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Abstract. Semantic-security of individual plaintext bits given the corre-
sponding ciphertext is a fundamental notion in modern cryptography. We
initiate the study of this basic problem for Order-Preserving Encryption
(OPE), asking “what plaintext information can be semantically hidden
by OPE encryptions?” OPE has gained much attention in recent years
due to its usefulness for secure databases, and has received a thorough
formal treamtment with innovative and useful security notions. How-
ever, all previous notions are one-way based, and tell us nothing about
partial-plaintext indistinguishability (semantic security).

In this paper, we propose the first indistinguishability-based security
notion for OPE, which can ensure secrecy of lower bits of a plaintext
(under essentially a random ciphertext probing setting). We then justify
the definition, from the theoretical plausibility and practicality aspects.
Finally, we propose a new scheme satisfying this security notion (the first
one to do so). In order to be clear, we note that the earlier security no-
tions, while innovative and surprising, nevertheless tell us nothing about
the above partial- plaintext indistinguishability because they are limited
to being one-way-based.

Keywords: Order-preserving encryption, secure encryption, security
notions, indistinguishability, foundations.

1 Introduction

Securing cloud database with untrusted cloud servers needs to hide information
from the database manager itself, and has resulted in new research areas.

Order-Preserving Encryption (OPE): This is, perhaps, the most promis-
ing new primitives in the area of encrypted database processing [TII7I3I7IRI2S].
It is a symmetric encryption over the integers such that ciphertexts preserve
the numerical orders of the corresponding plaintexts. That is, Vm,m'{m <
m’ = Encg(m) < Encx(m’)}. OPE was originally studied in an ad-hoc fashion
in the database community by Agrawal, Kiernan, Ramakrishnan, Srikant and
Xu [1], and seemed like a clever heuristics. However, its careful foundational
study was initiated with surprising formal cryptographic models and proofs by
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Boldyreva, Chenette, Lee, and O’Neill [7J8]. Overall, it has received much recent
attention in the cryptographic community [7I828], in the database community
[IUT713], as well as in other applied areas.

OPE is attractive since it allows one to simultaneously perform very efficiently
over encrypted data numerous fundamental database operations: sorting, simple
matching (i.e., finding m in a database), range queries (i.e., finding all messages
m within a given range {i,...,j}), and SQL operations [TI20/21123]. Further-
more, OPE is more efficient than these other primitives. For instance, the sim-
ple matching operation realized by OPE only requires logarithmic time in the
database size [I], while the same operation realized by, say, searchable encryption
[9122], needs linear time in the size, which is too costly for a database containing
a few millions data items.

Security of OPE: Despite its importance, security of OPE is far from being
understood at this time. Even the most fundamental problem: “what plaintext
information can be semantically hidden” is open. This is important. Imagine the
following ”string embedding” problem: we concatenate numerical strings to get
a larger number and we have degree of freedom in this concatenation, don’t we
want to hide the most crucial string by embedding it at a location within the large
number which hides it better than otherwise? Hasn’t this very issue (partial in-
formation security in a ciphertext) been at the heart of cryptographic formalisms
of encryption technologies in the last 30 years or so? Indeed, a naturally defined
indistinguishability notion for OPE, indistinguishability under ordered CPA at-
tack (IND-O-CPA) [7], was not only unachievable but it was shown that any
OPE under this notion is broken with overwhelming probability if the OPE
scheme has a super-polynomial size message space. (And if the message space is
only polynomial size, an OPE scheme completely loses its utility, of course.)

OPE Is an Inherently “Leaky” Method: The reason behind the above
negative result is that an OPE scheme has to reveal something about plaintexts
other than their order, i.e., information about the distance between the two
plaintexts. By definition (as stated above), an OPE scheme’s encryption function
Enck has to satisfy the monotone increasing property, mg < mi = Encg(mg) <
Enck (mq). Hence, the difference Encg (m1)—Encg (mg) of two ciphertexts has to
become noticeably large if the difference mq —myq of the corresponding plaintexts
becomes large. The negative result of [7] mentioned above is, in fact, proved using
an attack based on this observation.

To date, no one can tell what exactly OPE must leak and what it can protect.
Our motivation is the fact that the existing security notions are not really helpful
in understanding this simple basic question. If we have started to take the formal
approach to the problem, why should we stop short of answering such a question?
Here are a few notions to date:

IND-O-CPA [7]: It is similar to the LOR-based indistinguishability notion [4]
for symmetric key encryption, except that queries of the adversary have to satisfy
some order-preserving property. This notion is natural but as we stated above,
it is not achievable for schemes with a super-polynomial size message space [7].
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POPF-CCA [7]: This is a very important notion which says that a CCA adver-
sary cannot distinguish a pair of an encryption and decryption oracles from a pair
of an order-preserving random oracle and its inverse. This notion is natural and
therefore should be further studied. But currently, nothing is known about what
partial information it can hide and what it cannot hide, as pointed out in [g].

(r,q+1)-WOW [8] (Window One-Wayness): It says that no adversary, who
gets ¢ + 1 encryptions C,, C1,. .., Cy of uniformly randomly selected unknown
messages, can find an interval I of length < r satisfying Decg (C*) € I. This
notion is important since it captures the following natural database setting:
Randomly selected ¢+ 1 elements stored in a database system in their encrypted
form and an adversary A who wants to know one of them breaches the database
and gets all the ciphertexts in it. This notion, however, does not ensure anything
about the secrecy of internal plaintext partial information, since it is “one-way-
based” in nature.

(r,qg+1)-WDOW [8]: It is another one-way-based notion defined in [§]. Since
it is one-way-based, it also does not tell us what partial information about the
plaintexts is hidden.

1.1 Owur Contributions

This paper presents the first attempt to give a new perspective to the funda-
mental open problem: “go beyond one-wayness security and investigate what
internal plaintext partial information OPE can hide.” Here (while respecting
earlier important works on the subject) we propose the first achievable indis-
tinguishability notion for OPE regarding partial plaintext information hiding.
More specifically: we show that our notion can assure secrecy of lower bits of a
plaintext in the same natural settings as WOW [§].

