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Abstract: Eigenanalysis and signal analysis techniques of One primary objective in the development of linear models
deriving r_resentations of power system oscillatory is to provide a basis for damping control-system design
dynamics result in very high-order linear models. In order (e.g., power system stabili_r (PSS) units and static var
to apply many modem control design methods, the models compensator (SVC) modulation). Many advanced and
must be reduced to a more manageable order while emerging control system design methodologies (such as the
preserving essential characteristics. Presented in this paper state-space methods) require relatively low-order models for
is a model reduction method well suited for large-scale numerically stal:ie and/or realistic solutions. For example,
systems. The method searches for the optimal subset of the H 2 and H.infinity methods often result in a feedback
high-order model that best represents the system. An controller with an order equal to that of the design model
Akaike information criterion is used to define the optimal [2]. If the model is of order 100 or more, such a controller
reduced model. The method is first presented, and then is unrealistic. An obvious option is to use a reduced-order

examples of applying it to Prony analysis and eigenanalysis model for the appropriate steps of the design.
models of power systems are given.

Using the parsimony principle [3], the best model of a
Kev Words: Model order reduction, oscillatory system system is defined as the one that accurately represents a
models, eigenanalysis, Prony analysis, transfer function with a minimal number of parameters.

With the power system problem it is important that certain
1.0 INTRODUCTION system characteristics are preserved in a reduced-order

Extensive research and development have been conducted model. For example, because their damping and frequency
on the use of eigenanalysis and time-series analysis to directly representelectromechanical stability conditions, the
represent oscillatory dynamics (e.g., see the papers in [1]). dominant pole locations should be preserved. Also, the
Because a modem pc,wer system is very large, these models mode phase must be preserved because this represents
are of very high order (often hundreds to thousands cf modal shape and is critical in control system design.
states). For a given input/output combination, certain

dynamic characteristics dominate, allowing the effective Various techniques have been proposed for deriving
transfer function to be of much lower order. Development reduced-order models from high-order counterparts. A
of a low-order model from a high-order one has received well-known method for linear system reduction is the
little attention in the power system literature. The purpose Balanced Realization Method (BRM) [4,5]. With the BRM,

of this paper is to present a model order reduction algorithm system states are removed by preserving the controllability
well suited to the power system problem. The method is and observability of other states. The BRIM is not well
applied to both signal analysis and eigenanalysis results, suited for the power system problem because system pole

locations are not preserved, it requires computationally
expensive numerics, and the high-order model must be
stable.

The model reduction algorithm proposed here employs a

search technique to find the reduced-order model that best
fits the high-order model's time and frequency domain
impulse responses, lt preserves the c_itical high-order
modes and their associated phasing. Also, the optimum
order of the reduced model is identified. The optimum

model is judged using the Akaike information criterion
(AIC) which ensures that the model order is large enough
to accurately represent the given input/output pair [3,6].

I The remainder of the paper is organized as follows. System

dynamic models are discussed in Section 2.0. The model
reduction algorithm is presented in Section 3.0, and a



discussion of key elements of the algorithm is contained in An interpretation of (7) is that the angle of departure for_

Section 4.0. In Sections 5.0 and 6.0 the method is applied in a root locus is governed by _e phase of Rv Also, the
to Prony and eigenanalysis examples, and conclusions are magnitude of shift is directly related to the magnitude of R,.
drawn in Section 7.0. These residue properties are discussed in detail in [9]. To

reflect control design effects, a reduced-order model of (5)
2.0 SYSTEM DYNAMIC MODELS should preserve the pi,me and magnitude effects of the full-

The electromechanical dynamics of a power system can be order model residues.
linearized about an operating point and written as

3.0 MODEL REDUCTION ALGORWHM

±=Ax+bu (1) The model-order reduction technique proposed here is
y=crx essentially a method of selecting the smallest subset of

where A is a square state matrix of order n, x is the state (R,X_) terms in (5) that accurately represent the system.
vector, u is a single input, and y is a single output [7]. Let The obvious criterion is to select the larger residue terms
P and Q be .,axn matrices whos columns are the right and and neglect the smaller. But, this is not a feasible method
left eigenvectors of A, respectively. It is well known that because a lightly damped term with a small residue can be
if the eigenvalues of A are distinct, then Qrp=I (where I is a much more important element to the model than a heavily
the identity matrix and superscript T denotes the conjugate damped term with a large residue. A better criterion is to
transpose) [8]. Using the transformationxd=Qrx, (1) can be select the subset that best represents the impulse response
represented as of the high-order model in both the time and frequency

domains while maintaining a minimal order.

