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Abstract. In this paper, we investigate order-preserving sparse cod-
ing for classifying multi-dimensional sequence data. Such a problem is
often tackled by first decomposing the input sequence into individual
frames and extracting features, then performing sparse coding or other
processing for each frame based feature vector independently, and finally
aggregating individual responses to classify the input sequence. However,
this heuristic approach ignores the underlying temporal order of the in-
put sequence frames, which in turn results in suboptimal discriminative
capability. In this work, we introduce a temporal-order-preserving regu-
larizer which aims to preserve the temporal order of the reconstruction
coefficients. An efficient Nesterov-type smooth approximation method
is developed for optimization of the new regularization criterion, with
guaranteed error bounds. Extensive experiments for time series classifi-
cation on a synthetic dataset, several machine learning benchmarks, and
a challenging real-world RGB-D human activity dataset, show that the
proposed coding scheme is discriminative and robust, and it outperforms
previous art for sequence classification.

1 Introduction

Sparse coding has been successfully used in various computer vision applica-
tions [1] [2] [3]. Sparse coding compactly represents objects as a linear combina-
tion of a small number of elements of a dictionary, however there often exist group
structures in basis data (dictionary). To handle such structures, two alternative
methods, Elastic Net [4] and group Lasso [5] have been proposed. They favor
the selection of few groups of the correlated dictionary samples to represent the
testing data. Often we may estimate models from multiple related data sources.
For example, in object recognition, we may extract K types of image represen-
tations from K different types of features associated with the same visual input.
By minimizing the sum of �2 norms of the blocks of coefficients associated with
each covariate group across different feature representations, similar sparsity
patterns in all modalities are encouraged [6]. In [7], the objective of joint spar-
sity is achieved by imposing an �2,1 mixed-norm penalty on the reconstruction
coefficients.
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Fig. 1. Motivation of the proposed work, applied to human motion sequence classifica-
tion. The input sequence receives a strong response from dictionary sequence i as their
temporal ordering structures are similar. In contrast, the response from dictionary se-
quence j is low as its temporal structure is different, although individual frames of the
input sequence are similar to those of the sequence j. Similarly to [7], the reconstruction
residual is used for classification. See the color pdf for better view.

In this work, we are interested in a different problem setting: the input is a
sequence of feature vectors instead of a single feature vector, and there exist de-
pendencies among the input feature vectors. An example is a multidimensional
time series such as audio data, which admit a natural temporal ordering structure
across instantaneous feature vectors at successive time stamps. A heuristic solu-
tion is to apply sparse coding to the feature vector for each input frame (i.e., time
stamp) individually, and then compute and aggregate reconstruction coefficients
for individual frames over the entire audio sequence for classification [8]. The
temporal structure of the sequence conveys discriminative information. Treating
each frame independently would discard this important information. However,
this problem has been largely ignored in current sparse coding literature.

We address this problem by developing an order-preserving sparse coding
scheme for discriminatively representing multidimensional time series, as illus-
trated in Figure 1. Our main contribution is to introduce a temporal order
preserving regularization scheme. The regularizer penalizes misfit of the tempo-
ral order of the reconstruction coefficients for individual frames with respect to
the temporal order of the input sequence. To the best of our knowledge, this is the
first attempt to address this temporal consistency issue for sparse coding. The
resulting optimization problem is convex but nonsmooth. We therefore develop
an efficient Nesterov-type smooth approximation method [9] for optimization.
Extensive experiments on time series classification over a synthetic dataset, sev-
eral machine learning benchmarks, and a challenging real world RGB-D human
activity dataset, demonstrate that the proposed scheme is discriminative and
robust, and outperforms previous art for time series classification.
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2 Related Work

Time series classification is an active research topic. Hidden Markov models
(HMMs) [10] is the most popular way for sequence classification. A segmen-
tal hidden Markov model (HMM) was recently used to characterize waveform
shape for recognition [11]. The limitations of HMM methods are the Markovian
assumption and the complexity in training. Dynamic Time Warping (DTW) [12]
is also widely used for time series classification. Rodrigues et al. [13] proposed
a DTW decision tree method for time series classification. Hayashi et al. [14]
used DTW distances to embed time series into a lower dimensional space by
Laplacian eigenmap. Xi et al. [15] proposed numerosity reduction to accelerate
nearest-neighbor DTW. However, similar to HMM based methods, the com-
putational burden of DTW-based methods is generally high. Another tool for
sequence classification is Recurrent Neural Networks (RNN) [16], which is a
modification of a general Neural Network architecture that considers temporal
structure. However, training the model using back propagation is also complex.

