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Fernando López-Caamal, Tatiana T. Marquez-Lago*

Integrative Systems Biology Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa, Japan

Abstract

We consider a Markov process in continuous time with a finite number of discrete states. The time-dependent probabilities
of being in any state of the Markov chain are governed by a set of ordinary differential equations, whose dimension might
be large even for trivial systems. Here, we derive a reduced ODE set that accurately approximates the probabilities of
subspaces of interest with a known error bound. Our methodology is based on model reduction by balanced truncation and
can be considerably more computationally efficient than solving the chemical master equation directly. We show the
applicability of our method by analysing stochastic chemical reactions. First, we obtain a reduced order model for the
infinitesimal generator of a Markov chain that models a reversible, monomolecular reaction. Later, we obtain a reduced
order model for a catalytic conversion of substrate to a product (a so-called Michaelis-Menten mechanism), and compare its
dynamics with a rapid equilibrium approximation method. For this example, we highlight the savings on the computational
load obtained by means of the reduced-order model. Furthermore, we revisit the substrate catalytic conversion by
obtaining a lower-order model that approximates the probability of having predefined ranges of product molecules. In such
an example, we obtain an approximation of the output of a model with 5151 states by a reduced model with 16 states.
Finally, we obtain a reduced-order model of the Brusselator.
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Introduction

Markov chains are dynamical systems that model a broad

spectrum of physical, biological, and engineering systems. Along

with their broad range of applications, one of the main advantages

of Markov chains is that some of them can be easily handled as

time-invariant, linear systems [1–3].

In this paper, we focus on continuous-time, discrete-state,

homogeneous, irreducible Markov chains with a finite number of

states. The probability of being in any state is governed by a set of

linear ordinary differential equations (ODEs), where individual

ODEs correspond to each state of the system, describing all

possible transitions in and out of such states. This set of ODEs is

commonly referred to as forward Kolmogorov equation or

chemical master equation and might have large dimensions even

for simple systems. Hence, obtaining a solution for such a system

might be analytically intractable and computationally demanding.

Provided that one is interested only in some states or a

combination of states of the Markov chain, it is possible to obtain a

reduced order model via the balanced realisation of the linear

system that describes the probability of being in such states. The

reduced model has a smaller number of coupled differential

equations, yet approximates the output of the full model with an

error bound proportional to the sum of the Hankel singular values

neglected to obtain the reduced model [4–7]. Given chemical

reaction networks in a homogeneous media and in thermody-

namic equilibrium can be described as Markov chains, it is

possible to apply our methodology to this class of systems.

It is worth noting that there exist alternative approaches to

obtain reduced order models from the CME. For instance, in [8]

the author analysed methods to approximate the solution of

selected states of the CME, when such solutions can be expressed

as the product of two probability density functions: one that

describes probabilities of states of interest and a second that

depends on the rest of states. This latter probability distribution

can be approximated by its mean, for instance, so as to yield an

approximated probability density function for those probabilities

of interest. However, this approach might yield coarse results if the

underlying assumptions are crude.

Other approaches make use of Krylov subspaces to approxi-

mate the solution of the exponential matrix that generates the

solutions of the Markov chain [9,10]. Additionally, when the

species can be classified by its behaviour into stochastic or

deterministic, the authors in [11] propose a methodology in which

the CME can be solved directly and efficiently, when the number

of species with stochastic behaviour is low. In this direction, works

like [12] avail of a time scale separation to estimate the solution of

the fast-varying species; and use this estimation to approximate the

trajectories of the slow-varying species.

As an alternative, when the analytical or computational

treatment of the Markov chain is infeasible, it is common to opt

for numerical simulations of the stochastic system and analyse the
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outcome statistically. References [13] and [14], among many

others, provide surveys of simulation methods of stochastic

reaction networks. However, these methods might require large

computational times to yield accurate results.

A different way to reduce CMEs is to consider subsystems that

focus on features of interest. From the chemical perspective, in

[15] the authors showed as a proof-of-concept that the simple

reaction S1
k1

k2

S2
k3

S3 can only be accurately represented by

S1
k

S3 under special conditions on the parameters k1, k2, k3,

which render the dynamics of the species S2 irrelevant for the

behaviour of S3. This study highlights the shortcomings of

neglecting species within a stochastic reaction network. In this

paper, we adopt a different approach and overcome these

difficulties by deriving a reduced-order model. Such reduced-

order model accurately approximates the dynamics of the

underlying Markov chain for selected states with any kind of

reaction propensities.

In some cases, the dynamics of the species population with

stochastic behaviour can be expressed as the weighted sum of the

species population given by the deterministic framework and a

random variable, which represents the stochastic behaviour of the

modelled system. Under these circumstances, an associated

Fokker-Plank equation might be derived from which different

stochastic traits may be analysed. By using this approach, one

might obtain an ODE whose dimension is typically smaller than

the dimension of the corresponding CME. This approach is know

as van Kampen’s system size expansion and a more precise

explanation can be found in [3]. However, any approach based on

van Kampen’s system size expansion suffers from such restricted

applicability, since they hinge on the ability of expressing random

variables as an explicit sum of a deterministic variable and a

random one.

There exist, however, exact approaches that abridge specific

topologies of reaction networks. For instance, in [16,17] different

classes of monomolecular reaction networks are exactly represent-

ed as reactions characterised by delay distributions. In turn, works

like [18,19] are committed to obtain exact analytical solutions of

stochastic chemical reaction networks with linear and nonlinear

reactions. Importantly, once a reduced ODE set via balanced

realisation is obtained, one can avail of the results in ([18], Sec.

2.2) to derive a closed-form expression for approximation of the

CME solution.

We illustrate our methodology with the analysis of a reversible,

stochastic reaction whose CME has 301 states. In contrast, an

adequate reduced order model has only 10 states and yield an L2

gain of the approximation error of 587.9161026. Later, we obtain

a reduced order model that approximates the catalysed conversion

of a substrate to a product, even in cases in which a rapid

equilibrium approximation fails to obtain accurate results [20,21].