Our Security Notion — (X, 6, ¢)-indistinguishability: It is defined based on
(r,q 4+ 1)-WOW [§]. But since WOW is inherently one-way-based, our security
notion is defined as a “hybrid” of WOW and indistinguishability as follows.
Consider the same database setting as WOW, where an honest entity (not the
adversary!) stores ¢ + 1 his data elements m*,my,...,mg in their encrypted
forms in a database and an adversary A, who wants to get knowledge of m™*,
breaches the database system and gets all ciphertexts in it. Above, the messages
mi,..., Mg have been selected according to given distributions X7, ..., &j,.

The difference from WOW is that m* has been selected as follows: two mes-
sages m{ and mj are generated using a polynomial time machine Mg called
message generator, and set m* <— mj, where b is a random bit hidden from A.

For X = (X;)i=1,....q, an OPE scheme is called (X, 6, q)-indistinguishable if
the advantage of A in the above game (guessing the bit b beyond probability
1/2) is negligible for any A and for any Mg whose output satisfies

|mi —mg| < 6. (1.1)

! Here we adopt the simpler definition of the window one-wayness notion given in
Appendix B of the full paper of [§], which can be reduced to the definition of Section
3 of that paper and and vise versa.
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Restriction (1)) enables us to avoid the known attack [7] since it applies only
when the distance between m(, and mj is large.

Our Results: We will show in Section 2] the following fact:

Fact 1 (informal). If an OPE scheme satisfies (X, 0, q)-indistinguishability,
the least significant |logs 8] bits of a plaintext are hidden from the adversary in
the above database setting.

We then propose a new OPE scheme & ¢ based on a pseudo-random function
PRF and show the following facts in Section[l Below, X1, ..., X, are distributions
on [1..M] such that they are independent from one another and one can take a
sample from AX; in time polynomial in A.

Theorem 2 (informal). Let 8 and t be constants satisfying 0 < t < f <
1. Suppose that the message space size M is super-polynomial in the security
parameter . Then, for any X = (X;); satisfying Vi : Hoo(X;) > Blogy M, Exg
satisfies (X, M, q)-indistinguishability under the condition that PRF is secure.

Remarks: First, our security notion does not ensure the secrecy of higher bits
of the plaintext, and, in fact, there is no known scheme which can ensure their
secrecy, since the scheme of [7] also reveals its high order bits [8]. Second, since
any distribution ) on [1..M] satisfies 0 < H(Y) < logy, M, the condition
Hoo(X;) > Blogy M means that the ratio of Ho(&X;) to the maximum logy, M
has to be more than . Third, Theorem [2] requires that the message space size
M is super-polynomial in A: which is exactly the same condition assumed by
Boldyreva et.al.[§] to get their results. Fourth, Theorem[2lshows stronger security
when ¢ is closer to 3, though the advantage bound decrease is slower in this case.
Due to the above results, we can conclude the following crucial facts:

Knowledge of X: Theorem 2] only requires X' to satisfy the entropy bound.
Hence, we can show (X, 0, ¢)-indistinguishability even when we do know the tuple
X of message distributions completely in advance. This fact is very important
because the complete knowledge of X is not realistic in a central application,
like the secure database above, when, for instance, plaintexts are names of new
students (with the lexicographic order) or scores of some examination.

Fraction ¢ < 3 of Lower Bits Are Hidden: Due to Fact [ (X, M?,q)-
indistinguishability implies secrecy of the least significant |[log M| bits of a
plaintext. Since the maximum bit length of a message in the message space [1..M]|
is |logy M| 4 1, Theorem [ shows that our scheme with the above parameters
can ensure secrecy of the fraction

[log M*]

of the least significant bits of a plaintext. The above secrecy can be shown even
when we do not have complete knowledge of plaintext distributions.
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Any Fraction of Low-Order Bits Are Hidden in the Uniform Distri-
bution Case: In the most significant case where plaintexts distribute uniformly
at random, Theorem [2] in particular, shows that our scheme can ensure secrecy
of any fraction of the least significant bits of the plaintext because the maxi-
mum log, M of the min-entropy is achieved by the uniform distribution and we
therefore can set 3 to 1 in this case.

Allowing Decryption Queries: As in [8], we can naturally make our scheme
secure even when we allow the adversary to make decryption queries at any time,
using the “Encrypt-then-Mac” composition (adding MAC data) [5].

Open Problem: We can show that our scheme satisfies Encx (m+1) = Encg (m)
+ 1 with high probability. Hence, an adversary can break the scheme if she can
get Encg (mj+ (small value)), where (mg, m}) is a challenge query of her. (Our
proof for Theorem 2l ensures that she can get it only with negligible probability.)
Designing a scheme ensuring security for this case is an important open problem.

Finally, we give a note about the construction of our scheme. Since Boldyreva
et.al. [7] already gave a natural security notion, POPF-CCA, one important ap-
proach to study indistinguishability of OPE is to show that POPF-CCA implies
some indistinguishability notion, such as ours. However, we take a different ap-
proach in this paper because currently, we do not have much knowledge about the
random order-preserving function used in the definition of POPF-CCA, which
means that showing our security notion based on POPF-CCA seems to us to be
hard. Rather, we define a specific scheme & ¢ designed for showing our security
notion. Showing some indistinguishability results for the more natural security
notion, POPF-CCA, is, of course, of independent interest and we leave it as an
important open problem.

1.2 Other Security Notions

We also introduce two more security notions for OPE.

(k,0)-FTG-O-nCPA: This is an (artificial) variant of an indistinguishability
notion. We will give the definition of it in Section Bl and show that this notion
with suitable parameter implies (X, 0, ¢)-indistinguishability for any X = (X;);
such that Hoo(X;) is larger than the predetermined constant. We then use this
fact to show (X, 0, ¢)-indistinguishability of our proposed scheme.

WOWM — Stronger Variant of WOW [g]: Informally, (r,¢ + 1)-WOWM
says that no adversary given Encg(m*), and (m;, Enckx(m;))i=1,... 4 can find an
interval I of length < r satisfying m* € I. This is stronger than (r,q+ 1)-WOW
because it allows an adversary to watch (m;); while (r, ¢ + 1)-WOW prohibits
her from doing this.