In this work, we present our classification scheme and experimentally compare
it with the above methods as well as with multi-resolution symbolic representa-
tion [17]. RNN is not used for comparison here because it is generally slow in train-
ing and it is less discriminative than other methods. As our method inherits the
discriminative capability of conventional sparse coding scheme and further boosts
this capability by explicitly encoding temporal ordering structures, it significantly
outperforms previous work in classification accuracy. It requires no training and
is efficient in testing. Note that n-gram model [18] is also used for sequence mod-
eling for speech recognition; however, it lacks explicit representation of long range
dependency, and it is very sensitive to temporal scaling. In contrast, our proposed
regularization scheme does not have these limitations. The n-gram model is there-
fore not used in our comparisons. Although some works [19] [20] [21] also concern
sparse coding for temporal varying signals (events, images), their regularization
frameworks only use traditional temporal smoothness constraints. None of these
works directly considers temporal ordering.

3 Order-Preserving Sparse Coding

3.1 Notation

We first introduce the notation used in this work. The input is a multi-dimensional
time series Y = [y1,y2, · · · ,yt], where each yi is a D-dimensional feature
vector, and t denotes the length of the time series. We are given a basis dic-
tionary denoted as X = {(X1, y1), (X2, y2), · · · , (XS , yS)}, where S is the num-
ber of dictionary sequences. Each sequence Xj is a time series represented

as Xj = [xj
1,x

j
2, · · · ,xj

tj ], where tj is the length of the j-th sequence and

yj is the corresponding class label. Each xj
i is a D-dimensional feature vec-

tor normalized to unit �2 norm. Note that tj may vary from sequence to se-
quence. The label yj has K possible values in the set {1, 2, · · · ,K}. If we
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stack all the sequences in the dictionary one by one with the temporal order
within sequence retained, we can represent the dictionary by a D × N matrix
X = [X1, X2, · · · , XS ], where N =

∑S
j=1 tj is the total number of feature vec-

tors. Let the N -dimensional vector αi denote the reconstruction coefficients for
the input vector yi, which is expressed as a linear combination of all dictionary
entries. Let α = (α1;α2; · · · ;αt), and αj

i be the tj-dimensional reconstruction
coefficients for input vector i from the dictionary sequence j. Using this conven-
tion, we further denote by αj = (αj

1;α
j
2; · · · ;αj

t ) the reconstruction coefficients
from the dictionary sequence j.

3.2 Temporal-Order-Preserving Regularizer

Sparse coding provides a discriminative way for encoding signals. A straightfor-
ward way to represent an input sequence within the sparse coding framework
is to first decompose the input sequence into frame-based representations (fea-
ture vectors at each time stamp), then perform sparse coding for each frame
based feature vector independently, and finally aggregate individual responses
(reconstruction coefficients) for classification. However, this heuristic approach
is suboptimal because the time series has very strong temporal correlation across
individual frames. We refer to this correlation is as a temporal ordering structure.
For example, in speech recognition, reordering of a given sequence of phonemes
may lead to a totally different sentence and meaning. Ignoring temporal ordering
information results in loss of discriminative capability in sparse coding.

Our proposed regularization scheme explicitly addresses this problem in
sparsely encoding time series data. As a prerequisite, we require that the re-
construction coefficients for all individual feature vectors of the input sequence
should be nonzero on only a few dictionary sequences. As the input sequence
normally matches only a few dictionary sequences, spreading the reconstruc-
tion coefficients throughout all dictionary sequences degrades the representation
discriminative capability. To address this problem, we adopt an �2,1 norm group-
sparsity regularizer as in multitask joint sparse coding [7]. Long sequence can
be decomposed into shorter ones for more sparsity. Thus the first term of our
regularization criterion is

G(α) =

S∑

j=1

‖αj‖2. (1)