In contrast to the approaches in [20] and references therein, we do

not assume any particular relation among the parameters and

initial conditions. Hence, our methodology is more widely

applicable. For such a system, the simulation of the reduced

model may be several orders of magnitude faster than the

simulation of the CME. However, there exist an initial cost in

computational time to derive the reduced order model. Thus,

obtaining a reduced model is profitable when the lower-

dimensional ODE set is used repeatedly. In addition, we derive

a model that approximates the probability of having predefined

ranges of product molecules, in the same catalytic substrate

conversion. To finalise we derive a reduced order model of the

Brusselator.

Analysis

Continuous-Time, Discrete-State, Homogeneous Markov
Chain

Consider a discrete and finite set of states

S~ si[Zn, V i[½1,w�
� �

ð1Þ

and let the system’s state at time t be denoted by s(t) : Rz?S.

Moreover, we consider that the transition from one state to

another can be modelled by a time-homogeneous Markov chain,

i.e., the next state, s(tzdt), only depends on the current state, s(t),
independently of t. We use pi(t) : Rz|S?½0,1�5R to denote the

probability, Pr 0ð Þ, of the system’s state to be si at time t. This

notation and the Markov property add up to

pi(tzdt)~Pr s(tzdt)~si Ds(t)
� �

:

We gather the probabilities for every state in the column vector

p(t) : ~(p1(t) . . . pw(t))T : ð2Þ

Let us denote the transition probability from the initial state j to

state i at time tzt by qi j(tzt) : Rz|S2?½0,1�. That is to say,

qi j(tzt) : ~Pr s(tzt)~siDs(0)~sj
� �

:

The time-homogeneity property of the Markov chain implies

qi j(tzt) : ~

Pr s(tzt)~siDs(0)~sj
� �

~

Xw

k~1

Pr s(tzt)~si; s(t)~skDs(0)~sj
� �

~

Xw

k~1

Pr s(tzt)~siDs(t)~sk; s(0)~sj
� �

|Pr s(t)~skDs(0)~sj
� �

~

Xw

k~1

qi k(t)qk j(t): ð3Þ

In matrix form (3), known as Chapman-Kolmogorov equation, is

Rz?½0,1�w | w : Q(tzt)~Q(t)Q(t)~Q(t)Q(t): ð4Þ

Reduction of the Chemical Master Equation
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This matrix gathers all the transition probabilities as a function

of time and, by consequence, its columns add to one for all t.
Additionally, if the Markov chain is irreducible, Q has a simple

eigenvalue l1~1, and l1wDli D V1viƒw. This is a consequence

of the Perron-Frobenius Theorem as described in ([2], Ch. 6), for

example. In the rest of this paper we deal with finite, irreducible,

homogeneous, continuous-time, discrete-state Markov chains

exclusively.

Our main interest is to determine the time-dependent proba-

bilities of being in any state of the chain. To this end, we consider

the infinitesimal generator of the Markov chain defined as

A : ~ lim
t?0

Q(t){I

t
: ð5Þ

The elements of the matrix above are

ai j~ lim
t?0

qi j(t){di j

t
: ð6Þ

Here di j~1(or 0), when i~j (i=j, respectively). From (6) it

can be shown that the elements ai j satisfy

ai i~{
Xw

j~1,j=i

ai j : ð7Þ

The last relationship above shows that every column of A adds

up to zero, provided each column of Q(0) adds up to one.

It is well-known that A is the generator of the positive

semigroup that governs the evolution of p(t) (see [22], Sec. 5.6,

for instance):

d

dt
p(t)~Ap(t), p(0)~p0: ð8Þ

Under our assumptions, the Markov chain is irreducible and

with a finite number of states. Hence, Q has a unique Frobenius

eigenvalue with algebraic multiplicity one. The simple Perron-

Frobenius eigenvalue of the stochastic matrix Q in (4) is 1 [23].

Now, let n and l be the right Perron-Frobenius eigenvector and

eigenvalues of Q, then the eigenvalues of A Satisfy

An~(Q{I)n=t,

~(l{1)n=t:

That is, A preserves the configuration of the eigenvalues of Q,

upon shifting one unit to the left and rescaling. This implies that A
has a zero eigenvalue and the rest of its eigenvalues have negative,

real parts, as confirmed by analysing the Geršgorin circles of the

columns of A. We refer the interested reader to Appendix S1 for a

proof of this statement.

Note that the dimension of p(0), w, might be large as it

represents all the configurations of a system with n characteristics.

In the population and biochemical contexts, n represents the

number of species, whereas w denotes the number of all the

possible combination of species’ population counts. In the

following section, we model a stochastic chemical reaction network

with the Markov chains described above.

Chemical Master Equation
Now, let us consider n species in a homogeneous medium and in

thermodynamic equilibrium and a set of m reactions represented

by

Xn

i~1

ai jSi

aj Xn

i~1

bi jSi: ð9Þ

Let the entries of the stoichiometric matrix N[Nn | m be

ni j : ~bi j{ai j :

Furthermore, let us consider a vector comprised of the number

of molecules, si(t), for every species, Si:

s(t)~ s1(t) s2(t) . . . sn(t)ð ÞT : Rz?S: ð10Þ

The finite set S above was defined in (1) and contains, at least,

all the possible combinations of the species’ molecular numbers in

the reaction network. Consider that the ith reaction is the only

reaction happening within the interval (t,tzt�. Hence the number

of molecules at time tzt is

s(tzt)~s(t)zni, ð11Þ

where ni represents the ith column of N.

This reaction network may be modelled by the continuous-time,

discrete-state jump Markov process described previously. The

states of the Markov chain are the elements in S. In turn, the

vector p(t) in (2) gathers the time-dependent probabilities of being

in every state, whose time evolution is governed by (8).

Additionally, the stochastic behaviour of thermally stable and

spatially homogeneous reaction networks has been described in

[24]. Based on such a work, Table 1 summarises the transition

rates between states of the system.