We will show in Section Bl the following facts. The (X, 6, ¢)-indistinguishability
notion with suitable parameters implies (r,q + 1)-WOWM. For any constant
0 < p < 1, our scheme with suitable parameters satisfies (M?,q + 1)-WOWM
(and therefore (M?, g+ 1)-WOW).
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1.3 Comparison with Known Results [7,8]

First, we clarify what our results owe to [§]: we consider the same natural
“database as a service” setting of WOW as described in Section [[LT] and our
results are shown under the same condition as WOW [§], that is, the message
space size M is super-polynomial in A. (Note that, technically, our proposed
scheme owes the excellent “lazy sampling” of [7] as well.)

Next, we clarify the difference of them. The earlier results on OPE are indeed
remarkable and opened the door to our investigation, but there are some crucial
differences which we would like to point out explicitly.

About Our Security Notion: (X, 0, ¢)-indistinguishability of the scheme [7]
is unknown, because our goal is newly defined. Moreover, we can prove that the
known scheme [7] cannot satisfy (U?, M, ¢)-indistinguishability for ¢ > 1/2. (See
our full paper for the proof.)

Our scheme achieves (U9, M*, q)-indistinguishability for any 0 < ¢ < 1, where
U7 was the tuple of the uniform distributions on the message space. This means
that it can hide (in the sense of semantic security) any fraction ¢ of the least
significant bits of a plaintext in our setting with uniformly randomly selections
of plaintexts. Even when plaintext distributions are not the uniform ones, the
scheme can hide fraction ¢ < 8 of lower bits of a plaintext. (8 is determined
depending on the min-entropy measure of other plaintexts).

About WOW [8]: The known best result [§] is (1,¢)-WOW security of the
scheme of [7]. But it is proved that this scheme cannot achieve (M*, ¢g+1)-WOW
[8] for any p > 1/2. In contrast, for any constant 0 < p < 1, our scheme with
suitable parameters can satisfies (M*, ¢+ 1)-WOWM (and therefore (M*, g+ 1)-
WOW, in particular).

Finally, we describe the POPF-CCA notion given in the seminal work [7].
About POPF-CCA [7]: POPF-CCA is very important notion which can en-
sure indistinguishability from an ideal object, while our security notion cannot
ensure it. Hence, POPF-CCA, as a notion, is more natural and has much po-
tential like other real-vs-ideal definitions and it can ensure security in lots of
situations while ours can ensure it in the specific situation described before.
E.g. our notion can ensure nothing when an adversary knows Encg(m) and
Enck (m + 1) while POPF-CCA can ensure something even in this situation. In
particular, our notion does not imply POPF-CCA and therefore, POPF-CCA
has independent interest.

But currently and unfortunately, nothing is known about what POPF-CCA
can hide and what it cannot hide, as pointed out in [§]. This is the motivation be-
hind our entire investigation. Our result is the first positive result in the sense of
indistinguishability. Showing some indistinguishability for a more natural notion
like, say, POPF-CCA, is an important open issue.

1.4 Other Related Works

Property preserving encryptions [182J10] was introduced by Pandey and Rouse-
lakis [18] as a variants of the OPE. Although the security notions for this scheme
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can be the same as for OPE, almost the same attack as that of [7] can break
any OPE scheme under these security notions when the scheme has a super-
polynomial size message space. See our full paper for the details.

CEOE and MOPE schemes (introduced by Boldyreva, Chenette, Lee, and
O’Neill [§]), mOPE and stOPE schemes (introduced by Popa, Li, and Zeldovich
[19]), and GOPE schemes (introduced by Xiao and Yen [25]) achieve stronger
security than OPE by sacrificing some of their functionalities, by allowing inter-
actions, or by considering restrictive cases, respectively. Comparable encryption
schemes (introduced by Furukawa [I2J13]) consider an encrypted database where
the database manager can search messages m satisfying m > u on behalf of a
user if a key K, depending on u is given from the user as a query. These notions
are of independent interests, some may require further formalizations, and are
all beyond the scope of this work.

Yum, Kim, Kim, Lee and Hong [28] propose a more efficient method to com-
pute the encryption and decryption functions of the known scheme [7]. Xiao, Yen,
and Huynh [27] study OPE in a multi-user setting. Xiao and Yen [26] estimates
the min-entropy of a plaintext encrypted by the known scheme [7].

2 (X, 0, q)-indistinguishability

We introduce notations and terminology and then define our security notion.

Intervals: For integers a and b > a, interval [a..b] is the set {a, ..., b}. [b], (a..b],
[a..b), and (a..b) denote [1..0], [a+ 1..b], [a..b — 1], and [a + 1..b — 1], respectively.

Order-Preserving Encryption: An OPF scheme is a symmetric key encryp-
tion & = (Kg, Enc, Dec) whose message space M and ciphertext space are inter-
vals in N and which satisfies m < m’ = Encg(m) < Encg(m') for Vm,m' € M
and VK « Kg(1%). Here “<” represents the numerical order. Throughout this
paper, we assume w.l.o.g. that M can be written as [1..M].

Definition 3 ((X,0, ¢)-indistinguishability). Let A\, £ = (Kg, Enc, Dec), 6 =
O(A) > 0, and ¢ = g(\) > 0 be a security parameter, an OPE scheme, a real
number, and a polynomial respectively and X' = (&X);e[1..q be a tuple of distri-
butions on the message space of €. £ is said to be (X, 0, q)-indistinguishable if
for any polynomial time machine Mg (called message generator) whose outputs
(mf, m7,info) satisfies

my < mj, |mi —mg| <6 (2.1)

and any polynomial time adversary A, Adv.Expéx’e’q)'illdis'(Mg, A) =
| Pr[Expt 045 (Mg A 1) = 1] — Pr[Expl®? 995 (Mg, A, 0) = 1]] is negligi-

ble. Here Expéx’g’q)_indis'(Mg, A, b) is defined as follows.

K + Kg(1*), (mg, m?,info) « Mg(1*),m1 & Xy, ... .mq & X,

d < A(Encg (my), (mi, Encx (m;i))ic1..q), info), Return d.
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Remarks: First, when we consider the above notion, the probability that m; €
[mg..m7] has to be negligible because otherwise, an OPE scheme under the above
notion is broken by an adversary simply by checking Encg (m}) > Encg(m;). This
condition will be automatically satisfied in our theorems due to the selection of
parameters of our scheme. Second, due to the bit string info moving between the
parties, we can re-interpret the above definition as Mg and A being the “guess
and find stages” of a single adversary (Mg, A) where info is her state.