±a =A_,_ +btu (2)
y=cfxa Let the high-order model be represented as (5), the model

reduction is performed using the following steps:
where

Aa=QrAP=[diag(X;) ] 1. Calculate the impulse time and frequencyresponses of the actual high-order system.

b_=Q rb (3)

cra=crp 2. Search for the smallest subset of
residue/eigenvalue terms that accurately fit a

and _, i=1,2 .....n, are the eigenvalues of A. linear combination of the high-order time and
frequency domain data calculated in step 1.

Reverting to the Laplace domain, (2) is written as
The impulse responses are directly calculated from the

G(s)=Y(S)=cr(sl-A_'_ba_aa/ (4) high-order model using
u(s)

" Ret_.;;Because A,t is diagonal, (4) becomes g(q)---_ k=0,1,...,Nr- 1

__ c rp,q_rb " R. ,.t (8)

G(s)= =_ s-_ (s) _ R._, k=1,2,...,N_,
where Pi and qi are the lth fight and left eigenvectors, - J_t- i

respectively. R_ is termed the transfer function residue where t_ = kT and ¢o_=(2rck)/(N®A(o). Parameters T, N r,

associated with Lt. The diagonal of matrixp,qiris the weil- A_, and N are selected to reflect system bandwidth
known participation-factor vector for Xi [7]. characteristics.

When considering model-order reduction for linear power The search step starts by calculating impulse time and
system models, (5) is of special form. This is demonstrated frequency domain responses of the n individual
by considering (5) as an open-loop transfer function and residue/eigenvalue pairs, i.e.,

eH(s) as a negative feedback function. The closed-loop

poles are determined by the roots of gi(tk)=Ret_X;; k=0,1 ,Nr-1

Rfl(s) _ (9)
1+SL, =o (6) R.

,.t_ G;(/'C0k)=. ' ; k=1,2 ....,N,.

At small _:. the open-loop _._'s are shifted by
for i=12 .....n. The one (R._,_) that minimizes the Akaike

A_./=-_.R,J-I(_.i) (7) information criterion (AIC) defined by
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n 4.0 DISCUSSION

J 'J Two important issues in the reduction algorithm merit
further discussion: a theoretical basis for the AIC; and a

is termed (R_yrX _t)) and the corresponding AIC is F,. In basis for the search algorithm.
(10) I'1 is the 2-norm and ni is the order of Gi. The (ct, 0 )

are nonnegative real constants, with ct emphasizing the To formulate a best reduced-order model, one must define

time domain and D emphasizing the frequency domain a criterion for measuring a model. This is done using the
data. weil-known parsimony principle: the best model of a

system is the one that accurately represents a transfer

After (R,,,clx)-,_,)) and the corresponding AIC Ft have been function with a minimal number of parameters [3]. A
._tatistical basis for measuring the best model is thedetermined, the following n-1 impulse responses are

calculated: prediction error variance (PEV) of a given model. It is
shown in [3] that the PEV is estimated by the AIC, which

t,),.,,,(l) was first proposed in [6] as a statistical model identification
g i(t,) =R ,,_,)e measurement.

+Retk)_;; k=0,1 .... ,NT-1 The AIC has been applied to various parameter reduction

G,_'cok)- R_,) (11) problems (e.g. see [3,10,11]). These applications have........ demonstrated that because of f'mite convergence, the AIC
Jcok-l,,,(,) often results in a conservative estimate of the reduced-order

Ri . model in that fiarther reduction is possible. This is not a
+- k.' k=l,2 ....,No,./(0_"- _ disadvantage, as it is better to have a reduced model that

contains extra terms than one that does not include ali

critical parameters. The examples to follow demonsta'ate
for i=1,2 .....n, itrn(1). The one (Ri, ti) from (11) that this conservativeness.

corresponds to a minimum (10) is termed (R_:>,_c _) and

the corresponding AIC is F2. Formulating the AIC for the problem addressed in this
paper results in (10). The terms within the log penalize the

Now the n.2 impulse responses reduced-order model fit while the 4n_ terms penalize the
order of the reduced model. As n_ increases, the log terms

tk_.,wn +R,_2)etk_._2) decrease and 4n_ increases; the minimum of (10) represents
gi(tk)=R"a)e an optimal tradeoff betweev the two terms. The [gcg| and

+Retk_; k=0,1,..,Nr-1 IG_--G| terms estimate the variance between the impulse

--r R l , R 2 (12) responses of the high-order and reduced-order models,""CO '- ,,w) + "( ) + while the Nllg| and N|G] terms simply normalize F.