To construct the matrix A in (8), we have to evaluate the

probabilities’ transition rate for all states si[S and arrange them as

the entries of A as follows

Aj i~

{
Pm

k~1 ak(si), i~j,

ak(si), V j : sj~siznk,

0, otherwise:

8><
>: ð12Þ

In the next section, we present a methodology used to obtain

reduced order models, which are capable of reproducing the

dynamical behaviour of a linear system with a smaller number of

ODEs.

Balanced Model Reduction
In this section, we present an overview of a methodology used

for obtaining lower dimensional models via balanced realisation.

The literature on this topic is vast and we refer the interested

Reduction of the Chemical Master Equation
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reader to [5–7,25] for a comprehensive presentation of this type of

model reduction.

Let us consider a linear system of the form

d

dt
x(t)~Ax(t)zBu(t), x(0)~x0 ð13aÞ

y(t)~Cx(t)zDu(t): ð13bÞ

Here x(t) represents the state of the system; u(t) is the forcing

term of the differential equation (13a); and y(t) comprises the

variables of interest expressed as a linear combination of x(t). We

will assume that all the eigenvalues of A have negative real parts,

i.e. A is stable, and that the system in (13) is both controllable and

observable. These last two properties are commonly used in the

control-theory literature and their definitions are given below.

Controllability is the property of (13) which ensures that it is

possible to steer the state of the system from any initial condition

x0 to any desired state at a specific time, by the application of an

adequate forcing function u(t). In turn, observability refers to the

capability of computing x0 given the knowledge of u(t) and y(t) for

all previous time t[½0,tmax�.
The definitions of both controllability and observability just

express that systems with such properties are capable of being

steered to a desired state, and that x0 can be computed from the

history of u(t) and y(t), respectively. These definitions, however,

are not constructive, in the sense that they do not explain how one

can design u(t) or obtain x0. These topics are beyond the scope of

this paper, but the interested readers can find further details in

[26].

Now, controllability and observability hold when O and K, the

controllability and observability matrices, respectively, are full

rank

O : ~

C

CA

..

.

CAw{1

0
BBBB@

1
CCCCA, K : ~ B AB . . . Aw{1 B

� �
:

When (13) is simultaneously stable, observable, and controllable

there exist unique, symmetric, positive-definite matrices P and Q
which are solution of the following Lyapunov equations

APzPATzBBT~0, ð14aÞ

ATQzQAzCT C~0: ð14bÞ

The singular values of the product of P and Q are known as the

Hankel singular values, si, of the system.

Now, the linear system in (13) can be expressed in different

coordinates than x(t). That is to say, if we prefer to use the

coordinates

~xx(t) : ~Lx(t),

where L is a square, full-rank matrix of appropriate dimensions.

Then, we can rewrite the linear ODE in (13) as

d

dt
~xx(t)~~AA~xx(t)z~BBu(t), ~xx(0)~~xx0 ð15aÞ

y(t)~~CC~xx(t)zDu(t): ð15bÞ

Here, ~AA : ~LAL{1, ~BB : ~LB, ~CC : ~CL{1. We note that for

both systems (13) and (15) the function y(t) is exactly the same,

under the application of the same forcing function u(t). The

reason for considering these alternative coordinates ~xx(t) is that

there exists a L, such that the solutions of the corresponding

Lyapunov equations in the coordinates ~xx(t) have the following

property

~PP~ ~QQ~diag(s1,s2, . . . ,sw):

Here s1ƒs2ƒ:::ƒsw. When this condition is satisfied, the

system (15) is Lyapunov balanced [4]. The details on the

construction of L are given in [4] and algorithms for the

derivation of Lyapunov balanced realisations have been imple-

mented in Python and Matlab, among others.

If the original system (13) is not stable nor represented by its

minimal realisation (i.e. simultaneously observable and controlla-

ble), we suggest the transformation in [27] to obtain its Lyapunov

balanced form.

An advantage of having a balanced realisation is that the

magnitude of the singular values si decays quickly as i increases.

There are several techniques that avail of this observation to derive

reduced order models, depending on the required characteristics

of such a reduced model [6].

Table 1. Reactions and their propensity function.

Reaction Propensity

0
k1

S1
a1~k1

S2
k2

X
a2(s2)~k2s2(t)

S3zS4
k3

X
a3(s3,s4)~k3s3(t)s4(t)

2S5
k4

X
a4(s5)~k4s5(t)(s5(t){1)=2 s5(t)§1

The symbol si denotes the number of molecules of the species Si . The symbol ai denotes the propensity of reaction i.
doi:10.1371/journal.pone.0103521.t001
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Let us consider that ~xx(t) are the coordinates of the Lyapunov

balanced realisation. One of the simplest approach to obtain a

reduced order model is to partition ~xx(t), to obtain

d

dt

~xx1(t)

~xx2(t)

� �
~

~AA11
~AA12

~AA21
~AA22

 !
~xx1(t)

~xx2(t)

� �
z

~BB1

~BB2

 !
u(t),

y(t)~ ~CC1
~CC2

� � ~xx1(t)

~xx2(t)

� �
z~DDu(t):

Here, ~xx(t)[Rk and the rest of the vectors and matrices have the

appropriate dimensions. This separation also induces the partition
~PP~ ~QQ~diag(S1,S2), where S1~diag(s1, . . . ,sk) and

S2~diag(skz1, . . . ,sw). By neglecting the states ~xx2(t) associated

to the small Hankel singular values, the truncated model becomes

d

dt
~xx1(t)&~AA11~xx1(t)z~BB1u(t), ~xx1(0)~~xx1 ð16aÞ

y(t)&~CC1~xx1(t)z~DDu(t): ð16bÞ

This model is known to preserve the most important eigenvalues

of the original system, and interested readers can find more details

in [28]. However, some other properties such as steady state are

slightly modified. When such a property is of interest, model
reduction by residualisation is more suitable [7]. Both of these

methods are already included in languages such as Python and

Matlab, where the balanced realisation of a linear system is in the

function balreal and the model reduction via truncation and

residualisation is in modred.