Low-Order Bits Can be Hidden: Our security notion ensures the secrecy
of the least significant |log, 8] bits of a plaintext, due to the following: Let
L = |log, 0] and take any (maximal) interval I satisfying the following theorem:
for any two elements of I, all of their bits except the least significant L bits are
the same. That is, I can be written as I = {2Fu + 2 | 2 € [0..2F — 1]} for some
u. By definition the length of I is not more than 6.

Then, our security notion, in particular, ensures that any element mg of I is
indistinguishable from that of a uniformly random element mj of I, because our
condition (L)) is satisfied due to the definition of I. Since the least significant L
bits of uniformly random element mj of I distribute uniformly at random on the
L-bit space [0..2F — 1], the indistinguishability of m{ and m} can ensure secrecy
of the least significant L bits of mj.

3 (k,0)-FTG-O-nCPA

In this section, we introduce a security notion, (k,6)-FTG-O-nCPA, and using
it, we give a sufficient condition for (X, 8, ¢)-indistinguishability.

(k,0)-FTG-O-nCPA: Tt is Find-Then-Guess [4] type indistinguishability for
nCPA adversary whose queries satisfy the conditions B1l), ... (34) described
later. Here nCPA (non-adaptive CPA) [16/14/15] is a type of attack where the
adversary is required to output encryption queries mq,...,m, and challenge
query (mf, m}) together at the same time and gets their answers thereafter.

Definition 4 ((k,§)-FTG-O-nCPA). For real numbers k = k(A\) > 0 and § =
O(\) > 0, an OPE €& is said to be (k,0)-FTG-0O-nCPA secure if for any polyno-

mial time adversary A = (Afind, Aguess), the advantage Adv.Exp‘(gk’e)'FTG'O'nCPA(A)

_ ‘Pr[EXp‘(gk,Q)—FTG—O—nCPA(A, 1) =1 _Pr[EXp(gk,O)-FTG-O-nCPA(A’ 0) = 1]| is neg-
ligible. Here Exp(gk’e)'FTG'o'nCPA(A, b) is defined as follows (below, ¢ is an arbi-
trary number selected by A):

K« Kg(1%), ((mg,m1), (mi)icpq)>5t)  Aning (1),
d 4+ Aguess(Encr (my), (Enck (mi))ieqi..q); St), Return d.

(m§,m}) and my,...,mq are called a challenge query and encryption queries
respectively. The output of A has to satisfy the following (1)), B.2]), and (B.3).
We also assume ([B.4)) throughout this paper w.l.o.g.
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Yi o om; <my & my <my, (3.1)
jmiy — mi| <6, (3.2)
vd € {0,1},Vi : |m}; —m;| > k6. (3.3)
my < mj (3.4)

Above, BT requires the order preserving property, (8:2) requires the same con-
dition as (X, 0, ¢)-indistinguishability, and ([B3) requires the distance |m}; — m;|
has to be bigger than the given constant k6 for any d and i. [B.3]) is required
because without it, an adversary can take (mg, m7) and m; such that |mj —m;|
is much larger than |m{ — m4| (when 6 is big. Say, take any mf and set m} «+
my 4+ 6 and my < m§ — 1). Then, since OPE reveals information about the
distance between the two plaintexts, an adversary can know b by checking
|Enck (m;) — Enci (m)].

Sufficient Condition: Using (k,0)-FTG-O-nCPA, we can give the following
sufficient condition for (X, 0, ¢)-indistinguishability. Below, A, £, ¢ = ¢()\) are
a security parameter, an OPE scheme on a message space [1..M], and a poly-
nomial respectively. Xi,..., &, are distributions on [1..M] such that they are
independent from one another and one can take a sample from X; in time poly-
nomial in A. (M and X can depend on A.) A and Mg denote an adversary and
a message generator for (X, 0, ¢)-indistinguishability respectively and B denotes
an adversary for (k,0)-FTG-O-nCPA.

Theorem 5 (Sufficient Condition for (X, 0, ¢)-indistinguishability). Let
B >0 be any constant. For k =k(X) >0, 0 =0(\) >0, if

Vi€ [l.q] : Hx(X;) > Blogy M (3.5)
holds for any X\, then YMgVAdB :

Adv.Expl* 0 (Mg A) < Adv.Expd?-FTE-0nCPA gy 4 (;1\5—2) . (3.6)
We next give two notes reg. Theorem Al First, as in Theorem 2] condition (B3]
means that the ratio of Huo(X;) to the maximum log, M has to be more than S.
Second, the right hand side of (3.6) is negligible only when k6/M? is negligible.
We will show that k0/M? is, in fact, negligible (for suitable parameters k and
we will choose) in the proof of Theorem [1l which uses the above theorem.

Proof. For Mg and A for (X,0,q)-indistinguishability, consider an adversary
B for (k,0)- FTG O-nCPA which takes (mg,mj,info) < Mg(1*) and m; &

Xi,...,my & Xy, makes query ((m§,my), ma,...,mqy), gives info and an an-
swer to the query to A, and produces the output of A.

Let I be the interval (m§ — kf..m7 + k0). The above B will violate constraint
B3) if m,; € I holds for some i. But the probability that m; € I holds for some
038 D ien.q Primi = X+ my € 1] < (length of I) - 37,y maxzer Pr[m; <

X tmi=al <3 icn g Q(z,]zj(lx) <O (%) . When m; ¢ I holds, (31 is also

satisfied. Moreover ([27)) implies (8:2). Thus, Theorem [ follows. O
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4 Our Scheme

4.1 Our Goal

This section is devoted to constructing our scheme & ¢ satisfying the following
theorem: Below, A and B are adversaries for (k,0)-FTG-O-nCPA and PRF re-
spectively, A is a security parameter, and neg(-) is some negligible function which
is determined independently of (k, 6, A).