R., The ideal solution to searching for the best subset of

+_; k=l'2"",N°' (R._.)'s is to test every possible combination. For the
power system problem, this is not feasible as it would
require 2"".1 tests. Therefore, the simple search procedure

where i=1,2 .....n, i_:m(1), i_m(2) are tested to determine employed by the reduction algorithm is used. lt is shown
the one (R_,Xi) that results in (10) being minimized. This in [12] L)katthis method ensures that the proper subset is

pair is termed (RwjrL o)) and the corresponding ,&IC is F3. selected while having ta, conduct at most _'_$i tests, which,

The process is continued until the residue/eigenvalue pairs for large n-r, is much less than 2"'-1.
have been reordered as (R_ v L,,,o)) with corresponding AICs

_, for i=1,2 .....n.r. Integer r is adjusted so that n.r is an In Section 3.0 the criterion for determining the optimal
upper limit on the reduced-model order. Also, in the above reduced-order model is the minimum of the AIC in (10).
search, complex conjugate pairs are considered Due to the conservative nature of the AIC, practical
simultaneously, experience has suggested that a bett_r criterion is to use the

model order at which the AIC first stops decreasing (in
The reduced order model is determined by the minimum of theory this is also the minimum). This further reduces the

I'_, i=1,2 .....n-r. Let F_ be the minimum of ali F's. Then number of tests, making the problem relatively
the reduced-order model is computationally trivial.
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5.0 MODEL REDUCTION IN PRONY ANALYSIS the signal is dominated by noise terms; therefore, the fit is
A developing method for analyzing power system dynamics not as good.
is Prony analysis (e.g., see [13-18]). It is a method of
fitting a linear model to a disturbance ring-down signal. If
the input is known, a transfer function in the form of (5) is
obtained [18]. lt has demonstrated uses in Held-data -lsoo
analysis [13,14], transient stability program analysis [17], .lSlO
and control system design [15,16]. .is2o

-1830

In using Prony analysis to identify a model, terms .."
representing true dominant system effects and system noise ._s4o .."'"
are identified. Removing the terms associated with noise is _.tsso /,"
often based on engineering judgement and can be difficult .tsr0 Fm,,-ocrao,_,aa ,.,"

o,,,."

[19]. For numerical robustness, n is chosen to be near Nrl2 .tST0 Tim,, doumdouut_"., ..... ,i_._._"(typically 30 to 100), while irt many cases the order .tsso .....
representing true system effects is closer to 20 to 40.

-t89O

To separate noise and system effects from a Prony analysis .tg00_ 5 to 15 20
solution, the proposed reduction algorithm is being ModelOrder

incorporated into the latest version of the Bonneville Power Fig. 1: Akaike information criterion (AIC) for example 1.
Administration (BPA) Prony analysis code. The following
two examples demonstrate the usefulness of the algorithm
in Prony analysis, too .....

80 _ Full Order (60rh)

Example 1. 60 _. ......... _du,:,,aO_=O0_)
Consider the 9th-order transfer function

4O

15.38+j55.37 + -18.59_:j16.82 8.
G(s)- s+0.5:t:j0.7g- s+O.25+_.jO.9rc _ o._ .20

i--

- 1.00-&_j2.83 -2.74_+j2.06
+ +

s+0.1 +ljl.6rt: s+O.OS+j2r_ (14) ._
.80

44.06
+ _ . I000

s+3.2rc t z 3 4 5 6 7 s 9 to
Time (lee)

Fig. 2: Impulse time-domain response for example 1.
where ":t:" indicates complex conjugate pairs. A unit

impulse is applied to the input of the system and white
noise is added to the output so that the signal-to-noise ratio 50
(SNR) of the first 10 seconds is 15 db, A Prony analysis _FuUor_(6_.h)

is performed on the data, resulting in a 60th-order model 4O _ ........... Re,du=dOrder(lOth)
that includes estimation of the actual system terms in (14) 3o

within 10% error. Fig. 1 shows the AIC for the reduced _A
model orders. The solid line is for the case where _ =0, _- 20