It is also important to mention that error of approximation

satisfies the following bound

DDy{yredDDL2

DDuDDL2

ƒ2
Xw

i~kz1

si, ð17Þ

where yred(t) is the output of the reduced model. In the following,

we refer to this bound as the L2 gain of the approximation error,

where the term gain refers to the fact that we are considering the

size of error of approximation normalised by the size of the forcing

function u(t). Please, refer to Appendix S1 for the definition of L2

norms and for a derivation of such an error bound. The expression

in (17) suggests a trade-off between the accuracy of the

approximation and the size of the reduced order model. To see

this, notice that ~xx1(t) has k elements. As k grows, the error bound

in (17) will decrease, at the cost of obtaining a larger reduced

model in (16). A good initial guess for the magnitude of k is

obtained by neglecting those states associated to Hankel singular

values which are three orders of magnitudes smaller than the

largest one; namely, by finding a k such that s1=skz1w103.

In summary, given an arbitrary system of the form (13), the first

step for obtaining a reduced model is to find a coordinate

transformation L that expresses (13) in its Lyapunov balanced

form. At a second step, we have to determine the size of the

appropriated reduced model. To do so, we consider a partition of

the state of the system expressed in the coordinates ~xx(t). The

advantage of using these coordinates is that the state ~xx(t) is

organised such that the entries are progressively less relevant with

respect to y(t). Hence, by neglecting the last entries of ~xx(t),
denoted as ~xx2(t), we can obtain reduced order models that

approximate the behaviour of the full one. In the forthcoming

section, we build upon the material in this section to obtain a

reduced order model of the representation of a continuous-time,

discrete-state, homogeneous, irreducible Markov chain.

Order Reduction of Infinitesimal Generators
In this section we are interested in the probability of being in

some (linear combination of) states of the Markov chain, which we

denote as y(t) : Rz?Rr5S. As noted in Equation (8), the vector

p(t) evolves according to the linear ODE

d

dt
p(t)~Ap(t), p(0)~p0, ð18aÞ

y(t)~C p(t): ð18bÞ

Also, as was mentioned previously, the infinitesimal generator A
of an irreducible Markov chain with finite states has the properties:

Aƒ0 (its eigenvalues are nonpositive), ð19aÞ

1TA~0T (its columns add up to zero): ð19bÞ

Without loss of generality, we will assume that the system (18) is

both controllable and observable. However, it is worth noting that

whenever it lacks any of these two properties, there always exist a

transformation that obtains the observable and controllable

subspace of (18); namely, the Kalman Decomposition [26,29].

To consider a reduced model that does not have a zero

eigenvalue, let A be partitioned as follows:

A~
a11 a12

T

a21 A22

� �
: ð20Þ

Here a11[R, a12,a21[Rw{1, and A22[Rw{1 | w{1. This parti-

tion is considered to ensure conformability of the product with the

following similarity transformation

T : ~
1 1T

w{1

0w{1 Iw{1 | w{1

 !
[Nw | w, ð21aÞ

T{1 : ~
1 {1T

w{1

0w{1 Iw{1 | w{1

 !
[Nw | w, ð21bÞ

z0(t)

z(t)

� �
~Tp(t): ð21cÞ

The coordinate transformation T above is constructed such that

z0(t) in (21c) is a state that represents the sum of all the entries of

Reduction of the Chemical Master Equation
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the probability vector p(t). As we confirm below, this state has a

constant value equal to one for every time. Furthermore, the

matrix T in (21a) implies that the entries of z(t) in (21c) are

pi(t)Vi[½2,w�. By differentiating (21c) and using the expressions in

(18), we get

d

dt

z0(t)

z(t)

� �
~

0 0T

a21 A

 !
z0(t)

z(t)

� �
; z0(0)~1,z(0)~ p2(0) . . . pw(0)ð ÞT ,

y(t)~C 1 {1T
w{1

0w{1 Iw{1 | w{1

 !
z0(t)

z(t)

� �
:

The solution for the first state is the unitary step function, that is

z0(t)~h(t). By substituting this solution in the ODE above, we

have

d

dt
z(t)~Az(t)zbh(t),z(0)~z0 ð23aÞ

y(t)~Cz(t)zdh(t), ð23bÞ

where

A : ~A22{a211T
w{1, ð24aÞ

b : ~a21, ð24bÞ

C : ~C {1T
w{1

Iw{1

 !
, ð24cÞ

d : ~C
1

0w{1

� �
: ð24dÞ

The spectrum of A in (23) has all the eigenvalues of A, except

for the zero eigenvalue. To see this, recall that the trace of a matrix

is the sum of its eigenvalues. As (22) arises from a similarity

transformation applied to (18), we have that

trace(A)~0ztrace(A):

Under our assumptions, A has only one zero eigenvalue and,

hence, the spectrum of A is composed by the nonzero eigenvalues

of A. All these eigenvalues have negative real parts.

As mentioned earlier, although the triplet (A,B,C) in (23) might

not be a minimal realisation, it is always possible to obtain a model

which is both controllable and observable via its Kalman

decomposition [26,29]. In fact, the command balreal of Matlab’s

Control System Toolbox will obtain the controllable and

observable system before obtaining the balanced realisation.

Hence, it is not absolutely necessary to test for these properties

separately, when using this software. Thus, for stable systems, we

can perform the model balancing to obtain a reduced-order model

of the form (16).

So far we had considered that the number of states, w, of the

Markov chain is finite. However, when considering chemical

reaction networks, it is possible to use an approximation of the set

of possibles states S, to obtain an ODE set analogous to (18) with

the most representative, finite number of states. Due to its

approximate nature, the set of ODEs obtained via this truncation

of the state space might not present the properties in (19) (see [8],

Sec. 2.3 and references therein). Hence the change of variables in

(21) would no longer be necessary and a balanced model reduction

can be applied directly to set of ODEs arising from such a state

space truncation.

Although the lower-dimensional model can be used for

obtaining an approximated numerical solution for the probabilities

of interest, we would like to notice that one may use the results in

([18], Sec. 2.2) to derive closed-form expressions for these

probabilities. In the following section, we study some case studies

to show the applicability of these methods.