Theorem 6 ((k,0)-FTG-O-nCPA of &;4). For k,0 > 0, VAIB

-FTG-O-n 1
Adv.Exng’z) FTe-0 CPA(A) <0 (ﬁ) + Adv.Exppgre(B) + neg()) (4.1)

holds when k — oo. (The value 0 does not affect the advantage bound.)

Moreover, the computational costs of algorithms of Eg and the ciphertext
length of it are within polynomial of logk, log®, log M, and X\, where M 1is the
size of the message space [1..M].

Due to Theorem [l our scheme satisfies the following theorem as well. Below,
M is the size of message space [1..M] of our scheme & g, ¢ = q() is a polynomial,
and Xy, ..., &, are distributions on [1..M] such that they are independent from
one another and one can take a sample from AX; in time polynomial in A\, neg(-) is
some negligible function, A and Mg are an adversary and a message generator for
(X, M, q)-indistinguishability, B is an adversary for PRF, and Adv.Exppge(B) is
an advantage of B in the experiments of PRF.

Theorem 7 ((X,6,q)-Indistinguishability of Our Scheme, Formal Ver-
sion of Theorem ). Let 0 < § < 1 be any constant. Suppose that X =
(X1, ..., &) satisfies

Viel.g] : Hx(X) > Blogy, M. (4.2)

Then, for any constant 0 < t < B(< 1), our scheme E g with suitable (k,0)
(depending on (M, 8,t)) satisfies VMgvVAIB

Adv.Exp‘(g:;Mt’q)'indis'(Mg,A) <0 (ML) + Adv.Exppge(B) + neg(A).  (4.3)
’ 3

Moreover, the computational costs of algorithms of Eg and the ciphertext
length of it are within polynomial of t, B, log M, and .

The right hand sides of (3] becomes negligible under the condition that the
message space size M is super-polynomial in \.

Reduction from Theorem [Tl to Theorem [5] and 6t Theorem [7 follows if we
set parameters (k, #) of our scheme & ¢ as

(k,0) = (M>=0/3 Art) (4.4)
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o 28-0)/3 ppt
because in this case, terms of (B.6) and (1)) become O (%) = O(W)

= O(35507s) and O(ﬁ) = O(577=775)- They are negligible when M — oo
because the constants ¢ and 3 satisfy the condition 0 < t < 8 < 1 of Theorem [7
The computational costs of algorithms in our scheme and the ciphertext length
of it are polynomial in log M even when parameters are set as in ([@4)), due to
the latter part of Theorem [6] and the condition 0 <t < g < 1. g

4.2 Scheme £ ¢ with Polysize Message Space

The goal of this section is designing an OPE scheme &, ¢ whose advantage bound
regarding (k, §)-FTG-O-nCPA is given in Theorem Bl But the message space
size M of &9 must be bounded by some polynomial in the security parameter
A. (Hence, e.g. the upper bound ([@3) of an advantage for this scheme is not
negligible although the bound itself holds even for this scheme.) We stress that
Ex,0 is not our proposed scheme.

The scheme & 9 does not use PRF although Theorem [f] refers to it and the
discussion in this subsection is purely information theoretic ones. The PRF will
be used to design our proposed scheme é_‘k’g in the next subsection.

Ideas behind Construction. The scheme & is constructed based mainly
on three ideas. Firstly, we write an OPE encryption Enck(m) on a message
space [1..M] as Enckx(m) = R+ 3 ;cpp ) 0i, where R = Enck(1) and 6; =
Enck (i) — Encg (i — 1). Then, a design of an OPE encryption can be reduced to
the selections of R and (6;).

Secondly, we take some values jo, j1, ..., and set d;,, d;,, ... and/or R to
random values which are very large compare to other d;, so as to hide a (smaller)
secret value which the adversary wants to know. A naive way to apply this idea
is that we set R to a large random value, while setting all §; to 1. Then, the
large randomness R seems to hide the secret bit b of a challenge ciphertext
Enckx(m;) = R+ Zz‘e[mmg] d; = mj + R — 1. But, in fact, the adversary can
recover b because she can cancel out R by computing Encg (mp) — Encg(m’) =
my —m', where m’ and Encg (m') are her encryption query and its answer.

Therefore, we set some dj,,6;,,. .., to large random values as well and expect
that the set {jo, j1, ...} of indices of them and queries of the adversary to satisfy
“good relation” in the sense that, for some j, the adversary cannot cancel out ¢,
even when she has encryption queries and their answers. (The precise meaning
of this “good relation” will be given later.)

But, the problem is that we cannot know her queries in advance. Therefore,
after we fix jo,Jj1,..., she may choose her queries such that the queries and
{jo,71,-..} do not satisfy the good relation. So, thirdly, we solve the above
problem by introducing another key idea: changing the bit length of §; randomly.
Specifically, for each i, we flip a random coin p; which becomes 0 with small
probability p and then samples §; randomly from some given large set if p; =0
and set ; < 1 otherwise. Then the set I = {jo,j1,...,} of indices of large J;
varies randomly and, (due to the definition of nCPA,) we can hide I from the
view of the adversary until she determines her queries. Hence, the adversary
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Parameters: Message Space = [1.M],p=1— (1 — 1/\/%)1/97 A— —r0— 1L
Kg(1%) Decrc (C)
11. For i € (A.M . 3. |
N Z$E ( b Enck (m) g; gsisfé([(?sj\(j] )ie(A.. M)
12. p; < Binom(1,1—p). |91 parse K as (6)secan- . ..M,

$ _
13. If p; = 0, then & < Xx.22. Output C « 3 [5iP3 O =2 i a im0y

i€(A..m
14. Else 6; + 1 output m.
15. Output K  (di)ic(a..m]- 34. Output L.
bit length
™) )
)
= ™ -| I'_m_'_'o.“'_'_;,-h. =
k6 | 0 | k6
A cannot make Enc.queries

Fig. 1. The Scheme of Section[.2] (upper) and the Intuition Behind Its Security (lower).
In the lower figure, Enck (mo) — Enck (m), Enckx(m1) — Enck(m), and the difference
of them are the sum of ¢; in (¥), (**), and (***) respectively. Since both (*) and (**)
contain a large randomness d;,, the difference (***), which is smaller, is hidden by
this large randomness. Enck (mo) — Encx (m) and Enck(m1) — Enck (m) are therefore
indistinguishable.

cannot arrange intentionally her queries such that the queries and I do not
satisfy the good relation.

