdaq, a competitive 

dealer market, to examine whether quoted depth increases, in line with inventory-

based models of market makers. A dealer market like the Nasdaq is used as liquidity 

is predominantly supplied by market makers. Other markets such as the Australian 

Options Market is a hybrid market where liquidity is also supplied through limit orders. 

An examination of intraday patterns in those markets would mask the effect of market 

maker behaviour on liquidity. 

 

 



19 

 

Chapter 2: Literature Review 

 

Market microstructure is how market structure influences the economics of liquidity 

provision. Liquidity is important as it reduces transaction costs to investors as they are 

more likely to find a counter-party to trade (Menkveld and Wang, 2009). The two types 

of literature examining liquidity provision in markets are those examining order 

submission strategies in electronic limit order markets and those examining liquidity 

provision through designated market makers. In a limit order market, liquidity is 

submitted by buyers and sellers without any obligation to trade. Liquidity in these 

markets arise endogenously and as long as there is a sufficient number of buyers and 

sellers, there is no need for a market maker. A number of studies examine how orders 

are submitted in this type of market.  

Conversely, other studies examine markets with designated market makers. 

Market makers exist under the assumption that liquidity provision is unlikely to arise 

at all times. Liquidity may in fact disappear under certain market conditions, such as 

high levels of volatility or asymmetric information. Consequently, market makers have 

an obligation to provide liquidity in these circumstances. This literature review looks 

at order submission strategies for these two market structures and their impact on 

market quality. This chapter is structured as follows. Section 2.1 examines the 

literature concerned with order submission strategies on limit order markets, 

particularly relating to the minimum price increment and algorithmic trading. Section 

2.2 concentrates on the literature addressing the order submission strategies of 
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market makers, particularly in relation to the options market and intraday patterns in 

liquidity. Section 2.3 summarises and concludes the chapter.  

 

 

2.1 Order placement Strategies in Limit Order Markets 

 

When a trader decides to submit an order on an order-driven market, a trader faces a 

trade-off between submitting a limit order or a market order. An order that is 

submitted as a limit bid order is a quote to buy at that given price. Conversely, a limit 

ask order is quote to sell at that given price. The trader pays (receives) less (more) than 

the mid-point of the prevailing bid and ask prices using a limit bid (ask) order. Though 

the limit order can allow the trader to obtain a better price for the order, the cost 

involved with submitting a limit order is execution risk, as the time to execution is 

uncertain and the limit order may not execute at all. A market order has the advantage 

of providing the trader with immediacy as it does not face the risk of non-execution if 

the size of the order is less than or equal to the prevailing depth of the limit-order 

book. However, to obtain this immediacy the trader pays (receives) more (less) than 

the mid-point of the prevailing bid and ask prices. As a result of these trade-off, 

investors formulate optimal order submission strategies in order-driven markets to 

minimise costs of execution.  

Determining optimal order submission strategies in the use of limit and market 

orders is difficult to develop as a limit order executes against a future market order, 

competes with existing limit orders and limit orders that may be submitted in the 

future. Thus, in seeking to determine the price and quantities to submit for one or 
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more limit orders and the quantities for market orders, traders must condition on all 

factors that may affect the future trading process (Parlour and Seppi, 2007).  Cohen et 

al. (1981) provide the first theoretical model examining the choice between limit and 

market orders.  They suggest that a limit order has a ‘graviational pull’ property, where 

after a limit order is submitted, a market participant has a higher incentive to post a 

market order than to place another limit order near the price of the existing limit order 

due to the risk of non-execution.  

Handa and Schwartz (1996) provide empirical evidence for the assertion of 

Cohen et al. (1981). They find that limit orders are associated with higher returns as 

the limit orders occur due in part to liquidity driven price changes which quickly revert 

back to the mean. However, the authors assert that the reason market orders are still 

used is due to the risk of non-execution. They find that limit orders subject to non-

execution have negative market-adjusted returns. Further evidence is provided by 

Hollifield et al. (2002) who report, using a sample of stocks on the Vancouver Stock 

Exchange that traders with higher valuations of a stock are more likely to submit 

market orders.  

In response to the static model of Cohen et al. (1981), Parlour (1998) and 

Foucault (1999) develop dynamic equilibrium of models of the choice between limit 

and market orders. The model of Parlour (1998) assumes traders arrive randomly in 

the market with different valuations for an asset. The execution probability of a limit 

order depends on the state of the limit order book at the time of order submission 

and how many market orders will arrive in the future.  After a buy (sell) market order, 

a limit order at the ask (bid) has a higher probability of execution. As the return from 

submitting a limit order increases with the probability of execution, a trader who 
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wants to sell (buy) is more likely to submit a sell (buy) limit order than a corresponding 

market order. Consequently, there is a ‘crowding out’ of market buy (sell) orders after 

observing market sell (buy) orders. Buy (sell) market orders are less frequent after sell 

(buy) market orders than after buy (sell) market orders. Consistent with Parlour 

(1998), Handa et al. (2003) also show that the greater the excess market depth of the 

buy (sell) side relative to the market depth of the sell (buy) side, the higher the 

execution risk to buyers (sellers). Therefore, the larger the imbalance between the buy 

(sell) side relative to the sell (buy) side, the more likely buyers (sellers) are to use 

market orders rather than limit orders. 

Foucault (1999) suggests that the decision to submit a limit order is driven 

through price volatility. The author develops a model of price formation and order 

placement within a limit order market. Within this model, traders can post either limit 

or market orders. Limit orders enable the trader to obtain a potentially better price, 

but face the risk that the trade fails to execute. Foucault (1999) finds that the mix 

between market and limit orders are determined by the degree of price volatility. In 

periods of high market volatility, the probability of trading against an informed trader 

increases. This causes limit buy (sell) order traders to post lower (higher) bid (ask) 

prices and/or reduce their order sizes to compensate for the risk of being picked off 

by informed traders. This leads to a direct relationship between price volatility and the 

bid-ask spread and an inverse relationship between price volatility and quoted depth. 

The model of Goettler, Parlour and Rajan (2009) also suggests that speculators are less 

likely to supply liquidity when volatility is high.  

Extending the models of Parlour (1998) and Foucault (1999), other models 

examine the impact of waiting costs and adverse selection costs. Foucault et al. (2005) 



23 

 

and Roşu (2009) suggest that traders incorporate the expected time to execution for 

limit orders when formulating whether to use a limit or market order, with traders 

categorised as patient and impatient traders. Impatient traders have a larger waiting 

cost per unit of time and the expected total waiting cost is determined by the product 

of the delay between order submission and execution, and the waiting cost per unit 

of time. Foucault et al. (2005) suggest that dynamics of the limit order book is 

determined by the mix of patient and impatient traders and the rate of order arrival. 

Their model has a number of predictions: impatient traders are more likely to submit 

a market order than a limit order; traders become more impatient at the market close, 

increasing the arrival rate of market orders; when the proportion of patient traders is 

large then traders are more likely to submit aggressive limit orders (improve upon 

quoted spread).  

Bias et al. (1995) suggest that order placements are concentrated at the best 

bid and ask quotes. Examining a dataset of 40 stocks on the CAC Index, the authors 

report that a large proportion of trades improve upon the existing best bid and ask 

price, indicating that traders are trying to compete for time-priority to maximise their 

probability of execution. Reflecting the risk of non-execution, traders place more 

market orders when the spread is narrow and limit orders when the spread is wide. 

Al-Suhaibani and Krynowski (2000) show that the decision to place a limit or market 

order depends on the state of the limit order book. Examining stocks listed on the 

Saudi stock market, they find that market orders are more likely to be submitted when 

the spread (depth) is narrow (wide). Griffiths et al. (2000) reach a similar conclusion 

looking at 5 classifications of order aggressiveness on the Toronto Stock Exchange. 

They find that orders are less aggressiveness when the bid-ask spread is wide, and that 



24 

 

greater depth on the same side of the order book encourages more aggressive orders 

to gain priority over other orders. Similarly, Ranaldo (2004) finds patient investors are 

more likely to submit aggressive orders when the same side of the book is thicker.  

Cao, Hansch and Wang (2008) reveal how the state of the full limit order book 

affects order submission strategies as well as cancellation and amendment strategies 

on the Australian Stock Exchange. Consistent with Parlour (1998) and Foucault (1999), 

the authors show that a large inside spread discourages market orders, whereas depth 

at the top price step encourages more market orders. The rest of the limit order book 

doesn’t affect order submission but does affect cancellations and amendments. The 

driver of this outcome is the level of order imbalance in the book; when there are a 

large number of limit orders on one side of the book, a trader is likely to be crowded 

out the other orders and is likely to improve the price of their limit order to obtain 

price-priority or cancel their order.  

Research on the effect of volatility on order aggressiveness is less conclusive. 

In line with the model of Foucault (1999), Ahn et al. (2001) find that an increase in 

transitory volatility results in a greater placement of limit orders, as higher volatility 

lowers execution risk and thereby encourages limit order submissions. Beber and 

Caglio (2005) and document a similar relation positive relation between the 

placement of limit orders and volatility, as predicted by Foucault (1999). In contrast, 

Aitken, Brown and Wee (2007) find that limit order usage declines when volatility 

increases. Bloomfield et al. (2005) suggest that this is because volatility provides an 

information advantage to informed investors, allowing them to pick off uninformed 

investors.   
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In the market microstructure literature, investors can be segregated into 

informed and uninformed traders. Informed traders are those that possess 

information about the true value of a security that has not been impounded into the 

share price. Kyle (1985) suggests that traders try to maximise returns based on this 

information, through buying below fundamental value and waiting for the price to rise 

or vice versa they are short-selling. Uninformed traders are those who trade for 

reasons other than information. This could be because of liquidity reasons to access 

cash flow (Harris, 2003). Alternatively, they could be trading on noise as if it were 

information (Black, 1986). Black (1986) suggests that these ‘noise’ traders are an 

important source of liquidity, as uninformed traders will trade against informed 

traders believing they are in fact trading on ‘information’.  

Foster and Viswanathan (1994) develop a dynamic model that analyses 

strategic trading between two asymmetrically informed investors. The first informed 

trader knows the information seen by both informed traders and the second informed 

trader knows only his/her information. In this model, the lesser informed trader learns 

about the better informed trader’s information through an analysis of the order flow. 

The behaviour on the part of the lesser informed trader leads the better informed 

trader to strategically respond by trading intensely on information common to both 

parties at the start of the trading day, and to trade on his own private information 

later in the day once the common information has dissipated through trading. This 

leads to the prediction that the start of the trading day is characterised by high 

volume, variances and spreads. 

Glosten (1994) and Seppi (1997) contend that informed investors are more 

likely to submit market orders as they are impatient and want to capitalise on their 
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information quickly. Conversely, uninformed investors are more likely to wait to 

reduce the likelihood of trading with informed investors. In contrast, the model of 

Chakravarty and Holden (1995) suggest that informed investors prefer to submit limit 

orders. This is because information about the future value of a security is not 

necessarily short-lived, reducing the likelihood of non-execution risk. 

Kaniel and Liu (2006) suggest that the decision for an informed trader to use a 

market order is dependent upon the expected horizon of the informed trader’s private 

information. The risk to using a limit order is that the order might not execute. As the 

expected horizon of private information increases, the probability that the limit order 

will be hit also increases, reducing the risk of the uncertain execution. Consequently, 

limit orders become more attractive to informed traders the longer the information 

horizon. As a test of this hypothesis, the authors find that limit orders on the NYSE 

convey more information than market orders about future prices, implying that 

informed traders prefer to submit limit orders on average.  

This result is supported by Keim and Madhavan (1995), who find that 

institutional (informed) investors do submit limit orders. Similarly, Doung et al. (2009) 

find that the order submission strategy differs between individual and institutional 

investors. In line with Foucault (2009), both institutional and individual investors 

submit less aggressive orders when spreads are high for large cap stocks. For small cap 

stocks however individual investors are more likely to use market orders even when 

spreads are wide.  For both institutional and individual investors, order aggressiveness 

declines for mid cap stocks when volatility increases. However, for large cap stocks, 

institutional investors increase their order aggressiveness in seeking to profit from 

‘picking-off’ stale limit orders. Finally, institutional investors are more likely to place 
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aggressive orders at the start of the trading day to take to exploit potential private 

information, whereas individual investors become more aggressive as the trading day 

progresses.  

Beber and Caglio (2005) find that informed traders strategically place limit 

orders. Focusing on specific situations characterized by higher probability of 

information-based trading, they find that orders are less aggressive, suggesting 

strategic behaviour of informed traders. Analysing the Moscow Interbank Currency 

Exchange, Menkhoff et al. (2010) find that in response to increasing volatility, 

informed traders place more aggressively priced limit orders, whereas uninformed 

traders are insensitive to changing order book conditions. Supporting Menkhoff et al. 

(2010), Chung et al. (1999) and Bae et al. (2003) find that NYSE traders are more likely 

to place limit orders relative to market orders when the spread is large. 

 

2.1.1 Minimum tick size and Order Submission Strategies 

 

The imposition of a minimum tick influences the order submission strategies of 

traders. This is because it sets the minimum difference between bid and ask prices, 

the ‘bid-ask spread’. A widening of the bid-ask spread resulting from the 

establishment of a minimum tick size changes the relative attractiveness of supplying 

and demanding liquidity, which may lead to an increase or decrease in overall 

execution costs. Whether market quality is improved by a tick size change thus 

becomes an empirical issue (Bessembinder, 2000). 

The bid-ask spread is considered a trading cost to liquidity demanders, and is 

a premium received by liquidity suppliers (Harris, 2003). A wider bid-ask spread 
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increases the marginal profitability of supplying liquidity. Traders who in the absence 

of a minimum tick size would have demanded liquidity using a market order may 

decide to supply liquidity through submitting a limit order to take advantage of this 

higher premium. Chung et al. (1999) examine the intraday variation in spreads 

established by limit-order traders and show that more investors enter limit orders 

when the spread is wide. Arnold and Lipson (1997) confirm that the proportion of limit 

order submission increases substantially after stock splits because stock splits alter 

pricing grids. 

A widening of the bid-ask spread also reduces the likelihood of a limit order 

becoming stale, increasing the incentive to submit a limit order relative to a market 

order. A stale limit order refers to an order that no longer reflects the true value of a 

security, as new information has changed the security’s value. These stale limit orders 

can be taken advantage of by traders who place a market order at the price offered 

by the limit order, profiting from the difference between the security’s updated value 

and the existing price of the limit order. This is referred to as picking-off risk (Liu, 2009; 

Fong and Liu, 2010). For example, suppose that all traders currently agree on a 

security’s true value. Trading only occurs in this instance as a result of liquidity 

reasons, with liquidity suppliers hoping an impatient trader will trade against them. 

Suppose now that information is released leading to the security’s value being revised 

upwards. Some sell limit orders will now be at a price below the security’s true market 

value, allowing traders to submit market orders against all limit orders up to the new 

valuation of the security, causing liquidity suppliers to lose money. The higher the risk 

that a limit order will become stale reduces the likelihood that traders will post limit 

orders. Whether a limit order become ‘stale’ prior to being executed is partially 
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dependent on the size of the bid-ask spread. A wider bid-ask spread reduces the 

likelihood that a limit order will become stale. A wider bid-ask spread means the value 

of the security needs to change by a larger amount to exceed the limit order price.  

A minimum tick may reduce the incidence of front running, increasing the 

incentive of traders to supply liquidity to the market (Harris, 1994). Front running 

refers to trading in front of an order in the queue, by submitting a limit order at a 

better price. For example, suppose that a trader place a limit order to purchase a stock 

at 1.00 and the order is displayed in the limit order book. Posting the limit order is 

costly as the trader faces the risk that the order doesn’t execute. If another trader 

arrives offering to also post a limit order to buy at 1.00 then the new trader’s order 

has a lower priority, with a market sell order executing against the former trader’s 

order first. This maximises the former trader’s probability of execution at the given 

price. If however the latter trader could post a bid a 1.000001 then the trader can 

move to the front of the queue without having to meaningfully improve upon the bid 

price.  

Bacidore et al. (2003) suggest that the risk of front running may mean that if 

uninformed investors are disadvantaged often enough, this might result in them 

reducing the use of limit orders and increasing the use of market orders. Instituting a 

minimum tick induces a trader to meaningfully improve upon the bid by an 

economically significant amount in order to go the front of the queue. This increases 

the relative attractiveness of posting limit orders as a limit order has a greater 

probability of executing at a given price.  

In response to the risk of front running, Goldstein and Kavajecz (2003) and 

Bacidore et al. (2003) report that a reduction in the minimum price increment reduces 
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the average size of limit orders while increasing the cancellation rate of limit orders, 

in order to reduce the value of the trading option to other traders. High cancellation 

rates also helps to frustrate quote matchers as it increases the difficulty to identify a 

trader’s intentions.  

A minimum price increment can also influence the level of informed trading in 

the market. The transaction cost hypothesis suggests that the security with lowest 

transaction costs will attract informed trading. Because lower transaction costs could 

lead to higher profits, informed traders have more incentives to trade in the market 

with lower transaction costs (Booth et al, 1999). 

Given the conflicting impact that the minimum tick has on liquidity demanders 

and suppliers, exchanges face a difficult task in balancing the competing interests of 

liquidity suppliers and investors (Harris, 1996). In addition to this difficulty, there is 

little experience to draw on in determining an optimal minimum tick size as exchanges 

rarely adjust their minimum price increment (Bollen et al., 2003). Research on the 

impact of changes in the minimum tick size provides important insight into its impact 

on market quality. Section 2.1.2 examines the literature assessing the impact of a tick 

size change on market quality.  

 

2.1.2  Theoretical Impact of the Tick Size on Market Quality 

 

Harris (1994) develops a cross-sectional model of the discrete bid-ask spread subject 

to a minimum price constraint. The minimum tick size places a lower bound limit on 

the size of the bid-ask spread. Harris (1994) predicts that if the minimum tick acts as a 

binding constraint for stocks, then a reduction in the tick size will result in a 
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corresponding fall in the bid-ask spread. He forecasts that this will be particularly 

pronounced for lower priced stocks, as the tick size will have greater economic 

significance. The benefits of a tick size reduction should also be greatest for stocks 

with high trading activity, as high turnover decreases per trade fixed costs. Predictions 

are also given for market depth. If the minimum price variation is greater than the 

spreads dealers would otherwise quote, the profits to supplying liquidity are artificially 

increased. A decrease in the tick size under this scenario would lead to a decrease in 

quoted depth. Minimum price variation rules may also increase quoted depth if the 

exchange operates on a price-time priority, as the tick size may stop other traders 

from taking advantage of the information provided by an order by placing a quote at 

a better price.  

In line with the predictions of Harris (1994), Chordia and Subrahmanyam 

(1995) suggest quoted bid ask spreads should decline with a reduction in the minimum 

tick. Looking at payment for order flow between NYSE market makers and non-NYSE 

market makers, when non-NYSE market makers can pay for order flow in the presence 

of a finite tick size, orders do not flow to the lowest cost provider of market making 

services. This is because there is a significant incentive for brokers to move orders off 

the NYSE to obtain payments offered by the non-NYSE market makers, who can offer 

the best quoted price without being the lowest cost provider, as the tick size acts as 

constraint on the spread. This suggests that lowering the tick size should lower market 

maker rents and improve quoted bid-ask spreads. 

In the theoretical model of Cordella and Foucault (1999), the price increment 

which minimizes the cost of immediacy is not zero. They show that an increase in the 

size of the minimum tick can improve liquidity. For instance, if the current tick size is 
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too fine, an increase in the minimum tick will increase the propensity of investors to 

post at the competitive spread. Second, even considering that a higher minimum tick 

increases the cost of immediacy, this may be offset by significant growth in limit 

orders, leading to an overall improvement in market quality. Seppi (1997) finds a 

similar result. Creating a market microstructure model of liquidity, Seppi (1997) shows 

that large institutional investors have a larger optimal tick size relative to retail traders, 

though both prefer a tick size greater than zero. 

Developing a model of an order-driven market populated by discretionary 

liquidity traders, Foucault et al. (2005) finds that imposing a minimum tick size can 

improve the resiliency of the limit order market. A market is resilient if price changes 

that result from high order volumes quickly attract new limit orders which, in turn, 

pull the price back again. The authors state that actors which induce traders to post 

more aggressive limit orders make the market more resilient. A minimum tick size can 

induce traders to post more aggressive limit orders, improving the resiliency of the 

market.  

 

2.1.2  Empirical Tests of the Impact of Tick Size Changes on Market Quality  

 

Ahn, Cao and Choe (1996) is the first study to directly test the impact of reducing the 

tick size on transaction costs and trading activity. The event examined is the reduction 

in tick size from $1/8 to $1/16 on the American Stock Exchange (AMEX) effective 3 

September, 1992. The authors find a significant reduction in both quoted and effective 

spreads of approximately 19% for stocks priced between $1 and $5 dollars. This is a 

result of an increase in one-sixteenth quotations and a decrease in one-eighth 
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quotations. Traded volume and market depth remain unchanged after the tick 

reduction. Stocks with greater trading activity, lower prices and stronger competition 

from the regional exchanges experienced the greatest reductions in spreads. Van 

Ness, Van Ness and Pruitt (2000) however find mixed evidence on the impact of a tick 

size change on quoted depth. Analysing the impact of the move to sixteenths on the 

AMEX, Nasdaq and NYSE, Van Ness, Van Ness and Pruitt (2000) show that the number 

of quotes increases significantly after the change, though the effect on quoted depth 

is mixed, decreasing on the AMEX and NYSE and increasing on Nasdaq. 

In contrast to Ahn, Cao and Choe (1996), Bacidore (1997) and Porter and 

Weaver (1997) show that a decline in the tick size leads to a reduction in quoted depth, 

in line with the predictions of Harris (1994).  They examine the effect of decimalisation 

on the Toronto Stock Exchange (TSE) on investor welfare. In 1996, the minimum tick 

size was reduced from 12.5 cents to 5 cents for stocks priced over $5 and was reduced 

from 5 cents to 1 cent for stocks priced between $3 and $5. Stocks trading below $3 

were unaffected. Following decimalization bid-ask spreads should fall and traded 

volume should increase. Market depth may fall if liquidity supplier profits decline 

because the increase in traded volume does not offset the decline in bid-ask spreads. 

Bacidore (1997) shows a significant decline in bid-ask spreads and quoted depth, 

particularly for high priced stocks. Bessembinder (2003a) also find that quotation sizes 

decreased 65% and 24% for the NYSE and Nasdaq respectively resulting from the 

change to decimalization in 2001. 

Explaining the change in quote behaviour after a change in tick size, Chung and 

Chuwonganant (2002) authors conjecture that price discreteness has a larger effect 

on spread than depth revisions, as the tick size is more likely to be a binding constraint 
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on spreads than depth. In line with this hypothesis, quote revisions involving spreads 

increase significantly after the change. The proportion of quote revisions involving 

changes in the spread is smaller for low-price, high-volume stocks both before and 

after the change. Furthermore, the authors find that the number of quote revisions 

involving changes in spread (depth) was largest (smallest) during the first hour of 

trading even after the change in the tick size. These results suggest that the tick size 

acts as a binding constraint on the bid-ask spread even after the reduction in tick size. 

A change in the tick size might not just affect spreads and depth but also 

whether a trader exposes their order. Aitken and Comerton-Forde (2005) analyse the 

reduction in tick size on the Australian Stock Exchange (ASX) for stocks priced above 

$10 and below $A0.50 in 1995. Stocks priced between $A0.50 and $A10 are used as a 

control sample as they experienced no change in tick size. Liquidity is measured using 

the time-weighted absolute and relative bid-ask spread, depth at the best bid and ask 

prices and a weighted order book measure developed by Aitken and Comerton-Forde 

(2003) to determine the overall impact of the tick size change on market liquidity. 

Order exposure behaviour is also examined, where investors can decide to hide their 

order volume for order sizes above $A25 000. Liquidity for the control group is found 

to be unchanged before and after the event date. Stocks priced under $A0.50 

experience a significant decrease is bid-ask spreads and depth. Using the liquidity 

proxy, overall liquidity improves, though order exposure is unaffected. For stocks 

priced above $10, liquidity for high volume stocks increased significantly, yet liquidity 

for low volume stocks decreased.  

Porter and Weaver (1997) show that a reduced tick size primarily benefits small 

traders as narrower bid-ask spreads are accompanied by reduced quoted depth, which 
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can result in higher overall transaction costs for large traders. Bacidore (1997) 

however shows that adverse selection costs declines and trading volume experiences 

no change, indicating a reduction in liquidity supplier rents. In contrast, Porter and 

Weaver (1997) show that internalization on the TSE is found to be unaffected. 

Member profits remain unchanged while revenue from commissions increases.  

In line Porter and Weaver (1997), Goldstein and Kavajecz (2000) also find that 

a reduction in the tick size has a differential impact on small and large traders. 

Subsequent to the minimum price increment from an eighth to a sixteenth on the 

NYSE, quoted spreads and depth fell by 14.3% and 48%, respectively. More 

importantly, cumulative depth declines and NYSE floor members decreased the 

amount of liquidity they display. The combined effect has resulted in smaller traders 

to be better off and larger traders to be worse off. Studying the same event as 

Goldstein and Kavajecz (2000), Johnson and Lipson (2001) argue than an analysis of 

the change in quoted and effective spreads for institutional trades are not a sufficient 

measure of the change in market quality. This is because institutions execute a large 

position over multiple trades, and orders may suffer from information leakage prior 

to execution. Examining realised execution costs for institutional orders after the 

reduction in tick size, the authors find that the cost of orders below 1000 shares 

declines, while the cost of medium sized orders remains unchanged. Similar to 

Goldstein and Kavajecz (2000), large orders above 10,000 shares experience an 

increase of up to one-third in execution costs. The authors conclude that for the 

institutional orders examined, the reduction in tick size has generally lead to an 

increase in execution costs.  
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Chakravarty, Panchapagesan, and Wood (2005) examine the conclusions 

drawn by Johnson and Lipson (2001) by analyzing the trading costs of 34 large buy-

side institutions trading NYSE stocks before and after the move to decimalisation in 

2001. Confirming the results of Johnson and Lipson (2001), they present mixed 

evidence on the effect of decimalisation on execution costs. The authors show that 

the move lead to higher costs for orders that aggressively sought liquidity (those that 

transacted the whole order within one trading day). Partitioning trades into bid-ask 

spread quartiles, trading costs declined in the smallest spread quartile as the pre-

decimal tick size acted as a binding constraint, while the largest spread quartile 

experienced an increase in trading costs, suggesting that liquidity fell for stocks not 

constrained by the minimum tick. The authors conclude that despite this mixed effect 

on different groups of investors, the change to decimalisation resulted in a significant 

decline in trading costs overall.  

The decline in both bid-ask spreads and quoted depth as a result of the decline 

in the tick size means the overall impact on execution costs is uncertain. Bollen and 

Whaley (1998) find that that the volume-weighted quoted bid/ask spread declines by 

13 percent, while quoted depth fell by 38% resulting from the NYSE’s decision to 

change stock price quotations from 1/8ths to 1/16ths. To determine which offsetting 

effect dominates, they create a measure called the Market Quality Index (MQI), which 

is a ratio of the average share depth at the prevailing bid and ask quotes to the 

percentage quoted spread. The MQI suggests that the tick size change has little 

impact, increasing by a modest 1.44 percent. The largest gains from the tick decrease 

are for low priced stocks and small trades. 
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A reduction in the tick size might not always be optimal if bid-ask spreads are 

already narrow. Examining a change in the pricing grid on the Paris Bourse which 

raised the tick size for certain stocks and lowered it for others, Bourghelle and Declerck 

(2004) reveal the reduction (increase) in the tick size is associated with a decrease 

(increase) in quoted depth, while investors use more (less) hidden orders after the 

decrease (increase) in tick size. The results document no change in relative quoted and 

effective spreads under both an increase and decrease in tick size, suggesting a convex 

relationship between the tick size and bid-ask spread. They conclude that reducing the 

tick size is not always optimal as a coarse pricing grid may not lead to excessively large 

spreads, increases quoted depth and encourages liquidity providers to expose their 

trading interest.   

In addition to potentially reducing transaction costs, a reduction in the 

minimum tick size may lead to improved price discovery, because stocks are traded 

closer to their intrinsic value, attracting greater levels of informed trading. Bacidore 

(2001) analyses the impact that the move to decimalization on the TSE has on traders’ 

information acquisition. A fall in bid-ask spreads following a reduction in the minimum 

tick is consistent with the argument that liquidity suppliers were earning non-

competitive rents before the change. The author notes that the components of the 

spread consist of order-processing, inventory and adverse selection costs, and the 

decline in the bid-ask spread may instead come from one of these components. 

Developing a model similar to Glosten and Milgrom (1985), Bacidore (2001) shows 

that the imposition of a minimum tick increases the precision of a trader’s information. 

This is because a minimum tick increases the cost of inaccurate information. In support 

of the model, the author finds a positive relationship between the restrictiveness of 
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the pre-decimalisation minimum tick regime and the decline in the adverse selection 

component of the spread. Similarly, Chen and Gau (2009) find that the information 

share of the stock market increases following the reduction in tick size Taiwan Stock 

Exchange (TSEC), suggesting that price discovery improves following a tightening in 

bid-ask spreads and a decline in transaction costs.  

Hau (2006) examines the effect of the tick size on price volatility. The minimum 

tick size on the Paris Bourse increases for stocks priced above French Francs (FF) 500 

from FF 0.1 to FF 1, providing a natural experiment to examine the effect of an increase 

in the tick size on volatility. Higher transaction costs may lower volatility by privileging 

trading based on fundamental information and discouraging destabilizing short-term 

speculators. Similar to other studies, the higher tick size acts as a binding constraint 

with effective spreads 20 percent higher for stocks priced above FF 500. Daily realised 

volatility is 27 percent higher for stocks trading above FF 500. Controlling for market 

wide volatility, the volatility differential between the two tick regimes increases on 

days of low index volatility. The authors conclude that an increase in tick size 

contributes to higher volatility. 

Studies also examine the impact of a reduction on the minimum tick in a 

futures market setting, which largely align with the literature in equities markets. ap-

Gwilym, McManus, and Thomas (2005) is the first study to investigate the impact of a 

reduction in the minimum tick in a futures market setting. The reduction in tick size 

occurred on the UK Long Gilt Futures on LIFFE, which experienced a change in 

quotation from fractions to decimal quotes in 1998. The results reported by the 

authors are largely consistent with the evidence for equity markets. Price clustering 

increases, with zero being the most frequently used digit after the change to decimal 
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pricing. Quoted and effective spreads measured as a proportion of ticks increases 

following the reduction in tick size, however the monetary value of the spread 

declines. Trade size decreases as quoted depth declines after the change. However, 

results show a significant increase in daily traded volume, with the authors concluding 

that the benefits of narrower spreads offsets the negative impact of reduced depth.   

 

2.1.3 Order Submission Strategies of Algorithmic Traders 

 

Algorithmic trading refers to trades conducted by computer algorithms, with little or 

no human intervention. Algorithmic trading refers to the use of algorithms to conduct 

and manage trades. These programs are used to trade under both agency and 

proprietary contexts. These uses extend to minimizing execution costs by splitting 

larger orders into smaller packages, or finding price patterns for minute arbitrage 

opportunities, referred to as high frequency trades. Initial studies concerning 

algorithmic trading focus on the effect it can have on an investor’s transaction costs. 

Kisell and Malamut (2006) argue that an important use of algorithmic trading models 

is to aim at achieving or beating a specified benchmark for their executions. Bertsimas 

and Lo (1998) find that the optimal strategy for traders with large positions trying to 

minimize execution costs is to break the order into smaller pieces. Konishi (2002) 

develops an optimal slicing strategy for VWAP trades. Although these execution 

strategies predate the rise of algorithmic trading, such strategies are suited for 

Algorithmic Traders (ATs). Domowitz and Yegerman (2005) show algorithmic trading 

is less expensive than alternative means based on a measure of implementation 

shortfall. However, these algorithms underperform human execution for order sizes 
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greater than 10 % of average daily volume. VWAP algorithms have an 

underperformance of 2bps relative to the VWAP benchmark, but the authors suggest 

that this can be compensated by the lower fees attached to computer algorithms 

relative to human brokers.  

Algorithmic traders may generate earnings from trading strategies through 

doing a large number of small-size, small-profit trades. Due to the use of computer 

algorithms, HFTs can detect and act upon trading opportunities at higher speeds than 

their human counterparts. As HFTs are not regulated, they are able to pursue all profit 

maximizing short-term investment opportunities. These high-frequency trading 

opportunities may roughly be divided into liquidity-providing trading strategies and 

liquidity-consuming trading strategies. 

Liquidity-consuming trading strategies consists of placing market orders to 

take advantage of directional movements in prices. When HFTs use trade and order 

flow information to determine where prices may go in the future, they consume part 

of the available limit orders that other investors might have used to trade. One such 

liquidity consuming strategy (Hirschey, 2013) is to anticipate and trade ahead of the 

order flow of other investors. For example, a trader may anticipate the trades of an 

institutional investor if the investor splits their large order into numerous smaller 

orders and their initial trades reveal information about their future trading intentions. 

The algorithmic trader can profit from this by trading ahead of the institutional 

investor, profiting from the price impact of the investor’s subsequent trades. This 

strategy can be complemented through the practice of quote-stuffing, where traders 

generate a large amount of message traffic which other investor’s must process, 

allowing the algorithmic trader to trade ahead of them (Brogaard, 2011). 



41 

 

Brogaard et al. (2014) reveal that HFTs engage in both directional and 

contrarian trading strategies. Using a subset of HFTs operating on the NASDAQ for a 

sample of stocks, the authors decompose stock price movements into permanent and 

temporary components. Permanent price movements reflect new information that 

changes the fundamental value of the security, whereas the temporary component is 

interpreted as pricing errors. The authors find that HFTs trade in the direction of 

permanent price movements and in the opposite direction of transitory pricing errors 

using market orders. Foucault et al. (2016) suggest that their ability to do this arises 

from their ability to process information slightly ahead of the rest of the market. 

Consequently, Brogaard et al. (2014) show that HFTs can predict price changes over 

horizons of less than 3 to 4 seconds.  

Another strategy is the use of statistical arbitrage or pairs trading, where a long 

position and an offsetting short-position is taken in two highly correlated instruments. 