Results

In this section, we show the derivation and application of reduced

order models, through different examples. We will first analyse one

monomolecular reaction and obtain an accurate approximation for

the probability of having the conversion of all the molecules from

the first species to the second one. Later we derive reduced order

models capable of approximating a catalytic conversion of a

substrate even in cases in which a rapid equilibrium approximation

cannot yield accurate results [20,21]. Subsequently, we revisit the

catalytic substrate conversion to derive the probability of having

ranges of product molecules. Finally, we obtain a reduced order

model for the Brusselator. In all case studies, we used a 3.2 GHz

Quad-Core Intel Xeon computer with 16GB of RAM. Our script

was coded in MATLAB� R2012b.

Monomolecular Reaction Network
Let us consider the reversible reaction

S1

kf

kb

S2, ð25Þ

along with the vector composed of species’ molecular number

s(t) : ~ s1(t) s2(t)ð ÞT . Furthermore, consider an initial number

of molecules s(0)~ 300 0ð ÞT . Note that in the reaction above

the number of molecules remains constant and equal to the initial

300 molecules. Hence the set of S has w~301 elements and may

be ordered as follows

S~
300

0

� �
,

299

1

� �
, . . . ,

1

299

� �
,

0

300

� �� 	
:

Now, we are interested in the time-dependent probability of

having 300 molecules of S2, i.e., to be in state s301~ 0 300ð ÞT .

With this formulation, the matrix A in (18) becomes

ð22Þ
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A~

{300kf kb 0 0 . . . 0 0

300kf { 299kf zkbð Þ 2kb 0 . . . 0 0

0 299kf { 298kf z2kbð Þ 3kb . . . 0 0

..

.
P P P P P

..

.

0 0 0 0 P { kf z299kbð Þ 300kb

0 0 0 0 . . . kf {300kb

0
BBBBBBBBB@

1
CCCCCCCCCA
[R3012

In turn p(0) and C are given by

p(0)~ 1 0 . . . 0ð ÞT[R301, ð27aÞ

C~ 0 0 . . . 1ð Þ[R1|301: ð27bÞ

With the definitions for A, p(0), and C in (26) and (27),

respectively, and by choosing the parameters

fkf ,kbg~f150,1g½s{1�, we implemented the model in (23) in

Matlab 2012b and obtained its balanced realisation with the

command balreal. Figure 1 shows the largest 30 Hankel singular

values of the balanced realisation’s grammian. We observe that the

first ten singular values have a large norm in comparison to the

rest. By using the command modred, we obtained the reduced

order model with different number of states; hence, achieving

different degrees of approximation.

We depict the impact of the number of states on the error of

approximation, in Figure 2. There, we note that a very coarse

approximation is achieved when we try to approximate the full

model with 301 states by a model of only 1 state (see the lower

panel of Figure 2A). In turn, when the reduced order model has 10

states, the error of approximation is of order 10{5, as depicted in

the lower panel of Figure 2C. Furthermore, if the reduced model

has 15 states, the approximation error might already range in the

order of the numerical-algorithm integration error, as suggested by

the irregular fluctuations shown in the lower panel of Figure 2D.

To finalise this section, we note that the L2 gain of the appro-

ximation error is 427:46|10{3,33:19|10{3,587:91|10{6, and

6:09|10{6, for the reduced models with 1, 5, 10, and 15 states,

respectively. These bounds were obtained by evaluating Expression

(17). It should be noted that this is a theoretical bound and does not

account for numerical errors during the integration or computation of

the Hankel singular values.

In the forthcoming section, we obtain reduced order models for

a catalytic substrate conversion, and assess the computational

burden required to obtain the reduced order model. In addition,

we benchmark the time required for solving numerically the

reduced order model against both the computational load required

to solve the full order model and the Stochastic Simulation

Algorithm (SSA).

Michaelis-Menten Mechanism
In this section, we consider the reaction network

SzE
kf1

kb1

C
kf2

PzE, ð28Þ

which represents the conversion of a substrate, S, to a product, P,

mediated by a catalytic agent, E, which binds to the substrate to

form the complex C. In the deterministic case, it is common

practice to approximate the mass-action-based reaction network in

(28) via the reaction

S
vM M (S)

P, ð29Þ

with the following nonlinear reaction rate

vM M (½S�)~ vm a x

KMz½S� , ð30aÞ

where ½0� stands for concentration of the argument and

vmax : ~kf2½E�T , ð30bÞ

KM : ~
kb1zkf2

kf1

, ð30cÞ

½E�T : ~½E�(t)z½C�(t), for any t§0: ð30dÞ

The parameter KM is know as the Michaelis-Menten constant.

In [30], it was shown that the dynamics of (28) can be reasonably

approximated by (29) when

½E�T%S(0)zKM : ð31Þ

However, for cases in which the reactions in (28) are better

described by a stochastic model, it is still possible to represent the

dynamics of S and P with a reaction of the form (29) by using the

propensity

aM M s(S)~
vm a x

KMzS
S, ð32Þ

where S now represents the number of molecules of the substrate

per unit volume; ET is the total number of molecules of free and

bounded enzymes per unit volume; and vm a x, KM are those of the

stochastic model. This representation is valid under the condition

Figure 1. Largest Hankel singular values of the balanced
realisation of the model in form of (23), where A and C are
defined in (26) and (27b), respectively. Additionally
fkf ,kbg~f150,1g½s{1�.
doi:10.1371/journal.pone.0103521.g001

ð26Þ
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ET%S(0), ð33Þ

as mentioned in [20]. The basis for this proof is that the condition

above induces a time-scale separation which leads some species to

converge quickly to their equilibrium. In the following, we refer to

this property as the rapid equilibrium approximation. Of note, the

condition in (33) is not the only one that may allow us to use a

propensity of the form of (32); however, we will limit our attention

to this condition.

We refer the interested reader to [21] for a rigorous analysis of

the validity of propensity of reaction (32). There, the authors

compared the variance of fluctuations around the steady-state

obtained via the Linear Noise Approximation and the one

obtained from the CME with elementary reactions.