The second term of our regularization criterion is the temporal order preserving
regularizer. The goal is to prevent the reconstruction coefficients of the input
feature vector i (at the time stamp i of the input sequence) from the j-th dic-
tionary sequence from being temporally behind those of the input vector i + 1
(at the time stamp i + 1 of the input sequence). In other words, the nonzero
reconstruction coefficients for individual feature vectors obey the same temporal
order as the corresponding feature vectors in the input sequence. To encourage
this, we consider the expression

(wT
j (α

j
i −αj

i+1))+ = max{wT
j (α

j
i −αj

i+1), 0}, (2)
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where wj is a vector that has the same length as the corresponding dictionary
sequence j and it is element-wise increasing. More specifically, wj satisfies the
condition: wj(a) < wj(b), ∀a < b, where wj(a) denotes the a-th element of

vector wj . With this property, wT
j α

j
i approximates the temporal position of

the responses for the i-th input vector yi from dictionary sequence j. When
the sum of all entries in αj

i is one, the sum wT
j α

j
i can be considered as the

approximated temporal position. When the sum of the entries in αj
i is not equal

to one, the sum wT
j α

j
i can be considered as the importance weighted version of

the approximated temporal position. ThereforewT
j α

j
i > wT

j α
j
i+1 means that the

approximated temporal position of the response for the (i+1)-th input vector on
dictionary sequence j precedes that of the i-th input vector, which is the case to
penalize. We call wj as temporal-structure-prior-multiplier, and in this work we
choose a simple form of wj , i.e., element-wise linear, to reflect the time ordering
information as:

wj = (
1

tj
,
2

tj
, · · · , tj − 1

tj
, 1)T . (3)

The temporal-order-preserving regularization term is obtained by sum-
ming (2) over all consecutive frames of the input sequence and over all dictionary
sequences, namely,

P (α) =

t−1∑

i=1

S∑

j=1

max(wT
j α

j
i −wT

j α
j
i+1, 0). (4)

An illustration of the effect of the regularizer (4) is given in Figure 2. Observe
that unordered reconstruction coefficients receive large penalty, and when re-

0 

Input Sequence Dictionary Sequences Reconstruction Coefficients 

wi 

0 

0 

0 

Dot Product 

ym-1 ym ym+1 

x1
i x2

i x3
i 

Xi 

Xj 

x1
j x2

j x3
j 

αm-1
i αm

i 

αm
i αm+1

i 

αm-1
j αm

j 

αm
j αm+1

j 

wi 

wj 

wj 

Fig. 2. Effect of applying the regularizer (4). Note that the reconstruction coefficients
that follow the temporal order of the input sequence are not penalized by the expression
(upper two rows). Those that do not are penalized (bottom two rows). See the color
pdf for better view.
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construction coefficients are ordered, this term vanishes. Note that the inverse
is not true, i.e., zero penalty does not necessary indicate temporally-ordered
reconstruction.

3.3 Objective Function

Here we formally state our regularization criterion. The reconstruction error
term is

f(α) =
1

2

t∑

i=1

‖yi −Xαi‖22, (5)

which is a convex, smooth, differentiable function with Lipschitz constant Lf =
‖XTX‖F , where ‖.‖F denotes the Frobenius norm.

Recall that the group-sparsity regularizer given in (1) is

G(α) =

S∑

j=1

‖αj‖2.

This is an �2,1 mixed-norm, which is convex and nonsmooth. However, ‖αj‖2
can be written as

‖αj‖2 = max
‖vj‖2≤1

〈αj ,vj〉. (6)

We use the Nesterov smooth approximation method of [9] and approximate (6)
by the smooth function:

qμ,j(α
j) = max

‖vj‖2≤1
{〈αj ,vj〉 − 1

2
μ‖vj‖22}, (7)

where μ is a parameter that controls the approximation accuracy. The unique
minimizer of (7), denoted as vj(α

j), can be derived as

vj(α
j) =

{
αj

μ , 0 ≤ ‖αj‖2 ≤ μ ;
αj

‖αj‖2
, ‖αj‖2 > μ.