Note that this idea has resemblance to the partitioned technique [24] of Wa-
ters for an identity based encryption, where one takes some parameters (which
determine a “partition”) randomly and secretly and expects that queries of an
adversary fall into some good places.

Scheme & g: The formal description of our scheme is given in Figlll Here k
and 0 be the values which we want to show (k,0)-FTG-nCPA security for, p
is a parameter which we will determine in (@3)), and Binom(n,p) is a binomial
distribution.

We set in Figlll Encic(m) = (4. ) 0 Where A = —k6 — 1 < 0 is a fixed
value while in the idea described before, we set Enci(m) = R+ > ,cip i
(That is, we set R «+ Zie[A..l] 0;.) Due to this change, we can simplify the
security proof for the case where an adversary take as a query a small value m,
such as m = 0.

X, is a probability distribution such that a random variable taken from it can
hide other values, specifically,

3¢ . (negligible func.), Va,p € [-0..0], for 6 & Xy, SD(a+ 6,8+ 9) < E(N),
(4.5)

where SD denotes statistical distance. We can use the uniform distribution on
[1..220] as Xy for example. But the scheme in Section will use another dis-
tribution due to a technical reason.
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Message Space Size: The message space size M of this scheme has to satisfy
M = poly(A\) because the encryption cost of this scheme is clearly O(M). We
will remove this restriction in Section 3]

(k,0)-FTG-nCPA Security of & g: Let k and 6 be the values which we
want to show (k, #)-FTG-nCPA security for. Then, since intervals [mg — k..my]
and [mi..my + k0] are k times larger than [mg..m;], the probabilities that
[mo — kO..mo] and [mi..m1 + kO] will contain a large d¢; is much larger than
the probability that [mg..m1] will contain a large J;.

Therefore, if p is taken suitably, we can ensure the three properties below with
high probability. (See Figl). Bellow, we call d; large number if it is taken from
[0..22M] and we say “0; = Encg (i) — Encg (i — 1) is in interval I” to mean that
both integers ¢ — 1 and ¢ used to define J; are contained in I A

All 6; in [mg..m4] are 1, (4.6)
Some d;, in [mg — kf..my] is large, (4.7
Some d;, in [my..m1 + k0] is large. (4.8)

Note that the precise meaning of “good relation” given in “Ideas behind Con-
struction” is that (d;)ie(a..ar) and queries of an adversary satisfy all of the above
three properties.

Here we exploit constraints (83) and B4) of (k,0)-FTG-nCPA. Due to them,
encryption query m has to satisfy m < mg — k6 or m > my + k6. In the former
case, the difference Enck(my) — Encx(m) = > e m,) 0 = Dic(m..mo) 0 +
> €(mo..ms) 0i contains the large dominant randomness d;, as a summand. Since
the term Zie(”m__mb] 0; depending on b can be hidden by é;,, an adversary cannot
detect b from Encg (my) — Enck (m).

In the latter case, similarly, the sum Encg(m) — Enci(my) = Zie(??LLA-m] 0;
contains the other large dominant randomness d;, . An adversary therefore cannot
detect b from Encg(m) — Enci(mp) due to a similar argument as above.

The above discussion shows that the secret bit b is hidden by “barriers” d;, and
0;,. Based on the same idea, we can show, more generally, that the distribution
of the secret bit b is independent from the view of an adversary even when she
knows encryption queries and their answers, under the assumption that (6],
D), and (@) hold. (See the full paper for the formal proof.)

Upper Bound on Advantage: The rest of thing we have to do is to show the
advantage bound of ([LI]) by estimating the probabilities that (L6, (A7), and
(#3) hold. To this end, we set the parameter p of the scheme & ¢ as follows:

p:1_(1_%)%. (4.9)

2 That is, 8; is in I = [a..b] iff i € (a..b]. Seemingly asymmetry of the interval, which
is a “left-open” one (a..b] but is not “right open” one [a..b), comes from how we
number ;. If we set §; not to Enck (2) — Enck (¢ — 1) but to Encx (¢ + 1) — Encx (i),
it becomes a right open one [a..b).



Order-Preserving Encryption Secure Beyond One-Wayness 55

Then the advantage bound is calculated as follows. Let Fy, F3, and E3 be,
respectively, the events that condition ([@6]), (1), and [@3J)) does not hold and
Bad be E; V Es V E3. Then, the previous discussion showed that the advantage
of an adversary for our scheme is less than Pr[Bad] + neg()).

Recall that nCPA adversary has to make her challenge query (mg, m1) and
encryption queries at the same time. Hence, she has to determine her chal-
lenge query (mg, m1) without knowing any information about ciphertexts, in
particular, any information about §;. Therefore, the distributions of (9;); and
(mg, my) are independent. Since they are independent, Eq, Fs, E3 are smaller
than 1— (1—p)° = 1/VE, (1—p)* = (1—1/vVk)*, and (1-p)*¢ = (1—1/VE)",

respectively. Due to the same reason, it follows that

ey ) o))
= ﬁ +0 (V) =0 (%) (4.10)

which is the bound given in Theorem

vk

About CPA Security: The above proof crucially relies on the independence
of the distributions of challenge query (mf, m]) and (6;);, which is ensured in
the nCPA setting. However, a CPA adversary can choose (mg, m7) in the region
(m;..m;y1] where Enck(m;t1) — Encx(m;) is the smallest, where m; < ... <
myg are the encryption queries and (Encg (m;)); are their answers. Then all ¢;
contained in the sum Encg(m;t1) — Encg(m;) = Zie(mi--"h‘,+1] §; must be small
as well. This means that the probabilities that conditions (1) and (3] hold
must be smaller than those of the case of nCPA. Hence, our proof does not work
well in the CPA setting.

4.3 The Proposed Scheme

By improving the scheme & of Section 2] we achieve our proposed OPE
scheme & 9. The encryption and decryption algorithms of it stay polynomial
time in the logarithm in the message space M, which enables M to become a
super-polynomial in the security parameter .