We now obtain a reduced order model that approximates the

probability of being in selected states of the underlying Markov

chain. We derive this reduced model by means of the procedure

described in the Analysis section. In contrast to the approaches in

[20] and references therein, we do not assume any particular

relation among the parameters and initial conditions. Hence, our

methodology is more widely applicable. As mentioned earlier, our

methodology obtains a small ODE set that approximates the

solution of the original CME. In contrast, the approach in [15] is

committed to accurately representing a particular reaction

network via a single reaction, for specific ranges of parameter

values.

Another difference from the approaches in [20] is that they

prove the applicability of SSA algorithms with the propensity in

(32). In contrast, we derive a dynamical system that approximates

the solution of the CME with an a priori error bound given by

(17). We recall that in the limit, the probability distribution

obtained from the SSA trajectories will converge to the solution of

the CME. However, depending on the kinetic parameters and

network analysed, the SSA might require large computational

times to provide results with the desired accuracy.

It is worth noting that even when (28) cannot be represented by

(29), one can still obtain a reduced model via the balanced model

reduction described in the Analysis section, as we do not assume

any relationship among the parameters and initial conditions.

To exemplify the concepts above, we depict in Figure 3 a

comparison of (A) the solution of the CME of (28) with propensities

shown in Table 1; (B) the solution of the CME based on the rapid

equilibrium approximation with the nonlinear propensity in (32);

and (C) the solution of the reduced model described in the Analysis

section for the last state of the Markov chain, which represents

total conversion of the substrate to product. To simplify the

notation, we consider a unitary volume of arbitrary units. The

parameters values used are

fkf1,kf2,kb1g~f1½ molecules sð Þ{1�,1½s{1�,1½s{1�g and 10 initial

molecules of substrate.

The only difference between the upper and lower panels in

Figure 3 is the number of initial molecules considered for the

enzyme. In the upper panel we considered 1 molecule of the

enzyme, hence condition (33) is fulfilled, and the rapid equilibrium

approximation may be used to approximate the full model.

Moreover, one can use the rapid equilibrium approximation to

derive a reduced model via balanced realisation, as compared in

the upper panel of Figure 3C. There, we approximated the model

based on the rapid equilibrium approximation with 11 states by a

reduced order model with 6 states; the L2 gain of the

approximation error is less than 0:28|10{3, as given by (17).

In contrast, when we consider 10 molecules of enzyme initially,

the CME derived from the rapid equilibrium approximation does

not reproduce the dynamics of the full reaction network in (28), as

depicted in the lower panels of Figure 3. We note, however, that

we can still obtain a reduced model via balanced realisation that

Figure 2. Output comparison of the full CME and the reduced order model. The upper panels depict of the probability of having all the
molecules of S1 converted to S2 by means of the reversible reaction (25). The discontinuous line represents this probability as obtained with the full
model and the continuous lines, those obtained with the reduced order model via balanced realisation. In turn, the lower panels show the difference
of full model output and that of the reduced order model. The order of the lower-dimensional model for columns A, B, C, and D are 1, 5, 10, and 15
states, respectively. The parameters used for simulations are as in Figure 1.
doi:10.1371/journal.pone.0103521.g002
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accurately approximates the dynamics of the full model (cfr.

Figure 3C lower panel). There we approximated the full model

with 66 states by a reduced model of 6 states, whose L2 gain of the

approximation error is less that 0:21|10{3.

Now we focus on the time required to simulate the CME and

the time required to simulate the reduced order model. To

compute the latter, we need to apply some state transformations to

the CME (18) to derive a balanced realisation that can be further

truncated. Once the reduced model is obtained, the time required

for its numerical solution is significantly smaller compared to the

time required for the numerical solution of the full CME.

To illustrate this reduction on the computational time, we

obtained the CME of the reaction network (28) with an equal

initial number of molecules for the substrate and enzyme and zero

molecules for the rest of the species; later, we obtained the reduced

order model via balanced realisation, which represents the state of

total conversion of the substrate to the product; and finally we

compared the time required for obtaining the numerical solution

of the full CME (tCME) and the reduced model (tred) with the

expression

g~ log10

tCME{tred

tred

� �
: ð34Þ

We depict the results of this assessment in Figure 4. There we

observe that as the number of molecules for E and S in the initial

state increase, the savings on the computational time required to

obtain the numerical solution of the lower-order model also

increases. We note that for the comparison in (34) we did not

account for the time required to obtain the reduced order model.

In turn, Figure 5 presents the comparison of the computational

time required by i) the derivation of the reduced model via

balanced realisation plus the simulation of the reduced model; and

ii) the time required by the Finite State Projection (FSP) [31] for

each time point. Of note, the FSP obtains an approximated

probability vector with a desired error bound (e) for one specific

Figure 3. Validity of the Michaelis-Menten propensity as an approximation of a catalytic substrate conversion. Column A shows the
simulation of the CME associated to (28), where each tread represents the probability of being in every state of the Markov chain; in turn, column B
shows the solution of the CME of (29) by using the nonlinear propensity function (32); whereas, column C shows the probability of being in the last
state of the Markov chain, which represents total conversion of the substrate to the product. This probability is obtained via the CME of the full
stochastic model, by the CME considering the rapid equilibrium approximation, and by the approximated model to the CME via balanced realisation.
The parameters used for obtaining the numerical solution are fkf1,kf2,kb1g~f1,1,1g and 10 initial molecules of substrate. The only difference
between the upper and lower panels is the number of enzymes considered: upper panels 1 molecule, whereas the lower panels, 10 molecules. Note
that in the lower panel the rapid equilibrium approximation is not accurate, but the approximation via the balanced model truncation is close to the
full model.
doi:10.1371/journal.pone.0103521.g003

Figure 4. Computational time overhead of the numerical
solution of CME and SSA with respect to numerical solution
of reduced model. Computational time overhead, as given by (34),
required to solve the full CME (diamonds) and to perform 103 SSA runs
(squares) as compared to the computational time required in seconds
to simulate the reduced order model, as the initial number of molecules
for E and S vary from 5 to 100. The parameters values used for
simulation are identical to those of Figure 3.
doi:10.1371/journal.pone.0103521.g004
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time point; hence, if one is interested in the transient response of

the probability distribution, one has to run such an algorithm for

every time step of interest. In contrast, once obtained the reduced

model via balanced realisation, it is possible to use the lower-

dimensional system for any number of time points and initial

conditions. These results are summarised in Figure 5, where the

panels A, B, and C consider 10, 30, and 50 initial molecules for E

and S, respectively, and zero molecules for the rest of the species.