(8)

The approximation of (1) is therefore obtained as

Gμ(α) =

S∑

j=1

qμ,j(α
j). (9)

Recall that the temporal-order-preserving regularization function is given by
P (α) in (4). By simple manipulation, we can rewrite P (α) more compactly as:

P (α) =

S×(t−1)∑

i=1

‖(Wiα)+‖1, (10)
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Here each Wi, i = 1, 2, · · · , (t − 1) × S, is an N -dimensional row vector given
by W(h−1)×S+j = (0, · · · , 0,wT

j , 0, · · · , 0,−wT
j , 0, · · · , 0), for h = 1, 2, · · · , t− 1,

j = 1, 2, · · · , S. The positions of wT
j and −wT

j correspond to those of αj
h and

αj
h+1 in α, respectively. As mentioned above, the regularizer (10) encourages

order preserving for the reconstruction coefficients for individual feature vectors
of the input sequence. Again, (.)+ denotes max (., 0). The function ‖(Wiα)+‖1
is convex and nonsmooth. Moreover,

‖(Wiα)+‖1 = max
0≤vi≤1

〈Wiα, vi〉. (11)

By using the Nesterov smooth approximation method of [9], (11) can be approx-
imated by the following smooth function

pμ,i(α) = max
0≤vi≤1

{〈Wiα, vi〉 − 1

2
μ‖vi‖22}, (12)

where μ is the parameter that controls the approximation accuracy. For fixed α,
the unique minimizer of (12) can be derived as:

vi(α) = min{1,max(0,
Wiα

μ
)}. (13)

We then construct a smooth approximation of P (α) as:

Pμ(α) =

S×(t−1)∑

i=1

pμ,i(α). (14)

The nonsmoothed objective function is defined as

F (α) =
1

2

t∑

i=1

‖yi −Xαi‖22 + λ1

S∑

j=1

‖αj‖2 + λ2

S×(t−1)∑

i=1

‖(Wiα)+‖1. (15)

This is a convex but nonsmooth function. According to (9) and (14), F (α) can
be approximated by the convex and smooth function as:

Fμ(α) = f(α) + λ1Gμ(α) + λ2Pμ(α). (16)

We adopt (16) as our regularization criterion. The gradient of Fμ(α) is∇Fμ(α) =
∇f(α) + λ1∇Gμ(α) + λ2∇Pμ(α), and the corresponding Lipschitz constant is
LFµ = Lf + λ1LGµ + λ2LPµ .

To minimize the objective function Fμ(α), we use the efficient accelerated
proximal gradient (APG) method [22], which has the rate of convergenceO(1/n2),
where n is the iteration number. In terms of the desired residue ε, i.e., |Fμ −
minFμ| ≤ ε, by choosing μ ≈ ε we have that the rate of convergence is O(1/ε).
Algorithm 1 gives the detailed description of the optimization procedure. The
regularization parameters λ1 and λ2 are chosen by cross-validation on a small
validation subset. In particular, we enumerate the value of λ1 and λ2 within the
set {0.1, 1.0, 10, 100, 1000} and select the optimal one by cross-validation.
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Inputs : X ∈ R
D×N , {Wi ∈ R

1×N , i = 1, 2, · · · , S(t− 1)}, λ1, λ2, μ,
{yi, i = 1, · · · , t}.

Output: α = (α1;α2; · · · ;αt) ∈ R
tN .

Initialization: Calculate LFµ = Lf + λ1LGµ + λ2LPµ . Initialize α0,β0 ∈ R
tN

to be zero vectors, and let γ0 = 0, k = 0.
repeat

uk = (1− γk)αk + γkβk,
Calculate the gradient ∇Fμ(uk).
βk+1 = βk − 1

γkLFµ
∇Fμ(uk),

αk+1 = (1− γk)αk + γkβk+1,
γk+1 = 2

k+1
, k ← k + 1.

until Converged ;

Algorithm 1. Minimization algorithm for (16)

3.4 Analysis

In this subsection, we analyze the approximations (9) and (14).

Proposition 1. Gμ(α) is a μ-accurate approximation to G(α), that is

Gμ(α) ≤ G(α) ≤ Gμ(α) +
1

2
μS. (17)

Proof. By (7) we have

0 ≤ qμ,j(α
j) ≤ max

0≤‖vj‖2≤1
〈αj ,vj〉 = ‖αj‖2. (18)

Summing (18) over j, we obtain the upper bound

Gμ(α) =
S∑

j=1

qμ,j(α
j) ≤

S∑

j=1

‖αj‖2 = G(α). (19)

Since 0 ≤ ‖vj‖2 ≤ 1, we also obtain the lower bound

qμ,j(α) ≥ max
0≤‖vj‖2≤1

〈αj ,vj〉 − 1

2
μ = ‖αj‖2 − 1

2
μ. (20)

Summing (20) over j we obtain

Gμ(α) ≥ G(α)− 1

2
μS. (21)

Combining (19) and (21) yields (17).