When the correlation between the two stocks temporarily diverges, an arbitrage 

position is taken where a short position is taken in the outperforming instrument and 

a long position is taken in the underperforming instrument. The profitability from the 

trade occurs from the spread between the two instruments converging. Brogaard 

(2011) examines the propensity for algorithmic traders to either provide or take 

liquidity around news events. Algorithmic traders during stock-specific news events 

increase their frequency in providing liquidity and reduce the frequency of taking 

liquidity. The opposite result is found for macro-economic announcements. As stock-

specific news relates only to the stock, the information released from the 

announcement allows trader’s to trade the stock’s correlated pairs. As macro-

economic announcements affect all stocks, the pairs trading strategy is less effective.  



42 

 

Algorithmic traders can also engage in market-making, posting bid and ask 

quotes that allows them to earn a liquidity premium through the bid-ask spread. 

Employing two proprietary datasets from Chi-X and Euronext that contain anonymized 

broker IDs for trades in Dutch index stocks, Menkveld (2012) examines the entry of a 

large high frequency trader to Chi-X in September 2007. The trader has an upper 

bound latency of 1.67 milliseconds, engages in proprietary trading, generates a high 

number of trades, and finishes the trading day with a net zero inventory position. The 

authors key finding is that 78 per cent of the of the trader’s quotes are passive market 

maker quotes. He concludes that HFTs provide liquidity and are the new market 

makers. Whereas traditional market making occurs in a single stock, Gerig and 

Michayluk (2010) show that automated market makers can also make money by 

trading in similar stocks in a way that traditional market makers do in a single stock. 

They consider a model whereby an automated market maker is confronted by two 

traders in different but similar stocks. If one trader is selling and the other buying at 

the same time, the HFT can provide liquidity by taking the opposite side of each order. 

This lowers the losses automated market makers incur to informed traders because 

the opposite direction of the trades makes it more likely one or both of the investors 

are uninformed. 

One of the issues with HFTs acting as market makers is that as they don’t have 

affirmative obligations to provide liquidity, HFTs may not provide liquidity during 

periods of market stress. A Designated Primary Market Maker (DPM) is a specialized 

market maker approved by an exchange to guarantee that he or she will take the 

position in a particular assigned. These designated market makers have affirmative 

obligations to provide liquidity to market participants, through providing quotes on 
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both sides of the market, contributing to the depth of the market and maintaining 

market activity. These obligations can take the form of maximum spread width, 

minimum quoted volume, location of the market makers spread width relative to the 

best bid and offer, minimum percentage of the day the market maker must quote and 

minimum time in force for market maker quotes. Alternatively, HFTs make money 

through providing liquidity by turning over shares quickly while minimising exposure 

to adverse price movements during these brief holding periods. If the likelihood of 

adverse price movements increase, HFTs can respond through reducing their liquidity 

provision or withdraw from the market altogether as they have no obligation to make 

markets.  

Though not specifically related to HFTs, Anand and Venkataraman (2013) study 

the trades of Endogenous Liquidity Providers (ELPs), who supply liquidity because it is 

a profitable activity, and those of Designated Market Makers (DMMs), who have 

exchange-assigned obligations to maintain markets on the Toronto Stock Exchange. 

The authors find that during market conditions reflecting high inventory risk, such as 

periods with low volume or one-sided order flow (more buy orders than sell orders 

and vice versa), DMMs participate in undesirable trades, especially for less active stock 

where they are the only reliable counterparties to available to investors. The authors 

suggest that the obligations of DMMs oblige them to supply liquidity during periods of 

high inventory risk. Conversely, ELPs exercise the option to withdraw from the market 

during these times. These results suggest that HFTs are likely to withdraw their supply 

of liquidity during periods when liquidity is already weak.  

The Australian Securities and Investments Commission (2012) provides 

evidence supporting the contention that HFTs reduce the supply of liquidity and 
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increase their liquidity demand during periods of high volatility. ASIC (2012) considers 

the impact of high frequency trading on the quality and integrity of Australia’s financial 

markets over the period of January to September 2012. ASIC (2012) finds that high 

frequency trading is concentrated in the most liquid securities, the S&P/ASX 200 (the 

largest 200 stocks on the exchange). In the S&P/ASX 50, HFTs buy and sell more during 

times when prices are around the daily average and reduced their participation when 

prices diverged from the daily average. For the S&P/ASX 150-200 (the least liquid 

proportion), HFTs reduced their participation in the market when prices fell of 

increased by around 1.8 to 2 standard deviations from the average price.  

Korajczyk and Murphy (2014) also report that HFTs reduce their supply of 

liquidity during stressful periods. The authors find that HFTs provide significantly more 

liquidity than designated market makers to large institutional trades. Utilising a unique 

data set that provides all orders, trades and trader identities, the authors are able to 

identify designated market makers and HFTs on the Toronto Stock Exchange. In line 

with the findings of ASIC (2012), the authors find that despite HFTs providing more 

liquidity than market makers to larger trades, liquidity provision changes significantly 

when the large trade is considered stressful. When the trading volume of a large trade 

as a proportion of total trading volume is in the upper quintile, the proportion of 

liquidity supplied by HFTs decline significantly. Further, HFTs reduce liquidity provision 

on days in which the stock price is particularly stressful.  

Hu (2013) examines the factors that influence liquidity provision by high 

frequency traders. The author suggests that interactions between HFTs are one reason 

for why HFTs supply less liquidity when markets are volatile. Specifically, the author 

provides evidence that information asymmetry induced by the liquidity consuming 
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strategies undertaken by certain HFTs induces HFTs that engage in market-making 

activities to supply less liquidity.  For example, if a liquidity-providing HFT and a 

liquidity-taking HFT have the same reaction speed on average, then the liquidity-

providing HFT will be faster 50 per cent of the time and vice versa. Half the time, the 

liquidity-taking HFT submits a market-order before the liquidity-providing HFT has had 

a chance to adjust their quotes. At these times, the liquidity-providing HFT has been 

adversely selected. If the liquidity-providing HFT takes this issue into account, the 

trader provide less liquidity on average and will supply even less liquidity as the level 

of information asymmetry increases. Using the NASDAQ-100 Exchange Traded Fund, 

the author finds that information asymmetry increases as volatility increases, resulting 

in HFTs supplying less liquidity.  

Golub et al. (2012) suggest that HFTs that engage in market making activities 

quickly remove their inventory holdings when there is a significant stock price 

movement against their stock position. The authors examine mini flash crashes using 

six years of U.S. stock market data. Mini flash crashes are abrupt and severe flash 

crashes that occur in an extremely short period. The authors use the example of a flash 

crash that occurred on 16th April 2010 in the stock of Goldman Sachs Group, Inc. 

where a -1.9% price change occurred in less than 50 milliseconds. Their analysis of the 

speed and magnitude of the flash crashes suggested that these are caused by HFT 

activity. Their hypothesis is that when a stock price has a distinct price movement, 

market makers receive a significant increase in orders that increase their inventory 

risk. For example, if there is a distinct decline in the stock price, a market maker will 

receive an increase in sell orders, forcing market makers to be the buyers. If the stock 

price continues to decline, the inventory exposure of market makes continues to 
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increase. When the market maker’s risk management limits are breached, comprised 

of the size of the inventory and the unrealised profit and loss, the market maker has 

to stop providing liquidity and aggressively take liquidity by selling back the shares 

purchased previously. For HFTs without affirmative obligations who trade in short 

increments, they do no wait for prices to revert to favourable levels and therefore 

remove their accumulated inventory as quickly as possible. The authors state that this 

action is likely to cause a sharp movement in the stock price.  

The literature examining the order submission strategies on algorithmic 

traders suggest that they engage in both liquidity supplying and consuming strategies. 

The overall impact of these strategies on market quality is uncertain, which is 

examined in the next section.  

 

2.1.4 Theoretical impact of Algorithmic Trading on Market Quality 

 

Cvitanic and Kirilenko (2010) build the first theoretical model to address how HFTrs 

affect market conditions through their order submission strategies. They model an 

electronic market populated by low frequency traders (humans) and add a high 

frequency trader (machine). This machine is assumed to be uninformed, similar to a 

market maker. The advantage of the machine relative to a human trader is its higher 

speed in submitting and cancelling orders. The authors find that the presence of HFTs 

yield transaction prices that differ from the HFT-free price; when a HFTr is present, the 

distribution of transaction prices will have thinner tails and are concentrated near the 

mean. Their second finding is that as humans increase their order submissions, 

intertrade duration decreases and trading volume increases in proportion to higher 
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human order arrival rates. The implication is that the presence of HFTs results in an 

increase in liquidity. Alternatively, Gsell (2008) creates a simulated environment which 

examines the impact that implemented algorithmic trading concepts have on market 

outcomes, which the paper limits to market prices and volatility. The outcome of the 

simulation shows that an increase in high frequency trading had a negative impact on 

market prices, though it significantly reduced volatility.  

Gerig and Michayluk (2010) develop a theoretical model that seeks to explain 

the increasing dominance of algorithmic trading and to understand its effect on the 

market. Their model shows that automated liquidity providers are able to price 

securities more accurately than human market makers. This is because they can trade 

almost instantaneously and can accurately model complex relationships between 

securities. Consequently, automated liquidity providers come to transact the majority 

of trades at prices that are more efficient than provided by human market makers. 

This has a number of positive market effects: informed investors make less profits and 

uninformed investors have smaller losses. This can lead to a situation where 

uninformed investors increase their trading activity, increasing total traded volume 

and lowering overall transaction costs.  

A distinguishing feature of algorithmic trading is that trades are conducted at 

much higher speed and higher frequency relative to other traders on the market. The 

investment time horizon of ATs is therefore a lot shorter. Outside the algorithmic 

trading literature, other work has examined the impact of different investment time 

horizons on market quality. Froot et al. (1992) show that short term speculators 

decrease the informational quality of asset prices. In standard models of informed 

trading, informational externalities are negative; returns to acquiring information falls 
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as other traders possess this information. In contrast, the authors show that a market 

with short-term speculators creates positive informational externalities; as more 

speculators study a piece of information, the information is disseminated into the 

market, impacting the price. Therefore, profits from that information are inversely 

related to how early it is learnt. This leads to a situation where traders ignore some 

fundamental information, which fails to get impounded into the price, leading to a fall 

in price discovery. In contrast to the theoretical predictions of Froot et al. (1992), Vives 

(1995) show that short term speculators can increase or decrease the informational 

efficiency of prices depending on the temporal pattern of information arrival. In the 

model of Vives (1995), short-term trading intensity is a function of the pattern of 

information arrival, with short-term traders reducing price informativeness with 

concentrated arrival of information, and enhances it with diffuse arrival of 

information.  

 

2.1.5 Empirical Tests of the Impact of Algorithmic Trading on Market Quality 

 

The brief literature modelling the potential effect of algorithmic traders on market 

quality provide conflicting outcomes as to whether the effect is positive or negative. 

Consequently, academic research has begun to empirically examine the potential 

impact of algorithmic trading on market dynamics. Despite the growing academic 

interest in this area, the empirical literature concerning algorithmic trading is still brief. 

This is primarily due to data constraints, which are unable to clearly identify trades 

belonging to an algorithmic trader. The studies that do look at the impact of 
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algorithmic trading on market characteristics employ traditional proxies of market 

quality, including bid-ask spreads, market depth, stock volatility and price discovery.  

Employing a unique dataset from Nasdaq OMX that distinguishes between 

high frequency and non-high frequency trades, Brogaard (2010) finds that HFTs have 

a positive impact on market quality, as they improve the price discovery process 

without affecting volatility. Similarly, Castura et al. (2010) show that market quality 

has improved for a broad range of stocks on the Russel 1000 and Russell 200 index, 

coinciding with automation on exchanges. Governed by the theory that an efficient 

stock price should exhibit no serial autocorrelation, the authors report that prices are 

more efficient, finding a reduction in the mean reversion of mid-market quotes. 

However, Castura et al. (2010) don’t show causality between algorithmic trading and 

market quality. Using the implementation of auto-quoting on the NYSE is treated as 

an exogenous instrument for algorithmic trading, Hendershottet et al. (2011) show 

that algorithmic trading improves quoted and effective spreads, but reduces market 

depth. The degree of price discovery that is correlated with trading is shown to 

decrease after the introduction of autoquote, indicating that algorithms respond 

quickly to order flow information and reduce adverse selection in the market. The 

authors interpret these results as indicating that algorithmic trading causally improves 

liquidity.  

Conflicting evidence is presented on the impact of algorithmic trading on 

volatility. Chaboud et al. (2009) find that the correlation between algorithmic trades 

is higher relative to non-algorithmic trades on the foreign exchange market. However, 

the evidence suggests that despite this higher correlation of trades, algorithmic 

trading does not contribute to higher volatility, though it does contribute to improve 
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price discovery. Similarly, Hendershott and Riordan (2011) find that algorithmic 

traders on the Deutchse Bourse closely monitor changes in liquidity and time their 

trades to demand liquidity when it is cheap and supply liquidity when it is expensive, 

moderating movements in prices.  

However, Smith (2010) reveals the increase in algorithmic trading on U.S 

markets has resulted in a marked change in the correlation structure of stock trading, 

leading to an increase in short-term volatility. Smith (2010) examines the Hurst 

exponent of traded value over short time scales (15 minutes or less). The Hurst 

exponent measures the long term memory of a time series, i.e the autocorrelations of 

a time series and the rate at which these decrease as the distance between two values 

increases. The author shows that the increase in the Hurst exponent of U.S stocks 

occurs prominently after the implementation of Order Protection Rule (Rule 611). This 

rule mandates that trades are to automatically trade at the best price offered across 

all exchange venues, and lead to a substantial growth in algorithmic trading. A Hurst 

Exponent greater than 0.5 points towards increasing volatility on the U.S market, as 

more participants in the market generate more volatility, not more predictable 

behaviour.  

HFTs may have a negative impact on liquidity as they may increase the level of 

information asymmetry in the market. Jovanovic and Menkveld (2011) develop a 

theoretical model of algorithmic traders as market makers in electronic limit order 

markets, and assess the effect this role has on investor welfare. In limit-order markets 

without middlemen, newly placed limit orders are either matched with existing limit 

orders or are added to the order book. The placement of a limit order faces the risk 

that the order becomes stale due to the arrival of new information, creating a trading 
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option that may be picked off by a later investor. Traders in limit order markets 

therefore face adverse selection costs, which hampers trading activity. As algorithmic 

trading is the use of computer algorithms to analyse market data and make trades, 

the introduction of ATs to a limit order market may reduce information friction if the 

information between two investor arrivals is hard, machine-processable information. 

Alternatively, ATs may reduce investor welfare if the there is no information friction 

between the early and late investor with respect to hard information. Jovanovic and 

Menkveld (2011) assess the validity of this model using the natural experiment 

provided by the introduction of Chi-X to compete with Euronext. The features of Chi-

X make it attractive to ATs, as it provides a subsidy to a quote that leads to execution, 

relative to Euronext, who charge a fee for price quote changes. The authors find that 

entry of an HFT to the market was accompanied by a 23% reduction in adverse 

selection costs and a 17% increase in trade frequency.   

One issue with determining the effect of HFTs on liquidity is how often they 

demand and supply liquidity in the market. Employing two proprietary datasets from 

Chi-X and Euronext that contain anonymized broker IDs for trades in Dutch index 

stocks, Menkveld (2012) examines the impact of a HFT on these two markets. The 

author identifies a trader that enters both markets simultaneously, who fits the profile 

of an HFT. Menkveld (2012) notes that the entry of the HFT coincided with a 50% fall 

in the bid-ask spread and that the HFT contributed to liquidity across both markets, 

supplying liquidity 80% of the time.  

Even if HFTs act as a market maker on average, one key difference between 

them and designated market makers is that they are under no obligation to supply 

liquidity to the market at all times. Consequently, they may exacerbates volatility and 



52 

 

destabilizes financial markets during periods of heightened volatility. The author tests 

whether volatility causes HFTs to increase or decrease their trading activity. Using 

macro and stock-specific news as exogenous sources of volatility, HFTs tend to 

decrease their liquidity demand during stock specific news periods and tend to take 

more liquidity during macro news periods. Finally, using the natural experiment 

afforded by the removal of a fraction of HFT participants after the short sale ban of 

2008, Brogaard (2011) documents that HFTs reduces intraday volatility.  

Examining the Flash Crash of 6 May, 2009 Kirilenko et al. (2011) hypothesize 

that the Flash Crash occurred as a result of a large sell order that was executed rapidly 

on the E-Mini Index. HFTs contributed to the price decline as they were initial buyers 

of the sell order, but quickly became aggressive net sellers to balance their inventory 

positions. The results show that HFTs exhibit a number of characteristics that can have 

a negative impact on market stability. They exhibit trading patterns inconsistent with 

traditional market makers, trading aggressively in the direction of price changes and 

do not accumulate significant inventory positions. Thus, HFTs do not supply liquidity 

when prices move against their trading position. Furthermore, they can exacerbate 

price movements by competing for liquidity as they try to rebalance their inventory 

positions. 

 

2.1.6 Empirical Tests of Latency and Market Quality  

 

Latency refers to the amount of time it takes to submit and receive feedback about an 

order. Financial markets have witnessed a significant reduction in latency over the last 

couple of decades, driven by exchange co-location services, improved market 
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infrastructure and trade automation. Not surprisingly, algorithmic trading and latency 

are strongly related, with reductions in latency contributing to the growth of 

algorithmic trading. The arguments put forth for and against reduced latency are 

similar to the arguments governing algorithmic trading; increased latency allows 

better monitoring of the market and gives investors the ability to more easily 

rebalance their portfolio to changes in fundamental information, though it can also be 

used to take advantage of the option granted by limit order traders, discouraging 

liquidity provision. Given the relationship between algorithmic trading and latency, 

understanding the effect that reductions in latency have on market quality can provide 

further insight into algorithmic trading.  

A number of studies have examined the effect of trading speed on market 

quality. Riordan and Storkenmaier (2011) use the natural experiment provided by the 

reduction in latency on the Deutchse Bourse in 2002 to test the effect of speed on 

liquidity and price discovery. The authors findings show a decrease in both quoted and 

effective spreads in the post-event period. This decrease was driven primarily by a 

reduction in the adverse selection component of the spread. Similar to the results 

presented by Hendershott et al. (2011), the decline in the adverse selection 

component was partially offset by an increase in the realised spread, suggesting that 

liquidity suppliers were able to increase their revenues after the change. Drawing the 

same conclusion as Hendershott et al. (2011), liquidity suppliers are interpreted as 

being able to increase their revenues due to a reduction in the competition between 

liquidity suppliers. Price efficiency shows a significant improvement in the post-event 

period, with the contribution of quotes to price discovery doubling to 90%. The results 
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of the paper are similar to the empirical literature on algorithmic trading, showing 

reduced latency leads to improvements in market quality.  

The studies reviewed above examine reductions in latency during a period 

where ATs were becoming prominent in the market. Other studies have analysed the 

effect a reduction in latency has on market quality in earlier time periods. Easley et al. 

(2009) examine the impact on stock prices of an upgrade to NYSE’s infrastructure in 

1980. The upgrade consisted of two phases; phase 1 introduced on 14 July, 1980 

improved dissemination of quotes and the reporting of floor transactions to off-floor 

traders and phase 2 introduced a technology upgrade that reduced latency from 2 

minutes pre-upgrade to 20 seconds post-upgrade. The upgrades reduced the trading 

option granted by limit order traders to the specialist on-floor traders. The authors 

hypothesise that because limit order traders require compensation for adverse 

selection, the upgrades should be associated with positive abnormal stock returns. For 

phase 2, the results indicate that the total return over the next 20 days was 4 percent, 

and this excess return result is robust to Fama French, momentum and industry 

factors. A reduction in latency is therefore associated with a reduction in adverse 

selection risk and an improvement in market quality. Analysing trading activity in the 

millisecond environment using Nasdaq order-level data, Hasbrouck and Saar (2012) 

also find that a decline in latency is associated with tighter quoted spreads, increased 

depth, reduced price impact and lower volatility.  

In contrast, Hendershott and Moulton (2011) find that the reduction in latency 

on the NYSE had mixed effects on market quality.  On 24 June, 2007, the NYSE 

converted to a hybrid market system, where trades could take place on the trading 

floor or electronically. The introduction of the Hybrid market reduced the execution 
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time of market orders from 10 seconds to less than a second. Hendershott and 

Moulton (2011) find that the reduction in latency on the NYSE had mixed effects on 

market quality. On average, from the month prior to the stock’s activation date to the 

month after, quoted spreads increase from 7.9 basis points to 8.3 basis points, and 

effective spreads increase from 5.6 basis points to 5.9 basis points. Decomposing the 

spread, the authors report an increase in the adverse selection component of the 

spread. However, the authors also note that price noise dropped after the 

introduction of the Hybrid system, indicating an improvement in price efficiency.  

 

2.2 Order Submission Strategies of Market Makers 

 

Bloomfield et al. (2005) suggests there is no need for a market maker as market 

participants provide liquidity in limit order markets. However, a fundamental issue in 

trading is the asynchronous arrival of buyers and sellers. A mismatch of buyers and 

sellers leads to uncertainty in both the time it takes to complete a trade and the price 

the trade will transact at (Demsetz, 1968). This uncertainty can be mitigated by the 

presence of liquidity suppliers who serve as counterparties to the trade, providing 

immediacy of execution (Venkataraman and Waisburd, 2007). Market makers play an 

integral part in the provision of liquidity in various financial markets, including 

derivative markets. Market making primarily involves the submission of non-

marketable resting orders that provide liquidity to the marketplace at specified prices. 

A market maker’s trading strategy involves quoting both a buy and a sell price for a 

financial instrument or commodity, seeking to profit from the difference between the 

two prices, known as the bid-ask spread. An important component of this strategy is 
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to always quote competitive buy and sell prices, with the intention of buying and 

selling equal components of the financial instrument being traded.  

The market maker’s profits from the bid-ask spread is to offset three kinds of 

market making costs that have been identified in the literature of market 

microstructure; order-processing costs, inventory-holding costs and adverse selection 

costs (Stoll, 1978). Order processing costs involve the fixed cost of market making 

(Demetz, 1968). Demsetz (1968) argues that the bid-ask spread partly compensates 

market makers for the operating costs incurred in providing immediacy. Inventory-

holding costs arise from the market maker managing his/her inventory positions 

(Tinic, 1972, Stoll, 1978, Amihud and Mendelson, 1980, 1982, Ho and Stoll, 1981). 

Adverse selection costs occur as market makers, in supplying liquidity, may trade with 

individuals who are better informed about the true value of the underlying security 

(Bagehot, 1971, Glosten and Milgrom, 1985, Kyle, 1985, Amihud and Mendelson, 

1986, Easley and O’Hara, 1987, Glosten and Harris, 1988, and Admati and Pfleiderer, 

1988). The market maker minimises the costs of inventory and adverse selection costs 

through adjusting their quoted bid and ask prices.  

Inventory-based models of the bid-ask spread concentrate on the risk faced by 

market makers stemming from holding an undiversified portfolio (Tinic, 1972). 

Spreads exist to compensate market makers for the risk of holding unwanted 

inventory (Stoll, 1978, Amihud and Mendelson, 1980, 1982, and Ho and Stoll, 1981, 

1983). This cost is equivalent to the expected difference in revenue from holding a 

well-diversified portfolio (Stoll, 1978). The cost of holding unwanted inventory has 

implications for how spreads change in response to changes in inventory holdings. In 

the model of Amihud and Mendelson (1980), transaction prices result from the 
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execution of randomly arriving sell and buy orders at the market-maker’s bid and ask 

prices. These prices are set so as to move the specialist to a desired inventory position. 

At this desired inventory position, the bid-ask spread is minimized. The authors 

demonstrate that as long as the specialist is managing his inventory, a monopolistic 

specialist will widen spreads from this preferred position as inventory imbalances 

accrue. 

Alternatively, Ho and Stoll (1983) develop an inventory model of a competitive 

dealer market, made up of competing market makers who differ only in their 

inventory positions and risk preferences. According to Ho and Stoll (1983), the 

reservation fee of a market maker depends on his/her risk aversion and inventory 

level. Controlling for risk aversion, a market maker’s quotes become a monotone 

function of his/her inventory level, where market makers with long (short) positions 

post competitive ask (bid) prices. In other words, when an order imbalance occurs that 

moves the market maker away from his/her desired inventory positions, he/she 

adjusts the bid-ask spread to move back to the desired inventory position. 

A number of studies support the inventory-holding models of bid-ask spreads. 

Hansch et al. (1998) undertake an empirical test of Ho and Stoll’s (1983) inventory 

model of competitive dealership markets on the London Stock Exchange (LSE). The 

authors provide empirical evidence supporting the model of Ho and Stoll (1983), 

revealing that a market maker’s inventory position is significantly related to the ability 

of the market maker to execute large trades, changes in quotes are strongly correlated 

to changes in inventories and inventory positions are mean reverting with the strength 

of mean reversion increasing as a function of his/her inventory level.  
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Order-flow imbalances give rise to the inventory holding cost component of 

the bid-ask spread (Stoll, 1978; Ho and Stoll, 1981). The process of equilibrating order 

imbalances may cause the market maker’s inventory position to deviate from optimal 

levels, resulting in an increase in inventory holding costs. Chordia et al. (2003) examine 

the effect of order imbalances on liquidity and market returns on the NYSE. Employing 

the Lee and Ready (1991) algorithm to designate transactions as buyer-initiated or 

seller-initiated, the authors calculate the daily aggregate order imbalance for each 

stock (buy orders less sell orders). The authors find that after an event resulting in a 

large order imbalance, specialists alter the quotes to motivate investors to take the 

other side of the trade, consistent with inventory models of the spread (Stoll, 1978).  

Harris (1990) points out that liquidity has both a price and quantity dimension, 

meaning overall changes in liquidity cannot be determined by analysing one 

dimension alone. Harris (1990) argues that a market maker can adjust his/her liquidity 

by changing both the price dimension (the bid-ask spread) and the quantity dimension 

(the quoted depth). Ye (1995) examines the function of quoted depth in mitigating the 

risk of adverse selection on the part of the market maker. He develops a framework 

for analysing a specialist’s optimal quotation strategy. The author finds that when the 

probability that the specialist is providing liquidity to an informed trader increases, the 

specialist will both widen the spread and reduce depth to protect themselves from 

losses. Similarly, Kavajecz (1999) reveals that a market maker responds to information 

events by adjusting the quoted depth in addition to quoted prices. 

Madhavan and Sofianos (1998) show that designated market makers actively 

monitor their inventory positions, being more likely to be sellers when holding long 

inventory positions and vice versa. Consequently, market makers do not just adjust 
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bid-ask spreads to control their inventory positions, they also selectively time the size 

and direction of their trades. However, Panayides (2007) states that designated 

market makers are most likely to engage in inventory rebalancing when they are not 

constrained by their market making obligations.  

Information-based models are concerned with adverse selection costs faced 

by liquidity providers in the presence of information asymmetry. As liquidity providers 

have less information about the true value of a security relative to informed traders, 

liquidity suppliers can expect to lose money when transacting against informed 

traders (see Bagehot, 1971, Copeland and Galai, 1983, Easley and O'Hara, 1987, and 

Glosten and Milgrom, 1985). Market makers widen spreads to offset the expected cost 

of transacting with informed traders. Copeland and Gelai (1983) argue that the 

dealer's bid-ask spread is a trade-off between expected losses to informed traders and 

expected gains from liquidity traders. The pricing strategy of the dealer is equivalent 

to offering an out-of-the-money option straddle for a fixed number of shares during a 

fixed time interval. The exercise prices of the straddle determine the bid-ask spread, 

with the profit maximizing spread occurring at the point where the expected total 

revenues from liquidity trading balance the expected total losses from informed 

trading. Similar to Copeland and Gelai (1983), Glosten and Milgrom (1985) 

demonstrate that adverse selection gives rise to bid-ask spreads when all other 

transaction costs are zero and dealers are risk neutral and perfectly competitive.  

Easley and O’Hara (1987) provide an alternative explanation to the inventory 

hypothesis of why dealers adjust prices in response to a large incoming order. Under 

the inventory model, large trades force the dealer away from his/her desired 

inventory position, with bid-ask spreads being compensation for bearing this 
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inventory risk. The authors show that as informed traders want to trade, they will 

trade larger amounts at any given price. Large trades are transacted at less favourable 

prices, as market makers try to offset losses when transacting with informed traders. 

 

2.2.1 Market Makers in Option Markets  

 

In the option market, there are unique factors that affect the cost of liquidity provision 

relative to the equity market for market makers. In the options market, managing 

inventory levels are a much bigger problem for market makers relative to the equity 

market. In the model of Biais and Hillion (1994), the reservation buying and selling 

prices depends on the volatility of the underlying security. As a result of the implicit 

leverage of the options market, the volatility of an option position is much larger than 

an equal dollar position in the equities market, causing higher inventory holding costs. 

As discussed by Jamesone and Wilhelm (1992), not only is option volatility larger 

relative to stock volatility, but is dependent upon the underlying stock price. Over a 

particular time period for a stock, if the volatility is constant then the risk per dollar of 

investment is nonstochastic. For options however, the volatility changes with changes 

in the price of the underlying stock, making the risk stochastic. This results in higher 

inventory costs for option market makers.  

The evidence by Lakonishock et al. (2007) suggest that option market makers 

face less control over their inventory positions relative to equity market makers. The 

authors provide detailed descriptive statistics on purchased and written open interest 

and open buy and sell volumes across a number of investor types. For both calls and 

puts, written option positions are more common than purchased positions, leading to 
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an imbalance in order flow that moves the market maker away from his/her optimal 

inventory position. Battalio and Schultz (2011) suggest that other factors impede the 

market maker in managing inventory levels, including options being split over 

numerous strike prices and expiration dates, order flow differing for options at, in or 

out of the money and the option’s time to maturity.  

Market makers in the options market are also likely to face greater adverse 

selection costs relative to equity market makers. If informed investors regard options 

as a superior investment vehicle relative to the underlying stock, then the implied 

stock prices from options are likely to reveal information about the future equilibrium 

value of the observed stock price. Stephan and Whaley (1990) find that both stock 

prices and volumes lead option prices and volumes. The authors claim that the findings 

of Manaster and Rendleman (1982) and Anthony (1998) are seriously undermined 

from the use of closing prices, as the option market closes ten minutes after the stock 

market. The information lead of options may be a result of information that was 

disseminated between the closing times of the two markets. Stephan and Whaley 

(1990) overcome these issues by employing intraday transaction data and examines 

the direct lead/lag relationship between option and stock prices and volumes. The 

authors find that options do not contain information, with stock prices and volumes 

leading option prices and volumes.  

However, a number of studies find that options are informative. Manaster and 

Rendleman (1982) test whether options provide information on future stock values by 

forming portfolios based on the differences between the implied stock price of an 

option and the observed price, and compare the returns earned on the different 

portfolios. The results show that closing option prices contained information that was 
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not contained in stock prices for a period of up to 24 hours. Similarly, Anthony (1998) 

finds that option volume on the Chicago Board of Options Exchange (CBOE) is 

informative, with option volume leads stock trading volume by a one day lag. 

Back’s (1993) model of informed option trading predicts that a component of 

option returns that are independent of the underlying stock return, will exist due to 

the presence of informed trading. Sheikh and Ronn (1994) conjecture that strategic 

behaviour by informed traders will lead to similar patterns in the return series of 

stocks and options. Supporting this hypothesis, Sheikh and Ronn (1994) find a strong 

similarity in both the means of day end stock returns and adjusted option returns, and 

the variances of intraday stock and option returns.  

Easley et al. (1998) investigate the informational role of transaction volumes 

in the options market. In line with the findings of Stephan and Whaley (1990), stock 

price changes lead option volumes whereas option volumes do not lead stock price 

changes. However, when aggregating option trades into positive and negative news 

trades, option trades are shown to be informative, with option volumes leading stock 

price changes. Building on Easley et al. (1998), Chan et al. (2002) suggest that the 

inferred information content of option trades may originate from stock trades, which 

Easley et al. (1998) do not examine. Their results show that stock net trade volume is 

informative for stock and option quote revisions, suggesting informed traders initiate 

trades in the stock market only.  

Charkravarty et al. (2004) provide evidence that option trading contributes to 

the price discovery process in the underlying market. Previous studies examining the 

lead-lag relationship between option and stock prices combine permanent and 

temporary price changes, whereas permanent price changes is the only component 
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that represents information. Employing the price discovery methodology of 

Hasbrouck (1995), the evidence indicates that 17 to 18% of price discovery occurs in 

the options market. Furthermore, price discovery is greater when the ratio of option 

volume to stock volume is high and the option bid-ask spread is narrow relative to 

stock bid-ask spreads.  

The above evidence suggests that market makers in the options market face 

greater inventory and adverse selection costs relative to market makers in equity 

markets. This means that market makers will quote greater spreads in option markets 

relative to equity markets and that changes in quoted prices will also be greater (Cho 

and Engle, 1998, Kaul et al. 2004). 

 

2.2.3 Determinants of Bid-Ask Spreads in Options Market 

 

Jameson and Wilhelm (1992) discuss how market makers face risks that are unique to 

options. These risks include the inability of option market makers to continuously 

rebalance their inventory position and the uncertainty about the return volatility of 

the underlying stock. Employing the inventory model specification of Ho and Stoll 

(1983), the authors find that after controlling for variation in spreads produced by 

costs generally associated with market making, discrete hedge rebalancing (gamma 

risks) and stochastic stock return volatility (vega risks) are not fully diversifiable and 

account for 8% and 4.5% of the option bid-ask spread, respectively. These costs, 

unique to the option market, are given as the reason why option bid-ask spreads are 

greater relative to stocks. George and Longstaff (1993) provide supporting evidence 

for this conclusion, examine the cross-sectional distribution of bid-ask spreads on the 
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S&P 100 index options market. The authors find that the determinants of market 

making costs explain 70 percent of the variation in bid-ask spreads. Specifically, bid-

ask spreads are negatively related to the option’s delta and level of trading activity 

and positively related to the option’s price and time to maturity. Wei and Zheng (2010) 

examine the effect of trading activities on the liquidity of US equity options and come 

to similar conclusions. Several liquidity determinants are found to affect the 

proportional spread, including time to maturity, moneyness, stock return volatility, 

option return volatility, option trading volume and option price. This supports the 

inventory model of option bid-ask spreads, with changes in these liquidity 

determinants altering the market makers inventory risk. 

 In addition to vega and gamma risks, time to maturity will also effect bid-ask 

spread. An option’s term-to-maturity has two opposing effects on its bid-ask spread. 