The remaining parameter values are identical to those of Figure 3.

Now, we assess the dimension of the state-space of the reduced-

order models obtained by the FSP approach, an optimal finite

state projection (OFSP) method ([32], Ch. 3), and the balanced

model reduction method. The optimality of the second method

refers to obtaining an approximation of the probability distribu-

tions for a specific time point with an error e using the minimal

number of states of the CME. The first step of this approach is to

run any FSP algorithm such that the probability captured by this

approach is 1{e=2. As a second step, this method proposes to

keep the states with largest probabilities, such that the norm of the

resulting probability vector is 1{e. We refer the interested readers

to ([32], Ch. 3) for a thorough explanation of this approach.

The results are summarised in Figure 6. This Figure depicts the

number of states of the reduced model obtained via the balanced

realisation with a continuous line to stress the fact that the model

obtained by such an approach is valid for every time. In contrast,

the methods based on finite projections require one run of the

corresponding algorithms for each time-step of interest. Thus, in

general, this may lead to larger computational loads, as suggested

by the results in Figure 5.

To finalise, we note that for the FSP, the ‘1 norm (sum of the

absolute value of the entries of a vector) of the error bound is less

than a predefined e for the specific time points of interest (discrete

signal), whereas the L2 gain of the approximation error

(continuous signal), obtained with the reduced model via balanced

realisation, satisfies the bound given by (17). As the nature of both

error signals is different, it is difficult to perform a direct

comparison of the methods’ accuracy. In the forthcoming section,

we obtain a reduced order model that approximates the

probability of having a certain range of P molecules.

Probability for Ranges of Molecules Counts
Up to now, we have obtained reduced models that approximate

the probability of being in one state of the Markov chain. In this

section, we revisit the reaction network in (28) by obtaining the

probability of having a certain number of molecules within

predefined ranges, as done in applications such as gene expression

[33].

Here we consider the following parameter definitions:

fkf1,kf2,kb1g~f1,1,1g, 100 initial molecules of substrate, 100

initial molecules of enzyme, and zero initial molecules for the rest

of the species. By denoting the number of P molecules with cP, we

can formulate our problem as approximating the following

probabilities

y(t)~

Pr (0ƒcP(t)ƒ30)

Pr (31vcP(t)ƒ70)

Pr (71vcP(t)ƒ100)

0
B@

1
CA: ð35Þ

To derive the CME, one needs to obtain and label all the

possible combinations of species molecular counts si and organise

them in the set S in (1). Then we have to evaluate the infinitesimal

generator A as in (12) with the corresponding reaction propensities

of (28) (see Table 1).

In order to obtain an expression for y(t), we need to define the

matrix C in (18b) so that the product of the first row of C by the

vector p(t) yield the sum of the probability of all the states si such

that cP is within the range [0, 30]. The next two rows of C are

defined in the same way, but accounting for the ranges cP

described in the second and third entries of (35).

The CME for this system, parameters, and initial number of

molecules has 5151 states. By applying the model reduction

technique in the Analysis section, we can approximate the

probabilities in (35) by a dynamical system with 16 states, whose

output is depicted in Figure 7. The L2 gain of the approximation

error is less than 6:38|10{3, as estimated by (17).

Figure 5. Computational time assessment of the FSP method vs balanced reduction approach. Comparison of the computational time
required to obtain the reduced order model via balanced realisation (filled circle) and to obtain the approximative model via the FSP method (empty
markers), with different, predefined error bounds (e). The reaction network analysed is (28). The parameters used for simulation are those of Figure 3.
Panels A, B, and C consider 10, 30, and 50 initial molecules for E and S and zero molecules for the rest of the species, respectively.
doi:10.1371/journal.pone.0103521.g005
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Brusselator
In contrast to the previous sections, here we consider the

interaction of species which might exhibit an infinite number of

population configurations. Namely, the Markov chain for this case

exhibits an infinite number of possible states si. By analysing a

large, yet truncated set of such configurations, we approximate the

probability of the populations to be lower than a predefined

threshold.

In particular, the system analysed is the Brusselator [34]. The

reactions that compose this network are the following:

0
k1

S1, ð36aÞ

S1

k2
S2, ð36bÞ

2S1zS2

k3
3S1, ð36cÞ

S1

k4
0: ð36dÞ

In the deterministic set-up, the trajectories of the concentrations

of S1 and S2 exhibit a limit cycle. When the system is considered

to be stochastic, single trajectories of the SSA might preserve this

oscillatory behaviour. However, when averaging over multiple

trajectories of the SSA this oscillatory behaviour is in general lost,

as not all the trajectories have the same frequency and phase of

oscillation. Hence, the behaviour of the probability in time given

by the solution of the CME will not present such limit cycle.

Figure 8A presents the comparison between the numerical

solution of the deterministic model and the average of 103

trajectories of the SSA. There we note that, although the

deterministic trajectories present a sustained oscillation, the

average of the SSA trajectories tends to a constant. This is

confirmed by Figure 8B, where we depict the numerical solution

of the CME for

y(t) : ~
Pr s1v�ss1ð Þ
Pr s2v�ss2ð Þ

� �
: ð37Þ

Here �ssi, i[½1,2� represents the steady state of the deterministic

ODE. That is, each entry of y(t) represents the probability of

being below its steady state. Likewise, Figure 8C shows the

approximation of (37) via the reduced model presented in this

paper.

As mentioned earlier, the possible number of species population

count in (36) is infinite as this is an open system subject to influx of

s1. Hence, to obtain the results in Figure 8, we truncated the state

space of the Markov chain to 3000 states. From this truncated

Markov Chain, we obtained a reduced order model with only 10

states, whose L2 gain of the approximation error is less than

0:24|10{3. To confirm that this state-space truncation captures

the support of the probability density function, we also tracked the

sum of the probability for all the states. The red, discontinuous line

in Figure 8B shows that this truncation includes all the probable

states of the Markov chain.