Theorem 1. The function Gμ(α) is convex and continuously differentiable.

Moreover, its gradient ∇Gμ(α) =
∑S

j=1 vj(α
j) is Lipschitz continuous with

constant LGµ = tN
μ .
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Proof. It follows directly from [9] that for 1 ≤ j ≤ S, ∇qμ,j(α
j) = vj(α

j). The

function qμ,j(α
j) is Lipschitz continuous with constant LGµ,j =

t×tj
μ . We thus

have LGµ =
∑S

j=1
t×tj
μ = tN

μ .

Proposition 2. Pμ(α) is a μ-accurate approximation to P (α), that is

Pμ(α) ≤ P (α) ≤ Pμ(α) +
1

2
μS(t− 1). (22)

Proof. By definition we have

0 ≤ pμ,i(α) ≤ max
0≤vi≤1

〈Wiα, vi〉 = ‖(Wiα)+‖1. (23)

Summing (23) over i, we obtain

Pμ(α) =

S(t−1)∑

i=1

pμ,i(α) ≤
S(t−1)∑

i=1

‖(Wiα)+‖1 = P (α). (24)

Since 0 ≤ vi ≤ 1, we have

pμ,i(α) ≥ max
0≤vi≤1

〈Wiα, vi〉 − 1

2
μ = ‖(Wiα)+‖1 − 1

2
μ. (25)

Summing both sides of (25) over i, we obtain

Pμ(α) ≥ P (α)− 1

2
μS(t− 1). (26)

Combining (24) and (26) yields (22).

Theorem 2. The function Pμ(α) is convex and continuously differentiable. More-

over, its gradient ∇Pμ(α) =
∑S(t−1)

i=1 WT
i vi(α) is Lipschitz continuous with con-

stant LPµ = 1
μ

∑S(t−1)
i=1 ‖Wi‖22.

Proof. It follows directly from [9] that for 1 ≤ i ≤ S(t−1),∇pμ,i(α) = WT
i vi(α),

and it is Lipschitz continuous with constant LPµ,i = 1
μ‖Wi‖22. We thus obtain

LPµ = 1
μ

∑S(t−1)
i=1 ‖Wi‖22.

3.5 Time Series Classification Rule

We denote by X(j) = [Xj1 , Xj2 , · · · ] the set of dictionary sequences from the j-th
class. Here Xji denotes the i-th sequence in X(j) that belongs to the j-th class.
Let α(j) denote the corresponding reconstruction coefficients for X(j). One can
approximate the input sequence Y by using only the optimal coefficients associ-
ated with the j-th class as X(j)α(j). According to the classification rule defined
in [7], the predicted class label is the one with the lowest total reconstruction
error:

jopt = argmin
j

‖Y −X(j)α(j)‖2F . (27)
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4 Experiments

To evaluate the effectiveness of our proposed method, we conduct experiments
on multidimensional time series classification on a synthetic dataset, three ma-
chine learning benchmarks, and a real-world RGB-D human activity dataset.
We also compare the proposed method with other state-of-the-art time series
classification algorithms.

4.1 Synthetic Dataset

We first generate eight two-dimensional dictionary sequences (X1, X2, · · · , X8).
They are generated from eight polynomial functions: f1(i) = π

4 ; f
2(i) = π

5 ;
f3(i) = π

10 ; f
4(i) = π

10 i; f
5(i) = π

10 (4 − i); f6(i) = π
10 (i − 2)2 ;f7(i) = 2π

5 −
π
10 (i− 2)2; and f8(i) = π

5 | sin(π2 i)|+ π
10 . From these functions, we generate eight

length-5 two-dimensional time series as

Xj =

[
sin(f j(0)) sin(f j(1)) · · · sin(f j(4))
cos(f j(0)) cos(f j(1)) · · · cos(f j(4))

]

, j = 1, 2, · · · , 8. (28)