Market makers face higher gamma and theta risks trading in option contracts with a 

shorter time-to-maturity. However, market makers face higher credit risks holding 

longer term options, which may cause them to widen spreads as compensation for the 

higher credit risk exposure. Chong et al. (2003) show option bid-ask spreads to be 

negatively related to their term-to-maturity. This result holds after controlling for 

competition, trading activity and price. The results suggest a market risk effect in 

trading shorter term contracts, as market makers are exposed to greater theta and 

gamma risks. 

Cho and Engle (1999) proposed a new theory called “derivative hedge theory” 

in which bid-ask spreads in the option market are determined by option activity and 

activity in the underlying stock. If market makers in derivative markets can perfectly 

hedge their position using the underlying security, then spreads in the option market 
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will be determined by spreads in the underlying market. Examining S&P 100 index 

options, the authors find that option market spreads are positively related to spreads 

in the underlying market, supporting their derivative hedge theory. Option market 

duration does not affect bid-ask spreads, with slow and fast markets leading to wider 

spreads. As inventory costs predicts wide spreads in slow markets and information 

asymmetry predicts wider spreads in slow markets, neither outcome would occur if 

the underlying market provided a perfect hedge. The authors conclude that the 

market maker is only able to imperfectly hedge his/her position in the underlying 

securities market.  

However, Kaul et al. (2004) argue that the derivative hedge theory of Cho and 

Engle (1999) accounted for the initial hedging cost only. That is, the percentage delta 

is related to the cost of setting up the hedge position, but this does not account for 

rebalancing costs. The authors calculate rebalancing costs as proportional to vega 

multiplied by the spread of the underlying stock. Their results imply a large proportion 

of the bid-ask spread is attributable to inventory management costs; 50% attributable 

to setting up a delta neutral position and 6.93% associated with discrete rebalancing. 

Similar results are found by Patrella (2006), who develops a model of the option bid-

ask spread that incorporates a reservation bid-ask spread applied by market makers 

to protect themselves from scalpers. In line with Kaul et al. (2004), the model includes 

the main determinants of option market making costs, including initial hedging, 

rebalancing and order-processing costs. Examining a sample of covered warrants on 

the Italian Stock Exchange, the model explains 64% of the total variation in bid-ask 

spreads, and that the inclusion of the reservation spread increases the explanatory 

power of the model from 20 to 54 percentage points. Engle and Neri (2010) however 
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state that the cost of rebalancing the hedging position is proportional both to gamma 

and to the volatility of the underlying stock. Employing a significantly greater dataset 

than both prior studies by examining the whole US options market, the authors find 

that these three costs account for a significant proportion of the bid-ask spread. 

In addition to hedging costs, spreads may also be affected by informed trading. 

The literature provides conflicting evidence on the adverse selection component on 

the bid-ask spread. Vijh (1990) is the first to examine the relationship between 

information asymmetry and bid-ask spreads on the CBOE. He argues that the greater 

implicit leverage of options relative to equities attracts both informed and noise 

traders. Results show price effects are absent surrounding large option trades, 

providing evidence against informed option trading. Examining the adverse selection 

component of the bid-ask spread, results show information asymmetry to be an 

insignificant determinant of option spreads. Similar results are found by Neal (1992), 

who calculates the adverse selection component of the bid-ask spread using the 

method of Glosten and Harris (1988). He finds that adverse selection is an insignificant 

determinant of the bid-ask spread, accounting for 3% of the average spread.  

Conversely, Ahn et al. (2008) test the level of informed trading on the KOPSI 

200 Index options traded on the Korean Exchange using the spread decomposition 

model developed by Madhaven et al. (1997). Estimating the adverse selection 

component of the bid-ask spread, the authors find that information asymmetry 

accounts for 34.99% of the bid-ask spread for call options and 39.14% of the bid-ask 

spread for put options. The authors find that adverse selection costs are positively 

related with option delta.   
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Bartram et al. (2008) also show that informed traders are attracted to the 

options market, by assessing the impact of adverse selection on option bid-ask spreads 

by examining two markets with different levels of information asymmetry. The 

authors compare the EuRex, a traditional derivatives exchange, with EuWax which 

specializes in bank-issued options. The level of adverse selection is lower on the 

EuWax as market makers know the identity of the investors with whom they trade. In 

contrast to Vijh (1990) and Neal (1992), the results from comparing similar option 

contracts across both markets show that bid-ask spreads on the EuWax are tighter 

(4.2%) compared to bid-ask spreads on the EuRex (8.8%). The authors also reveal that 

inventory costs are a significant determinant of bid-ask spreads. Ask prices on EuWax 

are systematically higher than on EuRex, which is consistent with the idea that market 

makers are unable to control their inventory and incur hedging costs to cover their net 

short positions.   

Extending the results of Vijh (1990) and Neal (1992), Lee and Yi (2001) suggest 

that informed trading may only be important for some trade types. They find that 

informed trading in the options market is primarily driven by small investors, with the 

adverse selection component of the bid-ask spread on the CBOE greater than on the 

NYSE, with the opposite result found for large trades. This suggests that there are 

some investors who prefer to trade in options relative to stocks, with option markets 

playing an important role in the price discovery process. The authors also show that 

adverse selection costs are negatively related to the option’s delta, implying that 

options with greater leverage attract greater levels of informed trading.  
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2.2.4 Option Trading Strategies 

 

Option strategies involve the purchase and/or sale of different call options at the same 

time. Despite the significant market microstructure literature covering option 

markets, there are a scant number of studies examining option strategies. This is 

surprising, given the importance of strategy trades in option markets. Chaput and 

Ederington (2003) document the use of option strategies by traders for options on 

Eurodollar Futures. The authors find that spread and combination trading collectively 

account for over 55% of large trades in the Eurodollar options market and almost 75% 

of the trading volume due to large trades. The four most heavily traded combinations 

are straddles, ratio spreads, vertical spreads and strangles, representing about two 

thirds of all strategy trades. The authors find that effective bid-ask spreads are higher 

on orders exceeding 500 contracts and on combinations that short volatility.  

Fahlenbrach and Sandas (2010) study trading in option strategies using a 

sample covering all strategy and individual option trades on the FTSE-100 Index. They 

find strategy trades represent 37% of all option trades and account for 75% of the 

number of contracts traded. The authors document that the most actively traded 

combinations are strangles, straddles, bull and bear spreads, calendar spreads and 

covered calls and puts. Furthermore, the most popular strategy trades are delta 

neutral trades that have exposure to volatility. Volatility trades, with little or no delta 

exposure that consists of only option trades, are found to have information about the 

future volatility of the underlying stock. However, the authors find that volatility 

trades consisting of both options and futures, do not contain information about future 

volatility, as these trades are likely used for hedging reasons. Directional option 
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strategies, which are long or short delta with little or no vega exposure, do not contain 

information about future returns. The results suggest that informed traders use 

volatility strategies, not directional strategies.  

 

2.2.5 Market Makers and Intraday Patterns in Liquidity 

 

A number of studies examine how market makers account for inventory imbalances 

and how this affects the intraday variation in liquidity. Transaction demand at the 

opening is greater and less elastic as a result of new overnight information, changing 

the investors’ optimal portfolio. Inelastic demand at the close results from the 

imminent non-trading period leading to different optimal portfolios relative to the 

continuous trading period. On a specialist market, a specialist is designated by the 

exchange to make a market in a particular security. This allows the monopolist market 

maker to charge higher prices at these periods of heavy and inelastic demand. Brock 

and Kleidon’s (1992) show that this model predicts high volume at the open and close 

of trading, which is contemporaneously associated with wide spreads.  

McInish and Wood (1992) examine the intraday behaviour of time-weighted 

bid-ask spreads on the NYSE. Examining minute-by-minute spreads across the trading 

day, spreads are found to be highest near the open of trading, declines over the course 

of the trading day and increases near the close of trading. The authors also split the 

day into 13 half hour intervals. Using a linear regression model, spreads are found to 

be significantly related to trading activity, risk, information content and competition. 

Including time dummies into the regression, parameter estimates of the dummy 

variables for each interval reveal spreads are higher at the start and end of the trading 
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day relative to the interim period. The results support the contention of Brock and 

Kleidon (1992) that wide spreads at the open and close are driven by the inelastic 

demand of investors.  

The monopolistic power of the specialist on the NYSE allows them to widen the 

bid-ask spread in response to the inelastic demand of investors. However, when 

market markers have to compete with one another on a competitive dealer market, 

bid-ask spreads do not widen at the close despite inelastic demand. Chan et al. (1995a) 

show that spreads on the Chicago Board Options Exchange (a competitive dealer 

market) are narrow at the close of trading relative to the NYSE. The reason for this is 

that at the close of trading, inventory effects are particularly acute at the close of 

trading, as dealers face the risk of holding undesired inventory overnight. This can lead 

the market maker with long positions to decrease both their bid and ask prices 

(making ask quotes more competitive and bid quotes less competitive) to attract buy 

orders, while short positions lead to an increase in bid and ask quotes. This results in 

a narrowing of the inside spread (the highest bid price and lowest ask price) near the 

close of trading. In an analysis of intraday patterns in bid-ask spreads on the Nasdaq 

(a competitive dealer market), Chan et al. (1995b) the authors report that inside 

spreads on the Nasdaq narrow significantly near the close of trading and that this 

arises from a minority of dealers moving within the spread. 

Lee et al. (1993) posit the impossibility of making inferences about liquidity 

changes on the basis of spreads or depth alone. The authors illustrate with a simple 

pricing function of a dealer using ordered pairs of the ask-price and ask-size and bid-

price and bid-size that the combination of the spread and depth is needed to infer 

overall changes in liquidity. A simple examination of the bid-ask spread can therefore 
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be misleading in inferring patterns in liquidity without also examining changes in 

quoted depth. Lee et al. (1993) test the general relation between spreads, depth and 

volume on the NYSE as well as testing the relation between these three variables 

conditioned on an information event; quarterly earnings announcements. The authors 

find that traded volume and bid-ask spreads follow an intraday U-shaped pattern 

while quoted depth follows a reverse U-shaped pattern. Results show that bid-ask 

spreads widen and quoted depth decreases after periods of high trading volume. 

Lee, Mucklow and Ready (1993) posit the impossibility of making inferences 

about liquidity changes on the basis of spreads or depth alone. The authors illustrate 

with a simple pricing function of a dealer using ordered pairs of the ask-price and ask-

size and bid-price and bid-size that the combination of the spread and depth is needed 

to infer overall changes in liquidity. A simple examination of the bid-ask spread can 

therefore be misleading in inferring intraday liquidity patterns without also examining 

changes in quoted depth. Lee, Mucklow and Ready (1993) test the general relation 

between spreads, depth and volume on the NYSE as well as testing the relation 

between these three variables conditioned on an information event; quarterly 

earnings announcements. The authors find that traded volume and bid-ask spreads 

follow an intraday U-shaped pattern while quoted depth follows a reverse U-shaped 

pattern. Results show that bid-ask spreads widen and quoted depth decreases after 

periods of high trading volume. 

In a test of the inventory model of Ho and Stoll (1983), Chung and Zhao (2004a) 

analyse the quote revision behaviour of Nasdaq market makers by examining their 

inter-temporal changes in both spread and depth quotes. The authors find that the 

intraday variation in the number of quoted revisions follows a U-shaped pattern, 
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indicating liquidity management is higher around the open and close of trading 

relative to the middle of the day. They attribute the high number of quote revisions 

during the last hour of trading as consistent with inventory models such as Amihud 

and Mendelson (1980) and Ho and Stoll (1983), with the large number of quote 

revisions reflecting the market maker’s attempt to seek desired order flows. 

 

2.7 Summary  

 

This chapter reviews the literature concerned with order placement strategies across 

limit order driven markets and markets with a designated market maker that will be 

used to inform several hypotheses that are tested in the following chapters. The first 

essay assesses the effect of a tick size change on market quality in a futures market 

setting. The second essay examines the impact of algorithmic trading on market 

quality on the ASX. The third essay analyses the execution costs of option strategies 

and their determinants on the Australian Options Market. The fourth essay documents 

intraday patterns in liquidity on the Nasdaq.  

 

  



73 

 

Chapter 3: Market Quality Surrounding a Tick Size Increase  

3.1 Introduction 

 

The literature reviewed in Section 2.4 provides mixed conclusions with respect to the 

impact of a tick size change on market quality. The literature examining reductions in 

the minimum price increment find that bid-ask spreads decline in the post-event 

period. However, the evidence indicates that quoted depth increases after a reduction 

in the tick size. An issue with these studies therefore is determining which of the two 

changes has the greatest impact on liquidity. The literature on this issue studies the 

impact of a tick size reduction; the effect of a tick size increase is yet to be examined.  

The objective of this essay is to bridge this gap in the literature by investigating 

a tick size increase in a futures market setting. More specifically, this essay examines 

the impact of increasing the tick size on market quality using the 3-Year Treasury bond 

futures (“3Y T-bond”) on the Sydney Futures Exchange (SFE) and the 5-Year Euro Bobl 

futures (“5Y Bob1”) on the Eurex. The remainder of this chapter is structured as 

follows. Section 3.2 presents the data. Section 3.3 outlines the research design and 

presents the empirical results. Section 3.4 summarises the chapter. 

 

3.2 Hypotheses on Minimum Price Increment 

 

The tick size is the smallest increment that a trading price can move and acts as the 

lower bound of the bid-ask spread. As discussed in Section 2.3.1, the relationship 
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between tick size adjustments and liquidity is a contentious issue, with disagreement 

occurring on what constitutes an optimal tick size. For instance, Cordella and Foucault 

(1999) establish that transaction costs are not minimized by setting the minimum tick 

to zero. Consider a liquidity supplier who observes the competitive price (the price 

equaling the expected asset value rounded to the nearest tick) is below the current 

best price. In the presence of a minimum tick regime, this trader has the option to 

either post at the competitive price or post one tick below the current best price. A 

larger tick size creates a bigger wedge between the competitive price and the 

expected asset value, providing a greater profit to the trader. This results in liquidity 

suppliers being more willing to post at the competitive price, leading to a quicker price 

adjustment. The larger tick size therefore does not necessarily increase transaction 

costs for liquidity demanders. Whether a change in the tick size increases or decreases 

liquidity is dependent upon its effect on both bid-ask spreads and quoted depth.  

In a competitive market, a reduction in the minimum price increment allows 

liquidity suppliers to post competitive quotes, leading to a reduction in the bid-ask 

spread. This is particularly the case if the minimum tick acts as a binding constraint, 

which occurs when the bid-ask spread is equal to one tick. Kurov and Zabotina (2005) 

argue that a binding minimum tick indicates the tick size is above its competitive level, 

which impedes price competition. In this situation, a limit order that improves the 

current price becomes a market order. A trader that wishes to earn the bid-ask spread 

must place a limit order at the current best price, which due to price-time priority 

rules, places the trader’s order at the end of the queue. The minimum tick prevents 

the trader from increasing his/her probability of execution through narrowing the 

spread, causing bid-ask spreads to be higher in the presence of a minimum tick size 
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than without. If the tick size is binding, a reduction in the tick-size will therefore lead 

to a reduction in bid-ask spreads. The evidence from prior literature suggests that bid-

ask spreads tighten after a reduction in the minimum tick (see Goldstein and Kavajecz, 

2000, Jones and Lipson 2001, Bessembinder 2003, ap Gwilym et al 2005).  

Conversely, an increase in the minimum tick may lead to an increase in the bid-

ask spread. However, this depends on whether the new tick size causes artificially wide 

bid-ask spreads. Bourghelle and Declerck (2004) report that a coarser pricing grid on 

the Paris Bourse does not result in higher bid-ask spreads as the proportion of one tick 

spreads is about 10% prior to the tick size reduction. The empirical evidence on the 

tick size in futures markets shows that a high percentage of bid-ask spreads trade at 

the minimum tick. In a study of the UK Long Gilt Futures, ap Gwilym et al. find that 

over 96% of quoted spreads under fractional pricing and 79% of bid-ask spreads under 

decimal pricing trade at the minimum tick.  

 

Hypothesis3.1: Bid-ask spreads will increase after the increase in minimum tick 

 

An increase in the minimum tick increases the premium paid to liquidity suppliers for 

providing liquidity to the market. The increase in liquidity supplier revenues may 

encourage greater participation by liquidity suppliers on the exchange. If the minimum 

tick is a binding constraint on the spread, spreads are artificially inflated making it 

profitable to submit limit orders. Grossman and Miller (1988) contend that dealers can 

more easily cover their fixed costs under a large minimum tick regime, thereby 

encouraging dealer participation on the exchange which increases liquidity.  
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An increase in the minimum tick has implication for market depth at the best 

quotes and throughout the limit order book. Liquidity suppliers who previously posted 

limit orders outside the best quotes may choose to place their order at the best bid 

and ask prices, leading to an increase in quoted depth at the best quotes. Lau and 

McInish (1995) and Goldstein and Kavajecz (2000) argue that a tick size reduction 

causes liquidity providers to reduce depth at the best quotes and away from the best 

quotes. Under a tick increase, as the cost of liquidity has risen, liquidity demanders 

may now choose to place limit orders instead of market orders leading to an increase 

in cumulative depth.  

A larger tick size may also make investors more willing to expose orders. For 

instance, Harris (1991) argues a coarse pricing grid enforces time priority by acting as 

a disincentive to step ahead of the current quote, thereby encouraging traders to post 

liquidity. The following hypothesis predicts the increase in the tick size will lead to 

higher depth at the best quotes and throughout the limit order book.  

 

Hypothesis3.2: Quoted depth will be larger at the best bid and ask quotes after the 

increase in minimum tick 

 

Hypothesis3.3: Total quoted depth visible in the limit order book will larger after the 

increase in minimum tick 

 

Lee et al. (1993) note that studies examining liquidity provision need to simultaneously 

examine changes in both spreads and depth. Prior literature has consistently 

documented reduced spreads and depth after a tick size reduction. A change in tick 
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size therefore has opposing effects on liquidity, leading to difficulty in estimating the 

effect of the tick size change on market quality. Several studies have examined the 

overall impact of the tick size change on liquidity. Bacidore (1997) finds that execution 

costs on the Toronto exchange decline after the reduction in the minimum tick. 

Goldstein and Kavajecz (2000) report the combined effect of reduced bid-ask spreads 

and quoted depth benefited small orders but increased the transaction costs of large 

orders. In contrast, Bessembinder (2003a) report reduced transaction costs for both 

small and large traders. Using the Aitken and Comerton-Forde (2003) measure of 

liquidity, Aitken and Comerton-Forde (2005) find a lower tick size results in a 

significant increase in liquidity. An important determinant of the impact of a tick size 

increase on liquidity is the proportion of trades executed at the best quotes. If before 

the change a high proportion of trades are executed within the best quotes, an 

increase in market depth may not reduce transaction costs as sufficient depth to 

transact against already exists. Alampieski and Lepone (2009) report that 99 percent 

of all trades are executed against the best prevailing quotes and all trades are 

executed within the best two quotes on the SFE.  This leads to the following hypothesis.  

 

Hypothesis3.4: An increase in the tick size will lead to a reduction in the level of market 

liquidity.   

 

3.3 Eurex and Sydney Futures Exchange 

 

Eurex is Europe's largest futures and options exchange. The Sydney Futures Exchange 

(SFE) is the largest futures exchange in the Asia-Pacific Region. Trading on both the 
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SFE and the Eurex operates through a fully automated electronic limit order book. The 

two main trader types, local participants and full participants, enter orders directly 

into the order-book with trades taking place based on price and time precedence 

rules. 

The 3-Year Treasury bond futures (“3Y T-bond”), 10-Year Treasury bond 

futures (“10Y T-bond”) and the 5-Year Euro Bobl futures (“5Y Bob1) and the 10-Year 

Euro bund futures (“10Y Bund) follow a quarterly expiration cycle. For the 3Y T-bond 

and 10Y T-bond futures, contracts expire on the 15th of March, June, September, and 

December with settlement occurring three days before expiration. Both bonds have 

face values of AUD 100,000 and are quoted on a “100-yield” basis (yield deducted 

from an index of 100.00). The trading hours for both contracts are between 8:30 and 

16:30 hours for daytime trading and 17:10 and 7:00 hours for night time trading during 

US daylight savings time.1 The delivery date for the 5Y Bobl and 10Y Bund contracts 

falls on the tenth calendar day of the respective quarterly month. Both bonds have 

face values of EUR 100,000 and are quoted on a “100-yield” basis. Trading hours for 

both contracts are between 8:00 and 22:00 hours. 

The 3Y T-bond contracts has a minimum tick of 0.5 basis points and pre-trade 

transparency of five levels either side of the limit order-book before May 11, 2009 and 

a minimum tick of 1 basis point after that date and pre-trade transparency of three 

levels either side of the limit order-book. The 5Y Bob1 contracts have a minimum tick 

of 0.5 basis points before June 15, 2009 and a minimum tick of 1 basis points after that 

date and pre-trade transparency of ten levels either side of the limit order-book. The 

                                                 
1 Trading is between 17:10 and 7:10 hours for night time trading during US non daylight savings time. 
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10Y T-bond contracts have a minimum tick of 0.5 basis points and pre-trade 

transparency of five levels either side of the limit order-book and the 10Y Bund has a 

minimum tick of 0.5 basis points and pre-trade transparency of ten levels either side 

of the limit order-book. On both the SFE and Eurex, traders can view in real time prices 

and order volume on each side of the order book and the traded volume and price of 

each trade that occurs. Trading identity however is anonymous as broker mnemonics 

are not visible. 
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3.3 Data 

 

The data used in this study are provided by Securities Industry Research Centre of Asia 

Pacific (SIRCA) and contain a record describing each transaction, including the contract 

code, date, time, price, and volume. The data also provide the prices and volumes of 

prevailing bid and ask quotes throughout the limit order-book, which are time-

stamped to the nearest second. On May 11, 2009, the SFE increased the minimum tick 

size from 0.5 to 1 basis-point for the 3Y T-bond contract.2 The increase in tick size from 

0.5 to 1 basis-point for the 5Y Bob1 contract occurred on June 15, 2009. 

To examine the impact of the increase in minimum tick on market quality, we 

examine two subsamples three months before and after the change. For the 3Y T-

bond, the pre-period is 13 May, 2008 to 13 August, 2008 and the post-period is May 

13, 2009 to August 13, 2009. For the 5Y Bob1, the pre-event sample period extends 

from 17 June, 2008 to 17 September, 2008 and the post-event sample period extends 

from June 17, 2009 to September 17, 2009. The day of the change is excluded for both 

events. In line with Frino and McKenzie (2002) who find abnormal levels of liquidity 

motivated trading near expiry, this study excludes the five days prior to expiration. In 

line with Bortoli et al. (2006), analysis is restricted to the nearest to expiry contract 

only. 

 

  

                                                 
2 The change in tick size on May 11, 2009 coincided with a reduction in the visibility of the order book 

in the 3-Year bond futures from five to three price levels. 
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3.4 Research Design and Empirical Results 

 

Changes in liquidity before and after the increase in minimum tick may reflect changes 

in market conditions as opposed to the change in tick size. To control for this 

possibility, the 10Y T-bond and 10Y Bund contracts are used as control contracts. The 

two futures contracts on each exchange are regarded as potential substitutes as they 

trade on the same platform during the same hours, with underlying assets being risk-

free government bonds. The minimum tick size of 0.5 basis points and the level of 

transparency of 5 price levels on each side of the order-book for the 10Y T-bond 

remained constant over the sample period. The tick size and the level of transparency 

also remains constant for the 10Y Bund, with a minimum tick size of 1 basis point and 

transparency of 10 price levels either side of the order book. 

In an analysis of the Sydney Futures Markets, Alampieski and Lepone (2009) 

state that market activity, volatility, and trading in interest rate futures contracts 

follow seasonal patterns. As a result, the impact of an increase in transparency may 

be indistinguishable from seasonal trading patterns. To further ensure the change in 

liquidity results from the increase in the minimum tick and not the impact of 

seasonality in trading, a year-on-year analysis is conducted. The post period is 

compared to the period 13 May, 2008 to 13 August, 2008 for the 3Y T-bond and 17 

June, 2008 to 17 September, 2008 for the 5Y Bob1. 

The variables used to assess changes in market quality after the transition are 

the bid-ask spread, quoted depth, traded volume, and volatility. The bid-ask spread 

is calculated using two measures. Following Frino et al. (2008), the first is the 

absolute bid-ask spread in points, measured as the ask-price minus the bid-price. 

https://www.researchonline.mq.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Alampieski%2C+Kiril%22&amp;f1=sm_subject%3A%22Bid-ask+spreads%22&amp;f0=sm_creator%3A%22Lepone%2C+Andrew%22
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Following Alampieski and Lepone (2009), the second measure employed divides the 

absolute bid-ask spread by the minimum tick. The bid-ask spread is sampled over 5-

minute intervals for the day trading sessions and then averaged over each trading 

session. 

Lee et al. (1993) establish that an examination of liquidity must involve an 

analysis of both spreads and depth. Harris suggests that a tick size increase may reduce 

the with Harris (1994) arguing that changes in liquidity can only be determined by 

assessing changes in depth throughout the limit order book. Goldstein and Kavajecz 

(2000) note that an analysis of depth at the best prices omits valuable information as 

to whether the change in tick size results in a sufficient change to cumulative depth to 

change the transaction costs of large orders. Alternatively, Cao et al. (2009) find that 

order book information beyond the best quotes is moderately informative. 

Consequently, quoted depth is examined using two measures; best depth and total 

depth. Best depth is defined as the combined volume of shares available at both the 

best bid price and best ask price at the end of each interval. Total depth is the sum of 

the volume of contracts at each bid and ask price throughout the visible limit-order 

book at the end of each interval. Similar to bid-ask spreads, best and total depth are 

sampled over 5-minute intervals for the day and then averaged over each trading day.  

Traded volume is included as a measure of market quality because if 

transaction costs increase, trade volume should decrease (Harris, 1994). This is 

because a higher bid-ask spread would increase the cost associated with trading as 

the spread is a transaction cost paid by liquidity suppliers (Harris, 2003). Trading 

volume is calculated as the total number of shares traded during the trading session.  

Schwartz (1993) defines volatility as unexpected changes in prices. The tick size can 

https://www.researchonline.mq.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Alampieski%2C+Kiril%22&amp;f1=sm_subject%3A%22Bid-ask+spreads%22&amp;f0=sm_creator%3A%22Lepone%2C+Andrew%22
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effect volatility as prices deviate from fundamental value. A greater tick size will 

increase this difference between price and value. Volatility is measured as the natural 

logarithm of the highest traded price divided by the lowest traded price for each 

trading session. 

 

3.3.1 Univariate Analysis 

 

Table 3-1 provides descriptive statistics of the market quality indicators surrounding 

the structural transitions for both event (3Y T-bond and 5Y Bobl) and control (10Y T-

bond and 10Y bund) contracts. Prior literature including Ahn et al., (1996, 1998), 

Goldstein and Kavajecz (2000) and Aitken and Comerton-Forde (2005) indicate 

reductions in the minimum tick lead to lower bid -ask spreads. In line with these 

findings, there is a significant increase of 0.0050 (0.0046) basis points in the bid-ask 

spread for the 3Y T-bond (5Y Bob1) contracts. For the control for 3Y T-bond (i.e., 10Y 

T-bond), bid-ask spreads decline significantly at the 1% level, while those for the 

control for 5Y Bob1 (i.e., 10Y Bund) increase significantly at the 1% level. Supporting 

the prediction of hypothesis H3,1, results suggest that the increase in the bid-ask spread 

for the 3Y T-bond is due to the tick-size increase since the market for the 10Y T-bond 

contracts experiences the opposite change. This is in line with a number of These are 

in line with a number of studies showing that tick size reductions are associated with 

lower bid-ask spreads. With respect to the 5Y Bob1 contract, the increase in the bid-

ask spread could result from a market-wide change as bid-ask spreads for the 5Y Bob1 

and 10Y Bund change in the same direction, in contradiction to hypothesis H3,1. 
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Bid-ask spreads per minimum tick for the 3Y T-bond (5Y Bob1) contracts 

decrease by 0.028 (0.128) ticks, which is significant at the 1% level. For the 10Y T-bond, 

bid-ask spreads per minimum tick decline significantly at the 1% level, while those for 

the 10Y Bund increase significantly at the 1% level. As opposed to the bid-ask spread 

results, only the change in the 5Y Bob1 bid-ask spread per minimum tick can be 

attributed to the tick size increase since the change for the 10Y Bund occurs in the 

opposite direction. In regards to the bid-ask spread per minimum tick for the 3Y T-

bond, it is not possible to conclude whether the tick size increase is the cause of the 

decrease as the control contract (i.e., 10Y T-bond) experiences a qualitatively similar 

change. 

  



85 

 

Table 3-1 

Descriptive Statistics 

 
This table present descriptive statistics for measures of market liquidity surrounding the increase in 

minimum tick for the 3Y T-bond and the 5Y Bob1 contracts. The tick size of the 3Y T-bond contracts was 

increased from half to a full-basis point on May 11, 2009. The pre-event sample period extends from 

13 May, 2008 to 13 August, 2008. The post-event sample period extends from 13 May, 2009 to 13 

August, 2009. The tick size of the 5Y Bob1 contracts was increased from half to a full-basis point on June 

15, 2009. The pre-event sample period extends from 17 June, 2008 to 17 September, 2008. The post-

event sample period extends from 17 June, 2009 to 17 September, 2009. Bid-ask spreads and depth are 

sampled every 5 minutes (15 minutes) and then averaged for each day. Bid-Ask Spread is the best ask 

price minus the best bid price in contract points. BAS is calculated as the bid-ask spread divided by the 

minimum tick. Best Depth is the aggregate order volume at the best bid and best ask price. Total depth 

is the aggregate order volume throughout the limit-order book. Volatility is the natural logarithm of the 

highest traded price divided by the lowest traded price for each day. Volume is the average daily traded 

volume. * indicates statistical significance at the 5% level. ** indicates statistical significance at the 1% 

level. 

 

Panel A: SFE 

 

3Y T-bond 

(Event Contract)  

10Y T-bond 

(Control Contract) 

 Pre Post Post - Pre  Pre Post Post - Pre 

Bid-Ask Spread 0.0052 0.0102 0.0050**  0.0053 0.0052 -0.0001** 

BAS 1.043 1.015 -0.028**  1.059 1.034 -0.025** 

Best Depth 531 1,179 648**  192 148 -44** 

Total Depth 3,471 4,686 1,215**  1,227 865 -362** 

Volatility 0.0860 0.1008 0.0148*  0.0860 0.0921 0.0061* 

Volume 48,939 51,461 2,522  19,662 15,356 -4,306** 

Panel B: Eurex 

 

5Y Bob1 

(Event Contract)  

10Y Bund 

(Control Contract) 

 Pre Post Post - Pre  Pre Post Post - Pre 

Bid-Ask Spread 0.0059 0.0105 0.0046**  0.0105 0.0107 0.0002** 

BAS 1.176 1.051 -0.125**  1.052 1.069 0.017** 

Best Depth 259 651 392**  375 335 -40** 

Total Depth 3,719 9,889 6,170**  7,128 6,029 -1,099** 

Volatility 0.4819 0.3653 -0.1166**  0.6721 0.5691 -0.1030** 

Volume 491,517 315,963 -175,554**  794,117 588,931 -205,186** 

 

Harris (1994) predicted a reduction in the tick size would decrease quoted depth as 

liquidity provision is less profitable and more risky. In line with this prediction, quoted 

depths at both the best quotes and throughout the limit order book increase for the 

3Y T-bond (an increase of 648 (1,215) contracts for best (total) depth) and 5Y Bob1 

contracts (an increase of 392 (6,170) contracts for best (total) depth), in contrast to 
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the control contracts where both best and total depth levels decline: a reduction of 

44 (362) contracts for best (total) depth in the 10Y T-bond and that of 40 (1,099) 

contracts for best (total) depth in the 10Y Bund. All changes in (both best and total) 

quoted depths reported in Table 3-1 are statistically significant at the 1% level. This is 

line with the predictions of the second hypothesis. In contrast to the results for bid-

ask spreads and bid-spreads per minimum tick, results clearly indicates that the 

increases in (both best and total) quoted depths for the two event contracts are due 

to the tick size increase rather than a market-wide event, as the changes for the 

corresponding control contracts are in the opposite direction. 

Table 3-1 also reports changes in trading volume and volatility surrounding the 

tick size increase. Trading volume is significantly higher for the 3Y T-bond, but is 

significantly lower for the 10Y T-bond, while volatility is significantly higher across both 

contracts. However, these are in line with the changes in the control contract, 

suggesting that the change in tick size has not had an impact on traded volume. For 

example, Ahn et al. (2007) finds no increase in volume on the Tokyo Stock Exchange 

following the 1997 tick reduction. There is a significant decline in traded volume and 

volatility for the 5Y Bob1 and 10Y Bund contracts.  

 

3.1.2 Multivariate Analysis 

 

As documented by Chordia et al. (2000), changes in market quality measures such as 

bid-ask spreads and quoted depth are associated with changes in market-wide 

liquidity factors. To better isolate the impact of the tick size increase on bid-ask 
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spreads and quoted depth, the following regressions (“market wide regressions”, 

hereafter) are estimated: 

 𝐵𝐴𝑆𝑖 = 𝛼0 + 𝛼1𝐶ℎ𝑎𝑛𝑔𝑒𝑖 + 𝛼2𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝐴𝑆𝑖 + 𝜀𝑖                     𝐿𝑛(𝐵𝑒𝑠𝑡𝐷𝑒𝑝𝑡ℎ)𝑖 = 𝛼0 + 𝛼1𝐶ℎ𝑎𝑛𝑔𝑒𝑖 + 𝛼2𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝑒𝑠𝑡𝐷𝑒𝑝𝑡ℎ𝑖) + 𝜀𝑖  𝐿𝑛(𝑇𝑜𝑎𝑙𝐷𝑒𝑝𝑡ℎ)𝑖 = 𝛼0 + 𝛼1𝐶ℎ𝑎𝑛𝑔𝑒𝑖 + 𝛼2𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ𝑖) + 𝜀𝑖 
 

where 𝐶ℎ𝑎𝑛𝑔𝑒𝑖 is a dummy variable assigned the value of one if the observation is 

taken from the post-event sample and zero otherwise. 𝐵𝐴𝑆𝑖 is the bid-ask 

spread, 𝐿𝑛(𝐵𝑒𝑠𝑡𝐷𝑒𝑝𝑡ℎ)𝑖  is the logarithm of the aggregate order volume at the best 

bid and best ask price, and 𝐿𝑛(𝑇𝑜𝑎𝑙𝐷𝑒𝑝𝑡ℎ)𝑖 is the logarithm of the aggregate order 

volume throughout the limit-order book for the event contracts. The variables 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝐴𝑆𝑖, 𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐵𝑒𝑠𝑡𝐷𝑒𝑝𝑡ℎ𝑖), and 𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ𝑖) represent 

bid-ask spreads, the logarithm of best depth, and the logarithm of total depth for the 

control contracts, respectively. In Equation (1), the bid-ask spread is used as the 

dependent variable. As a falsification test, these three regressions are re-estimated 

using the control contracts as dependent variables. 