Discussion

In this paper we addressed the order reduction of the

infinitesimal generator of a homogeneous, continuous-time, finite

and discrete state-space Markov chain via the reduction of its

balanced realisation. The application range of these dynamical

systems is broad. Here, without loss of generality, we focus on its

use on stochastic chemical reaction networks. In this context, the

Figure 6. Number of states of different reduced-order models. By using different tolerances, the filled markers represent the number of states
required by the FSP method, whereas the empty markers depict the number of states required by the OFSP. The continuous, blue line represents the
number of states required by the reduced model via balanced realisation. The parameters values used for simulation are those used in Figure 3.
Furthermore, panel A considers 30 molecules for E and S initially; whereas the initial condition for E and S in panel B is 50 molecules.
doi:10.1371/journal.pone.0103521.g006

Figure 7. Marginal probability distributions for the reaction
network (28). Probability of having a molecular count of P within a
certain range, as obtained with the reduced order model. The
parameters used for simulation are fkf1,kf2,kb1g~f1,1,1g, 100 initial
molecules of substrate, 100 initial molecules of enzyme, and zero initial
molecules for the remaining species.
doi:10.1371/journal.pone.0103521.g007
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infinitesimal generator of the Markov chain that describes the

probability of having a particular species molecular count is a large

set of ODEs.

To reduce the order of the infinitesimal generator of a Markov

chain, we used an alternative coordinate system to represent the

chemical master equation (CME). This representation, denoted as

Lyapunov balanced realisation, has the interesting property that

the states of the transformed CME are organised in decreasing

order, with respect to their impact on the probabilities of interest.

Hence, an accurate approximation can be obtained, for example,

by neglecting the last states of the Lyapunov balanced model, as

discussed in the Analysis section. Although one may focus on

particular states of the Markov chain, it is also possible to account

for marginal probability distributions or even mean values, by

properly defining the matrix C in (18b).

In many cases, only selected states of the Markov chain might

be of practical relevance. For instance, this is the case when facing

limited or inexact measurement data, or when only a few states are

relevant for downstream signalling in biochemical reactions. Also,

in imaging analysis of chemical reaction networks, obtaining the

exact count of intracellular protein reporters might be challenging,

due to limited resolution. Hence, the validation of the mathemat-

ical model that describes the process under observation should

yield the probability of having a specific range of molecules count

of the observed species.

We presented this procedure as a case study in the Results

section, for a very simple reaction network. Even in such a simple

case, the associated Markov chain has approximately 5000 distinct

states of the system. This highlights how simulation of a system,

even in the simplest cases, might imply a computationally intensive

task. To alleviate such a burden, the model reduction via balanced

realisation used in this paper yields lower-dimensional ODE sets,

whose numerical solution might be several orders of magnitude

quicker than the numerical solution of the original CME.

Moreover, the method used to derive the lower dimensional

model provides an upper bound on the approximation error,

depending on the number of states neglected to derive the

approximation.

In some cases, the processes required for deriving the reduced

order model itself might take longer computational times, as

compared to the mere simulation of the CME. Nevertheless,

depending on the number of molecules of the system, the

numerical solution of the reduced model might be obtained

orders of magnitude faster, as shown in Figure 4. Hence, there will

be real savings on the computational time when the reduced

model is repeatedly utilised, for instance when adopting different

initial probability distributions.

We would like to stress that to obtain a reduced order model, we

have to fix kinetic parameters and to define which are the states of

interest. Should we require to modify either of them, a new

reduced model has to be derived. Likewise, all methods that

require computational calculations, such as the FSP, SSA, and

numerical solution of the CME will require numeric values for the

parameters and, moreover, specific numerical values for the initial

probability distribution. When either of them are modified, a new

numerical solution has to be obtained. Additionally, the reduction

and simulation of the CME might be orders of magnitude faster

than the application of FSP-based methods, as suggested by an

example analysed in the section Results.

Another possible use for the reduced model is to derive closed-

form expressions of its solution (see [18], for instance), thereby

avoiding the need for numerical solution of the reduced ODE set.

When the number of states of the Markov chain to reduce is so

large that using only one computer is unfeasible, we suggest the use

of parallel algorithms to obtain the model reduction by truncation

(see e.g. [25,35]).

Figure 8. Trajectories of the Brusselator in (36). Panel A depicts the simulation of the deterministic (discontinuous line) and stochastic
(continuous line) framework. For the stochastic approach, we averaged 100 trajectories of the SSA. In turn, Panel B shows the numerical solution of
the CME; whereas panel Panel C depicts the approximated numerical solution obtained via the reduced order model. In Panel B the red,
discontinuous line represents the sum of all the states of the truncated Markov chain. The parameter values used for simulation are
xss~1; yss~5; k1~1 and a~2 1{xss=yssð Þ{0:1; k4~k1=xss ; k2~2k4=a; k3~k2k4=(k1yss).
doi:10.1371/journal.pone.0103521.g008
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It is important to note that the reduced order model might lack

some properties of the full model. For instance, the infinitesimal

generator of the Markov chains studied here describes a positive

system: the value of the probabilities will be always positive.

However, the reduced order model obtained by truncation used in

this paper will not, in general, preserve such a property. This

implies that if most of the states of the balanced realisation are

neglected to obtain the reduced model, there is a risk of having

small, negative values for the approximated probabilities. An

example of such phenomenon can be observed on the upper

panels of Figure 2A and B. This evidences the existence of a trade-

off on the order and the accuracy of the reduced-order model.

As a rule of thumb, a good approximation may be obtained by

neglecting those states associated to Hankel singular values which

are three orders of magnitudes smaller than the largest one. If the

possibility of small, negative values for the probability cannot be

afforded for the application of the reduced order model, there are

other model order reduction methods that preserve the positivity

of the original model, such as the recent works in [36–38].

However, it is equally important to note that these approaches are

not generally applicable; are more time consuming; and have

larger error bounds.
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