For all sequences, we add independent Gaussian noise samples with zero mean
and variance 0.2 to both dimensions at each time stamp. We select the fourth
sequence from the dictionary as the test time series input, i.e., Y = X4. Each
dictionary sequence is labeled as different class. For comparison, we use a) sparse
coding (SC) which computes reconstruction coefficients for each frame of the in-
put sequence individually; b) multitask group sparse coding (Group-SC) [7]; and
c) the proposed order-preserving sparse coding method (MTO-SC). Reconstruc-
tion coefficients are shown in Figure 3. We can observe that 1) reconstruction
coefficients from sparse coding are similar among different dictionary sequences
and therefore the representation is less discriminative. This is because sparse
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Fig. 3. Reconstruction coefficients of the input time series on the synthetic dataset
using three algorithms: (a) sparse coding; (b) group sparse coding, and (c) Order-
preserving sparse coding. See the color pdf for better view.



Order-Preserving Sparse Coding for Sequence Classification 183

coding does not utilize any structure information of either the dictionary or
the input sequence; 2) reconstruction coefficients from multitask group sparse
coding [7] are nonzero on few sequences; however, without enforcing the tem-
poral order constraint, dictionary sequences with similar individual features but
different ordering structures receive similar reconstruction coefficients, which re-
sults in ambiguities; and 3) as our method explicitly encourages temporal order
preservation, the reconstruction coefficients well follow the temporal ordering of
the input sequence.

4.2 Machine Learning Benchmarks

We apply the proposed algorithm on three benchmark time series datasets:

– UCI Australian Sign Language signs (High Quality) Dataset [23]: it
consists of 2565 samples of Auslan signs captured from 9 native signers using
high-quality position trackers. It contains 95 different signs, with 27 samples
per sign. The average length of each sign is about 60 frames. Each frame is
represented as a 15 dimensional feature vector consisting of hand position
(X,Y, Z), roll, yaw, pitch, bend measurements of different fingers. For the
ease of experiment, we randomly selected 4 subsets of the whole dataset
with each subset containing 20 categories, denoted by AusLan1, AusLan2,
AusLan3 and AusLan4, respectively.

– UCI Spoken Arabic Digits Dataset [24]: it contains times series of mel-
frequency cepstrum coefficients (MFCCs) corresponding to spoken Arabic
digits. It includes data from 44 male and 44 female native Arabic speakers,
capturing 8800 (10 digits ×10 repetitions ×88 speakers) time series of 13
Frequency Cepstral Coefficients (MFCCs). The average length of each sample
is about 40 frames.

– CMU Motion Capture Dataset (CMU MoCap) [25]: we use the same
subset as in [26] which includes 5 actions, i.e., jumping, golf swing, run-
ning, climbing and walking. The dataset contains 225 sequences with aver-
age length of 300 frames. Each frame is represented by rotation angles of 11
joints and end points including head, shoulders, elbows, hands, knees and
feet.

For all above datasets, we randomly split them into training and testing sets of
equal size. The random split is performed 10 times and all the reported testing
results are averaged over the 10 random choices of the training and testing par-
tition. For each frame, we normalize the feature vector to be of unit �2 norm. We
compare our method (MTO-SC) with the following state-of-the-art time series
classification methods: 1) Segmental Hidden Markov Model [11] (S-HMM); 2)
DTW-based decision tree method [13] (DTW-DT); 3) DTW-based distance em-
bedding [14] (DTW-DE); 4) numerosity reduction based DTW [15] (NR-DTW);
5) multi-resolution symbolic representation [17] (MSR); 6) sparse coding which
is performed for every individual input frame (SC) followed by majority voting;
and 7) multitask group sparse coding [7] (Group-SC). For all competing algo-
rithms, their corresponding parameters (e.g., λ1 and λ2 in MTO-SC, number of
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Table 1. Classification accuracy [mean(std. dev.)] for different algorithms on different
datasets