As presented in Panel A of Table 3-2, the bid-ask spread regression results for 

the 3Y T-bond contracts indicate a significant increase in bid-ask spreads at the 1% 

level. In contrast, the results for the 10Y T-bond contracts show a negative coefficient 

on the dummy variable (at the 5% level), indicating that spreads narrow over the 

period. As reported in Panel B and C of Table 3-2, best depth and total visible depth 

for the 3Y T-bond contracts increase significantly (at the 1% level) in the post-period 

after controlling for depth in the 10Y T-bond contract. The regressions for the control 

(3.1) 

(3.2) 

(3.3) 
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contract (10Y T-bond) show a reduction in both best and total depths after the tick 

size increase, with both of these changes significant at the 1% level.  

Table 3-2 

Market Wide Regressions 
 

This table reports the regression results of spreads and depth around the move to full-basis point 

trading in the 3Y T-bond and 5Y Bob1 contracts. For the 3Y T-bonds, the pre-event sample period for 

extends from 13 May, 2008 to 13 August, 2008. The post-event sample period extends from 13 May, 

2009 to 13 August, 2009. For the 5Y Bobl, the pre-event sample period extends from 17 June, 2008 to 

17 September, 2008. The post-event sample period extends from 17 June, 2009 to 17 September, 2009. 

The regression equations (1), (2), and (3) are estimated for the event (3Y T-bond and 5Y Bob1) contracts 

as the dependent variables. As a falsification test, these three regressions are re-estimated using the 

control contracts as dependent variables. * indicates statistical significance at the 5% level. ** indicates 

statistical significance at the 1% level. 

 

  
Intercept Change 

10Y T-

bond 
3Y T-bond 10Y Bund 5Y Bob1 R2 

Panel A: Bid-Ask Spread 

SFE 

3Y T-bond 0.0044** 0.0050** 0.1483    0.9974 

10Y T-

bond 
0.0044** -0.0009*  0.1655   0.184 

Eurex 

5Y Bob1 0.0037** 0.0046**   0.2071*  0.9931 

10Y Bund 0.0090** -0.0010*    0.2519* 0.1693 

Panel C: Best Depth 

SFE 

3Y T-bond 3.4770** 1.0110** 0.5102**    0.7707 

10Y T-

bond 
2.8810** -0.5580** 

 
0.3591** 

  
0.3451 

Eurex 

5Y Bob1 1.134 0.9810**   0.7240**  0.8921 

10Y Bund 3.0700** -0.5338**    0.4771** 0.3927 

Panel D: Total Depth 

SFE 

3Y T-bond 5.3250** 0.4616** 0.3892**    0.3559 

10Y T-

bond 
4.7560** -0.4414** 

 
0.2840** 

  
0.4468 

Eurex 

5Y Bob1 2.6380** 1.0690**   0.6224**  0.9524 

10Y Bund 2.9340** -0.8574**       0.7195** 0.5531 

 

Table 3-2 also shows the market wide regression results for the 5Y Bob1 contracts. 

Bid-ask spreads for the 5Y Bob1 are significantly wider after the change at the 1% level, 
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as indicated by the positive dummy variable coefficient. In contrast, there is a 

significant decrease in bid-ask spreads for the control contract at the 5% level. Both 

best depth and total depth for the 5Y Bob1 increase significantly after the tick change. 

For the 10Y Bund contracts, the negative dummy coefficients indicate a significant 

decline (at the 1% level) in best depth and total depth in the post-period. These results 

support hypotheses H3,1 and H3,2 for both event contracts.  

Chordia et al. (2000) find that liquidity measures are dependent on factors 

specific to the particular financial instrument in addition to market-wide liquidity 

factors. Harris (1994) argues that two important determinants of the bid-ask spread 

and quoted depth are trading volume and price volatility. To control for both market-

wide and security specific factors on the bid-ask spread and quoted depth, this study 

follows Frino, Gerace, and Lepone (2008) and estimates the following equations: 

 𝐵𝐴𝑆𝑖 = 𝛼0 + 𝛼1𝐶ℎ𝑎𝑛𝑔𝑒𝑖 + 𝛼2 𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑖) + 𝛼3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖+ 𝛼3 𝐿𝑛(𝑉𝑜𝑙𝑢𝑚𝑒𝑖) + 𝛼5𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝜀𝑖 𝐿𝑛(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ)𝑖 =   𝛼0 + 𝛼1𝐶ℎ𝑎𝑛𝑔𝑒𝑖 + 𝛼2 𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑖) + 𝛼3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝛼3 𝐿𝑛(𝑉𝑜𝑙𝑢𝑚𝑒𝑖) + 𝛼5𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝜀𝑖 𝐿𝑛(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ)𝑖 = 𝛼0 + 𝛼1𝐶ℎ𝑎𝑛𝑔𝑒𝑖 + 𝛼2 𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑖) + 𝛼3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝛼3 𝐿𝑛(𝑉𝑜𝑙𝑢𝑚𝑒𝑖) + 𝛼5𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 + 𝜀𝑖 
 

where 𝐵𝐴𝑆𝑖, 𝐿𝑛(𝐵𝑒𝑠𝑡𝐷𝑒𝑝𝑡ℎ𝑖), 𝐿𝑛(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ𝑖), and 𝐶ℎ𝑎𝑛𝑔𝑒𝑖 are as described in 

Equations (1), (2), and (3). 𝐿𝑛(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑖) is the logarithm of the average daily 

traded volume, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖is the natural logarithm of the highest traded price 

divided by the lowest traded price for each day in the control contracts. 𝐿𝑛(𝑉𝑜𝑙𝑢𝑚𝑒𝑖) 

(3.4) 

(3.6) 

(3.5) 
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and 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖  represent daily traded volume and volatility in the event contracts, 

respectively. As a falsification test, these three regressions are also re-estimated using 

the control contracts as dependent variables. 

Panel A of Table 3-3 shows that after controlling for volatility and volume for 

the 3Y T-bond contract, bid-ask spreads experience a significant increase at the 1% 

level after the change in tick size. Supporting hypothesis H3,1, the increase in spreads 

is isolated to the 3Y T-bond contract, with bid-ask spreads for the 10Y T-bond contract 

showing a significant decrease at the 1% level after the change. In line with the 

hypothesis H3,2, the regression results in Panel B and C of Table 3-3 show a significant 

improvement in both the best and total depth levels for the 3Y T-bond contracts after 

the increase in tick size: this result is specific to the 3Y T-bond contracts, with the 

coefficients on the change dummy variables for the 10Y T-bond contracts being 

negative at the 1% level. The results of the combined regressions for the 5Y Bob1 

contracts are also presented in Table 3-3. The positive dummy coefficient for the 5Y 

Bob1 (presented in Panel A) indicate that the bid-ask spread widens in the post-period. 

Bid-ask spreads for the 10Y Bund contract are wider in the post-period, as indicated 

by the poisitive dummy coefficient (significant at the 1% level), however the economic 

size of the coefficient is much smaller than for the 5Y Bobl at 0.0002 relative to 0.0047, 

also supporting hypothesis H3,1 with regards to the 5Y Bobl contract. As shown in Panel 

B, the dummy variable coefficients for best and total depths are both highly significant 

and positive at the 1% level, indicating an increase in depth levels after the tick 

increase for the 5Y Bob1. On the contrary, the 10Y Bund contracts experience a 

significant decrease in both best and total depths at the 1% level, thus supporting 

hypothesis H3,2.  
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The results of the analysis suggest that in line with the literature, the increase 

in the tick size resulted in both higher bid-ask spreads, and greater depth. The increase 

in spreads is not surprising, as the average quoted spread was close to the minimum 

tick size prior to the increase in the tick size for both the 3Y T-bond contract and 5Y 

Bob1. Harris (1994) suggests that an increase in the tick size will improve quoted depth 

as it reduces the cost of front-running an order, as it increase the price a trader has to 

pay to obtain price-time priority. The higher tick size therefore provides protection 

against quote matchers and front-runners, reducing the cost of displaying quotes on 

the limit order book. Furthermore, the greater tick size reduces the likelihood that a 

liquidity supplier will trade with a limit order trader (Anshuman and Kalay, 1998).   
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Table 3-3 

Combined Regressions 
 

This table reports the regression results of spreads and depth around the move to full-basis point trading in the 3Y T-bond and 5Y Bob1 contracts. For the 3Y T-bonds, the 

pre-event sample period for extends from 13 May, 2008 to 13 August, 2008. The post-event sample period extends from 13 May, 2009 to 13 August, 2009. For the 5Y Bobl, 

the pre-event sample period extends from 17 June, 2008 to 17 September, 2008. The post-event sample period extends from 17 June, 2009 to 17 September, 2009. The 

regression equations (4), (5), and (6) are estimated for the event (3Y T-bond and 5Y Bob1) contracts as the dependent variables. As a falsification test, these three regressions 

are re-estimated using the control contracts as dependent variables. * indicates statistical significance at the 5% level. ** indicates statistical significance at the 1% level. 
 

  

Intercept Change 

Volume  Volatility 

(10YT-

bond) 

Volume Volatility Volume Volatility Volume  Volatility 

R2 (10Y T-

bond) 

(3Y T-

bond) 

(3Y T-

bond) 
(10Y Bund) (10Y Bund) (5Y Bob1) (5Y Bob1) 

Panel A: Bid-Ask Spread 

SFE 

3Y T-bond 0.0053** 0.0049** -0.0000 -0.0012* -0.0000 0.0014*     0.9974 

10Y T-bond 0.0053** -0.0002** -0.0000 -0.0002 0.0000 0.0005     0.1825 

Eurex 

5Y Bob1 0.0059** 0.0047**     0.0000 -0.0000 0.0000 -0.0000 0.9927 

10Y Bund 0.01038 0.0002**     -0.0000 0.0003 0.0000 -0.0003 0.1698 

Panel C: Best Depth 

SFE 

3Y T-bond 1.755 0.8727** -0.0668 -0.0002 0.4870** -2.980**     0.1804 

10Y T-bond 2.5580** -0.1040* 0.4294* 0.5729 0.4151* -1.435*     0.4046 

Eurex 

5Y Bob1 3.3130* 0.9778** 

    
-0.2926 0.1774 0.4522* -0.5155 0.128 

10Y Bund 2.362 -0.0718     0.3123* -0.0488 0.1397 -0.2202 0.1875 
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Table 3, continued 

Panel D: Total Depth 

SFE 

3Y T-bond 4.3510** 0.3273** -0.044 -0.3102 0.4151** -3.147**     0.4345 

10Y T-bond 5.6300** -0.2330** 0.3562** -0.2891 -0.1888* -0.5096     0.4843 

Eurex 

5Y Bob1 6.4900** 0.9915**     -0.0039 -0.1102 0.1397 -0.2165 0.9216 

10Y Bund 6.7520** -0.1711**         0.2997* -0.2032 -0.1427 -0.1254 0.2945 
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3.3.3 Execution Costs 

 

To provide a more comprehensive assessment of the change in liquidity after the 

increase in minimum tick (i.e., whether the change in bid-ask spreads dominates the 

change in quoted depth), this section tests the third hypothesis by examining the price 

impact of executing orders. The pre-trade benchmark represents the price that would 

have prevailed had the trade not executed (Domowitz et al., 2001), while the post-

trade benchmark represents the equilibrium price after all short-term price pressure 

has dissipated (Harris, 2003). A significant price impact would suggest that the 

increase in quoted depth did not offset the cost of the increase in the bid-ask spread.  

Trades are classified as buyer- and seller-initiated using the method of Ellis, 

Michaely, and O’Hara (2000). Each trade is classified into four mutually exclusive 

quartiles based on trade size. The first quartile contains the smallest 25% of trade sizes 

and the fourth quartile contains the largest 25% of trade sizes. Studies employ 

different different pre- and post-trade benchmarks. Berkman et al. (2005) use an 

intraday benchmark of mid-quotes five seconds before and five minutes after 

transactions. However, studies of intraday show patterns in liquidity in order-driven 

markets shows that traded volume follows a U-shape pattern, meaning that the 

number of trades within 5 minutes is not constant across the trading day (Ahn and 

Cheung, 1999). Therefore consistent with Gemmill (1996), the transaction price five 

trades prior to the trade is used as the pre-trade benchmark, where the price impact 

of each trade is measured as the basis point change from the pre-trade benchmark 

price to the trade price. This is averaged across each day and then across each sample 

period. 
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Results of the price impact analysis for the 3Y T-bond contracts are shown in 

Table 3-4. There is a significant increase in execution costs across all quartiles for both 

buyer and seller-initiated trades at the 1% level. For purchases, execution costs for the 

first quartile averaged 0.1109 basis points before the tick increase and 0.2105 basis 

points after, a significant change of 0.0996 basis points at the 1% level. Similar results 

are found for the other three quartiles.  

Qualitatively comparable results are obtained for sales. For the first and 

second quartiles, price impact increases significantly by 0.1000 and 0.0610 basis points 

at the 1% level respectively, while the third and fourth quartiles show a significant 

increase of 0.0600 and 0.0920 basis points (both at the 1% level). Table 3-4 also reveals 

that results for the 5Y Bob1 contracts are qualitatively similar to those for the 3Y T-

bond contracts. 
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Table 3-4 

Execution Costs 
 

Price impact results are presented before and after the change in tick size for the 3Y T-bond and 5Y Bobl contracts. For the 3Y T-bonds, the pre-event sample period extends 

from 13 May, 2008 to 13 August, 2008. The post-event sample period extends from 13 May, 2009 to 13 August, 2009. For the 5Y Bobl, the pre-event sample period extends 

from 17 June, 2008 to 17 September, 2008. The post-event sample period extends from 17 June, 2009 to 17 September, 2009. Trades are classified as buyer and seller 

initiated using the methodology of Ellis, Michaely, and O’Hara (2000). The price impact of each trade is measured as the change from the transaction price five trades prior 

to the trade price. This is averaged across each day and then across each sample period. Each trade is classified into four mutually exclusive quartiles based on trade size. 

The first quartile contains the smallest 25% of trade-sizes and the fourth quartile contains the largest 25% of trade-sizes. Price impact is reported in basis points. * indicates 

statistical significance at the 5% level. ** indicates statistical significance at the 1% level. 
 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 All 

 Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell 

Panel A: Pre-period 

SFE 

3Y T-bond 0.1109 -0.1140 0.1047 -0.1260 0.1099 -0.1410 0.1544 -0.1710 0.1194 -0.1380 

10Y T-bond 0.1418 -0.1260 0.1425 -0.1360 0.1460 -0.1540 0.1810 -0.1900 0.1584 -0.1610 

Eurex 

5Y Bob1 0.1637 -0.1555 0.1412 -0.1421 0.1507 -0.1507 0.1437 -0.1517 0.1484 -0.1509 

10Y Bund 0.3424 -0.3367 0.3147 -0.3146 0.3108 -0.3078 0.3346 -0.3415 0.3255 -0.3245 

Panel B: Post-period 

SFE 

3Y T-bond 0.2105 -0.2140 0.2233 -0.1870 0.2424 -0.2010 0.2985 -0.2630 0.2394 -0.2160 

10Y T-bond 0.1655 -0.1700 0.1474 -0.1470 0.1461 -0.1560 0.1629 -0.1790 0.1555 -0.1630 

Eurex 

5Y Bob1 0.2805 -0.2652 0.2702 -0.2575 0.2855 -0.2726 0.3197 -0.3110 0.2889 -0.2856 

10Y Bund 0.3076 -0.3177 0.2883 -0.3005 0.2973 -0.2919 0.3879 -0.3986 0.3203 -0.3292 

Panel C: Post - Pre 

SFE 

3Y T-bond 0.0996** -0.1000** 0.1186** -0.0610** 0.1325** -0.0600** 0.1441** -0.0920** 0.1200** -0.0780** 

10Y T-bond 0.0237** -0.0440** 0.0049 -0.0110 0.0001 -0.0020 -0.0181** 0.011 -0.0029* -0.0020 

Eurex 

5Y Bob1 0.1168** -.01097** 0.1290** -.01154** 0.1347** -0.1218** 0.1760** -0.1596** 0.1405** -0.1347** 

10Y Bund -0.0348** 0.0190** -0.0264** 0.0141** -0.0136** 0.0160** 0.0533** -0.0570** 0.0051 -0.0038 
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In contrast to the results for the event contracts, those for the control (10Y T-

bond and 10Y Bund) contracts are mixed. With respect to the total sample, results for 

both control contracts indicate that there is no significant change in execution costs 

for both purchases and sales at the 1% level. Results are not uniform across the four 

quartile groups for both control contracts, however when costs are seen to increase 

this is still less than for the 3Y T-bond and 5Y Bob1 contracts. For example, for 

purchases of the 3Y T-bond, the difference in execution costs for the first quartile 

averaged 0.1109 basis points, relative to 0.0237 basis points. This means that the 

changes in execution costs for the event contracts is likely to be attributed to the tick 

size increase, supporting hypothesis H3,3. These results suggest that increasing the 

minimum price increment has a negative impact on market quality, where the cost of 

increasing the bid-ask spread more than offset the increase in quoted depth. This is 

likely the result of there being already sufficient liquidity in futures markets prior to 

the tick increase to absorb the impact of market orders. This is in line with studies that 

find that the impact of a reduction in tick size primarily benefits small trades and liquid 

securities (Bollen and Whaley, 1998).  

 

3.5 Summary 

 

This essay investigates the impact of the increase in minimum tick size on market 

quality using the 3-Year Treasury bond futures (“3Y T-bond”) on the Sydney Futures 

Exchange (SFE) and the 5-Year Euro Bobl futures (“5Y Bob1”) on the Eurex, which is 

distinguished from prior studies that examine tick size reductions. The literature for 

both equity and futures markets provide evidence that a reduction in the tick size is 
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associated with lower spreads and quoted depth. As these changes have conflicting 

effects on liquidity, certain studies attribute the change in spreads and depth as 

indicative of an improvement in liquidity, while other studies conclude a reduction in 

overall liquidity, which warrants a re-examination of this issue. 

This essay provides evidence that a tick size increase is associated with an 

increase in depth at the best quotes and throughout the limit order-book for both 3Y 

T-bond and 5Y Bob1 contracts, which is consistent with results in prior studies. 

However, with respect to both bid-ask spreads, this paper finds mixed evidence. The 

results show that the change in tick size lead to wider bid-ask spreads for the 3Y T-

bond and the 5Y Bob1. This chapter suggest that the increase in the tick size lead to 

an increase in execution costs, indicating that the increase in the bid-ask spread has 

more than offset the increase in quoted depth. 
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Chapter 4: Algorithmic Trading and Market Quality 

4.1 Introduction 

 

This study investigates the relation between algorithmic trading volume and future 

market quality. Recent academic research has begun to focus on the impact of 

algorithmic trading on market quality such as liquidity and volatility (Hendershott and 

Riordan, 2011, Hasbrouck and Sarr, 2011, Brogaard, 2010, and Jones and Menkveld 

2011). Although the evidence suggests that algorithmic traders (ATs) are not 

associated with reduced market quality, there are concerns that ATs can exacerbate 

market instability by increasing (decreasing) their demand (supply) of liquidity when 

liquidity is scarce. Despite these concerns, none of them examines how the impact of 

algorithmic trading on market quality during market declines differs from that during 

market upturns. The aim of this study is to bridge this gap in the literature by 

examining whether the relation between algorithmic trading and market quality 

differs across up and down markets. Furthermore, it examines whether market 

conditions affect the behaviour of ATs, which differentially impacts the market.  

The remainder of this paper is structured as follows. Section 2 develops the 

hypotheses on the impact of algorithmic trading on market quality. Section 3 gives an 

overview of the institutional details of the Australian Stock Exchange (ASX) provides 

an overview of the data and presents descriptive statistics. Section 3 describes the 

research design. Section 4 presents the results. Section 5 summarises. 
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4.2 Hypotheses on Algorithmic Trading 

 

Algorithmic trading involves automating order executions according to a set of pre-

specified conditions such as prices, volatility etc. This enables algorithmic trading 

programs to be more efficient at processing and utilizing trading information relative 

to human market makers (Gerig and Michayluk, 2010). One of the other distinguishing 

features of algorithmic trading is its speed of execution, with latency speeds measured 

in milliseconds. ATs can thus transact on the information they acquire 

instantaneously. Hendershott and Riordan (2011) suggest that the AT’s superior ability 

to process trade data and their fast execution speed enable efficient monitoring and 

adjustment of limit orders in response to new public information. This reduces the 

cost of the option provided by limit orders, leading to an improvement in liquidity. 

Furthermore, the ability of algorithms to continuously monitor the market can allow 

ATs to supply liquidity when it is cheap and take liquidity when it is expensive, thereby 

moderating short-term volatility. The empirical literature for equity and foreign 

exchange markets document that ATs improve market quality. Higher algorithmic 

trading leads to a narrowing of bid-ask spreads and effective spreads, price discovery 

increases and short-term volatility either reduces or does not increase (see Brograad, 

2010; Chaboud  et al., 2011; Hendershott et al., 2011; Hendershott and Riordan, 

2011). The following hypothesis predicts that algorithmic trading has either no impact 

or leads to an improvement in market quality. 

 

Hypothesis4.1: An increase in algorithmic trading will either have no impact or lead to 

an improvement in market quality. 
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Jovanovic and Menkveld (2011) model ATs as a new form of market maker on limit 

order markets. If a trader places a limit order, a common value innovation occurring 

after the placement can leave the order stale and provides a trading option that can 

be picked off by other traders. This increases the adverse selection costs faced by the 

limit order trader, resulting in higher execution costs. The superior information 

processing speed of ATs creates an edge in quickly updating limit orders as public 

information arrives. ATs may therefore act as middlemen in limit order markets for 

other limit order traders, as their limit orders are continuously refreshed, which 

inhibits informed traders from taking advantage of this trading option.  

Kirilenko et al. (2011) however find that during periods of market stress, 

algorithmic traders display behaviour inconsistent with traditional market makers. A 

designated market maker differs from a strategic trader as they have an affirmative 

obligation to maintain two-sided markets during exchange hours and to buy and sell 

at their displayed bids and offers. An analysis of the behaviour of HFTs during the flash 

crash of 6 May, 2010 reveals that HFTs trade aggressively in the direction of price 

changes and comprise a large percentage of total trading activity, but do not 

accumulate significant inventory positions. They are not willing to either accumulate 

large positions or sustain large losses and in rebalancing their positions, they may also 

compete for liquidity, thus amplifying price volatility. An implication of this result is 

that algorithmic traders may have a negative impact on market quality during intraday 

price falls. The following hypothesis predicts that algorithmic trading leads to a decline 

in market quality during intraday periods of negative returns.  
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Hypothesis4.2: During intraday periods of negative returns, an increase in algorithmic 

trading will lead to a reduction in market quality. 

 

 

There is also the possibility that algorithmic trading may differentially impact market 

quality during different market environments. However, the empirical evidence 

suggests that this is not the case. Hasbrouck and Saar (2012) find that the impact of 

low latency activity (a proxy for algorithmic trading) enhances market quality over 

periods dominated by flat or rising prices and during periods dominated by falling 

prices and economic uncertainty. Brogaard (2012) examines the effect of HFTs on 

volatility over the 2008-09 period, which is a time period characterized by heightened 

volatility. Examining the short sale ban in 2008 that removed a fraction of HFT 

participants, the author finds HFTs reduce volatility. The following hypothesis predicts 

that the effect of algorithmic trading on market quality should be similar across 

different market conditions.  

 

Hypothesis4.3: There is no difference in the effect of algorithmic trading on market 

quality during bull and bear markets. 

 

Contrarian traders are traders that increase their buying when prices fall and increase 

their selling when prices are rising. Kaniel et al. (2008) argue that contrarian traders 

act as liquidity providers. Institutional investors requiring immediacy offer price 

concessions to encourage other investors to take the other side of the trade. 

Momentum traders conversely act as liquidity demanders. The results of Kirilenko et 

al. (2011) show that during the Flash Crash HFTs acted as momentum traders, 
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aggressively selling to keep inventories near a target inventory level. Herding and 

positive-feedback trading by ATs may result in a reduction in market quality (Culter et 

al., 1990). The following hypothesis predicts that ATs engage in momentum trading 

during intraday periods of negative returns.  

 

Hypothesis4.4: Algorithmic traders act as liquidity demanders during price falls. 

 

4.3 Australian Securities Exchange 

 

The Australian Securities Exchange (ASX) was formed in July 2006 through the merger 

of the Australian Stock Exchange and the Sydney Futures Exchange. The ASX operates 

as a fully automated continuous order-driven market. Orders are submitted 

electronically by buyers and sellers through the ASX Trade, an electronic order book 

for securities listed on the ASX. ASX Trade replaced the Integrated Trading System (ITS) 

in November 2010, which earlier replaced the Stock Exchange Automated Trading 

System (SEATS) in October 2006. The system facilitates the trading of equities, debt 

securities and warrants on ASX’s markets. Orders are automatically matched based on 

price and time priority. Submitted orders are filled by crossing with either the best bid 

(if it is a sell order) or the best ask (in the case of a buy order). Unfilled orders become 

standing limit orders which fill the bid-ask schedule. The information available to all 

market participants on the bid-ask schedule include any standing limit orders, its order 

type, volume and price. A short series of the most recent executions are also visible.  

The ASX facilitates trades during exchange-open hours between 10:00 am to 

4:00 pm. Brokers can submit orders in the pre-open from 7:00-10:00 am in 
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preparation for the market opening. A single price call auction takes place for each 

stock between 10:00-10:09:15 am using a specific algorithm. To prevent brokers from 

distorting prices, the actual opening time is generated randomly and occurs within 15 

seconds of the prescribed opening time.  Normal trading takes place between 10:00 

am and 4:00 pm under a continuous double-sided auction where price and time 

priority rules apply. Trading ceases at 4:00 pm and the market is placed in pre-close 

until 4:10 pm. Brokers enter, amend and cancel orders in preparation for the closing 

single price auction which takes place between 4:10 pm and 4:12 pm. 

 

4.2 Data and Descriptive Statistics 

 

An internal database is directly sourced from the ASX. The dataset consists of trade by 

trade data for the top 100 capitalised stocks listed on the ASX from July 2, 2007 to 

October 26, 2009. The unique feature of this dataset is that it consists of a field that 

identifies the source of each trade. Using this identifier, this study determines which 

trades are associated with human traders or computer based systems. This field, which 

is a five character user code, consists of two types of user code. The first group of user 

code is five letter user code that consists of a username of a market participant 

associated with each submitted order indicate the actions of a human trader.3 The 

second group of user code is five alphanumeric characters which indicate that the 

order is submitted through a computer based system gateway. 

                                                 
3 User code consists of four characters of the participant’s surname, followed by a single character of 

his/her first name. For example, the participant whose name is Anthony Flint is identified as “FLINA”. 
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Note that the first (second) group is a proxy for human (computer) based 

trading; it is possible that human traders submit their orders through the computer 

based system gateway, and that a computer based trading strategy is executed 

through a terminal classified as human based.45 This study further classifies the group 

of computer based system as either ATs or other computer based trading platform, 

referred to as Broker Engines (BEs), based on the average trade size and trading 

frequency from the relevant gateway, with BE’s trading in both larger size and lower 

frequency than algorithmic trading gateways.6 

This study combines the ASX internal dataset with ten levels of order book data 

sourced from Thompson Reuters Tick History (TRTH) provided by the Securities 

Industry Research Centre of Asia Pacific (SIRCA). The combined dataset provides a 

reconstruction of the full order book for each trade. For each trade, the following 

information is provided in the dataset: (i) the direction of the trade (i.e., buy/sell), (ii) 

the share volume, (iii) stock code, (iv) date, (v) time stamp to the nearest hundredth 

of a second, (vi) initiator indication (indicating which participant initiated the trade), 

(vii) market participant identifier (ASX internal field described above), and (viii) bid and 

ask quotes and share volume at each of the ten depth levels. Information from the 

liquidity suppliers includes trade price, volume, and user code. 

                                                 
4 Further information about each user code is contained in the “ASX source file”. This file indicates that 

each participant can be associated with multiple user codes through which they can process orders. 
5 This classification scheme originally identifies retail brokers (such as Commonwealth Securities 

Limited (“CommSec”) and ETRADE Australia Securities Ltd (“E*TRADE Australia”)) as computer 

based traders; however, these brokers are predominantly retail-based, and are subsequently classified as 

human traders. 
6 To further test the robustness of the computerised user code classifications, the sample is cross tested 

by applying a filter based on the frequency of trades and average dollar volume across each six month 

sub-sample. 
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Table 6-1 reports summary statistics for the 100 sample stocks by trader type. 

The average dollar traded volume per 15-minute interval is $2,787,462, suggesting a 

high level of trading activity in our sample stocks. A significant proportion of trading 

volume is conducted by ATs, averaging $996,473 in dollar traded volume over each 

15-minute interval. Algorithmic trading dollar volumes are split evenly between buys 

and sells, with average dollar buy volumes accounting for about 51% of algorithmic 

trading dollar volumes. 
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Table 4-1 

Descriptive Statistics 

 
This table presents summary statistics for average trading activity per 15-minute interval over the 

period from 2 July, 2007 to 26 October, 2009 for 100 sample stocks. Algorithmic Trades are trades 

classified as originating from a computer algorithm. All Trades include all trades for the entire sample 

period. Total Ratio, Buy Ratio, and Sell Ratio are the trading activity ratios. Each ratio is calculated by 

dividing the trading value contributed by the AT by order type by total dollar volume transacted in the 

interval. 

 

  Algorithmic Trades All Trades 

  Total Buy Sell Total 

Panel A: Average trading activity in a 15-minute interval as measured by dollar volume transacted 

Mean 996,473 507,264 489,209 2,787,462 

Median 387,253 189,545 183,542 880,095 

Max 114,105,434 109,810,983 42,726,422 2,390,425,843 

Min 0 0 0 1 

Standard Deviation 1,013,692 970,294 927,707 6,616,942 

Panel B: Average trading activity in a 15-minute interval as measured by share volume transacted 

Mean 84,291 42,751 41,238 263,255 

Median 40,432 19,433 18,635 92,526 

Max 25,523,166 24,564,580 8,904,090 148,207,452 

Min 0 0 0 1 

Standard Deviation 186,482 104,276 97,569 842,649 

Panel C: Average trading activity in a 15-minute interval as measured by number of trades 

Mean 61 32 29 107 

Median 40 20 18 70 

Max 1,573 1,125 1,077 2,709 

Min 0 0 0 1 

Standard Deviation 67 37 35 118 

Panel D: Average trading activity in a 15-minute interval as measured by trading ratios 

  Total Ratio Buy Ratio Sell Ratio   

Mean 0.4954 0.2519 0.2435  

Median 0.4956 0.2239 0.2148  

Max 1 1 1  

Min 0 0 0  

Standard Deviation 0.2133 0.1640 0.1614  

 

4.3 Research Design 

 

To analyze the relation between algorithmic trading and subsequent market quality, 

the trading day is partitioned into multiple time intervals. However, the length of the 

time interval depends on two contradicting factors. First, as ATs can react fast to 
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changing market conditions, the time interval should not be too long to ensure the 

effects of algorithmic trading on market quality are captured. However, the time 

interval should not be too short to limit the number of transactions within each 

interval. Hendershott et al. (2014) examine liquidity measures in 5 and 30 minute 

intervals. In this study, each trading day is divided into 15-minute intervals. Trading 

hours on the ASX are between 10:00 and 16:00. A single price call auction takes place 

between 10:00-10:10 through the use of a specific algorithm. This time period is 

removed from the sample, as the nature of the orders submitted during this period is 

fundamentally different from the continuous double sided auction that takes place on 

the ASX limit order book. 

Hendershott (2011) state that algorithmic trading should be normalised by 

trading volume, otherwise it would proxy for overall changes in trading volume. 

Following Lakanishok et al. (1992), Chordia and Subrahmanyam (2004), and Li and 

Wang (2010), algorithmic trading volume is measured as: 

    𝑇𝑂𝑇𝐴𝐿𝑖𝑡 =  𝐴𝑇_𝐵𝑢𝑦𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡+ 𝐴𝑇_𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡                         (4.1) 

 

where 𝐴𝑇_𝐵𝑢𝑦𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡 (𝐴𝑇_𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡) is the total dollar value of 

market and limit order purchases (sales) made by ATs for stock 𝑖 in interval 𝑡. This 

consists of trades undertaken by an AT, and does not include broker engine trades. 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡 is the total dollar value of all market and limit order buys 

and sells for stock 𝑖 in interval 𝑡. This includes algorithmic, broker engine and human 

trades. Trading volume ratios for buys and sells are also calculated separately, where 

algorithmic trading buy volume is measured as: 
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    𝐵𝑈𝑌𝑖𝑡 =  𝐴𝑇_𝐵𝑢𝑦𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡                                           (4.2) 

 

and algorithmic trading sell volume is measured as: 

    𝑆𝐸𝐿𝐿𝑖𝑡 =  𝐴𝑇_𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡                                        (4.3) 

 

where algorithmic trading buying, selling, and total trading volume is calculated as 

before. 

Following Harris (1994), liquidity indicators analysed include the bid-ask 

spread, market depth, and short-term volatility. The bid-ask spread is defined as: 

 

                                       𝑃𝐵𝐴𝑆𝑡 = 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎𝑠𝑘𝑡−𝑖𝑛𝑠𝑖𝑑𝑒 𝑏𝑖𝑑𝑡(𝑖𝑛𝑠𝑖𝑑𝑒 𝑎𝑠𝑘𝑡+𝑖𝑛𝑠𝑖𝑑𝑒 𝑏𝑖𝑑𝑡2 )                                            (4.4) 

 

where 𝑃𝐵𝐴𝑆𝑡 is the percentage bid-ask spread for stock 𝑖 at time period 𝑡, the inside 

ask is the lowest ask price at time period t, and the inside bid is the highest bid price 

at period 𝑡. The mid-point is used to avoid problems associated with bid-ask bounce. 