T=0.1, Nr=lO0 (testing time-domain impulse only), and the ._

N_=150 (testing frequency domain only). The solid line o
indicates a 10th-order reduced model and the dotted !i

indicates a 12th-order. In both cases, the reduced models -to i "'............. i
contain the identified Prony terms corresponding to (14) ..... .... I
The remaining few terms are highly damped and have little .2_., 100 iot i
relative effect. Frequency(hz)

Fig. 3: Impulse frequency-domain response for example

Figs. 2, 3, and 4 show the full-order model and 10th-order 1 (gain).
reduced-model impulse responses. In the time domain, the
response is smoothed because of the removal of noise
terms. In the frequency domain, the gain and phase

response fits very well at the high gains. At lower gains,

4
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Fig. 7 shows the impulse response of the 30rh- and lOth-
o ....... order models. Both give nearly the same exact response.

The frequency re_-ponses of the two are also very similar.
..so Fig. 8 shows the root-locus of the high-order model's

dominate modes, and the root.locus for the 8rh-order model

..10o is in Fig. 9. Both models show the same path for dominant
,_ mode loci, indicating similar control system response

-15o characteristics.

-200 6
,I 7

......... Reduc:d_d Order (lOt/l)

"3l_O0-t...... lOa ....... iOI

F_qt_ney(hz)

Fig.1(phase).4:Impulse frequency-domain response for example ,zu,,v s ._u,,_ 2aa,,_w
6.0 MODEL REDUCTION IN EIGENANALYSI'S

Extensive work has been done in the linear model-based

analysis of power system dynamics using eigenanalysis [ 1]. _ I ] ,'
Methods for calculating transfer function residues and zeros

are in [20] and [21]. Eige:,analysis of a modem power _ _6,,_

system _sults in a very high-order linear system (often

hundreds of states). But, for a given input/output pair, only I I i
a few terms dominate, which allows it to be represented by

I

6gE2 1d'¢¢ @_

a reduced-order model. The following example 2,o_,,
demonstrates how the reduction method can be applied to
eigenanalysis problems.

_6,e 'a'W

Example 2 Fig. 5: Five-machine test system.
Consider the five-machine system in Fig. 5; it is a version
of the one presented in [22]. Each machine is represented
by a 5th-order q-d axis model and a fkst.-order exciter, .1,m0- .._. ...... .-- --

.... • ,.

resulting in a 30rh-order model (see data in [22]). .la2o '.rt=_.lF_q_n_, / /
• /

.14ac , /
An eige_,_malysis is performed on the system, revealing one ',, ' .."
dominant ,rustable mode. The transfer-function residues are .t,_ _ ........ .....

then calculated for each mode from the reference voltage to .t,_ _-- " " "'

the speed-error at generator 4, resulting in a 30rh-order _dso0
transfer function. The impulse response of this transfer .152o
function is dominated by the unstable mode; but, it also has
a secondary dominant mode and many other terms. The .Ls_
question to be answered is how many of these terms are .:_60 1"
required to accurately represent the transfer function? .15so

.16000 ' _

Model reduction is then performed on the 30th order model. 5 1o ts 20 2.5

Fig. 6 shows the AIC for three cases: 1) c_=l, 13=0, ,_o,_to_,'.,,_

T=0.1, Nr=lO0 (testing time-domain data only); 2) oc=0, Fig. 6: AIC tor example 2.

13=1_ Aco---'0.03_, N,,=150 (frequency domain data only); 7.0 CONCLUSION

and 3) c_--0.5, 13=0.5, T=0.1, Nr=lO0, Aco=0.03r_, and An algorithm for reducing the order of large-scale systems

N®=150. Cases 1 and 2 indicate 8rh-order models; case 3 has been presented. The algorithm basically f'mds the one
indicates a 10th-order model. Each reduced model is the subset of the large.scale system that best represents the

same up to the 6rh order. Terms after this are highly given transfer function's impulse response. The criterion
damped. This likely indicates that the minimum reduced incorporates both time and frequency domain information.
model is 6t.h-order. In the cases investigated, the reduced-order model appears

to be a conservative estimate of a smaller one, but this issue

is not of major concern as it is better not to underesthnate.
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The algorithm is not numerically intensive and is easily In developing a reduced-order model, one should not
implemented as a computer program, depend solely on an algorithm such as presented here.

Engineering judgement should always be used in
conjunction. For example, in many cases one may only
consider system terms in a given bandwidth or force the

o.o15........... " " reduced-order model to include certain terms. These issues

(_ are difficult to generalize as they are very problem specific.0.m
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