Idea of the Full Paper of [7]: The starting point of our improvement is the
following excellent new “lazy sampling” [6] technique of Section 6 of the full
paper of [7]: They construct a polynomial time algorithnﬁ G which takes two
pairs (u, C,) and (v, C,) of messages and their encryptions, and outputs a data
whose distribution is the same as that of ciphertext '\, of w, where w is the
“midpoint” [(u+wv)/2] of u and v. Using G, their improved encryption algorithm
Enc(m) computes a ciphertext C,, of m the following binary search recursion:

3 To simplify, here we only consider the case where inputs of G are (u, Cy) and (v, Cy),
although the full paper of [7] considers more general case due to some technical
reasons.
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It takes some initial values u, v such that m € (u..v] holds and C,, and C, are
known. (We denote by Init an algorithm which outputs the encryption C, and
C, of the initial values.) Enc(m) then computes C,, using G, replaces interval
(u..v] with (u..w] or (w..v] depending on whether m < w or not, and recursively
executes Enc itself. The computational cost of Enc is O(log M), where M is the
message space size, because the binary search recursion is terminated in time
O(log M). Their decryption algorithm Dec is constructed in a similar fashion.

The Idea Behind Our Scheme: Our efficient encryption and decryption al-
gorithms are constructed based on the above idea, but our innovation is that
our algorithms G and Init are constructed based not on a ciphertext C, itself
but on I, defined below. This is so, since our elaborated scheme of Section
does not allow construction of G to be based simply on C,. Below, p;, d;, and
A = —kfO — 1 are as defined in the scheme of Section

“(CO W) ( DY ) (4.11)

1€(A..u] 1€(A. . u]
pi=0 pi=1

We will construct Init and G satisfying the following properties:

Output Init is indistinguishable from (14, Ips). (4.12)

For any u,v € (A..M] and any I, and I}, the distribution of an output
of G(u,v I’ I') is the same as the conditional distribution of I,, when (4.13)

s fus o

(Iy,I,) = (I}, I!) holds. Here w = [(u+v)/2].

ur v

Then our efficient encryption algorithm can get I,,, in time logarithm O(log M)
in the message space size M by executing a recursion based on Init and G. It can

get the ciphertext of m from I, (C’(O) 7(,})) because an encryption Encg(m)
of Section L2is 3¢ (4., i, and therefore satisfies

Enck(m) = C9 + CW. (4.14)

As in the case of [7], the efficient decryption algorithm is also constructed based
on a similar idea.

Ideas Behind the Construction of Init and G': The remaining issue to take
care of is the construction of Init and G(I,,I,). To this end, we set X of (L5)
to a binomial distribution

Xy = B(226%,1/2) (4.15)

with suitable parameters. Note that this Xy, in fact, satisfies (@3], which is the
property required to ensure the security of the scheme of Section Formally,
the following fact holds (See the full paper for the proof):

Proposition 8 (Binomial Satisfies (4.5])). There exists a negligible function
& such that for all o, € [—0..0], the statistical distance between the random

variables o+ § and B+ ¢ for §,( & B(2*26%,1/2) is less than &()).
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[#I3) allows us to write I, by using two binomial distributions because ([@I1))
shows that I, can be written as sums of §;, step [[3 of Figlll and [@IH) show
that §; is taken from a binomial distribution, and the sum of binomials is also
binomial. Since I4 = (0,0), this means that our algorithm Init satisfying (@12
can be constructed by using two binomial distributions for generating I,;.

Moreover, it is also known that the conditional distributions of binomials can
be written as hypergeometric distributions. Hence, our algorithm G satisfying
([#I3) can be constructed by using hypergeometric distributions. Since the values
which follow the binomial and hypergeometric distributions can be generated in
polynomial time [I1], our algorithms Init and G can terminate in polynomial
time.

The description of our algorithms G and Init is given in Fig@2l Here Binom(n, p)
and HG(a,b,c) are algorithms whose outputs follow binomial distribution and
hypergeometric distribution. We can show that our algorithms Init and G in fact
satisfy ([@I2) and [@I3); see the full paper for the proof.

Proposition 9 (Init and G Work Well). For constants A and M be given in
Figldl, tuples (0:)icca..m) and (pi)ie(a..m) generated as in Kg(1*) of Figll, and

I, defined as is {{.11]), (4.13) and {{.13) hold.

We denote the encryption function given in the above way by Enc. Then, from
(#12), @I13), and the construction of Enc, the following proposition holds. (See
the full paper for the formal proof.)

Proposition 10. Take A, M, Kg, Enc as in Figlll and take /KE as in Figl2
Then for K «+ Kg(1*) and K < Kg(1*), the distributions of (Encz(i))ie(a..n)
and (Encg (1))ica..n are perfectly indistinguishable.

Finally, we replace the randomness of Enc with a pseudo-random value output
by a pseudo-random function, so as to make it deterministic, as in [7]. Then our
final encryption algorithm Enc is obtained.

Formal Description of Our Scheme: It is given in Figl2l Here k and 6 are
the values which we want to show (k,8)-FTG-O-nCPA security for, M is the
value such that the message space is [1..M], and p and A are the same values
used in the scheme of Section[Il Cph, in turn, is an algorithm which computes a
ciphertext C,, from I,, based on ([&I4). The notation G(u, v, I,,, I,; cc) means that
we compute G(u, v, I, I,,) using cc as the random tape. PRF is a pseudo-random
function.

(k,0)-FTG-O-nCPA: Theorem [0 follows from Proposition B @ and [0, and
the security of the scheme of Section See the full paper for the formal proof
of Proposition [, @, and [[0] and Theorem

Efficiency: The algorithms of our scheme can terminate within polynomial time
in log M, log k, log 0, and security parameter \ due to our binary recursion search
and polynomial time algorithms [I1] of binomial and hypergeometric distribu-
tions. The ciphertext bit length is not more than A+ 2log, 6 + log, (M + k6 + 1)
because, due to Proposition [[{, a ciphertext can be written as Zie[A“m) 0;
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Parameters: Cph(1)
- Message Space = [11"/]9\4]’ 71. Parse I as (C©, M),
cp=1-(1-1/VK)?, 72. Output C© + W,
- A=—-kO—1. —
Kg(1%) " a
41. Randomly take A bit string K. 81. C%) < B!nom(]\{ N A,1-p), o
42. (I, In) - Init. 82. C,, «+ Binom(2"0°(M — A—C;,),1/2),

43. Return K « (K', A, M, I, Ing). || 83 Ta < (0,0), Inr + (C7, C{).
84. Output (L4, 1In).

Encg (m) Decg(C)

51. Parse K as (K',u,v, Iy, I,). 61. Parse K as (K',u,v, L4, I,,).

52. If m = v holds, 62. If C' = Cph(l,) or u = v holds,
return Cph(Z,). return v or L respectively.

53. w < [(u+v)/2]. 63. w <+ [(u+v)/2].