It is computed for every trade for each stock, and is averaged over all trades in each 

interval. As a robustness test, the percentage effective spread is also employed, and 

is defined as twice the difference between the actual execution price and the market 

quote at the time of each trade. Market depth is calculated using two measures. Best 

depth is defined as the logarithm of the total number of shares available at the best 

bid and the best ask (Harris, 1994). It is computed for every trade for each stock and 
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is averaged across all trades for each 15-minute interval. The second measure is 

defined as the sum of the volume of shares at each bid and ask price throughout the 

limit-order book. Volatility is measured using the intraday high-low price range 

estimator proposed by Parkinson (1980). The volatility measure is given as follows: 

 

     𝜎 = √(lnℎ𝑖𝑔ℎ−ln𝑙𝑜𝑤)24𝑙𝑛2 , 𝑖 = 1, 2, . . . , 𝑁; 𝑡 = 1,2, . . . , 𝑇.                    (4.5) 

 

where volatility is calculated for the 𝑖𝑡ℎ stock in the 𝑡𝑡ℎ  time interval; ℎ𝑖𝑔ℎ and 𝑙𝑜𝑤 

refers to the highest traded price and lowest traded price in each 15-minute interval. 

To avoid the effect of bid-ask bounce, the midpoint of the prevailing bid-ask spread is 

used as the traded price. 

 

4.4 Results 

 

4.4.1 Multiple Regressions of Market Quality on Lagged Algorithmic Volume 

 

To determine the impact of algorithmic trading volume on market quality, 

Hendershott et al. (2014) use an instrumental variable regression to determine causal 

impacts. They argue that the decision to engage in algorithmic trading may depend on 

liquidity. To account for this potential endogeneity issue, the lagged ratio of 

algorithmic trading volume to total volume is used as an instrument. The intuition 

behind this is that lagged algorithmic trading precedes changes in market quality 

indicators. This may not overcome all endogeneity issues however if the liquidity 
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variables are serially correlated. Consequently, when submitting an order using an 

algorithm, traders may form expectations about future bid-ask spreads and depth. In 

estimating the impact of algorithmic trading on market quality, Hendershott et al. 

(2011) include trading volument and volatility as control variables in their regression. 

Hendershott et al. (2011) note that the quoted bid-ask spread is problematic as 

traders may be willing to trade inside the bid-ask quote. Consequently, both the 

quoted bid-ask spread and effective spread are included. To examine the relation 

between algorithmic trading volume and subsequent market quality, the following 

regressions are estimated for each individual stock: 

 𝐵𝐴𝑆𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 +  𝛽2𝑁𝑇𝑡 +  𝛽3𝜎𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1  +  𝛽5𝑀𝑡   +  𝛽6𝐴𝑡  +  𝜀𝑡, 𝑄𝐷𝑡 =  𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 +  𝛽2𝑁𝑇𝑡 +  𝛽3𝜎𝑡−1 + 𝛽4𝑄𝐷𝑡−1  +  𝛽5𝑀𝑡   +  𝛽6𝐴𝑡  +  𝜀𝑡, 𝜎𝑡 =  𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽2𝑁𝑇𝑡 + 𝛽3𝜎𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1  +  𝛽5𝑀𝑡   + 𝛽6𝐴𝑡  +  𝜀𝑡, 𝜎𝑡 =  𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽2𝑁𝑇𝑡 +  𝛽3𝜎𝑡−1 + 𝛽4𝑄𝐷𝑡−1  + 𝛽5𝑀𝑡   + 𝛽6𝐴𝑡  +  𝜀𝑡, 

 

where 𝐵𝐴𝑆𝑡 represents the percentage bid-ask spread and effective spread for time 

interval 𝑡, respectively; 𝑄𝐷𝑡 represents the natural logarithm of the best and total 

depth  at time interval 𝑡; 𝜎𝑡 is the intraday high-low price range estimator; 𝑅𝐴𝑇𝐼𝑂𝑡−1 

is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1) and sell (𝑆𝐸𝐿𝐿𝑡−1) ratios; and 𝑁𝑇𝑡 

is the number of trades executed during time interval 𝑡. 𝐵𝐴𝑆𝑡−1, 𝑄𝐷𝑡−1, and 𝜎𝑡−1 are 

(4.6)

1) 

(4.7) 

(4.8) 

(4.9) 
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to control for serial-autocorrelation in the dependent variables. 𝑀𝑡 is a dummy 

variable that takes the value of one from 10:15 to 11:00 hours of the trading day, and 

zero otherwise; and 𝐴𝑡  is a dummy variable that takes the value of one from 15:00 to 

16:00 hours, and zero otherwise. The inclusion of intraday time dummy variables 

controls for intraday variation. The volatility regression is estimated four times, with 

each liquidity variable (𝑃𝐵𝐴𝑆𝑡−1,𝑃𝐸𝑆𝑡−1,𝐵𝑄𝐷𝑡−1, and 𝑇𝑄𝐷𝑡−1) used as an 

explanatory variable in the regression. Each equation is estimated separately for each 

stock using the Generalized Method of Moments (GMM); the resulting t-statistics are 

robust to heteroskedasticity and autocorrelation (Newey and West, 1987). 

The regression results for percentage spreads are reported in Table 4-2, which 

are estimated using the total number of algorithmic trades in the interval, as well as 

algorithmic buy and sell trades. Table 4-2 reports the cross-sectional means of the 

coefficients and associated t-statistics. Results show that for total algorithmic trades, 

both bid-ask spread measures are positively associated with lagged algorithmic 

trading volume; the average t-statistic for the bid-ask spread (effective spread) is 2.36 

(2.36). In contrast, examining buy and sell trades individually, the coefficients on the 

ratios are not distinguishable from zero. This is different to Hendershott et al. (2014) 

who show that algorithmic trading resulted in a reduction in bid-ask spreads.  
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Table 4-2 

Percentage Spreads and Lagged Algorithmic Trading Volume 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 ASX stocks 

based on 15-minute intervals. The sample period extends from July 2, 2007 to October 26, 2009. The 

regression model is specified as follows: 𝐵𝐴𝑆𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽2𝑁𝑇𝑡 +  𝛽3𝜎𝑡−1 +  𝛽4𝐵𝐴𝑆𝑡−1  +  𝛽5𝑀𝑡   +  𝛽6𝐴𝑡  +  𝜀𝑡 

where 𝐵𝐴𝑆𝑡  represents the percentage bid-ask spread (𝑃𝐵𝐴𝑆𝑡−1) and effective spread (𝑃𝐸𝑆𝑡−1) during 

time interval 𝑡; 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell (𝑆𝐸𝐿𝐿𝑡−1) ratio, 

respectively; 𝑁𝑇𝑡 is the number of trades executed during time interval𝑡; 𝜎𝑡−1 is the intraday high-low 

price range estimator at time interval 𝑡 − 1; 𝑀𝑡 is a dummy variable that takes the value of one from 

10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a dummy variable that takes the 

value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a random error term. Regression 

coefficients are cross-sectional averages from the 100 stocks. Average t-statistics are in parentheses. 

The R2 is the cross-sectional average adjusted R-square. To adjust the units for presentation, the 

coefficients for 𝑅𝐴𝑇𝐼𝑂𝑡−1, 𝑁𝑇𝑡, 𝑀𝑡, and 𝐴𝑡are multiplied by 105, and those for Constant, 𝜎𝑡−1, 𝑃𝐵𝐴𝑆𝑡−1, 

and 𝑃𝐸𝑆𝑡−1 are multiplied by 102. 

 

  Total Buy Sell 

  𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  

Constant 0.02 0.03 0.02 0.03 0.02 0.03 

 (12.08) (12.00) (12.90) (12.82) (12.74) (12.66) 𝑅𝐴𝑇𝐼𝑂𝑡−1 2.00 4.00 2.00 2.00 2.00 3.00 

 (2.36) (2.36) (1.06) (1.06) (1.84) (1.84) 𝑁𝑇𝑡 -0.07 -0.10 -0.07 -0.10 -0.07 -0.10 

 (-1.91) (-1.90) (-1.89) (-1.89) (-1.90) (-1.90) 𝜎𝑡−1 1.03 1.55 1.02 0.015 0.010 0.015 

 (6.07) (6.06) (6.02) (6.01) (6.03) (6.02) 𝑃𝐵𝐴𝑆𝑡−1 85.33  85.42  85.41  

 (162.43)  (163.69)  (163.98)  𝑃𝐸𝑆𝑡−1  85.29  85.38  85.37 

  (161.58)  (162.83)  (163.13) 𝑀𝑡 -0.20 -0.30 -0.20 -0.30 -0.20 -0.30 

 (-2.57) (-2.56) (-2.61) (-2.61) (-2.61) (-2.60) 𝐴𝑡 0.10 0.10 0.10 0.10 0.10 0.10 

 (0.80) (0.79) (0.70) (0.69) (0.74) (0.73) 

R2  0.79 0.79 0.79 0.79 0.79 0.79 

 

An important determinant of market quality is the available size to trade at both the 

bid and ask side of the market. For larger market participants, a reduction in depth at 

or near the best quotes may result in worse execution prices as traders consume 

liquidity to fill the order. Harris (1990) argues that liquidity has both a price dimension 

(i.e., bid-ask spread) and a quantity dimension (i.e., depth). For instance, if an AT 

efficiently picks off stale limit orders, limit order traders may reduce their order size 
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in response. Hendershott et al. (2011) show that higher algorithmic trading volume is 

negatively associated with market depth.  

 

Table 4-3 

Quoted Depths and Lagged Algorithmic Trading Volume 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 ASX stocks 

based on 15-minute intervals. The sample period extends from July 2, 2007 to October 26, 2009. The 

regression model is specified as follows: 𝑄𝐷𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽2𝑁𝑇𝑡 +  𝛽3𝜎𝑡−1 +  𝛽4𝑄𝐷𝑡−1  +  𝛽5𝑀𝑡   +  𝛽6𝐴𝑡  +  𝜀𝑡 

where 𝑄𝐷𝑡  represents the natural logarithm of the best quoted depth (𝐵𝑄𝐷𝑡−1) and total quoted depth 

(𝑇𝑄𝐷𝑡−1) during time interval 𝑡; 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell 

(𝑆𝐸𝐿𝐿𝑡−1) ratio, respectively; 𝑁𝑇𝑡 is the number of trades executed during time interval𝑡; 𝜎𝑡−1 is the 

intraday high-low price range estimator at time interval 𝑡 − 1; 𝑀𝑡 is a dummy variable that takes the 

value of one from 10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a dummy 

variable that takes the value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a random 

error term. Regression coefficients are cross-sectional averages from the 100 stocks. Average t-

statistics are in parentheses. The R2 is the cross-sectional average adjusted R-square. To adjust the units 

for presentation, the coefficient for 𝑁𝑇𝑡 is multiplied by 104, and the coefficients for 𝑅𝐴𝑇𝐼𝑂𝑡−1, 𝑀𝑡, 

and 𝐴𝑡 are multiplied by 102. 

 

 Total Buy Sell 

  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 

Constant 1.08 0.53 1.06 0.52 1.07 0.52 

 (28.26) (19.81) (28.73) (19.93) (28.92) (20.02) 𝑅𝐴𝑇𝐼𝑂𝑡−1 -1.23 -0.76 -0.13 -0.38 -1.69 -0.86 

 (-1.16) (-1.70) (-0.20) (-0.76) (-1.23) (-1.40) 𝑁𝑇𝑡 2.30 -0.30 2.30 -0.30 2.30 -0.30 

 (2.60) (-0.58) (2.53) (-0.64) (2.54) (-0.64) 𝜎𝑡−1 -6.64 -2.29 -6.58 -2.26 -6.59 -2.27 

 (-7.73) (-4.98) (-7.68) (-4.94) (-7.70) (-4.95) 𝐵𝑄𝐷𝑡−1 0.89  0.89  0.89  

 (282.44)  (285.08)  (284.79)  𝑇𝑄𝐷𝑡−1  0.95  0.95  0.95 

  (561.90)  (566.76)  (565.89) 𝑀𝑡 1.01 1.08 1.04 1.09 1.02 1.09 

 (1.57) (3.52) (1.62) (3.56) (1.59) (3.55) 𝐴𝑡 2.05 0.76 2.07 0.78 2.05 0.77 

 (4.64) (3.07) (4.68) (3.13) (4.66) (3.12) 

R2 0.81 0.92 0.81 0.92 0.81 0.92 

 

Table 4-3 shows the regression results for both best and total depth. In contrast to 

Hendershott et al. (2011), the relationship between algorithmic trading volume and 

subsequent market depth is insignificant for both depth measures. 
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Table 4-4 

Volatility and Lagged Algorithmic Trading Volume 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 ASX stocks 

based on 15-minute intervals. The sample period extends from July 2, 2007 to October 26, 2009. The 

regression models are specified as follows: 𝜎𝑡 =  𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 +  𝛽2𝑁𝑇𝑡 + 𝛽3𝜎𝑖𝑡−1 +  𝛽4𝐵𝐴𝑆𝑡−1  + 𝛽5𝑀𝑡   +  𝛽6𝐴𝑡  +  𝜀𝑡 𝜎𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽2𝑁𝑇𝑡 +  𝛽3𝜎𝑡−1 +  𝛽4𝑄𝐷𝑡−1  + 𝛽5𝑀𝑡   +  𝛽6𝐴𝑡  +  𝜀𝑡 

where 𝜎𝑡 is the intraday high-low price range estimator at time interval 𝑡; 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic 

total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell (𝑆𝐸𝐿𝐿𝑡−1) ratio, respectively; 𝐵𝐴𝑆𝑡 represents the percentage 

bid-ask spread (𝑃𝐵𝐴𝑆𝑡−1) and effective spread (𝑃𝐸𝑆𝑡−1) during time interval 𝑡; 𝑄𝐷𝑡 represents the 

natural logarithm of the best quoted depth (𝐵𝑄𝐷𝑡−1) and total quoted depth (𝑇𝑄𝐷𝑡−1) during time 

interval 𝑡; 𝑁𝑇𝑡 is the number of trades executed during time interval𝑡; 𝑀𝑡 is a dummy variable that 

takes the value of one from 10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a 

dummy variable that takes the value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a 

random error term. Regression coefficients are cross-sectional averages from the 100 stocks. Average 

t-statistics are in parentheses. The R2 is the cross-sectional average adjusted R-square. To adjust the 

units for presentation, the coefficient for Constant, 𝑅𝐴𝑇𝐼𝑂𝑡−1, 𝑁𝑇𝑡, 𝑃𝐸𝑆𝑡−1, 𝑇𝑄𝐷𝑡−1, 𝑀𝑡, and 𝐴𝑡 are 

multiplied by 104. 

 

  Total Buy Sell 

 𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 

Constant -1.60 -1.60 17.60 32.00 -1.40 -1.40 17.90 32.20 -1.40 -1.40 17.80 32.10 

 (-1.06) (-1.05) (5.14) (5.72) (-0.69) (-0.68) (5.43) (5.92) (-0.79) (-0.78) (5.41) (5.87) 𝑅𝐴𝑇𝐼𝑂𝑡−1 0.50 0.50 0.60 0.40 0.30 0.30 0.20 0.04 0.30 0.30 0.40 0.20 

 (0.84) (0.84) (0.73) (0.56) (0.32) (0.32) (0.17) (0.06) (0.64) (0.64) (0.53) (0.40) 𝑁𝑇𝑡 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

 (8.77) (8.77) (8.35) (8.45) (8.78) (8.78) (8.36) (8.45) (8.78) (8.78) (8.37) (8.46) 𝜎𝑡−1 0.72 0.72 0.73 0.73 0.72 0.72 0.73 0.73 0.72 0.72 0.73 0.73 

 (43.74) (43.74) (47.32) (46.20) (43.74) (43.75) (47.38) (46.28) (43.78) (43.78) (47.44) (46.33) 𝑃𝐵𝐴𝑆𝑡−1 0.56    0.58    0.58    

 (6.22)    (6.29)    (6.28)    𝑃𝐸𝑆𝑡−1  -1.40    -1.40    -1.40   

  (-4.45)    (-4.54)    (-4.52)   𝐵𝑄𝐷𝑡−1   0.38    0.38    0.38  

   (6.22)    (6.28)    (6.27)  𝑇𝑄𝐷𝑡−1    -2.40    -2.40    -2.40 

    (-5.34)    (-5.40)    (-5.37) 𝑀𝑡 -0.10 -0.10 0.10 0.10 -0.10 -0.10 0.10 0.10 -0.10 -0.10 0.10 0.10 

 (-0.57) (-0.57) (-0.33) (-0.30) (-0.57) (-0.57) (-0.34) (-0.31) (-0.58) (-0.57) (-0.34) (-0.30) 𝐴𝑡 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

 (2.30) (2.30) (2.47) (2.42) (2.29) (2.29) (2.46) (2.41) (2.29) (2.29) (2.47) (2.42) 

R2 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

 

The last market quality variable examined is volatility. The literature examining 

algorithmic and high frequency trading find that the presence of algorithmic trading 

does not contribute to higher volatility, and may actually lower it (Hendershott and 

Riordan, 2011). Hendershott and Riordan (2011) suggest that algorithmic trading is 
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more likely to dampen volatility than to increase it, as ATs can monitor the market and 

demand liquidity when it is cheap and supply liquidity when it is expensive, thereby 

moderating changes in liquidity. Table 4-4 shows the relation between algorithmic 

trading volume on subsequent volatility. In line with Hendershott and Riordan (2011), 

algorithmic trading does not contribute to higher volatility. Across all regression 

specifications, the coefficients on algorithmic trading variables are not distinguishable 

from zero, consistent with the first hypothesis (H4,1). 

 

4.4.2 Algorithmic Trading Volume during Periods of Market Stress 

 

The results in the previous section show that market quality is not associated with 

lagged algorithmic trading volume (except for the total ratio). This is similar to other 

studies finding that algorithmic trading does not result in a deterioration in market 

quality. However, Kirilenko et al. (2011) document that algorithmic trading had a 

negative impact on the market during one period of extreme market stress. Examining 

the flash crash of May 6, 2010, the authors find that HFT was not responsible for the 

crash, though their responses exacerbated market volatility during the period. 

Kirilenko et al. (2011) find that HFTs exhibit trading patterns inconsistent with 

traditional market makers, through trading aggressively in the direction of price 

changes and not accumulating significant inventory positions. Thus, HFTs do not 

supply liquidity when prices move against their trading position. Further, they can 

exacerbate price movements by competing for liquidity as they try to rebalance their 

inventory positions. The results of Kirilenko et al. (2011), however, apply to one 
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extreme event. It is unknown whether such behaviour is representative of algorithmic 

trading during less extreme market episodes. 

 

To test this, each time interval is classified into up and down intervals for each stock, 

based on whether the return is positive or non-positive. This is defined as: 

 

𝐷𝑖𝑡𝑈𝑝 ≡ {1 𝑖𝑓 𝑅𝑖𝑡 > 00 𝑖𝑓 𝑅𝑖𝑡 < 0  

and 𝐷𝑖𝑡𝐷𝑜𝑤𝑛 ≡ 1 −   𝐷𝑖𝑡𝑈𝑝
  

 

The following regression models are then estimated for each stock: 

 𝐵𝐴𝑆𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ +  𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− + 𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 + 𝛽5𝐵𝐴𝑆𝑡−1  +  𝛽6𝑀𝑡  +  𝛽7𝐴𝑡  +  𝜀𝑡 𝑄𝐷𝑡 = 𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ +  𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− + 𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 + 𝛽5𝑄𝐷𝑡−1  + 𝛽6𝑀𝑡  +  𝛽7𝐴𝑡  +  𝜀𝑡 𝜎𝑡 =  𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ + 𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− + 𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 + 𝛽5𝐵𝐴𝑆𝑡−1  + 𝛽6𝑀𝑡   + 𝛽7𝐴𝑡  +  𝜀𝑡 𝜎𝑡 =  𝛽0 +  𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ + 𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− + 𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 + 𝛽5𝑄𝐷𝑡−1  + 𝛽6𝑀𝑡   + 𝛽7𝐴𝑡  +  𝜀𝑡 

 

where 𝑅𝐴𝑇𝐼0𝑡−1+  ≡  𝑅𝐴𝑇𝐼𝑂𝑡−1 ×  𝐷𝑡−1𝑈𝑝
 and 𝑅𝐴𝑇𝐼𝑂𝑡−1−  ≡ 𝐷𝑡−1𝐷𝑜𝑤𝑛. The findings of 

Kirilenko, Kyle, Samadi and Tuzun (2011) suggest that algorithmic trading can have a 

negative impact on trading during market downturns if algorithmic trading increase 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.10) 

(4.11) 



118 

 

their demand for liquidity, or reduce their supply of liquidity, as total liquidity 

contracts, or both. 

Table 4-5 shows the results for bid-ask spreads and effective spreads. Panel A 

of Table 4-5 shows that lagged algorithmic trading volume is positively related to bid-

ask spreads and effective spreads only for down intervals. This positive relation is 

significant during down intervals with an average t-statistic of 2.97 for both bid-ask 

spreads and effective spreads, and insignificant for up intervals with an average t-

statistic of 1.64 and 1.63, respectively. These results are consistent across buy and sell 

trades, with the coefficients in the regressions for both spread measures positive and 

significant for down intervals, and insignificant for up intervals. These results show 

that the relation between market quality and lagged algorithmic trading volume is not 

independent of market conditions, suggesting that the findings of Kirilenko et al. 

(2011) can be extended to less extreme market falls. 

The results for market depth are shown in Table 4-6. After controlling for 

lagged depth and volatility, intraday variation and trading activity, total depth is 

significantly and negatively related to lagged algorithmic trading volume. Examining 

all trades, the average coefficient on the lagged algorithmic trading volume during 

down intervals is significantly negative with an average t-statistic of -2.97. The 

relationship between lagged algorithmic trading volume and market depth is, 

however, insignificant when 𝑄𝐷𝑡 is computed using the best quotes (average t-

statistic of -1.96), suggesting that the main impact of lagged algorithmic trading 

volume is on depth throughout the limit order book. Similar to the spread results, 𝛽1 

is insignificant for both best and total depth. The results are similar for buys and sells, 
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with 𝛽1 being insignificant across both best and total depth, while 𝛽2 is significantly 

negative for total depth, not best depth. 

Table 4-5 

Percentage Spreads and Lagged Algorithmic Trading Volume during Up and Down 

Markets 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 ASX stocks 

based on 15-minute intervals. The sample period extends from July 2, 2007 to October 26, 2009. The 

regression model is specified as follows: 𝐵𝐴𝑆𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ + 𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− +  𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 +  𝛽5𝐵𝐴𝑆𝑡−1  +  𝛽6𝑀𝑡   +  𝛽7𝐴𝑡  +  𝜀𝑡 

where 𝐵𝐴𝑆𝑡  represents the percentage bid-ask spread (𝑃𝐵𝐴𝑆𝑡−1) and effective spread (𝑃𝐸𝑆𝑡−1) during 

time interval 𝑡; 𝑅𝐴𝑇𝐼𝑂𝑡+ and 𝑅𝐴𝑇𝐼𝑂𝑡− denote the algorithmic trading variables on up and down 

intervals, respectively; 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell (𝑆𝐸𝐿𝐿𝑡−1) 

ratio, respectively; 𝑁𝑇𝑡 is the number of trades executed during time interval𝑡; 𝜎𝑡−1 is the intraday 

high-low price range estimator at time interval 𝑡 − 1; 𝑀𝑡 is a dummy variable that takes the value of 

one from 10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a dummy variable that 

takes the value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a random error term. 

Regression coefficients are cross-sectional averages from the 100 stocks. Average t-statistics are in 

parentheses. The R2 is the cross-sectional average adjusted R-square. To adjust the units for 

presentation, the coefficients for 𝑅𝐴𝑇𝐼𝑂𝑡−1+ , 𝑅𝐴𝑇𝐼𝑂𝑡−1− , 𝑁𝑇𝑡, 𝑀𝑡, and 𝐴𝑡are multiplied by 105, and those 

for Constant, 𝜎𝑡−1, 𝑃𝐵𝐴𝑆𝑡−1, and 𝑃𝐸𝑆𝑡−1 are multiplied by 102. 

 

  Total Buy Sell 

  𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  

Constant 0.02 0.03 0.02 0.03 0.02 0.03 

 (11.82) (11.74) (12.64) (12.56) (12.47) (12.39) 𝑅𝐴𝑇𝐼𝑂𝑡+ 2.00 3.00 1.00 2.00 1.00 1.00 

 (1.64) (1.63) (0.46) (0.46) (0.94) (0.93) 𝑅𝐴𝑇𝐼𝑂𝑡− 3.00 5.00 3.00 4.00 3.00 4.00 

 (2.97) (2.97) (2.04) (2.04) (2.71) (2.71) 𝑁𝑇𝑡 -0.08 -0.10 -0.08 -0.10 -0.08 -0.10 

 (-2.16) (-2.16) (-2.15) (-2.15) (-2.15) (-2.15) 𝜎𝑡−1 1.07 1.62 1.07 1.61 1.07 1.61 

 (6.27) (6.26) (6.23) (6.22) (6.23) (6.23) 𝑃𝐵𝐴𝑆𝑡−1 84.71  84.80  84.79  

 (134.93)  (136.15)  (136.04)  𝑃𝐸𝑆𝑡−1  84.68  84.77  84.76 

  (134.16)  (135.37)  (135.26) 𝑀𝑡 -2.00 -3.00 -2.00 -3.00 -2.00 -3.00 

 (-2.45) (-2.44) (-2.49) (-2.48) (-2.48) (-2.47) 𝐴𝑡 1.00 1.00 1.00 1.00 1.00 1.00 

 (0.77) (0.77) (0.68) (0.67) (0.73) (0.73) 

R2 0.79 0.78 0.79 0.78 0.79 0.78 
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Table 4-6 

Quoted Depths and Lagged Algorithmic Trading Volume during Up and Down 

Markets 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 ASX stocks 

based on 15-minute intervals. The sample period extends from July 2, 2007 to October 26, 2009. The 

regression model is specified as follows: 𝑄𝐷𝑡 = 𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ + 𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− +  𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 +  𝛽5𝑄𝐷𝑡−1  +  𝛽6𝑀𝑡   +  𝛽7𝐴𝑡  +  𝜀𝑡   
where 𝑄𝐷𝑡  represents the natural logarithm of the best quoted depth (𝐵𝑄𝐷𝑡−1) and total quoted depth 

(𝑇𝑄𝐷𝑡−1) during time interval 𝑡; 𝑅𝐴𝑇𝐼𝑂𝑡+ and 𝑅𝐴𝑇𝐼𝑂𝑡− denote the algorithmic trading variables on up 

and down intervals, respectively; 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell 

(𝑆𝐸𝐿𝐿𝑡−1) ratio, respectively; 𝑁𝑇𝑡 is the number of trades executed during time interval𝑡; 𝜎𝑡−1 is the 

intraday high-low price range estimator at time interval 𝑡 − 1; 𝑀𝑡 is a dummy variable that takes the 

value of one from 10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a dummy 

variable that takes the value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a random 

error term. Regression coefficients are cross-sectional averages from the 100 stocks. Average t-

statistics are in parentheses. The R2 is the cross-sectional average adjusted R-square. To adjust the units 

for presentation, the coefficient for 𝑁𝑇𝑡 is multiplied by 104, and the coefficients for 𝑅𝐴𝑇𝐼𝑂𝑡−1+ , 𝑅𝐴𝑇𝐼𝑂𝑡−1− , 𝑀𝑡, and 𝐴𝑡 are multiplied by 102. 

 

 Total Buy Sell 

  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 

Constant 1.18 0.56 1.16 0.55 1.17 0.55 

 (27.77) (19.41) (28.20) (19.54) (28.41) (19.61) 𝑅𝐴𝑇𝐼𝑂𝑡+ -1.46 -0.48 -0.05 0.12 -1.81 -0.32 

 (-1.01) (-0.87) (-0.02) (0.04) (-0.82) (-0.35) 𝑅𝐴𝑇𝐼𝑂𝑡− -2.10 -1.48 -1.58 -1.65 -2.50 -1.89 

 (-1.96) (-2.97) (-1.36) (-2.54) (-1.88) (-2.94) 𝑁𝑇𝑡 3.30 -0.20 3.30 -0.20 3.20 -0.20 

 (3.49) (-0.15) (3.42) (-0.19) (3.42) (-0.20) 𝜎𝑡−1 -7.02 -2.47 -6.97 -2.44 -6.96 -2.44 

 (-7.75) (-5.11) (-7.71) (-5.05) (-7.72) (-5.06) 𝐵𝑄𝐷𝑡−1 0.88  0.88  0.88  

 (244.37)  (246.75)  (246.39)  𝑇𝑄𝐷𝑡−1  0.95  0.95  0.95 

  (485.73)  (489.58)  (489.45) 𝑀𝑡 1.24 1.16 1.27 1.17 1.26 1.17 

 (1.67) (3.48) (1.71) (3.51) (1.69) (3.50) 𝐴𝑡 2.12 2.12 2.15 2.12 2.13 2.12 

 (4.61) (3.09) (4.65) (3.16) (4.62) (3.12) 

R2 0.79 0.91 0.79 0.91 0.79 0.91 

 

The results for volatility presented in Table 4-7 are similar, with a rise in lagged 

algorithmic trading volume generally being related to an increase in volatility during 

periods of decreasing prices, though not during periods of increasing prices. Focusing 

on 𝛽1 for all trades using 𝑃𝐵𝐴𝑆𝑡−1 as a regressor, the average coefficient is negative 

with an average t-statistic of -0.44. The average coefficient estimate for 𝑅𝑎𝑡𝑖𝑜𝑡− , 
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however, is positive with an average t-statistic of 2.30. Similar results are found using 

effective spreads and both depth measures as control variables. These results hold for 

both buys and sells. 

In line with previous literature, the results in Section 4.4.1 indicate that higher 

algorithmic trading volume in the market is not associated with a deterioration in 

market quality. In contrast, this section suggests that such results could be biased as 

they fail to take into account the direction of prices. Dividing the sample into periods 

of increasing and decreasing prices, results reveal that lagged algorithmic trading 

volume is related to a reduction in liquidity and an increase in volatility during periods 

when the market is falling, and has no association with market quality during periods 

when the market is increasing. This is consistent with the second hypothesis (H4,2). 

This aligns with the findings such as Kirilenko et al. (2011) that document that 

algorithmic trading had a negative impact on the market during periods of market 

stress. 
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Table 4-7 

Volatility on Lagged Algorithmic Trading Volume during Up and Down Markets 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 stocks ASX 

stocks based on 15-minute intervals. The sample period extends from July 2, 2007 to October 26, 2009. 

The regression models are specified as follows: 𝜎𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ +  𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− +  𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 +  𝛽5𝐵𝐴𝑆𝑡−1  +  𝛽6𝑀𝑡   +  𝛽7𝐴𝑡  +  𝜀𝑡 𝜎𝑡 =  𝛽0 + 𝛽1𝑅𝐴𝑇𝐼𝑂𝑡−1+ +  𝛽2𝑅𝐴𝑇𝐼𝑂𝑡−1− + 𝛽3𝑁𝑇𝑡 +  𝛽4𝜎𝑡−1 +  𝛽5𝑄𝐷𝑡−1  +  𝛽6𝑀𝑡   + 𝛽7𝐴𝑡  +  𝜀𝑡 

where 𝜎𝑡 is the intraday high-low price range estimator at time interval 𝑡; 𝐵𝐴𝑆𝑡  represents the 

percentage bid-ask spread (𝑃𝐵𝐴𝑆𝑡−1) and effective spread (𝑃𝐸𝑆𝑡−1) during time interval 𝑡; 𝑄𝐷𝑡  

represents the natural logarithm of the best quoted depth (𝐵𝑄𝐷𝑡−1) and total quoted depth (𝑇𝑄𝐷𝑡−1) 

during time interval 𝑡; 𝑅𝐴𝑇𝐼𝑂𝑡+ and 𝑅𝐴𝑇𝐼𝑂𝑡− denote the algorithmic trading variables on up and down 

intervals, respectively; 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell (𝑆𝐸𝐿𝐿𝑡−1) 

ratio, respectively; 𝑁𝑇𝑡 is the number of trades executed during time interval𝑡; 𝜎𝑡−1 is the intraday 

high-low price range estimator at time interval 𝑡 − 1; 𝑀𝑡 is a dummy variable that takes the value of 

one from 10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a dummy variable that 

takes the value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a random error term. 

Regression coefficients are cross-sectional averages from the 100 stocks. Average t-statistics are in 

parentheses. The R2 is the cross-sectional average adjusted R-square. To adjust the units for 

presentation, the coefficients for Constant, 𝑅𝐴𝑇𝐼𝑂𝑡+, 𝑅𝐴𝑇𝐼𝑂𝑡−, 𝑁𝑇𝑡, BQDt−1, 𝑇𝑄𝐷𝑡−1, 𝑀𝑡, and 𝐴𝑡 are 

multiplied by 104, and those for 𝜎𝑡−1, 𝑃𝐵𝐴𝑆𝑡−1, and 𝑃𝐸𝑆𝑡−1 are multiplied by 102. 