Dataset AusLan1 AusLan2 AusLan3 AusLan4 ArabSpokenDigit CMU MoCap

S-HMM 75.46(1.39) 80.07(2.04) 82.30(1.77) 80.02(1.74) 54.30(1.37) 79.53(1.93)
DTW-DT 79.70(2.01) 82.73(1.98) 84.98(1.49) 83.76(1.91) 58.73(1.76) 82.97(1.64)
DTW-DE 79.93(1.49) 84.96(2.34) 85.41(1.84) 84.11(2.40) 59.60(2.40) 83.21(1.84)
NR-DTW 79.63(1.95) 85.43(1.91) 85.03(2.30) 83.09(2.21) 57.32(1.98) 83.60(1.28)

MSR 80.33(2.20) 89.77(1.35) 87.96(1.90) 85.98(1.90) 64.90(2.45) 85.36(1.92)
SC 83.09(1.89) 90.46(1.09) 90.00(1.66) 86.78(1.72) 45.98(2.10) 84.00(1.57)

Group-SC 84.19(1.76) 89.97(1.12) 91.50(1.89) 87.18(1.92) 46.04(1.99) 84.56(1.73)
MTO-SC 91.40(1.53) 96.73(1.80) 95.53(1.79) 92.45(1.81) 75.80(2.25) 92.65(1.09)

hidden states for HMM and number of neighborhood samples for DTW, etc.)
are set by cross-validation on a validation subset.

We implemented these algorithms using Matlab 2010 on a 2.63 GHz machine
with 8GB of memory. The average testing time per sample on AusLan1 dataset
for S-HMM, NR-DTW (the fastest DTW-based method among the three), MSR,
SC, Group-SC and MTO-SC are 3.5, 11.5, 2.8, 2.0, 2.2 and 2.4 seconds, respec-
tively. We see that MTO-SC is among the most efficient methods in testing. For
training, S-HMM, DTW-DT, DTW-DE, NR-DTW and MSR take about 4, 13,
3, 2.5 and 1.5 minutes, respectively, and the rest do not require training.

In Table 1, we report the mean classification accuracies averaged over 10
random splits with standard deviations. Observe that MTO-SC achieves the
highest classification accuracy, owing to its capability in encoding temporal or-
dering structure for time series classification. To evaluate algorithmic robustness,
we also add Gaussian noise to the AusLan1 dataset with zero mean and stan-
dard deviation in {0.1, 0.2, 0.3} in three different experiments. The classification
results are shown in Figure 4. Observe that our MTO-SC method is significantly
more robust than its competitors.

S−HMM DTW−DE MSR SC Group−SC MTO−SC
60

65

70

75

80

85

90

95
0%   noise
10% noise
20% noise
30% noise

Fig. 4. Classification accuracies for different algorithms on the AusLan1 dataset under
different noise conditions
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4.3 Human Activity Recognition

In this experiment, we use the RGB-D human activity dataset [27]. The video
dataset is captured using the Kinect sensor, which produces 640 × 480 color-
depth image sequences with human 3D motion sequences, namely, each activity
sample can be represented as a sequence of 3D joint positions (or angles), simi-
lar to those in the CMU MoCap dataset. The dataset consists of five scenarios:
office, kitchen, bedroom, bathroom, and living room. Three to four common ac-
tivities were identified for each location, giving a total of twelve unique activities
collected from 4 subjects (with an additional neutral activity category). We use
similar feature representation as in [27], where each frame is represented as a
combination of body pose, hand position, motion information and object contex-
tual information. We use the leave-one-subject-out scheme, hence subjects in the
testing samples do not occur in the training samples. We compare the multiclass
classification accuracies for various algorithms including the proposed MTO-SC
method, the time series classification methods compared in the previous exper-
iment and SVM, One-level MEMM and hierarchical maximum entropy Markov
model, which are also evaluated in [27]. The classification accuracies are sum-
marized in Table 2 and the class confusion matrix for our method is illustrated
in Figure 5. We observe that our method outperforms the other methods.