54. cc < PRF g/ (u,v) 64. cc < PRFg/(u,v)

55. Ly + G(u,v, I, I,; cc) 65. L, < G(u,v, I, I,;cc)

56 o {(K’,u,w,[u,lw) if m < w P {(K’,u,w,[u,lw) if C' < Cph(I.,)

(K',w,v, Iy, I,) otherwise (K',w,v, Iy, I,) otherwise
57. Return Encg(m). 67. Return Decz(C)

G(u,v, Iy, I)
91. Parse I, and I, as (C’fLO),C’fLD) and (C’l()o),C’z(,U), w < [(u+v)/2].
92. CV « oV + HG(v — u, oV — Cﬁl),w —u),
93. ¢ «
FHG(2*0? (v — u) — (CV = cIY)), ) — (2 2260% ((w — u) — (CL) — c))),
94. Output I, + (Cfuo), Cf,,l)).

Fig. 2. The Schemes of Section 3] its Parameters, and its Subroutines

for some m € [1..M] and each §; is not more than 2*6% due to (@I5). When
we set (k,6) = (M>PB=Y/3 M) as in @), the ciphertext bit length becomes
A + 3logy M + (lower terms) due to 0 < ¢t < 8 < 1.

On the other hand, the known scheme [7] can ensure (1,¢ 4+ 1)-WOW if the
ciphertext length is more than (logy M) 4+ 1 when M is super-polynomial of A.

5 Stronger Window-OneWayness of Our Scheme

Finally, we study a stronger variant of (r, ¢)-WOW notion, called (r, )-WOWM
(studied in [§] intuitively as well). Our definition of WOWM is based on the
simpler definition of WOW given in Appendix B of the full paper of [8] which
can be reduced to the original WOW given in Section 3 of that paper and vise
versa.

Definition 11 ((r,q)-WOWM). An OPE scheme £ on the message space
[1..M] is said to be (r,q)-WOWM (Window One-Way viewing Messages) if for
any polynomial time adversary A, Succ.Exp(g’q)'WOWM(A) = Pr[Exp("?)-WOWM

¢(A) = 1] is negligible for the message space size M. Here, experiment
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Expg’q)'WOWM(A) is defined as follows. Below, Comb, (M) be the set of g-element
subset of [1..M].

K+ Kg(1*),m & Comby (M), m. & m,

(mL7 mR) <~ A(EnCK(m*)7 (m7 EnCK(m))mem\{m*})a
Return 1 iff m, € S(mp,mpg),

[mL..mR] if mrp, SmR

here S ) =
where S(mp, mpg) {[1..mR] U [myg..M] otherwise.,

“My & 1m” means that “choose a message m, from the tuple m uniformly at
random”. The output (mr,mg) of A has to satisfy #S(mp,mg) < r.

The following property holds for WOWM and WOW of Appendix B of the full
paper of [§] because they are the same except that A can view m \ {m.}.

VA i Adv.Expl WOV (A) < Adv.Expl O WOWM () (5.1)

Lemma 12 (Relationship between (U9,0,q)-indis. and WOWM). Let
q = q(N\) be a polynomial of security parameter A, £ be an OPE scheme with
a message space [1.M], U? be the tuple of q uniform distributions on [1..M],
and 0 < t < 1 be a constant. Suppose that &€ is (U, M, q)-indistinguishable.
Then for any constant p satisfying

0<p<t(<l), (5.2)
E is (M?,q+ 1)-WOWM when M is super-polynomial of A. Specifically,
VA3IMg3B : Succ.Exp(gMﬂ,qH)-WOWM(A)

< Adv.Exp" M -indis (e By 4 O(ﬁ) + O(ﬁ) + O(%). (5.3)

The right hand side of (53) is negligible when M is super-polynomial to A
because of (1.2)). See the full paper for the formal proof of the above lemma.
Lemma [[2] and Theorem [ show the following theorem.

Theorem 13 (WOWM of Our Scheme). For a polynomial ¢ = q(\) and for
any constant

0<p<l, (5.4)

our scheme & g with suitable parameter (depending on (M, p)) is (MP,q+ 1)-
WOWM under security of PRF (although the advantage bound decreases slower
when p becomes closer to 1). Specifically,

WAIB : Succ.Expl HUWONM(a) <0 (M?_p ) + Adv.Exppge (B) + neg()).
’ a4
(5.5)
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It achieve better p than [8]. See Section [[3] for details.
Proof (Theorem[I3). Take any p satisfying (0.4) and set

(B,8) = (1,8p+ 1)/4). (5.6)

Let U be the tuple uniform distributions on the message space [1..M] and let
X = U1. Then two conditions of Theorem[7 (£2) and S > ¢, are satisfied due to
Ho(U) =logy M, (5.8), and (5.4). Hence, our scheme & ¢ with suitable param-
eter (k,0) is (U9, M", g)-indistinguishable and satisfies (3]). (Due to ([Z4), the
parameters are (k,0) = (M2B=0/3 pty = (MA=r)/2 M Ge+D/4)) The condi-
tion (52) of Lemma [2 follows from (&8) and (54). Hence, our scheme with
the above parameters is (M”,q + 1)-WOWM and satisfies (53)). The bound

BEE) comes from (E4) and (6] becalmuse in @3) and B3), O(55n75) =
1
O(]w%~(171(13p+1)/4)) = O( M(lgp)/4 )7 O( Mt—ﬂ) = O(M(l—p)/4) S O( M(lgp)/4 )7

O(37=) = O(spm=77) < O(55a=577), and O(3%) < O(57a%577)- o
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