 
  Total Buy Sell 

 𝑃𝐵𝐴𝑆𝑡 𝑃𝐸𝑆𝑡  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝑃𝐵𝐴𝑆𝑡  𝑃𝐸𝑆𝑡  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 𝑃𝐵𝐴𝑆𝑡  𝑃𝐸𝑆𝑡  𝐵𝑄𝐷𝑡  𝑇𝑄𝐷𝑡 

Constant -2.10 -2.10 25.10 41.60 -2.00 -1.90 24.90 41.20 -2.00 -1.90 41.50 41.50 

 (-1.24) (-1.23) (6.02) (6.41) (-0.94) (-0.93) (6.22) (6.56) (-1.00) (-0.99) (6.56) (6.56) 𝑅𝐴𝑇𝐼𝑂𝑡+ -0.80 -0.80 -1.30 -1.40 -1.30 -1.30 -1.90 -2.00 -2.20 -2.20 -2.70 -2.70 

 (-0.44) (-0.44) (-1.04) (-1.10) (-0.83) (-0.83) (-1.35) (-1.39) (-1.18) (-1.18) (-1.70) (-1.70) 𝑅𝐴𝑇𝐼𝑂𝑡− 2.20 2.30 2.00 2.00 3.00 3.00 2.70 2.70 3.00 3.00 3.00 3.00 

 (2.30) (2.31) (2.06) (2.04) (2.13) (2.13) (2.03) (2.04) (2.74) (2.74) (2.70) (2.70) 𝑁𝑇𝑡 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

 (8.77) (8.77) (8.44) (8.51) (8.77) (8.77) (8.43) (8.49) (8.78) (8.78) (8.51) (8.51) 𝜎𝑡−1 70.25 71.80 70.26 71.38 70.19 71.76 70.19 71.33 70.24 71.39 70.24 71.39 

 (42.80) (46.54) (42.81) (45.45) (42.76) (46.55) (42.77) (45.47) (42.82) (45.54) (42.82) (45.54) 𝑃𝐵𝐴𝑆𝑡−1 59.75    59.94    59.96    

 (5.93)    (6.00)    (5.99)    𝑃𝐸𝑆𝑡−1  39.66    39.78    39.79   

  (5.93)    (5.99)    (5.98)   𝐵𝑄𝐷𝑡−1   -2.10    -2.10    -3.20  

   (-5.50)    (-5.51)    (-6.15)  𝑇𝑄𝐷𝑡−1    -3.20    -3.20    -3.20 

    (-6.18)    (-6.13)    (-6.15) 𝑀𝑡 0.10 0.10 0.30 0.30 0.10 0.10 0.30 0.30 0.10 0.10 0.40 0.40 

 (-0.39) (-0.39) (-0.17) (-0.10) (-0.40) (-0.40) (-0.18) (-0.11) (-0.39) (-0.39) (-0.09) (-0.09) 𝐴𝑡 1.80 1.80 2.00 1.90 1.80 1.80 2.00 1.90 1.80 1.80 1.90 1.90 

 (2.30) (2.30) (2.57) (2.47) (2.29) (2.29) (2.56) (2.46) (2.31) (2.31) (2.50) (2.50) 

R2 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 
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4.4.4 Feedback Trading and Market Quality 

 

The findings of Kirilenko et al.(2011) imply that algorithmic trading could harm market 

quality during price declines if they increase their demand for liquidity during these 

periods. Kaniel et al. (2008) argue that contrarian traders act as liquidity providers. 

Institutional investors requiring immediacy offer price concessions to encourage other 

investors to take the other side of the trade. Momentum traders conversely act as 

liquidity demanders. Herding and positive-feedback trading may result in a reduction 

in market quality (Culter et al., 1990). 

 

To test whether ATs systematically engage in herding and positive-feedback trading, 

the following regression is estimated: 

 𝑅𝐴𝑇𝐼𝑂𝑡 =  𝛽0 +  𝛽1𝐷𝑡𝐷𝑜𝑤𝑛 +  𝛽2𝑁𝑇𝑡 +  𝛽3𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽4𝑀𝑡   + 𝛽5𝐴𝑡  +  𝜀𝑡 

 

where the algorithmic trading buy and sell ratios are examined separately to 

determine whether ATs systematically reduce their buying, and increase their selling, 

during price declines. Table 6-14 shows that 𝛽1 is significantly negative for buys and 

significantly positive for sells; t-statistics are very large, being -12.98 for buys and 

12.59 for sells. These results indicate a certain degree of herding by ATs. ATs reduce 

their buying in stocks with falling prices, while increasing their selling. This lends 

support to the conjecture that ATs increase their demand for liquidity during price 

falls, and that this reduces market quality, which is consistent with previous studies 

(6.16) 
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examining the trading strategies of ATs (Anand and Venkataraman, 2013; ASIC 2012; 

Korajczyk and Murphy 2014; Hu, 2013; Golub et al., 2012). 

 

Table 6-14 

Momentum Trading During Down Markets 

 
This table reports the GMM estimates from the regressions estimated for each of the 100 ASX stocks 

based on 15-minute intervals. The sample period extends from July 2, 2007 to March 6, 2009. The 

regression model is specified as follows: 𝑅𝐴𝑇𝐼𝑂𝑡 =  𝛽0 +  𝛽1𝐷𝑡𝐷𝑜𝑤𝑛 + 𝛽2𝑁𝑇𝑡 +  𝛽3𝑅𝐴𝑇𝐼𝑂𝑡−1 + 𝛽4𝑀𝑡  +  𝛽5𝐴𝑡  +  𝜀𝑡 𝑅𝐴𝑇𝐼𝑂𝑡−1 is the algorithmic total (𝑇𝑂𝑇𝐴𝐿𝑡−1), buy (𝐵𝑈𝑌𝑡−1), and sell (𝑆𝐸𝐿𝐿𝑡−1) ratio, respectively; 𝑁𝑇𝑡 

is the number of trades executed during time interval𝑡; 𝑀𝑡 is a dummy variable that takes the value of 

one from 10:15 to 11:00 hours of the trading day and zero otherwise, and 𝐴𝑡 is a dummy variable that 

takes the value of one from 15:00 to 16:00 hours and zero otherwise; and εit is a random error term. 

Regression coefficients are cross-sectional averages from the 100 stocks. Average t-statistics are in 

parentheses. To adjust the units for presentation, the coefficients for 𝐷𝑡𝐷𝑜𝑤𝑛, 𝑁𝑇𝑡, 𝑀𝑡, and 𝐴𝑡 are 

multiplied by 102. 

  Buy Ratio Sell Ratio 

Constant 0.10 0.09 

 (42.44) (37.53) 𝐷𝑡𝐷𝑜𝑤𝑛 -2.61 2.41 

 (-12.98) (12.59) 𝑁𝑇𝑡 -0.01 -0.01 

 (-1.16) (-1.06) 𝑅𝐴𝑇𝐼𝑂𝑡−1 0.65 0.65 

 (114.69) (112.91) 𝑀𝑡 -0.39 -0.25 

 (-2.09) (-1.45) 𝐴𝑡 -0.40 -0.56 

 (-2.13) (-2.85) 

 

4.5 Summary 

 

As a consequence of advances in technology, order execution in financial markets has 

changed dramatically. Instead of trades being entered manually by brokers, orders are 

increasingly being conducted by computer algorithms that either seek to minimise 

market impact or to profit from proprietary trading opportunities. The growth in this 

new form of trading, with its high speed and sophistication, has generated concern on 
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the part of regulators, exchanges, investors and journalists on the impact of ATs on 

market integrity and quality. As data on ATs has become available, a number of studies 

have begun to examine the effect of algorithmic trading on market quality. Despite 

this, few studies examine the impact of algorithmic trading during adverse market 

environments.  

In this chapter, the impact of algorithmic trading on market quality is assessed 

over different market conditions. Over the whole sample period, results provide no 

evidence that AT volume has an impact on market quality. However, when the sample 

is split into increasing and decreasing stock returns, results show that AT is negatively 

associated with future market quality when prices are falling and has no relation when 

prices are rising. The negative impact of AT on market quality is explained by 

algorithmic traders engaging in positive-feedback trading, in which they reduce their 

buying and increase their selling of securities during periods of falling prices. 
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Chapter 5: Execution Costs of Option Strategy Trades 

5.1 Introduction 

 

The literature reviewed in Section 2.2 provide a number of insights into how option 

market makers set the bid-ask spread. Specifically, market makers adjust prices in 

response to information asymmetry and hedging costs (including the costs of hedging 

delta, vega and gamma risks). The implication is that transaction costs in option 

markets will be greater when hedging and adverse selection costs increase. The 

literature on this issue examines outright option trades; the execution costs of option 

strategies and its determinants are yet to be investigated. This is a result of data being 

unavailable to conduct this line of research. Option strategies (such as straddles and 

butterfly spreads) allow market participants to combine options to either speculate 

on future volatility, or to speculate on directional movements with greater flexibility. 

Despite the prominence of option strategies documented in recent empirical studies 

(e.g., Lakonishok et al., 2007), literature on the transaction costs of option strategies 

is sparse. 

The objective of this essay is to bridge the gap in the literature by examining 

the execution costs of option strategies. More specifically, it documents the size of 

execution costs of option strategies relative to outright options on the Australian 

Options Market (AOM) and examines whether any differences can be attributed to 

differences in market making and adverse selection costs. The remainder of this 

chapter is structured as follows. Section 5.2 provides institutional details of the AOM. 
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Section 5.2 outlines the hypotheses on option strategies. Section 5.3 presents the data 

and descriptive statistics. Section 5.4 outlines the research design and presents the 

results. Section 5.5 summarises the chapter. 

 

5.2 Hypotheses on Option Strategies 

 

The two principal approaches to modeling market maker behaviour are inventory 

control models and adverse selection models. The level of inventory holding costs and 

adverse selection costs differ across financial markets. Options market makers face 

unique risks in managing inventory and adverse selection costs. Relative to equity 

market makers, they have less control over their inventory positions (Lakonishock et 

al., 2007). As a result of this, hedging is an integral part of the mechanics of market 

making in options markets (Battalio and Schulz, 2011). The literature suggests that 

options market makers face the following three types of hedging costs; delta cost is 

the cost of setting up a hedging portfolio; vega (gamma) cost is the cost incurred in 

maintaining a hedged portfolio as the underlying stock volatility (delta) changes over 

time. The presence of these dimensions of risk increases the difficulty of the market 

maker’s hedging in options markets.  

Empirical findings show that option market makers adjust prices to account for 

these hedging costs (Jameson and Wilhelm, 1992, Cho and Engle, 1999, Kaul et al., 

2004, Patrella, 2006, Landsiedl, 2005, and Engle and Neri, 2010). For example, Wei 

and Zheng (2010) show that bid-ask spreads adjust to changes in a number of liquidity 

determinants affecting a market maker’s inventory-holding costs. The authors show 

that over half the time series variation in the bid-ask spread is explained by changes 
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in an option’s time-to-maturity, moneyness, stock return volatility, option return 

volatility, option trading volume and option price.  

The particular features of option markets may also attract informed investors. 

Options offer greater leverage relative to equity markets (Black, 1975). This greater 

leverage may induce investors with short-lived information to favour the use of 

options (Charkravarty et al. 2004). The literature shows option market makers adjust 

prices to account for changes in information asymmetry (Bartram et al., 2008; Ahn et 

al., 2008).  

Option trades do not necessarily have to involve a trade in a single option 

series but can simultaneously involve a number of different options with different 

strike prices, exercise dates etc. For instance, a trader who seeks to profit from 

changes to the security’s volatility can engage in option strategies such as straddles or 

strangles, which involve the simultaneous buying of a put and call option in the same 

option series. These present risks to the market maker that are different to trading 

outright options. Relative to outright option trades, the greater complexity of strategy 

trades means that options market makers will incur higher hedging costs for option 

strategy trades. This is because the market maker takes into account the cost of 

hedging a newly created position by trading component options separately. For 

example, consider a market maker who has received a quote request for a straddle. 

Setting the quotes, the market maker takes into account the cost of hedging a newly 

created position by trading component options separately. It follows that the market 

maker requires higher liquidity premiums for strategy-linked options than outright 

options. Further, a likely consequence is that strategy-linked options trade at less 

advantageous prices than outright options, unless option strategy traders are 
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consistently (and considerably) superior at timing the market to traders who trade 

outright options. 

Furthermore, the diversity of option strategies allows traders to combine 

options to either speculate on future volatility while eliminating exposure to 

directional risks, or to speculate on directional movements while eliminating the 

volatility of the underlying, thereby reducing risk. Informed traders may take 

advantage of this by engaging in option strategies over outright options. Fahlenbrach 

and Sandås (2010) demonstrate that volatility-based option strategies predict future 

realised volatility. It is therefore hypothesised that the market maker requires higher 

liquidity premiums for strategy trades.  

 

Hypothesis5.1: Execution costs for option strategy trades are higher relative to outright 

option trades. 

 

Option strategies have different levels of complexity. For example, a straddle consists 

of simultaneously purchasing or selling a put and call option at the same strike price, 

whereas a butterfly trade consists of selling four put or call options at three different 

strike prices. As the market maker takes into account the cost of hedging a newly 

created position by trading component options separately, hedging costs for strategy 

trades will be higher for option strategies with greater complexity due to the greater 

number of option components.  

 

The above discussion leads to the following hypothesis. 
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Hypothesis5.2: The execution costs of option strategies increase as a function of their 

complexity. 

 

As discussed, market makers’ quote setting strategies are affected by information 

asymmetry and inventory-holding costs (e.g., Ho and Stoll, 1981, Easley and O’Hara, 

1987). Furthermore, option strategies generate higher hedging costs for market 

makers and may contain information about future returns and volatility. This suggest 

that the differences in transaction costs between option strategies and outright 

options can be explained by differences in the level of information asymmetry and 

hedging costs of option strategies relative to outright options. This leads to the 

following hypotheses. 

 

Hypothesis5.3: Market makers face higher levels of information asymmetry trading 

option strategies relative to outright options. 

 

Hypothesis5.4: Market makers face higher hedging costs trading option strategies 

relative to outright options. 

 

5.3 Australian Options Market 

 

The Australian Options Market (AOM) is a quasi-limit order book market where 

liquidity is supplied by public limit orders and designated market makers. Limit orders 

and market maker quotes are ranked on a price/time priority basis. The amount of 

liquidity supplied by limit orders is minimal relative to market makers, meaning that 
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the AOM can be considered to be a dealer market. The AOM offers market makers fee 

incentives for meeting certain benchmark quoting requirements. Each market maker, 

assigned two or more underlying assets, can choose to make a market on a continuous 

basis, in response to quote requests, or both. Market makers who choose to make a 

market on a continuous basis are obliged to provide orders continuously for certain 

percentages of time, in 18 series per underlying security, encompassing three calls and 

three puts in any three of the next six expiry months. Market makers who choose to 

make a market in response to quote requests are monitored on their provision of 

orders on request for certain percentages of the time for all series up to nine months 

maturity. Liquidity is assisted when there are multiple market makers in a class; 

however, as market makers are not required to provide quotes in all series, or at all 

times, there is no guarantee that all series will have prices displayed.  

Option strategies on the AOM are referred to as combination trades. Trading 

of option strategies on the AOM takes place through the central limit order book using 

a special trade facility. Use of this facility has important advantages over the central 

order book for strategy trades. First, execution risk is reduced by trading all legs of the 

strategy simultaneously, particularly if the option legs include highly illiquid options. 

Second, the risk of adverse price movements, while executing each leg of the strategy, 

is removed. 

There are two main types of combination orders (“strategy orders”, hereafter) 

executed on the AOM; standard and tailor-made strategies. Standard strategies are 

limited to common strategies prescribed by the AOM. Tailor-made strategies provide 

the flexibility to define particular single series components of the strategy, having 

greater complexity than standard strategies. For each type of strategy, a trader 
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executes a trade by entering a quote in the special trade facility for each leg of the 

strategy. When a particular strategy is created, it is assigned a unique strategy series 

identifier. The order is then assigned with all other orders with the same unique 

identifier, based on price/time priority against the other strategies. For a trade to 

occur, another trader may trade against the strategy order, matching all legs included 

in the strategy or the AOM matches the strategy with orders that are currently in the 

market for each option. 

 

5.4 Data and Descriptive Statistics 

 

The data are obtained from an internal database from the AOM. The sample consists 

of trade by trade data for all equity options listed on the AOM. For each transaction, 

data include the underlying stock, date, time (to the nearest millisecond), price, and 

volume. The sample period extends from January 1, 2007 to August 31, 2007. The 

sample is restricted to normal trading hours for the options market (9:30a.m. - 

4:20p.m. during the sample period), and includes all options traded on a sample of 20 

stocks displaying the highest option volume (including both puts and calls) over the 

sample period. The trade record includes a flag for trades that are part of strategies, 

and this is further segregated into either standard or tailor-made combinations. 

The internal AOM data are combined with order book data sourced from 

Reuters Data Scope Tick History provided by Securities Industry Research Centre of 

Asia-Pacific (SIRCA). The data provide the prices of the best bid and ask quotes, time 

stamped to the nearest millisecond. To determine the direction of each strategy trade, 

Sackickas and Wilson’s (2003) quote rule is used: trades are determined as buyer- or 



133 

 

seller-initiated according to whether the trade price is above or below the bid-ask 

midpoint. As the quotes for strategy trades are unavailable, this study implies quotes 

based on the quotes given on the limit order book for the individual components. 

Trades that have no corresponding quotes (which may occur for strategy trades), or 

trade at the bid-ask mid-point, are removed. 

Table 5-1 reports the average price, the average daily number of contracts 

traded, average moneyness, and time to maturity (TTM) for strategy-linked trades and 

outright trades, separately. The sample consists of a total of 775,390 transactions, of 

which 287,042 are strategy-linked trades: 259,134 tailor-made strategy-linked trades 

and 27,908 standard strategy-linked trades. This suggests that option strategies 

constitute a considerable proportion of option trading volume on the AOM. The 

moneyness of an option series is calculated as the spot (strike) price divided by the 

strike (spot) price for call (put) options. TTM is calculated as the difference between 

the current date of the option and the expiry date. Underlying volatility is calculated 

as the natural logarithm of the difference between the daily high and low prices of the 

underlying stock. 
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Table 5-1 

Descriptive Statistics 
 

This table reports descriptive statistics for tailor-made strategy-linked (TM), standard strategy-linked 

(SS), and outright options. Panel A describes the full sample. Panel B reports the descriptive statistics 

across three moneyness categories. The moneyness of an option series is calculated as the spot (strike) 

price divided by the strike (spot) price for call (put) options. Moneyness is defined as at-the-money 

(ATM) if it is between 0.9 and 1.1, in-the-money (ITM) if greater than 1.1, and out-of-the money (OTM) 

if less than 0.9. Panel C splits the sample into three time-to-maturity (TTM) categories. In Panel D, the 

sample is divided into volume categories: each trading day, each option series is partitioned into one 

of three categories based on the number of trades. Number of Trades is the daily average number of 

trades. Trade Premium is the average of the options premiums ($). Moneyness is the average 

moneyness. Time to Maturity is the average time to maturity (days). Trade Size is the average trade size 

(contracts). 

 

 
Number of 

Trades 

Trade Premium 

($) 
Moneyness 

Time to Maturity 

(days) 

Trade Size 

(contracts) 

Panel A – Overall           

TM Options 259,134 1.38 1.00 61.81 22.06 

SS Options 27,908 0.69 0.99 30.76 41.15 

Outright Options 488,348 0.97 0.98 51.74 19.12 

Panel B – Moneyness           

TM Options      

ATM 225,539 1.13 1.00 52.94 24.38 

ITM 15,753 5.87 1.21 89.82 6.30 

OTM 17,842 0.52 0.85 149.30 6.68 

SS Options      

ATM 26,105 0.66 0.99 28.87 43.13 

ITM 510 3.49 1.17 46.08 11.08 

OTM 1,293 0.23 0.87 62.85 12.91 

Outright options      

ATM 437,198 0.88 0.99 44.07 20.69 

ITM 12,395 5.77 1.21 117.16 6.53 

OTM 38,755 0.47 0.86 117.31 6.70 

Panel C – Time to Maturity         

TM Options      

> 90 days 39,890 2.57 0.99 239.18 5.31 

30 - 90 days 99,677 1.24 0.99 48.17 16.88 

< 30 days 119,567 1.09 1.01 14.00 31.97 

SS Options      

> 90 days 1,023 1.78 0.98 199.39 6.67 

30 - 90 days 9,322 0.77 0.98 44.14 26.23 

< 30 days 17,563 0.59 0.99 13.84 51.08 

Outright options      

> 90 days 58,527 2.02 0.97 205.00 5.22 

30 - 90 days 196,370 0.96 0.97 49.36 14.07 

< 30 days 233,451 0.72 0.99 15.35 27.07 
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Table 1, continued 

 

Panel D – Volume         

TM Options      

Volume Group 1 (Lowest) 22,298 2.67 1.03 135.00 1.00 

Volume Group 2 38,144 2.07 1.00 102.00 2.61 

Volume Group 3 (Highest) 198,692 1.10 1.00 45.85 28.16 

SS Options      

Volume Group 1 (Lowest) 483 1.73 1.00 96.45 1.00 

Volume Group 2 1,599 1.16 0.98 66.02 2.76 

Volume Group 3 (Highest) 25,826 0.64 0.99 27.35 44.28 

Outright options      

Volume Group 1 (Lowest) 35,842 1.76 0.98 125.00 1.00 

Volume Group 2 67,347 1.38 0.97 89.60 2.59 

Volume Group 3 (Highest) 385,159 0.83 0.98 38.30 23.82 

 

Panel B of Table 5-1 reports the descriptive statistics along three moneyness 

categories: in-the-money options (ITM) where moneyness is greater than 1.1; at-the-

money options (ATM) where moneyness is between 0.9 and 1.1; and out-of-the-

money options (OTM) where moneyness is less than 0.9. The majority of trades are 

concentrated in ATM options (89% of all trades). Average moneyness ranges from 

0.853 for OTM options to 1.212 for ITM options. Panel C of Table 5-1 reports summary 

statistics divided into three TTM categories; greater than 90 days, between 30 and 90 

days, and less than 30 days to maturity. Trades that are less than 30 days to maturity 

make up the greatest proportion of the sample. There is a significant range in 

maturities between option series, with TTM for long-term options averaging over 200 

days, while short-term options average less than 15 days. Panel D of Table 5-1 reports 

summary statistics according to volume categories based on the number of trades 

during a trading day. 
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Panel B of Table 5-1 reports the descriptive statistics along three moneyness 

categories: in-the-money options (ITM) where moneyness is greater than 1.1; at-the-

money options (ATM) where moneyness is between 0.9 and 1.1; and out-of-the-

money options (OTM) where moneyness is less than 0.9. The majority of trades are 

concentrated in ATM options (89% of all trades). Average moneyness ranges from 

0.853 for OTM options to 1.212 for ITM options. Panel C of Table 5-1 reports summary 

statistics divided into three TTM categories; greater than 90 days, between 30 and 90 

days, and less than 30 days to maturity. Trades that are less than 30 days to maturity 

make up the greatest proportion of the sample. There is a significant range in 

maturities between option series, with TTM for long-term options averaging over 200 

days, while short-term options average less than 15 days. Panel D of Table 5-1 reports 

summary statistics according to volume categories based on the number of trades 

during a trading day. 

 

5.5 Research Design and Empirical Results 

 

5.5.1 Transaction Costs 

 

This section investigates whether outright options and options that constitute 

strategies (“strategy-linked options”, hereafter) differ in execution costs using the 

percentage effective spread. A standard measure of liquidity used in the literature is 

the bid-ask spread. The quoted bid-ask spread, which is simply the difference between 

the bid and ask prices, captures the ex-ante costs transaction costs of undertaking a 

transaction (O’Hara, 1995). Christie and Huang (1994) suggest that using the relative 
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quoted spread is more appropriate as it takes into account the value of the security. 

Finally, Peterson and Fialkowski (1994) suggest that the quoted spread is not a true 

reflection of execution costs as a trader could place an order inside the quoted bid-

ask spread, resulting in a lower execution cost. In line with Bessembinder (2003), the 

percentage effective spread is calculated as: 

 

                              𝑃𝑒𝑟𝐸𝑓𝑓𝑆𝑝𝑟𝑒𝑎𝑑𝑖 = 200% × 𝐷𝑖 × (𝑃𝑟𝑖𝑐𝑒𝑖−𝑀𝑖𝑑𝑖)𝑀𝑖𝑑𝑖                          (5.1) 

 

where 𝐷𝑖  is a trade direction indicator variable (𝐷𝑖  =  1 for a buy order, 𝐷𝑖  = − 1 for 

a sell order), 𝑃𝑟𝑖𝑐𝑒𝑖  is the price of the trade,  and 𝑀𝑖𝑑𝑖 is the mid-quote prior to the 

trade. Table 4-2 reports percentage effective spreads for outright options, tailor-made 

strategy-linked (“TM”, hereafter), and standard strategy-linked (“SS”, hereafter) 

options by option type. The average percentage effective spread for outright options 

over the entire sample is 8.31%. Percentage Effective spreads for both TM (13.69%) 

options and SS options (10.72%) are significantly greater than those for outright 

options at the 1% level. Results also reveal that percentage effective spreads for TM 

options are significantly greater than those for SS options at the 1% level. 
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Table 5-2 

Percentage Effective Spreads 

 
This table reports percentage effective spreads for tailor-made strategy-linked (TM), standard strategy-

linked (SS), and outright options across call and put option trades. TM – Outright is the difference in 

effective spreads between TM and outright options. SS – Outright is the difference in effective spreads 

between SS and outright options. TM – SS is the difference in effective spreads between TM and SS 

options. The t-test is used to test the deviation of the mean values from zero. ** indicates statistical 

significance at the 1% level. * indicates statistical significance at the 5% level. 

 

  Call Put All 

Panel A - Option Types 

TM Options 11.30 15.40 13.69 

SS Options 8.81 12.23 10.72 

Outright Options 7.61 9.17 8.31 

Panel B - Difference in Percentage Effective Spreads 

TM – Outright 3.69** 6.23** 5.38** 

SS – Outright 1.21** 3.06** 2.40** 

TM – SS  2.49** 3.18** 2.98** 

 

 

To examine whether option characteristics drive percentage effective spreads to be 

higher for strategy-linked options relative to outright options, the sample is 

partitioned into moneyness categories. Within each moneyness category, it is further 

separated into TTM categories. Finally, within each TTM category, the sample is 

categorized into three groups by trading volume. Volume categories are based on the 

number of trades during the day. Volume group 1 (3) includes option series with the 

lowest (greatest) number of trades each day. 

Table 5-3 reveals that percentage effective spreads for TM options are 

significantly higher than those for outright options at the 1% level across all 

moneyness, TTM, and volume categories. Table 5-4 shows that for the majority of 

trades (97 per cent), SS options have higher execution costs than outright options at 

the 1% level. Percentage effective spreads for SS options are significantly higher for 

all ATM options at the 1% level, except for options in the lowest volume group with a 
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TTM between 30-90 days and greater than 90 days. SS options cost significantly higher 

for one of the ITM option categories and significantly higher for the majority of OTM 

options at the 1% level. Table 5-5 reveals that TM options are significantly more costly 

to trade than SS options at the 1% level only for a few subsets of the sample. In the 

ATM sample, for the majority of trades, TM options are significantly more expense to 

trade than SS options at the 1% level. However, differences in percentage effective 

spreads between the two groups are not significantly different for six of the nine ITM 

categories. Also, the OTM sample shows that percentage effective spreads for TM 

options are significantly wider than SS options at the 1% level only for a few trades. 

Supporting hypotheses H5,1 the results overall reveal that execution costs for 

(both TM and SS) strategy-linked options are greater than those for outright options. 

On the contrary to hypothesis H5,2, between the two strategy-linked options option 

categories, this study does not provide strong evidence that TM options are more 

costly to trade than SS options. This implies that market makers require higher 

liquidity premiums for (both TM and SS) strategy-linked options relative to outright 

options regardless of option characteristics, but they do not strongly discriminate 

between TM and SS options in setting quotes. 
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Table 5-3 

Percentage Effective Spreads by Volume, Moneyness, and Time to Maturity for TM and Outright Options 
 

This table reports percentage effective spreads for tailor-made strategy-linked (TM) and outright options for volume categories within each of the moneyness and time-to-

maturity categories. Volume categories are partitioned into three categories from the lowest to the highest based on the number of trades during a trading day. The 

moneyness of an option series is calculated as the spot (strike) price divided by the strike (spot) price for call (put) options. Moneyness is defined as (at-the-money) ATM if it 

is between 0.9 and 1.1, in-the-money (ITM) if greater than 1.1, and out-of-the-money (OTM) if less than 0.9. Time to Maturity is the number of days to expiry. Number of 

Trades is the average number of trades. Difference is the difference in percentage effective spreads between TM and outright options. The t-test is used to test the deviation 

of the mean values from zero. ** indicates statistical significance at the 1% level. * indicates statistical significance at the 5% level. 

 

      TM Options Outright Options  

 Moneyness 
Time to Maturity 

(days) 

Percentage 

Effective Spreads 

(%) 

Number of 

Trades 

Percentage 

Effective Spreads 

(%) 

Number of 

Trades 

Difference 

(TM - Outright) 

Volume Group 1 (Lowest) ATM > 90 8.25 7090 4.30 10,458 3.95** 

Volume Group 2 ATM > 90 8.25 8410 4.22 13,032 4.03** 

Volume Group 3 (Highest) ATM > 90 7.89 12,175 3.75 16,452 4.14** 

        

Volume Group 1 (Lowest) ATM 30 – 90 11.77 5,588 6.60 10,865 5.17** 

Volume Group 2 ATM 30 – 90 11.46 12,906 6.21 26,540 5.25** 

Volume Group 3 (Highest) ATM 30 – 90 10.03 69,405 5.30 138,451 4.73** 

        

Volume Group 1 (Lowest) ATM < 30 21.55 2,364 18.49 4,018 3.06** 

Volume Group 2 ATM < 30 19.95 7,257 15.28 13,106 4.67** 

Volume Group 3 (Highest) ATM < 30 15.33 98,811 9.29 204,276 6.04** 

        

Volume Group 1 (Lowest) ITM > 90 4.77 1,512 2.15 1,493 2.62** 

Volume Group 2 ITM > 90 5.32 1,330 2.64 1,362 2.68** 

Volume Group 3 (Highest) ITM > 90 4.74 1,304 1.96 1,255 2.78** 

        

Volume Group 1 (Lowest) ITM 30 – 90 4.59 1,167 2.65 890 1.94** 

Volume Group 2 ITM 30 – 90 4.95 1,395 2.53 1,077 2.42** 
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Volume Group 3 (Highest) ITM 30 – 90 5.82 1,985 3.09 1,646 2.73** 

Table 3, continued 

        

Volume Group 1 (Lowest) ITM < 30 3.60 1,042 2.47 676 1.13** 

Volume Group 2 ITM < 30 4.58 1,760 2.73 1,108 1.85** 

Volume Group 3 (Highest) ITM < 30 6.79 4,160 2.97 2,888 3.82** 

        

Volume Group 1 (Lowest) OTM > 90 24.91 1,989 11.66 3,879 13.25** 

Volume Group 2 OTM > 90 25.44 2,292 11.62 4,756 13.82** 

Volume Group 3 (Highest) OTM > 90 26.08 3,495 9.49 5,840 16.59** 

        

Volume Group 1 (Lowest) OTM 30 – 90 46.23 1,106 23.93 1,106 22.30** 

Volume Group 2 OTM 30 – 90 40.79 1,810 20.82 4,821 19.97** 

Volume Group 3 (Highest) OTM 30 – 90 33.62 3,761 16.18 9,377 17.44** 

        

Volume Group 1 (Lowest) OTM < 30 69.85 201 46.73 860 23.12** 

Volume Group 2 OTM < 30 63.84 486 42.63 1,545 21.21** 

Volume Group 3 (Highest) OTM < 30 48.35 1,873 30.24 4,974 18.11** 
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Table 5-4 

Percentage Effective Spreads by Volume, Moneyness, and Time to Maturity for SS and Outright Options 

 
This table reports percentage effective spreads for standard strategy-linked (SS) and outright options for volume categories within each of the moneyness and time-to-

maturity categories. Volume categories are partitioned into three categories from the lowest to the highest based on the number of trades during a trading day. The 

moneyness of an option series is calculated as the spot (strike) price divided by the strike (spot) price for call (put) options. Moneyness is defined as (at-the-money) ATM if it 

is between 0.9 and 1.1, in-the-money (ITM) if greater than 1.1, and out-of-the-money (OTM) if less than 0.9. Time to Maturity is the number of days to expiry. Number of 

Trades is the average number of trades. Difference is the difference in percentage effective spreads between TM and outright options. The t-test is used to test the deviation 

of the mean values from zero. ** indicates statistical significance at the 1% level. * indicates statistical significance at the 5% level. 

 

      SS Options Outright Options   

 Moneyness 
Time to Maturity 

(days) 

Percentage 

Effective Spreads 

(%) 

Number of 

Trades 

Percentage 

Effective Spreads 

(%) 

Number of 

Trades 

Difference 

(SS – Outright) 

Volume Group 1 (Lowest) ATM > 90 4.92 120 4.30 10,458 0.60 

Volume Group 2 ATM > 90 4.91 221 4.22 13,032 0.69* 

Volume Group 3 (Highest) ATM > 90 5.12 417 3.75 16,452 1.37** 

        

Volume Group1 (Lowest) ATM 30 – 90 7.05 142 6.60 10,865 0.45 

Volume Group 2 ATM 30 – 90 8.26 573 6.21 26,540 2.05** 

Volume Group 3 (Highest) ATM 30 – 90 5.92 7,924 5.30 138,451 0.62** 

        

Volume Group 1 (Lowest) ATM < 30 27.97 96 18.49 4,018 9.48** 

Volume Group 2 ATM < 30 21.63 468 15.28 13,106 6.35** 

Volume Group 3 (Highest) ATM < 30 11.91 16,060 9.29 204,276 2.62** 

        

Volume Group 1 (Lowest) ITM > 90 2.97 17 2.15 1,493 0.82 

Volume Group 2 ITM > 90 4.26 20 2.64 1,362 1.62 

Volume Group 3 (Highest) ITM > 90 2.87 19 1.96 1,255 0.91 
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Table 4, continued 

 

Volume Group 1 (Lowest) ITM 30 – 90 2.45 19 2.65 890 -0.20 

Volume Group 2 ITM 30 – 90 5.10 33 2.53 1,077 2.57** 

Volume Group 3 (Highest) ITM 30 – 90 4.45 81 3.09 1,646 1.36 

        

Volume Group 1 (Lowest) ITM < 30 2.01 20 2.47 676 -0.46 

Volume Group 2 ITM < 30 3.01 44 2.73 1,108 0.28 

Volume Group 3 (Highest) ITM < 30 3.54 257 2.97 2,888 0.57 

        

Volume Group 1 (Lowest) OTM > 90 15.28 25 11.66 3,879 3.62 

Volume Group 2 OTM > 90 11.17 55 11.61 4,756 -0.44 

Volume Group 3 (Highest) OTM > 90 15.72 126 9.49 5,840 6.23** 

        

Volume Group 1 (Lowest) OTM 30 – 90 35.44 24 23.93 24 11.51** 

Volume Group 2 OTM 30 – 90 35.21 102 20.82 4,821 14.39** 

Volume Group 3 (Highest) OTM 30 – 90 20.37 413 16.18 9,377 4.19** 

        

Volume Group 1 (Lowest) OTM < 30 52.55 14 46.73 860 5.82 

Volume Group 2 OTM < 30 48.79 70 42.63 1,545 6.16 

Volume Group 3 (Highest) OTM < 30 34.55 455 30.24 4,974 4.31** 
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Table 5-5 

Effective Spreads by Volume, Moneyness, and Time to Maturity for TM and SS Options 

 

This table reports percentage effective spreads for tailor-made strategy-linked (TM) and standard strategy-linked (SS) options for volume categories within each of the 

moneyness and time-to-maturity categories. Volume categories are partitioned into three categories from the lowest to the highest based on the number of trades during a 

trading day. The moneyness of an option series is calculated as the spot (strike) price divided by the strike (spot) price for call (put) options. Moneyness is defined as (at-the-

money) ATM if it is between 0.9 and 1.1, in-the-money (ITM) if greater than 1.1, and out-of-the-money (OTM) if less than 0.9. Time to Maturity is the number of days to 

expiry. Number of Trades is the average number of trades. Difference is the difference in percentage effective spreads between TM and outright options. The t-test is used 

to test the deviation of the mean values from zero. ** indicates statistical significance at the 1% level. * indicates statistical significance at the 5% level. 