Table 2. Classification accuracy (%) on RGB-D human activity dataset

Method S-HMM DTW-DT DTW-DE NR-DTW MSR SVM MEMM HMEMM SC Group-SC MTO-SC
Accuracy 55.78 58.71 57.66 57.02 60.34 50.67 61.98 63.75 59.60 58.73 65.32

.70 .03 .12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .15

.22 .28 .07 .14 .00 .00 .00 .00 .00 .00 .00 .00 .29

.00 .00 .83 .00 .00 .00 .00 .00 .00 .00 .00 .00 .17

.00 .00 .00 .75 .07 .00 .00 .00 .00 .00 .00 .00 .18

.00 .00 .02 .05 .74 .04 .00 .00 .00 .00 .00 .00 .15

.00 .00 .00 .00 .08 .59 .00 .00 .00 .00 .00 .00 .33

.00 .00 .00 .00 .00 .00 .93 .00 .00 .00 .00 .00 .07

.00 .00 .00 .00 .00 .03 .06 .76 .00 .00 .00 .00 .15

.00 .00 .00 .13 .00 .00 .00 .00 .56 .04 .09 .00 .18

.00 .00 .00 .00 .00 .00 .00 .00 .00 .31 .17 .00 .52

.00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .93 .00 .06

.00 .00 .00 .00 .00 .00 .00 .00 .00 .08 .11 .44 .37

.03 .02 .02 .04 .01 .02 .02 .01 .02 .01 .03 .02 .75

RM

BT

CL

TP

DW

OP

CC

CS

TC

RC

WW

WC

NA
RM BT CL TP DW OP CC CS TC RC WW WC NA

Acronyms for Action Categories 
RM: rinsing mouth       BT: brushing teeth 
CL: wearing contact lens       CS: cooking (stirring) 
WW: writing on white board       WC: working on computer 
TP: talking on phone                     RC: relaxing on a chair 
OP: opening a pill container         DW: drinking water 
CC: cooking (chopping)                 TC: talking on a chair 
NA: neutral activity 

Fig. 5. Class confusion matrix for the proposed MTO-SC method on RGB-D human
activity dataset
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5 Conclusions and Future Work

We have proposed an order-preserving sparse coding scheme for time series clas-
sification. Extensive experiments demonstrate that this scheme is highly discrim-
inative and robust. We will further consider learning a weighted reconstruction
for different frames of the input sequence with the proposed order-preserving
regularization scheme.
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13. Rodŕıguez, J.J., Alonso, C.J.: Interval and dynamic time warping-based decision
trees. In: ACM Symposium on Applied Computing, pp. 548–552 (2004)

14. Hayashi, A., Mizuhara, Y., Suematsu, N.: Embedding time series data for clas-
sification. Machine Learning and Data Mining in Pattern Recognition, 356–365
(2005)

15. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series
classification using numerosity reduction. In: ICML, pp. 1033–1040 (2006)



Order-Preserving Sparse Coding for Sequence Classification 187

16. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time
series data. Information Processing and Technology, 49–61 (2001)

17. Megalooikonomou, V., Wang, Q., Li, G., Faloutsos, C.: A multiresolution symbolic
representation of time series. In: ICDE, pp. 668–679 (2005)

18. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing.
MIT press (1999)

19. Cadieu, C., Olshausen, B.: Learning transformational invariants from natural
movies. In: NIPS, pp. 209–216 (2008)

20. Kim, T., Shakhnarovich, G., Urtasun, R.: Sparse coding for learning interpretable
spatio-temporal primitives. In: NIPS, pp. 1117–1125 (2010)

21. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via
dynamic sparse coding. In: CVPR (2011)

22. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimiza-
tion. Submitted to SIAM Journal on Optimization (2008)

23. Kadous, M.W.: Temporal classification: Extending the classification paradigm to
multivariate time series. PhD Thesis, School of Computer Science and Engineering,
University of New South Wales (2002)

24. Hammami, N., Bedda, M.: Improved tree model for arabic speech recognition. In:
Internationl Conference on Computer Science and Information Technology, pp.
521–526 (2010)

25. http://mocap.cs.cmu.edu/

26. Shen, Y., Ashraf, N., Foroosh, H.: Action recognition based on homography con-
straints. In: ICPR (2008)

27. Sung, J., Ponce, C., Selman, B., Saxena, A.: Human activity detection from rgbd
images. CoRR abs/1107.0169 (2011)

http://mocap.cs.cmu.edu/

	Order-Preserving Sparse Coding for Sequence Classification
	Introduction
	Related Work
	Order-Preserving Sparse Coding
	Notation
	Temporal-Order-Preserving Regularizer
	Objective Function
	Analysis
	Time Series Classification Rule

	Experiments
	Synthetic Dataset
	Machine Learning Benchmarks
	Human Activity Recognition

	Conclusions and Future Work
	References