 

      TM Options SS Options  

 Moneyness 
Time to Maturity 

(days) 

Percentage 

Effective Spreads 

(%) 

Number of 

Trades 

Percentage 

Effective Spreads 

(%) 

Number of 

Trades 

Difference 

(TM- SS) 

Volume Group 1 (Lowest) ATM > 90 8.25 7,090 4.92 10,458 3.33** 

Volume Group 2 ATM > 90 8.25 8,410 4.91 13,032 3.34** 

Volume Group 3 (Highest) ATM > 90 7.89 12,175 5.12 417 2.77** 

        

Volume Group 1 (Lowest) ATM 30 – 90 11.77 5,588 7.05 142 4.72** 

Volume Group 2 ATM 30 – 90 11.46 12,906 8.26 573 3.20** 

Volume Group 3 (Highest) ATM 30 – 90 10.03 69,405 5.92 7,924 4.11** 

        

Volume Group 1 (Lowest) ATM < 30 21.55 2,364 27.97 96 -6.42 

Volume Group 2 ATM < 30 19.95 7,257 21.63 468 -1.63 

Volume Group 3 (Highest) ATM < 30 15.33 98,811 11.91 16,060 3.42** 

        

Volume Group 1 (Lowest) ITM > 90 4.77 1,512 2.97 17 1.80 

Volume Group 2 ITM > 90 5.32 1,330 4.26 20 1.06 

Volume Group 3 (Highest) ITM > 90 4.74 1,304 2.87 19 1.87 
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Table 5, continued 

 

Volume Group 1 (Lowest) ITM 30 – 90 4.60 1,167 2.45 19 2.15 

Volume Group 2 ITM 30 – 90 4.95 1,395 5.10 33 -0.15 

Volume Group 3 (Highest) ITM 30 – 90 5.82 1,985 4.45 81 1.37 

        

Volume Group 1 (Lowest) ITM < 30 3.60 1,042 2.01 20 1.59 

Volume Group 2 ITM < 30 4.58 1,760 3.01 44 1.57 

Volume Group 3 (Highest) ITM < 30 6.79 4,160 3.54 257 3.25** 

        

Volume Group 1 (Lowest) OTM > 90 24.91 1,989 15.28 25 9.63 

Volume Group 2 OTM > 90 25.44 2,292 11.17 55 14.27** 

Volume Group 3 (Highest) OTM > 90 26.08 3,495 15.72 126 10.36** 

        

Volume Group 1 (Lowest) OTM 30 – 90 46.23 1,106 35.44 1,106 10.79 

Volume Group 2 OTM 30 – 90 40.79 1,810 35.21 102 5.58 

Volume Group 3 (Highest) OTM 30 – 90 33.62 3,761 20.37 413 13.25 

        

Volume Group 1 (Lowest) OTM < 30 69.85 201 52.55 14 17.30 

Volume Group 2 OTM < 30 63.84 486 48.79 70 15.05** 

Volume Group 3 (Highest) OTM < 30 48.35 1,873 34.55 455 13.80** 
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5.5.2 Multivariate Analysis 

 

The literature on option bid-ask spreads suggests a number of liquidity determinants, 

including time to maturity, moneyness, trading volume, option volatility, and 

underlying stock volatility (e.g., Neal, 1987, George and Longstaff, 1993, Chong et al., 

2003, Cao and Wei, 2010, and Wei and Zheng, 2010). In line with this research, the 

univariate analysis shows that TM and SS options have higher effective spreads 

relative to outright options across the following option characteristics: time to 

maturity, moneyness, and trading volume.  

To determine if proportional effective spreads for strategy trades are higher 

after controlling for other option characteristics including option volatility and 

underlying stock volatility, the following regression is estimated for each underlying 

stock: 

 𝑃𝐸𝑆𝑖𝑡 = 𝛽0 + 𝛽1𝑆𝑆𝑖𝑡 + 𝛽2𝑇𝑀𝑖𝑡 + 𝛽3𝑇𝑇𝑀𝑖𝑡 + 𝛽4𝑀𝑖𝑡 +𝛽5𝑉𝑖𝑡 + 𝛽6𝜎𝑜𝑖𝑡 + 𝛽7𝜎𝑠𝑖𝑡 + 𝜀𝑖𝑡 

 

where 𝑃𝐸𝑆𝑖𝑡 is the daily average proportional effective spread of all trades for option 𝑖 on day 𝑡; 𝑆𝑆𝑖𝑡(𝑇𝑀𝑖𝑡) is the SS (TM) traded volume as a proportion of total traded 

volume for option 𝑖 on day 𝑡; time-to-maturity (𝑇𝑇𝑀𝑖𝑡) is the difference between the 

current date of the option and the expiry date; moneyness (𝑀𝑖𝑡) is the ratio of closing 

spot (strike) price to strike (closing spot) price of call (put) options for option 𝑖 on day 𝑡; 𝑉𝑖𝑡 is the logarithm of the total daily option volume for option 𝑖 on day 𝑡; following 

Wei and Zheng (2010), option volatility (𝜎𝑜𝑖𝑡) is calculated as the absolute value of the 

(5.2) 
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option price elasticity times the underlying stock volatility for option 𝑖 on day 𝑡. The 

stock volatility measure is given as follows: 

 

𝜎𝑠𝑖𝑡 = √(lnℎ𝑖𝑔ℎ𝑖𝑡−ln𝑙𝑜𝑤𝑖𝑡)24𝑙𝑛2 , 𝑖 = 1, 2, . . . , 𝑁; 𝑡 = 1,2, . . . , 𝑇  

 

where volatility is calculated for stock 𝑖 on day 𝑡; ℎ𝑖𝑔ℎ𝑖𝑡 and 𝑙𝑜𝑤𝑖𝑡 refers to the highest 

traded price and lowest traded price of underlying stock for each day. Each equation 

is estimated separately for each stock using the Generalized Method of Moments 

(GMM); the resulting t-statistics are robust to heteroskedasticity and autocorrelation 

(Newey and West, 1987). 

Table 4-6 reports the cross-sectional averages of the coefficients and 

associated t-statistics of the estimated regressions. Consistent with prior literature, 

proportional effective spreads are affected by a number of option liquidity 

determinants. Results show that an increase in the standard strategy volume relative 

to total trading volume does not have an impact on proportional effective spreads, 

implying that market makers do not require higher compensation for providing 

liquidity for standard strategy-linked trades. These results hold across both put and 

call options. On the contrary, an increase in tailor-made strategy volume as a 

proportion of total trading volume is significantly associated with an increase in 

effective spreads at the 1% level. These results suggest that execution costs for tailor-

made strategy-linked options are higher relative to outright options in line with the 

results of the univariate analysis. In contrast to H5,1, execution costs are not higher for 

(5.3) 
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standard strategy-linked trades after option volatility and underlying stock volatility 

are taken into account.  

Option market makers also face adverse selection costs, as the greater 

leverage of options and the higher investment returns they offer attract informed 

traders to the options market (Black, 1975, Charkravarty et al., 2004) The evidence 

shows that option market makers adjust prices to account for hedging and adverse 

selection costs. Jameson and Wilhelm (1992) report that discrete hedge rebalancing 

(gamma risks) and stochastic stock return volatility (vega risks) are not fully 

diversifiable and account for 8% and 4.5% of the option bid-ask spread, respectively. 

Kaul et al. (2004) report that a significant proportion of the bid-ask spread is 

attributable to inventory management costs; 50% attributable to setting up a delta 

neutral position and 6.93% associated with discrete rebalancing. Ahn et al. (2008) 

report that the adverse selection component of the bid-ask spread on the KOPSI 200 

Index options traded on the Korean Exchange account for 34.99% of the bid-ask 

spread for call options and 39.14% of the bid-ask spread for put options. 
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Table 5-6 

Multiple Regressions of Percentage Effective Spreads on Option Characteristics 
 

This table reports the GMM estimates from the regressions estimated for each of the 20 underlying 

stocks. The regression model is specified as follows: 𝑃𝐸𝑆𝑖𝑡 = 𝛽0 + 𝛽1𝑆𝑆𝑖𝑡 + 𝛽2𝑇𝑀𝑖𝑡 + 𝛽3𝑇𝑇𝑀𝑖𝑡 + 𝛽4𝑀𝑖𝑡 + 𝛽5𝑉𝑖𝑡 + 𝛽6𝜎𝑜𝑖𝑡 + 𝛽7𝜎𝑠𝑖𝑡 + 𝜀𝑖𝑡 

where 𝑃𝐸𝑆𝑖𝑡 is the daily average proportional effective spread of all trades for option 𝑖 on day 𝑡; 𝑆𝑆𝑖𝑡(𝑇𝑀𝑖𝑡) is the SS (TM) traded volume as a proportion of total traded volume for option 𝑖 on day 𝑡; 

time-to-maturity (𝑇𝑇𝑀𝑖𝑡) is the difference between the current date of the option and the expiry date; 

moneyness (𝑀𝑖𝑡) is the ratio of closing spot (strike) price to strike (closing spot) price of call (put) options 

for option 𝑖 on day 𝑡; 𝑉𝑖𝑡 is the logarithm of the total daily option volume for option 𝑖 on day 𝑡; option 

volatility (σo𝑖𝑡) is calculated as the absolute value of the option price elasticity times the underlying 

stock volatility for option 𝑖 on day 𝑡; stock volatility (σs𝑖𝑡) is defined in Equation (3). The regression is 

estimated for each underlying stock, separately for calls and puts. Regression coefficients are cross-

sectional averages from the 20 stocks. Average t-statistics are in parentheses. The first (second) 

component in each bracket is the percentage of significantly positive (negative) coefficients at the 10% 

level. The R2 is the cross-sectional average adjusted R-square. 

 

  Call Put 

Intercept 18.210 31.500 

 (7.806) (11.801) 

 [100,0] [100,0] 𝑆𝑆 1.337 1.337 

 (0.279) (1.137) 

 [11,6] [39,0] 𝑇𝑀 5.189 6.437 

 (8.641) (9.902) 

 [100,0] [100,0] 𝑇𝑇𝑀 0.008 -0.059 

 (1.884) (-7.746) 

 [44,0] [0,100] 𝑀 -5.020 -7.326 

 (-6.934) (-10.041) 

 [0,100] [0,100] 𝑉 -0.515 -0.119 

 (-3.347) (-0.790) 

 [0,89] [6,22] 𝜎𝑜 0.443 0.032 

 (14.209) (7.540) 

 [100,0] [100,0] 𝜎𝑠 -5.241 -1.081 

 (-7.483) (-2.697) 

 [0,100] [6,72] 

   

R2 (%)  41.63 44.40 
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5.5.2 Hedging and Adverse Selection 

 

The previous section shows that tailor-made strategy-linked options are at a 

disadvantage relative to outright options in terms of transaction costs. This section 

examines whether option hedging and adverse selection costs faced by market makers 

can explain this disadvantage using multivariate regression. The literature suggests 

that options market makers face two types of hedging costs: the initial cost of creating 

a delta hedged position and the cost of rebalancing the portfolio at discrete times to 

maintain a delta neutral portfolio (Kaul et al., 2004). Engle and Neri (2010) specify 

hedging costs in the option market as the percentage delta multiplied by the 

underlying bid-ask spread. Consequently, initial hedging costs are modeled as follows: 

 

𝐼𝐻𝐶𝑖𝑡 = |𝜕𝑐𝑖𝑡𝜕𝑆𝑖𝑡  ×  𝑆𝑖𝑡𝑃𝑖𝑡 | × 𝑃𝐵𝐴𝑆𝑖𝑡𝑈𝑛𝑑𝑒𝑟 

 

where |𝜕𝑐𝑖𝑡𝜕𝑆𝑖𝑡  ×  𝑆𝑖𝑡𝑃𝑖𝑡 | is the average percentage delta for option 𝑖 on day 𝑡 and 

𝑃𝐵𝐴𝑆𝑖𝑡𝑈𝑛𝑑𝑒𝑟 is the average underlying percentage bid-ask spread for option 𝑖 on day 𝑡. 

Following Patrella (2006) and Engle and Neri (2010), rebalancing costs are calculated 

as: 

 𝑅𝐻𝐶𝑖𝑡 = 𝛤𝑖𝑡 × 𝜎𝑠𝑖𝑡 

 

where 𝛤𝑖𝑡 refers to the average gamma for option 𝑖 on day 𝑡 and 𝜎𝑠𝑖𝑡 is measured each 

day using the intraday high-low price range estimator proposed by Parkinson (1980). 

(5.4) 

(5.5) 
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The degree of adverse selection is measured by the probability of informed trading 

(PIN) developed in Easley et al. (2006). The PIN is a measure which uses inferred order 

flow to quantify the extent information asymmetry. There are two exogenous 

variables in this model. One is the occurrence of an information event. The other is 

the value of the asset. Prior to every trading session, the occurrence of an information 

event is determined with probability α. If no information event occurs, the value of 

the asset is 𝑉∗. Otherwise, the asset value is determined to be 𝑉𝐻 > 𝑉∗ with 

probability δ or 𝑉𝐻 < 𝑉∗ with probability 1-δ. The value of the asset becomes public 

at the end of the trading session. 

There are three types of traders: (1) informed traders, (2) uninformed traders, 

and (3) market makers. Informed traders observe the true value of the asset, and they 

know whether an information event has occurred prior to each trading session. In 

contrast, uninformed traders are purely liquidity motivated. Uninformed traders 

arrive at the trading platform according to the Poisson process at the rate ε (per 

minute per trading session). If an event occurs, informed traders also arrive at the 

rate μ. These arrival processes are independent of each other. Informed traders buy 

(sell) assets when the asset value is 𝑉𝐻(𝑉𝐿). Market makers set quotes such that their 

expected profit is zero each time. Using the model of Easley et al. (2006), the 

unconditional probability of informed trading is defined as follows: 

 𝑃𝐼𝑁 = 𝛼𝜇𝛼𝜇+2𝜀  

 

(5.6) 



152 

 

This provides a PIN for each stock but constant over time. Following Engle and Neri 

(2010), buy and sell orders are aggregated over each minute of the trading day to 

provide a daily PIN measure. In order to ensure a sufficient number of trades in each 

minute interval, PIN is estimated for each stock for each day using transaction data in 

the equities market, employed as a proxy for the level of informed trading in the 

options market. Though the PIN is a proxy Engle and Neri (2010) point out that there 

is evidence that informed traders prefer trading in the options market (Arnold et al., 

2000).    

The methodology of Engle and Neri (2010) is used here to examine whether 

option hedging and adverse selection costs faced by market makers can explain the 

results in the previous section, the following regression is estimated for each 

underlying stock: 

 𝐷𝑖𝑓𝑓_𝑃𝐸𝑆𝑖𝑡 = 𝛽0 + 𝛽1𝐼𝐻𝐶𝑖𝑡 + 𝛽2𝑅𝐻𝐶it + 𝛽5𝑃𝐼𝑁𝑖𝑡 + 𝛽3𝑇𝑇𝑀𝑖𝑡 +𝛽4𝑀𝑖𝑡 + 𝛽6𝑉𝑖𝑡 + 𝛽7𝜎𝑜𝑖𝑡 + 𝛽8𝜎𝑠𝑖𝑡 + 𝛽9𝑇𝑦𝑝𝑒𝑖𝑡 + 𝜀𝑖𝑡 

 

where 𝐷𝑖𝑓𝑓_𝑃𝐸𝑆𝑖𝑡 is the daily average difference in percentage effective spreads of 

TM (SS) trades and outright trades; initial hedging cost (𝐼𝐻𝐶𝑖𝑡) is defined in Equation 

(3); rebalancing cost (𝐻𝑅𝐶𝑖𝑡) is defined in Equation (4); 𝑃𝐼𝑁𝑖𝑡 is defined in Equation 

(4), stock volatility (σs𝑖𝑡) is defined in Equation (2); 𝑇𝑦𝑝𝑒𝑖𝑡 is a dummy variable that 

takes the value of one for call options and zero for put options. The other explanatory 

variables are as described for Equation (1). Each equation is estimated separately for 

each stock using the Generalized Method of Moments (GMM); the resulting t-statistics 

are robust to heteroskedasticity and autocorrelation (Newey and West, 1987). 

(5.7) 
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Table 4-7 reports the results of the regression estimates. The results indicate 

that (both initial and rebalancing) hedging and adverse selection costs do not lead to 

wider proportional effective spreads for SS trades relative to outright option trades as 

indicated by the insignificant coefficients on the variables 𝐼𝐻𝐶𝑖𝑡, 𝐻𝑅𝐶𝑖𝑡, and 𝑃𝐼𝑁𝑖𝑡. All 

control variables included in the regressions are statistically insignificant at the 5% 

level. In contrast, results indicate that initial hedging costs significantly affect the 

difference in proportional effective spreads for TM trades relative to outright options 

trades, with the coefficient on 𝐼𝐻𝐶𝑖𝑡 statistically significant at the 1% level. On the 

contrary, rebalancing hedging costs do no significantly affect the difference in 

proportional effective spreads. This is in contrast to Engle and Neri (2010) who show 

that both hedging and rebalancing costs are an important component of the bid-ask 

spread. Rebalancing costs may still be an important component of the bid-ask spread 

in the options market. However, the results suggest that market makers do not require 

compensation for rebalancing costs of strategy trades relative to outright options after 

the hedge has already been set up.   

In contrast to H5,3, results show that market makers are not sensitive to adverse 

selection costs in setting quotes for tailor-made options relative to outright options. 

This is in line with other studies that show that the adverse selection component of 

the bid-ask spread is small (Vijh, 1990; Neal, 1992). However, given that option 

strategy trades in particular are likely to contain information about future realized 

volatility, this finding is somewhat surprising. It may be that informed traders only 

engage in specific types of option strategies (Fahlenbrach and Sandas, 2010). 

Supporting hypothesis H5,4, overall results indicate that the difference in proportional 

effective spreads for tailor-made options is affected by market making costs, which is 
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in line with a number of studies examining the components of the bid-ask spread in 

the options market . The implication is that market makers require higher premiums 

for tailor-made options relative to outright options when initial hedging is more costly, 

suggesting that that informed trading is not a key component of the bid-ask spread.   
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Table 5-7 

Percentage Effective Spreads, Hedging Costs and Probability of Informed Trading 

 
This table reports the GMM estimates from the regressions estimated for each of the 20 underlying 

stocks. The regression model is specified as follows: 𝐷𝑖𝑓𝑓𝑃𝐸𝑆𝑖𝑡 = 𝛽0 + 𝛽1𝐼𝐻𝐶𝑖𝑡 + 𝛽2𝑅𝐶it + 𝛽5𝑃𝐼𝑁𝑖𝑡 + 𝛽3𝑇𝑇𝑀𝑖𝑡 + 𝛽4𝑀𝑖𝑡 + 𝛽6𝑉𝑖𝑡 + 𝛽7𝜎𝑜𝑖𝑡 + 𝛽8𝜎𝑠𝑖𝑡+ 𝛽9𝑇𝑦𝑝𝑒𝑖𝑡 + 𝜀𝑖 
where 𝐷𝑖𝑓𝑓_𝑃𝐸𝑆𝑖𝑡  is the daily average difference in percentage effective spreads of TM (SS) trades and 

outright trades; initial hedging cost (𝐼𝐻𝐶𝑖𝑡) is defined in Equation (1); rebalancing cost (𝐻𝑅𝐶𝑖𝑡) is defined 

in Equation (2); time-to-maturity (𝑇𝑇𝑀𝑖𝑡) is the difference between the current date of the option and 

the expiry date; moneyness (𝑀𝑖𝑡) is the ratio of closing spot (strike) price to strike (closing spot) price 

of call (put) options for option 𝑖 on day 𝑡; 𝑉𝑖𝑡 is the logarithm of the total daily option volume for option 𝑖 on day 𝑡; option volatility (σo𝑖𝑡) is calculated as the absolute value of the option price elasticity times 

the underlying stock volatility for option 𝑖 on day 𝑡; stock volatility (σs𝑖𝑡) is defined in Equation (3); 𝑇𝑦𝑝𝑒𝑖𝑡  is a dummy variable that takes the value of one for call options and zero for put options. The 

regression is estimated for each underlying stock. Regression coefficients are cross-sectional averages 

from the 20 stocks. Average t-statistics are in parentheses. The first (second) component in each 

bracket is the percentage of significantly positive (negative) coefficients at the 10% level. The R2 is the 

cross-sectional average adjusted R-square. 

 

  S - O TM - O 

Intercept 5.071 18.452 

 (0.551) (3.032) 

 [28, 0] [78, 0] 𝐼𝐻𝐶 0.226 0.270 

 (0.925) (3.351) 

 [28, 0] [78, 0] 𝑅𝐻𝐶 0.996 3.179 

 (0.273) (0.961) 

 [17, 17] [28, 0] 

PIN -0.349 0.508 

 (0.042) (0.142) 

 [22, 6] [11, 6] 𝑇𝑇𝑀 -0.013 -0.010 

 (-0.401) (-0.943) 

 [11,22] [0, 22] 𝑀 -0.938 -4.956 

 (-0.372) (-2.491) 

 [17, 22] [6, 55] 𝑉 -0.067 -0.168 

 (-0.237) (-0.539) 

 [11, 17] [11, 25] 𝜎𝑜 -2.933 0.246 

 (-0.360) (-0.004) 

 [0, 11] [6, 11] 𝜎𝑠 -0.451 0.349 

 (-0.424) (0.421) 

 [0, 17] [17, 0] 

Type 0.601 0.761 

 (0.276) (0.677) 



156 

 

 [0, 0] [33, 6] 

   

R2 (%) 6.026 7.547 

 

5.5 Summary 

 

This study measures the magnitude of execution costs of outright options and options 

which constitute strategies (“strategy-linked options”) and examines if any differences 

in trade prices between these two groups is attributable to differences in market 

making costs. The literature suggests that options market makers face the following 

three types of hedging costs; delta cost is the cost of setting up a hedging portfolio; 

vega (gamma) cost is the cost incurred in maintaining a hedged portfolio as the 

underlying stock volatility (delta) changes over time. Market makers may also face 

adverse selection costs. This study investigates whether differences in transaction 

costs between strategy-linked options and outright options are due to hedging cost or 

adverse selection costs using a proprietary data set provided by the Australian Options 

Market (AOM). 

Results of the univariate analysis indicate that strategy-linked options exhibit 

wider spreads than outright options across both put and call options, and across 

options with different characteristics (moneyness, time to maturity, and trading 

activity), which are shown to be related to the liquidity of options (Wei and Zheng, 

2010). Multivariate analysis shows that after directly controlling for a number of 

liquidity determinants, tailor-made strategy-linked trades incur higher execution costs 

than outright options trades. Results also indicate that the difference in execution 

costs between tailor-made strategy-linked options and outright options is driven by 
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the initial costs in delta hedging the option position and not a result of higher adverse 

selection costs. 
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Chapter 6: Intraday Patterns in Quoted Depth  

6.1 Introduction 

 

A large body of empirical research has been undertaken documenting systematic 

patterns in bid-ask spreads different types of market exchanges, including order-

driven, specialists and competitive dealer markets. However, these patterns have not 

yielded similar results across these market types. As a result of this, several competing 

theories have arisen to explain the intraday behaviour in liquidity across these 

markets, such as inventory, market power and information models. Furthermore, the 

literature reviewed in Section 2.2 reveals a number of studies examining intraday 

patterns in quoted depth on specialist and order-driven markets. However, no study 

has examined intraday patterns in quoted depth on competitive dealer markets. This 

essay fills the gap in the literature by investigating the intraday patterns in quoted 

depth on the Nasdaq.  

The remainder of this chapter is structured as follows. Section 6.2 describes 

the data and research design employed. Section 6.3 provides the empirical results on 

the intraday variation in the bid-ask spread, quoted depth, volume and volatility. 

Section 6.4 presents additional tests. Section 6.5 summarises the chapter. 

 

  



159 

 

6.2 Hypotheses on Intraday Patterns in Liquidity 

 

Prior studies examining the inventory component of bid-ask spreads on a competitive 

dealer market suggest that inventory effects could dominate near the close of trading. 

In the model of Amihud and Mendelson (1982), the dealer has a preferred or target 

inventory position, and adjusts his/her prices to return to his/her target inventory 

level. If the dealer is too long, he/she lowers both the bid and ask prices to induce 

other traders to buy to reduce inventory towards the target level. If the market maker 

is below the target inventory level, he/she raises both the bid and ask prices. Chordia 

et al. (2002) and Bessembinder (2003b) suggest that if market makers perceive that 

competitive quotations will attract orders, then reductions (increases) in inventory 

should lead to posting of more aggressive quotations at the bid (ask) to attract sell 

(buy) orders and restore inventory. Inventory effects are likely to be acute at the close 

of trading as dealers attempt to reduce their market exposure, resulting in bid-ask 

spreads narrowing significantly at the market close.  

The literature examining competitive dealer markets document this pattern in 

bid-ask spreads over the course of the trading day (see Chan et al. 1995a, Chan, Chung 

and Johnson, 1995, Kliedon and Werner, 1996, and Cai, Hudson and Keasey, 2004). 

The narrowing of spreads at the close is attributed to inventory management, with 

individual dealers who want to ‘go home flat’ post quotes that improve the inside 

spread in order to attract order flow away from other dealers. In addition, the dealer 

may remove order imbalances by increasing the depth of the quote to attract orders 

away from other dealers. This leads to the following hypothesis. 
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Hypothesis6.1: Quoted depth (bid-ask spreads) will be relatively large (narrow) near 

the close of trading.   

 

The Nasdaq operates as a competitive dealer market, where each individual dealer 

competes for investor orders by displaying quotations that represent their buy and 

sell interest in Nasdaq securities. In displaying their quotes, market makers post both 

the price (i.e., the bid and ask price) and the quantity (i.e., the bid and ask depth) of 

shares that they are willing to trade. In 1997, major changes were made to the way 

Nasdaq dealers handled customer orders following the Chrisitie and Shultz (1994) 

debate about price fixing by market makers on the Nasdaq. The SEC instituted new 

Order Handling Rules (OHR) that were designed to make the Nasdaq market more 

competitive and reduce dealer participation in Nasdaq trades by ensuring the dealers 

took public limit orders into account. The Limit Order Display Rule (LODR) requires 

dealers to publicly display limit orders they receive from customers, unless an 

exception applies. If the limit order is priced better than his or her quote or that adds 

size to his or her quote, the market maker must publicly display it. For example, 

assume a dealer is currently quoting 10,000 shares at a bid price of $10. If the dealer 

receives a limit order to buy 11,000 shares at a bid price of $10.50, the dealer is 

required to revise the quote to reflect the higher bid price and larger bid size. This rule 

applies to all individual dealer quotes, regardless of their quote position relative to the 

market inside.  

The introduction of the LODR has important implications for the 

interrelationship between bid-ask spreads and market depth at the best quotes. 

Assume the dealer is currently quoting 10,000 shares at a bid price of $10 and receives 
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a limit order to buy 10,000 shares at a bid price of $10. In this situation, the dealer 

does not have to change the quote as the bid price and bid size have not been 

improved. If the best bid happens to be at $10.50, the dealer may not wish to update 

the quote from 1,000 shares to 2,000 shares (which is optional), due either to the 

quote being too far from the inside market or decides it is in his or her interest to let 

the limit order replace their market making in this particular security. However, if the 

best bid is currently at $10, the dealer is currently quoting at the best bid, possibly 

wanting to buy as a result of managing his or her inventory position. In this situation, 

the dealer is likely to change the quote to 2,000 shares otherwise he or she may miss 

the opportunity to execute their order. Dealers therefore are likely to post larger 

depths when their quotes are at the best bid and ask prices. It follows that quoted 

spreads and depth are inversely related because of dealers changing their quote sizes 

as the move from the non-inside market to the inside market. This leads to the 

following hypothesis. 

 

Hypothesis6.2: Quoted depth and bid-ask spreads are inversely related.   

 

6.3 Nasdaq 

 

Created by the NASD in 1971, the National Association of Securities Dealers 

Automated Quotations (Nasdaq) was set up to enhance the efficiency of the over-the-

counter (OTC) markets for stock securities, through the use of a telecommunication 

network linking thousands of geographically diverse participants. The Nasdaq was 

designed as a competitive dealer market. Within this particular market structure, 
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prices are set by dealer quotes, where each individual dealer competes for investor 

orders by displaying quotations that represent their buy and sell interest in Nasdaq 

securities. Market makers registered to trade in listed Nasdaq securities are required 

to do three things. They must display their buying and selling interest by posting a two-

sided quote in all stocks they choose to make a market in. They must display all quotes 

and orders to the Nasdaq and finally they are obligated to honour their quotes. 

Companies that choose to list on the Nasdaq must have at least 3 market makers 

(excluding ECNs).  

In 1997, major changes were made to the way Nasdaq dealers handled 

customer orders, following the Chrisitie and Shultz (1994) debate about price fixing by 

market makers on the Nasdaq. The SEC instituted new Order Handling Rules (OHR) 

that were designed to make the Nasdaq market more competitive and reduce dealer 

participation in Nasdaq trades by ensuring the dealers took public limit orders into 

account. The new rules required dealers to handle a marketable limit order in one of 

three ways: (1) execute the limit order against the dealers inventory; (2) the limit order 

must be reflected in the dealers quote; (3) send the limit order to another dealer; (4) 

send the order to an Exchange Communication Network (ECN). Another important 

change by the SEC was to enable public access to superior prices posted by market 

makers in ECNs. An ECN is an electronic trading system separate to the exchange that 

allows investors to execute trades through an open limit order book (Fink, Fink and 

Weston, 2006). This enabled traders to bypass the placement of orders with dealers 

and instead submit orders and trade with each other directly. Prior to 1997, dealers 

could provide alternative pricing systems by quoting one set of prices in the public 

market and another better price placed on the ECN. The rule change forced dealers to 
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publicly display their most competitive quotes, regardless of where it is placed. The 

effect of these reforms has been: (1) growth in limit order trades as even the small 

retail customers could become temporary market makers and; (2) spurred the 

development of ECN’s, whose liquidity is based primarily on limit-order flow 

(McAndrews and Stefanadis, 2000). 

 

6.4 Data and Research Design 

 

The data is obtained from a Reuters intraday database managed by SIRCA.7 The sample 

contains stocks listed on the Nasdaq-100 index and covers the period November 30, 

2008 to April 23, 2009. The data is derived from one-minute intervals and consists of 

the best bid and ask prices and volumes at the end of each interval, the interval high 

and low prices, and the volume traded during the interval. Consistent with previous 

research (including Chung and Zhoa, 2003; Cai et al., 2004; Vo, 2007) the trading day 

is partitioned into 30-minute intervals, these one-minute intervals are averaged into 

14 separate 30-minute trading intervals, from 09:30 hours to 16:00 hours (i.e. from 

the open to the close of trading). 

The variables examined include the bid-ask spread, quoted depth, volume and 

volatility. Following Chan et al. (1995b), the bid-ask spread is defined as: 

 

     

2

t t

t

t t

inside ask inside bid
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inside ask inside bid




 
 
 

    (1) 

                                                 
7 Securities Institute Research Centre of Asia-Pacific. 
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where 
t

PBAS  is the percentage bid-ask spread at time period t, the inside ask is the 

lowest ask price at time period t, and the inside bid is the highest bid price at period t. 

The midpoint is used to avoid problems associated with bid-ask bounce.  Following 

Huang and Stoll (1996) and Chung and Zhao (2003), the following filters are applied in 

the calculation of the bid-ask spread: (1) bid-ask spread quotes are excluded if the 

spread is greater than $5 or less than zero; (2) exclude ask quote at if [(at – at-1)/at-1] is 

greater than 10%; (3) exclude bid-quote if [(bt-bt-1)/bt-1] is greater than 10%.  

Quoted depth is defined as the average volume of shares available at the best 

bid and the best ask at the end of each interval for each stock (Harris, 1994). Volume 

is measured as the number of shares traded across each 30-minute interval. Volatility 

is measured as the natural logarithm of the difference between the interval high and 

interval low for each one-minute interval. To prevent cross-sectional differences 

across securities biasing results, all variables are standardized by subtracting the daily 

mean and dividing by the daily standard deviation for each stock. 

In Section 6.3, it is hypothesised that bid-ask spreads and market depth are 

inversely related and that bid-ask spreads (quoted depth) are wide (small) at the open 

and tight (large) at the close of trading. To formally test for intraday patterns in bid-

ask spreads, quoted depth, volume and volatility, we regress the variables upon a set 

of intraday dummy variables using Hansen’s (1982) Generalized Methods of Moments 

(GMM) procedure. The GMM technique is applied in prior research examining 

intraday patterns in liquidity, such as Foster and Viswanathan (1993), Abhyankar et al. 

(1997), Cai et al. (2004). GMM estimates the coefficients through the use of 

orthogonality conditions and provides results that are robust to the presence of 
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autocorrelation and heteroskedasticity. Many of the microstructure studies using the 

GMM technique employ the procedure of Newey and West (1987) to adjust for 

autocorrelation and heteroskedasticity. Autocorrelation and heteroskedasticity are 

controlled for using the Parzen Kernel (Gallant, 1987). Andrews (1991) shows that the 

Bartlett Kernel used by Newey and West (1987) exhibits greater bias and is 100 

percent less efficient asymptotically than the Parzen Kernel. The lag truncation period 

is calculated using the formula n^(1/5) (Andrews, 1991).  For each variable, the 

following model is estimated: 

 

    
, 0

1

( )
n

i t k k t

k

st V D  


        (2) 

 

where 
,( )

i t
st V  is the standardized variable in interval t  for firm i, n  is the number of 

intervals in the day, 
k

D  a time-of-day dummy variable equal to 1 if observation t falls 

in interval k, otherwise zero. The 30-minute interval 12:30 to 13:00 is excluded from 

the regression.  

 

6.3 Empirical Results 

 

Foster and Viswanathan (1993) and Harris (1994) document that volume and volatility 

are significant determinants of both bid-ask spreads and quoted depth. As illustrated 

in Figure 6-1, volume on the Nasdaq follows a U-shaped pattern, being highest at the 

open and close of trading, and lowest during the middle of the trading day. Price 

volatility is highest at the start of trading, falls consistently to the middle of the trading 
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day, and then increases for the remainder of the trading day. Regression results in 

Table 6-1 confirm that both volume and volatility in the first and last thirty-minute 

intervals of the trading day are higher than during the middle of the day. The intraday 

variation in trading volume and volatility is consistent with the results documented by 

Chan, Christie and Schultz (1995) for the Nasdaq, and is similar to the patterns in 

trading volume and volatility for other markets (e.g., McInish and Wood, 1992; Chan, 

Chung and Johnson, 1995; Ahn and Cheung, 1999). 

 

 
 

Figure 6-1 

Standardized Trading Volume and Volatility 

 
This figure depicts the intraday pattern in standardized trading volume and volatility in 5-minute 

intervals. The sample extends from November 30, 2008 to April 23, 2009. Traded volume is measured 

as the number of shares traded across each 5-minute interval. Volatility is measured as the natural 

logarithm of the difference between the interval high and interval low during each 1-minute interval. 

The two variables are then averaged across 78 equal 5-minute intervals. 
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Table 6-1 

Mean Value of the Standardized Quoted Depth, Bid-Ask Spread, Trading Volume and 

Volatility 
 

The GMM technique is used to estimate the following model: 

 

, 0

1

( )
n

i t k k t

k

st V D  


    

 

where 
,( )

i t
st V  is the standardized variable occurring in interval t  for firm i, n  is the number of intervals 

in the day, 
k

D  a time-of-day dummy variable equal to 1 if observation t falls in interval k, otherwise zero. 

The 30 minute interval of 12:30 to 13:00 is excluded.  

 

Time SPREAD DEPTH VOLUME VOLATILITY 

9:30 - 10:00 1.0261** -0.4451** 1.6567** 1.3851** 

10:00 - 10:30 0.2542** -0.2494** 0.7967** 0.6537** 

10:30 - 11:00 0.1428** -0.1793** 0.5042** 0.3836** 

11:00 - 11:30 0.0865** -0.1446** 0.2286** 0.1964** 

11:30 - 12:00 0.0503** -0.0946** 0.0582** 0.0806** 

12:00 - 12:30 0.0163** -0.0346** 0.0341** 0.0307** 

13:00 - 13:30 0.0221** -0.0010 -0.0770** -0.0326** 

13:30 - 14:00 -0.0052 0.0020 -0.0557** -0.0317** 

14:00 - 14:30 -0.0326** 0.0544** 0.2554** 0.1166** 

14:30 - 15:00 -0.0556** 0.1230** 0.3949** 0.1573** 

15:00 - 15:30 -0.1370** 0.3138** 0.8248** 0.2637** 

15:30 - 16:00 -0.2664** 0.8638** 2.3065** 0.4297** 

Intercept -0.0904** -0.0141** -0.5329** -0.2791** 

** Indicates statistical significance at the 0.01 level 

  * Indicates statistical significance at the 0.05 level 

 

Figure 6-2 plots the intraday variation of bid-ask spreads during successive 5-minute 

intervals. Consistent with the prediction of hypothesis H6,1, bid-ask spreads for Nasdaq 

stocks are highest at the open, decline quickly over the first hour of trading, remain 

relatively stable until 15:00 hours, and narrow sharply towards the close. The results 

of the GMM estimation presented in Table 6-1 confirm this result. The coefficient of 

the dummy variable for the 9:30-10:00 time interval is positive and significant at the 

1% level, indicating spreads in the first 30-minute interval are higher than during the 

middle of the day. The coefficient for the last 30-minute interval is significantly 

negative, indicating that spreads are narrower at the close relative to spreads in the 
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middle of the day. The narrowing of spreads on the Nasdaq is consistent with 

inventory management where dealers (in the absence of market power) post 

competitive prices to attract orders away from competing dealers to offset inventory 

imbalances, thereby lowering the inside spread.   

 

 
 

Figure 6-2 

Standardized Bid-Ask Spreads and Quoted Depth 
 

This figure depicts the intraday pattern in standardized bid-ask spreads and quoted depth in 5-minute 

intervals. The sample extends from November 30, 2008 to April 23, 2009. The bid-ask spread is 

measured as the ask quote minus the bid quote divided by the bid-ask midpoint. Quoted depth is 

measured as the average of the volume at the best bid and ask quotes. Both variables are calculated at 

the end of each 1-minute interval and then averaged across 78 equal 5-minute time-intervals. 
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In a study of dealer quotation behavior on the Nasdaq, Chung and Zhao (2004b) 

discuss how the institutional features of the Nasdaq lead to a negative correlation 

between the dealer’s posted spread and depth. Figure 6-2 reveals the intraday 

variation in quoted depth is opposite to the pattern in bid-ask spreads, consistent with 

the second hypothesis H6,2. Quoted depth is lowest at the open, increases over the 

early hours of trading and remains relatively stable until approximately 15:00 hours, 

when quoted depth begins to increase significantly. The results of the GMM regression 

in Table 6-1 document a similar pattern. The coefficient for the first 30-minute interval 

is significantly negative, while the coefficient for the 15:30-16:00 interval shows 

quoted depth reaches its highest level. This pattern in quoted depth at the close of 

trading differs sharply to the results of Lee et al. (1993) on the NYSE, who document 

significantly lower depth. However, these findings are consistent with Chung and Zhao 

(2004b), supporting the view that both the price and quantity of dealer’s quotes are 

inter-dependent, and that spreads and depth are negatively correlated. The narrowing 

of the bid-ask spread and increase in quoted depth at the close of trading suggests 

that inventory management on the part of market makers results in improved liquidity 

at the close of trading.  

 

6.4 Additional Tests   

 

As a robustness test of the results presented in Table 6-2, Equation 2 is estimated using 

the procedure of Meulbroek (1992). Equation 2 is estimated for each stock in the 

sample using the GMM procedure as stated, with the dummy variable for each time 

interval being the average coefficient from the individual regressions. To test whether 
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each coefficient differs statistically from zero, we calculate a Z-statistic for each 

coefficient. The Z-statistic is calculated as: 

 

1

1
(0,1),

N

i

i

Z t N
N 

       (3) 

 

where N  is the number of stocks in the sample and 
i

t  is the t-statistic for stock i. Table 

6-2 shows that these results are robust to the estimation technique used, with the 

regression coefficients qualitatively similar to the results presented in Table 6-1. 

Trading volume and price volatility are highest at the start and end of the trading day. 

Bid-ask spreads (quoted depth) are highest at the opening and are lowest (highest) at 

the close of the trading day. 

To further ensure that the intraday patterns in spreads and depth on the 

Nasdaq are not caused by variation in volume and volatility, we directly control for 

trading volume and price volatility using the method of Heflin et al. (2007). Under this 

approach, firm i’s bid-ask spreads, quoted depth, trading volume and volatility are 

expressed as percent deviations from firm i’s mean level for that variable computed 

using the 12:30 to 13:00 interval. The GMM regression is estimated separately for 

each time interval, with the percent deviations of volume and volatility used as 

‘instruments’.  
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Table 6-2 

Regression Estimates in Variation in Standardized Bid-Ask Spread, Quoted 

Depth, Trading Volume and Volatility  
 

The GMM technique is used to estimate the following model: 
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where 
,( )

i t
st V  is the standardized variable occurring in interval t  for firm i, n  is the number of 

intervals in the day, 
k

D  a time-of-day dummy variable equal to 1 if observation t falls in interval k, 

otherwise zero. The 30 minute interval of 12.30 to 1.00 is excluded. The coefficients are the average 

of the coefficients from the regression of each individual stock. Positive Coefficient (%) is the 

percentage of stocks in the regression with a positive coefficient. The Z-statistic to test whether the 

mean coefficient for each dummy variable differs from zero is given by the formula 
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1
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i

Z t N
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   where N  is the number of stocks in the sample and 
i

t  is the t-statistic 

for stock i.  

 

Time SPREAD DEPTH VOLUME VOLATILITY 

9:30 - 10:00 1.0267 -0.4533 1.7291 1.4195 

Positive Coefficient (%) 93.75 5.21 100 100 

Z-statistics 181.855 -88.925 157.193 282.444 

p-value 0.0000 0.0000 0.0000 0.0000 

10:00 - 10:30 0.2514 -0.2554 0.8704 0.6844 

Positive Coefficient (%) 83.33 6.25 100 100 

Z-statistics 55.03 -49.13 96.72 154.43 

p-value 0.0000 0.0000 0.0000 0.0000 

10:30 - 11:00 0.1410 -0.1822 0.5773 0.4142 

Positive Coefficient (%) 80.21 7.29 100 100 

Z-statistics 32.60 -35.95 67.94 105.59 

p-value 0.0000 0.0000 0.0000 0.0000 

11:00 - 11:30 0.0859 -0.1505 0.3047 0.2296 

Positive Coefficient (%) 80.21 6.25 100 100 

Z-statistics 21.20 -28.90 38.31 63.19 

p-value 0.0000 0.0000 0.0000 0.0000 

11:30 - 12:00 0.0498 -0.1000 0.1361 0.1131 

Positive Coefficient (%) 83.33 8.33 90.72 100 

Z-statistics 13.00 -18.99 17.42 32.21 

p-value 0.0000 0.0000 0.0000 0.0000 

12:00 - 12:30 0.0164 -0.0392 0.1091 0.0628 

Positive Coefficient (%) 67.71 22.92 94.85 98.97 

Z-statistics 4.51 -8.18 14.90 19.85 

p-value 0.000 0.000 0.000 0.000 

13:00 - 13:30 0.0221 -0.0064 0.0245 0.0018 

Positive Coefficient (%) 80.21 47.92 61.86 52.58 

Z-statistics 6.25 -0.25 3.31 0.50 

p-value 0.0000 0.8034 0.0008 0.6202 

13:30 -14:00 -0.0045 -0.0010 0.0783 0.0320 

Positive Coefficient (%) 48.96 51.04 89.69 86.60 

Z-statistics 0.66 -0.36 10.30 9.96 

p-value 0.5090 0.7117 0.0000 0.0000 

14:00 - 14:30 -0.0318 0.0510 0.3314 0.1482 
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Positive Coefficient (%) 22.92 71.88 100.00 98.97 

Z-statistics 7.60 8.94 39.71 36.82 

p-value 0.0000 0.0000 0.0000 0.0000 

14:30 - 15:00 -0.0554 0.1175 0.4734 0.1892 

Positive Coefficient (%) 18.75 87.5 100 100 

Z-statistics 13.96 22.25 57.00 48.84 

p-value 0.0000 0.0000 0.0000 0.0000 

15:00 - 15:30 -0.1348 0.3109 0.9080 0.2973 

Positive Coefficient (%) 8.33 92.71 100 100 

Z-statistics 35.40 54.91 102.72 78.62 

p-value 0.0000 0.0000 0.0000 0.0000 

15:30 - 16:00 -0.2628 0.8595 2.3863 0.4637 

Positive Coefficient (%) 5.21 100 100 100 

Z-statistics 67.36 125.46 228.42 112.16 

p-value 0.0000 0.0000 0.0000 0.0000 

** Indicates statistical significance at the 0.01 level 

  * Indicates statistical significance at the 0.05 level 

 

For each half hour interval, the following equation is estimated: 

 

                           , 0 1 , 2 , ,( )
i t i t i t i t

dst V DVOLATILITY DVOLUME e         (4) 

 

where 
,( )

i t
dst V , 

,i t
DVOLATILITY  and 

,i t
DVOLUME  are per cent deviations of 

,( )
i t

st V  (spread and depth), 
,i t

VOLATILITY , 
,i t

VOLUME  for interval t from firm i’s 

mean of each of these variables computed from the 12:30-13:00 interval. 
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Table 6-3 

Regression Estimates of Variations in the Standardized Bid-Ask Spread 
 

The GMM method is used to estimate the following model: 

, 0 1 , 2 , ,( )
i t i t i t i t

dst V DVOLATILITY DVOLUME e       

where 
,( )

i t
dst V , 

,i t
DVOLATILITY  and 

,i t
DVOLUME  are per cent deviations of 

,( )
i t

st V , 

,i t
VOLATILITY , 

,i t
VOLUME  for interval t from firm i’s mean of each of these variables computed from 

the 12:30-1:00 interval. The model is estimated separately for each 30-minute trading interval.  

 

Time a0 t-statistic a1 t-statistic a2 t-statistic 

9:30 - 10:00 0.4898 27.23** -0.0353 -7.91** 0.0817 10.85** 

10:00 - 10:30 0.1577 15.84** -0.0758 -5.7** 0.0822 10.75** 

10:30 - 11:00 0.1108 19.78** -0.0775 -15.68** 0.0829 11.47** 

11:00 - 11:30 0.0709 15.97** -0.0896 -15.27** 0.1001 10.12** 

11:30 - 12:00 0.0555 11.92** -0.0655 -4.64** 0.0608 2.47** 

12:00 - 12:30 0.0244 10.63** -0.0775 -8.82** 0.0819 5.19** 

13:00 - 13:30 0.0129 5.26** -0.0753 -6.37** 0.1152 7.89** 

13:30 -14:00 0.0014 0.56 -0.0815 -13.8** 0.0973 8.88** 

14:00 - 14:30 -0.0174 -5.72** -0.0351 -3.82** 0.0408 2.43* 

14:30 - 15:00 -0.0258 -8.05** -0.0438 -5.22** 0.0581 3.98** 

15:00 - 15:30 -0.0649 9.90** -0.0427 -12.76** 0.0627 -18.84** 

15:30 - 16:00 -0.0881 -19.84** -0.0170 -12.03** 0.0257 5.64** 

** Indicates statistical significance at the 0.01 level 

  * Indicates statistical significance at the 0.05 level 

 

The GMM regression results are presented in Tables 6-3 and 6-4, with the coefficients 

on the control variables consistent with Foster and Viswanathan (1993) and Harris 

(1994). An increase in the deviation of trading volume and price volatility from their 

midday mean levels are negatively related to bid-ask spreads and positively related to 

quoted depth. Controlling for these variables, the trend in bid-ask spreads and quoted 

depth are qualitatively similar to the results presented in Table 6-1.  
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Table 6-4 

Regression Estimates of Variations in Standardized Quoted Depth  
 

The GMM is used to estimate the following model: 

, 0 1 , 2 , ,( )
i t i t i t i t

dst V DVOLATILITY DVOLUME e       

where 
,( )

i t
dst V , 

,i t
DVOLATILITY  and 

,i t
DVOLUME  are per cent deviations of  

,( )
i t

st V  (depth), 

,i t
VOLATILITY , 

,i t
VOLUME  for interval t from firm i’s mean of each of these variables computed from 

the 12:30-1:00 interval. The model is estimated separately for each 30-minute trading interval.  

 

Time a0 t-statistic a1 t-statistic a2 t-statistic 

9:30 - 10:00 -0.2106 -22.23** 0.0148 5.8** -0.0286 -9.96** 

10:00 - 10:30 -0.0899 -10.07** 0.0716 7.43** -0.0830 -10.15** 

10:30 - 11:00 -0.0497 -6.56** 0.1096 14.28** -0.1252 -12.3** 

11:00 - 11:30 -0.0331 -5.19** 0.1537 13.2** -0.1608 -11.62** 

11:30 - 12:00 -0.0050 -0.58 0.1029 3.91** -0.0965 -2.07* 

12:00 - 12:30 0.0224 4.84** 0.1278 7.48** -0.1456 -5.04** 

13:00 - 13:30 0.0498 13.35** 0.1246 9.11** -0.1798 -9.90** 

13:30 -14:00 0.0687 14.07** 0.1680 11.11** -0.2265 -9.00** 

14:00 - 14:30 0.1272 20.24** 0.0537 3.16** -0.0713 -2.51* 

14:30 - 15:00 0.1917 23.85** 0.0689 2.92** -0.1020 -2.58** 

15:00 - 15:30 0.3548 31.86** 0.1194 11.19** -0.2342 -9.00** 

15:30 - 16:00 0.7655 34.02** 0.0988 9.06** -0.1739 -3.88** 

** Indicates statistical significance at the 0.01 level 

  * Indicates statistical significance at the 0.05 level 

 

Re-estimating equation (4) using the procedure of Meulbroek (1992), as shown in 

Tables 6-5 and 6-6 reveal no qualitative difference in the results. Traded volume and 

volatility cannot explain differences in the variation in spreads and depth between the 

competitive dealer market and other market structures. 
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Table 6-5 

Regression Estimates of Variations in the Standardized Bid-Ask Spread  
The GMM method is used to estimate the following model: 

 

, 0 1 , 2 , ,( )
i t i t i t i t

dst V DVOLATILITY DVOLUME e       

 

where 
,( )

i t
dst V , 

,i t
DVOLATILITY  and 

,i t
DVOLUME  are per cent deviations of  

,( )
i t

st V (spread), 

,i t
VOLATILITY , 

,i t
VOLUME  for interval t from firm i’s mean of each of these variables computed from 

the 12:30-1:00 interval. The model is estimated separately for each stock for each 30-minute trading interval. 

The coefficients are an average of the coefficients from the regression of each individual stock. Positive 

Coefficient (%) is the percentage of stocks in the regression with a positive coefficient. The Z-statistic to test 

whether the mean coefficient for each time interval differs from zero is given by the formula 

1

1
(0,1),

N

i

i

Z t N
N 

   where N  is the number of stocks in the sample and 
i

t  is the t-statistic for stock 

i.  

 

Time a0 a1 a2 

9:30 - 10:00 0.0689 -0.0402 0.5292 

Positive Coefficient % 95.79 4.21 86.32 

Z-statistics 55.71 -19.41 17.81 

p-value 0.0000 0.0000 0.0000 

10:00 - 10:30 0.1562 -0.0885 0.0902 

Positive Coefficient % 91.58 4.21 84.21 

Z-statistics 27.52 -25.82 23.52 

p-value 0.0000 0.0000 0.0000 

10:30 - 11:00 0.1044 -0.0815 0.0962 

Positive Coefficient % 85.26 14.74 88.42 

Z-statistics 21.50 -20.45 19.58 

p-value 0.0000 0.0000 0.0000 

11:00 - 11:30 0.0678 -0.0939 0.1115 

Positive Coefficient % 83.16 16.84 88.42 

Z-statistics 17.92 -19.83 18.36 

p-value 0.0000 0.0000 0.0000 

11:30 - 12:00 0.0486 -0.0981 0.1144 

Positive Coefficient % 96.84 10.53 81.05 

Z-statistics 15.76 -20.58 19.73 

p-value 0.0000 0.0000 0.0000 

12:00 - 12:30 0.0231 -0.0914 0.1078 

Positive Coefficient % 81.05 11.58 83.16 

Z-statistics 10.30 -22.97 20.54 

p-value 0.0000 0.0000 0.0000 

13:00 - 13:30 0.0142 -0.0969 0.1266 

Positive Coefficient % 72.63 11.58 84.21 

Z-statistics 6.32 -19.36 19.18 

p-value 0.0000 0.0000 0.0000 

13:30 -14:00 0.0009 -0.0949 0.1187 

Positive Coefficient % 49.47 11.58 87.37 

Z-statistics 0.1142 -24.8195 21.1243 

p-value 0.9091 0.0000 0.0000 

14:00 - 14:30 -0.0244 -0.0713 0.1067 

Positive Coefficient % 25.26 17.90 84.21 

Z-statistics -11.04 -21.89 31.21 
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p-value 0.0000 0.0000 0.0000 

14:30 - 15:00 -0.0314 -0.0684 0.1044 

Positive Coefficient % 22.11 17.90 84.21 

Z-statistics -13.49 -24.59 30.12 

p-value 0.0000 0.0000 0.0000 

15:00 - 15:30 -0.0727 -0.0507 0.0861 

Positive Coefficient % 5.26 16.84 83.16 

Z-statistics -29.16 -24.01 26.62 

p-value 0.0000 0.0000 0.0000 

15:30 - 16:00 -0.1005 -0.0236 0.0580 

Positive Coefficient % 23.16 11.58 86.32 

Z-statistics -27.98 -21.88 22.95 

p-value 0.0000 0.0000 0.0000 
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Table 6-6 

Regression Estimates of Variations in Standardized Quoted Depth  
 

The GMM method is used to estimate the following model: 

, 0 1 , 2 , ,( )
i t i t i t i t

dst V DVOLATILITY DVOLUME e       

where 
,( )

i t
dst V , ,i t

DVOLATILITY  and 
,i t

DVOLUME  are per cent deviations of  
,( )

i t
st V (depth), 

,i t
VOLATILITY , ,i t

VOLUME  for interval t from firm i’s mean of each of these variables computed from 
the 12:30-1:00 interval. The coefficients are an average of the coefficients from the regression of each 

individual stock. Positive Coefficient (%) is the percentage of stocks in the regression with a positive 

coefficient. The Z-statistic to test whether the mean coefficient for each time interval differs from zero is 

given by the formula 
1

1
(0,1),

N

i

i

Z t N
N 

   where N  is the number of stocks in the sample and 
i

t  is 

the t-statistic for stock i.  

 

Time a0 a1 a2 

9:30 - 10:00 -0.1680 0.0184 -0.0556 

Positive Coefficient % 15.79 88.42 4.21 

Z-statistics -40.05 18.00 -25.68 

p-value 0.0000 0.0000 0.0000 

10:00 - 10:30 -0.0575 0.1008 -0.1421 

Positive Coefficient % 29.47 96.84 4.21 

Z-statistics -13.08 23.44 -31.55 

p-value 0.0000 0.0000 0.0000 

10:30 - 11:00 -0.0192 0.1238 -0.1912 

Positive Coefficient % 42.11 98.95 2.11 

Z-statistics -6.14 23.94 -33.50 

p-value 0.0000 0.0000 0.0000 

11:00 - 11:30 -0.0086 0.1688 -0.2414 

Positive Coefficient % 40.00 97.90 1.05 

Z-statistics -5.16 23.20 -31.15 

p-value 0.0000 0.0000 0.0000 

11:30 - 12:00 0.0204 0.1909 -0.2859 

Positive Coefficient % 56.84 96.84 3.16 

Z-statistics 1.24 22.75 -30.75 

p-value 0.2166 0.0000 0.0000 

12:00 - 12:30 0.0285 0.1707 -0.2648 

Positive Coefficient % 73.68 90.53 2.11 

Z-statistics 6.06 19.18 -25.75 

p-value 0.0000 0.0000 0.0000 

13:00 - 13:30 0.0500 0.1680 -0.2712 

Positive Coefficient % 72.63 11.58 84.21 

Z-statistics 14.17 19.12 -25.01 

p-value 0.0000 0.0000 0.0000 

13:30 -14:00 0.072 0.198 -0.332 

Positive Coefficient % 91.58 94.74 2.11 

Z-statistics 16.27 24.36 -30.20 

p-value 0.0000 0.0000 0.0000 

14:00 - 14:30 0.1313 0.1514 -0.2492 

Positive Coefficient % 90.53 95.79 2.11 

Z-statistics 26.09 20.53 -30.85 

p-value 0.0000 0.0000 0.0000 

14:30 - 15:00 -0.2721 0.1572 0.1924 
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Positive Coefficient % 98.95 95.79 2.11 

Z-statistics 32.08 23.72 -34.90 

p-value 0.0000 0.0000 0.0000 

15:00 - 15:30 0.3553 0.1536 -0.3533 

Positive Coefficient % 1.05 97.90 100 

Z-statistics 44.81 27.67 -36.21 

p-value 0.000 0.000 0.000 

15:30 - 16:00 0.8339 0.1294 -0.4500 

Positive Coefficient % 100 96.84 2.11 

Z-statistics 58.14 26.42 -35.61 

p-value 0.0000 0.0000 0.0000 

 

6.5 Summary 

 

This chapter analyses the behavior of quoted depth in addition to the bid-ask spread 

on the Nasdaq, a competitive dealer market. Results show that the intraday pattern 

in quoted depth is negatively associated with the bid-ask spread. Nasdaq stocks 

experience wide spreads at the open and narrow spreads at the close, while depth is 

low at the open and high at the close. The general pattern in quoted depth on the 

Nasdaq differs to that observed on the NYSE, where depth declines at the close of 

trading.  

The negative correlation between spreads and depth for Nasdaq stocks 

supports the contention of Chung and Zhao (2004b) that both the price and quantity 

of dealer quotes are inter-dependent, with both used by dealers to manage their 

inventory. As patterns in the determinants of spreads and depth, namely trading 

volume and volatility, are similar across dealer, specialist and order-driven markets, it 

is concluded that the higher depth at the end of the trading day results from inventory 

management by Nasdaq dealers and that this results in improved liquidity.  
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Chapter 7: Conclusions 

This dissertation examines order submission strategies across different trading 

platforms. Liquidity and transaction costs depend upon both the characteristics of 

individual securities and the structure of the market and subsequent order submission 

strategies of market participants. The market structure of an exchange is 

multidimensional, consisting of various factors affecting the trading behaviour of 

market participants. As market design affects trading strategies and hence liquidity, 

exchanges are continually adjusting their trading platforms in order to maximise 

liquidity and cater to market participants. It is therefore important for exchanges, 

regulators, market participants and academics to understand how market design 

affects investors order submission strategies in order to further understanding of what 

constitutes optimal market structure.  

This dissertation focusing on two areas, namely order submission strategies in 

(1) limit order markets where market makers are not present and (2) markets that 

employ designated market makers. Limit order markets depend on endogenous 

liquidity creation based on investors agreeing to trade with each other. It examines a 

number of issues yet to be investigated in the literature in relation to order submission 

strategies across limit order markets and markets with designated market makers. 

This includes the impact of a tick increase on market quality in a futures market 

setting, the relation between algorithmic trading volume and future market quality 

the execution costs of option strategies and their determinants and, intraday patterns 

in quoted depth on the Nasdaq, a competitive dealer market.  
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7.1 Summary of Findings 

 

Chapter 3 examines the impact of a tick size increase on market quality in a 

futures market setting. Exchanges worldwide have lowered the minimum price 

increment with the aim of improving liquidity and lowering transaction costs. A 

number of studies analyse the impact of tick size reductions on market quality, with 

results showing that the tick size reduction is associated with lower bid-ask spreads 

and quoted depth. This literature provides conflicting evidence on whether the change 

is indicative of an overall improvement or reduction in liquidity. In 2009, the Sydney 

Futures Exchange (SFE) and the Eurex increased the minimum tick size for the 3-Year 

Treasury Bond Futures (“3Y T-bond”) and the 5-Year Euro Bobl Futures (“5Y Bob1”) to 

facilitate increased liquidity during the Global Financial Crisis (GFC). This natural 

experiment provides an opportunity to re-examine this issue.  

Consistent with prior studies, results show that an increase in the tick size is 

associated with an improvement in depth at the best quotes and depth throughout 

the limit order-book for both contracts. The evidence also suggests that the increase 

in the tick size resulted in an increase in the bid-ask spread. The price impact analysis, 

used as a comprehensive measure of the change in liquidity after the increase in 

minimum tick, suggests that the tick size resulted in an increase in execution costs for 

the event contracts. These results indicate that the increase in the bid-ask spread 

more than offset the increase in quoted depth. 

Chapter 4 examines the relation between algorithmic trading volume and 

future market quality. Although prior literature examines the effect of algorithmic 

trading on market quality, few papers assess the impact of algorithmic trading over 
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different market conditions. Using a proprietary data set provided by the Australian 

Securities Exchange (ASX), the results over the whole sample provide no evidence that 

market quality is associated with algorithmic trading volume. This conclusion changes 

however, when the sample is split into intraday intervals of increasing and decreasing 

stock returns. Results show that algorithmic trading volume is significantly associated 

with future spreads, depth and volatility when prices are falling, and has no relation 

when prices are rising. This may imply that during price declines, ATs increase their 

demand for liquidity. Finally, results reveal that algorithmic trading’s negative 

association with market quality can be explained by ATs engaging in positive feedback 

trading, where they systematically decrease their purchases of stocks during periods 

of falling prices, while increasing their level of selling. 

Chapter 5 examines the execution costs of option strategies and outright 

options on the Australian Options Market. This essay builds on prior studies examining 

transaction costs in the options market, which do not distinguish between outright 

options and options that constitute strategies. This is a significant omission, as option 

strategies may have higher transaction costs given their greater complexity. This 

chapter adds to the literature by being the first study to measure the execution costs 

of option strategies relative to outright options and investigates if any differences in 

the execution costs of strategy-linked options and outright options are attributable to 

differences in market making costs.  

The analysis reveals three key findings. First, execution costs for strategy-

linked options are greater relative to outright options. Second, the execution costs of 

option strategies are dependent upon the complexity of option strategies, with tailor-

made strategy-linked options being more costly to trade than standard strategy-linked 
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options. These findings are supported by a range of empirical measures. Strategy-

linked options display wider effective spreads across put and call options and across a 

number of different option characteristics. Multivariate analysis shows that after 

directly controlling for a number of liquidity determinants, tailor-made strategy-linked 

trades incur higher execution costs than outright options trades. The third key finding 

is that the greater execution costs of option strategies are caused by the higher 

inventory-holding costs of the market maker and not higher adverse selection costs. 

Results indicate that the difference in execution costs between tailor-made strategy-

linked options and outright options is driven by the initial costs in delta hedging the 

option position. 

Chapter 6 examines the intraday pattern in quoted depth on the Nasdaq, a 

competitive dealer market. The empirical evidence from prior literature suggests that 

market design plays an important role in the observed pattern in bid-ask spreads and 

quoted depth over the course of the trading day. The literature examining markets 

with designated market makers shows that bid-ask spreads tighten near the close of 

trading, as market makers improve their prices to attract order flow from other 

liquidity suppliers in order to manage their inventory levels. Using similar arguments, 

it is hypothesised that quoted depth increases near the close of trading. 

Consistent with prior studies on competitive dealer markets, results show bid-

ask spreads are widest at the open of trading and tightest near the close of trading. 

Furthermore, quoted depth is shown to be inversely related to bid-ask spreads, 

increasing over the trading day and increasing most significantly near the close of 

trading. Results show that the pattern in quoted depth is a result of the market 

structure of the Nasdaq and not a result of patterns in the determinants of spreads 
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and depth. Controlling for two important determinants of bid-ask spreads and quoted 

depth, trading volume and price volatility, results show that the patterns in quote 

depth and bid-ask spreads are unaffected. The results support the hypothesis that the 

price and quantity quotes of dealers are interdependent and that dealers use both 

spreads and depth to manage their inventory near the close of trading.  

 

7.2 Contributions to the Literature, Limitations and Areas for Future Research 

   

The findings from this dissertation provide a number of insights into the factors 

affecting liquidity in limit order markets and markets with designated market makers 

and their impact on market quality.  

The results in Chapter 3 suggest that increasing the tick size encourages more 

limit orders to be posted throughout the limit order book. Despite this, it still leads to 

a higher execution costs, as futures markets already have sufficient depth to meet 

traded volume (Alampieski and Lepone, 2009). This confirms the results of other 

studies that show a reduction in tick size primarily benefits small trades and liquid 

securities (Bollen and Whaley, 1998).  One avenue to explore is whether there are 

other benefits to a tick size increase is to examine its impact on the resiliency of the 

order book, which is a key aspect of liquidity (Kyle, 1985). Resiliency is a temporal 

dimension of liquidity and reflects the speed at which the limit order book is 

replenished after being subject to a liquidity shock, such as a market order. The 

increase in the tick size may have led to an improvement in the resiliency of the limit 

order book, resulting in an improvement in overall market liquidity.  
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The results in Chapter 4 indicate algorithmic trading destablises markets during 

all price declines, rather than during extreme market movements (Kirilenko et al, 

2011). Analysis suggests that it results from algorithmic traders withdrawing liquidity 

from the market, in line with studies examining the behaviour of algorithmic traders 

(ASIC, 2012).  An issue of concern however is the accuracy of classifying trades as 

algorithmic trades. The algorithmic trading measure will encompass both liquidity 

supply likely comes both from high frequency traders that are making markets 

algorithmically and from buy-side institutions that are submitting limit orders as part 

of “slice and dice” algorithms. As the concern with algorithmic trading rests with the 

potential behavior of high frequency traders, being able to specifically identify high 

frequency traders in the data would provide a more robust analysis of the impact of 

HFTs on market quality during price declines. A further issue is the use of lagged 

algorithmic trading as an instrumental variable when assessing the impact of 

algorithmic trading on market quality. This may not overcome all endogeneity issues 

however if the liquidity variables are serially correlated. A more robust approach is to 

identify a structural change that resulted in higher algorithmic trading for a sample of 

stocks on an exchange. This natural experiment can be used to provide more robust 

causal estimates of the impact of algorithmic trading on market quality during price 

declines.  

Chapter 5 provide the first empirical evidence measuring the transaction costs 

of option strategies and its determinants. It indicates that market makers do not adjust 

bid-ask spreads in response to adverse selection costs. Further evidence is needed to 

validate and extend these findings. Two approaches could be used. Partitioning option 

strategy trades according to institutional and retails investors could be used to test 
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whether certain option strategy trades are informative and whether these trades are 

driving the higher observed transaction costs, under the assumption that institutional 

investors are proxies for informed traders. An alternative is to examine whether there 

are certain types of strategy trades that are predictive of future returns and assess 

whether market makers are likely to adjust the bid-ask spread in response to these 

strategy trades.   

Chapter 6 shows that market makers narrow bid-ask spreads and increase 

quoted depth in response to inventory imbalances, in order to end the day ‘flat’. This 

indicates that market makers improve liquidity at the end of the trading day. As a 

further test of whether market makers adjust for inventory imbalances, the behaviour 

of market makers can be compared for liquid and illiquid stocks. Under the inventory-

based model, the decrease (increase) in spreads (depth) should be greater for illiquid 

stocks, as it is more difficult to unwind inventory positions in illiquid securities.  
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