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Abstract: The relative performance of competing point forecasts is usu-
ally measured in terms of loss or scoring functions. It is widely accepted
that these scoring function should be strictly consistent in the sense that
the expected score is minimized by the correctly specified forecast for a
certain statistical functional such as the mean, median, or a certain risk
measure. Thus, strict consistency opens the way to meaningful forecast
comparison, but is also important in regression and M-estimation. Usu-
ally strictly consistent scoring functions for an elicitable functional are not
unique. To give guidance on the choice of a scoring function, this paper
introduces two additional quality criteria. Order-sensitivity opens the pos-
sibility to compare two deliberately misspecified forecasts given that the
forecasts are ordered in a certain sense. On the other hand, equivariant
scoring functions obey similar equivariance properties as the functional at
hand – such as translation invariance or positive homogeneity. In our study,
we consider scoring functions for popular functionals, putting special em-
phasis on vector-valued functionals, e.g. the pair (mean, variance) or (Value
at Risk, Expected Shortfall).
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1. Introduction

From the cradle to the grave, human life is full of decisions. Due to the inherent
nature of time, decisions have to be made today, but at the same time, they are
supposed to account for unknown and uncertain future events. However, since
these future events cannot be known today, the best thing to do is to base the
decisions on predictions for these unknown and uncertain events. The call for
and the usage of predictions for future events is literally ubiquitous and even
dates back to ancient times. In those days, dreams, divination, and revelation
were considered as respected sources for forecasts, with the most prominent ex-
ample being the Delphic Oracle which was not only consulted for decisions of
private life, but also for strategic political decisions concerning peace and war.
With the development of natural sciences, mathematics, and in particular statis-
tics and probability theory, the ancient metaphysical art of making qualitative
forecasts turned into a sophisticated discipline of science adopting a quantita-
tive perspective. Subfields such as meteorology, mathematical finance, or even
futurology evolved.

Acknowledging that forecasts are inherently uncertain, two main questions
arise:

(i) How good is a forecast in absolute terms?
(ii) How good is a forecast in relative terms?
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While question (i) deals with forecast validation, this paper focuses on some
aspects of question (ii) which is concerned with forecast selection, forecast com-
parison, or forecast ranking. Specifically, we present results on order-sensitivity
and equivariance of consistent scoring functions for elicitable functionals. These
results may provide guidance for choosing a specific scoring function for fore-
cast comparison within the large class of all consistent scoring functions for an
elicitable functional of interest.

We adopt the general decision-theoretic framework following Gneiting (2011);
cf. Savage (1971); Osband (1985); Lambert, Pennock and Shoham (2008). For
some number n ≥ 1, one has

(a) observed ex post realizations y1, . . . , yn of a time series (Yt)t∈N, taking values
in an observation domain O with a σ-algebra O;

(b) a family F of probability distributions on (O,O), containing the (condi-
tional) distributions of Yt;

(c) ex ante forecasts x
(i)
1 , . . . , x

(i)
n , i ∈ {1, . . . ,m} of m ≥ 1 competing ex-

perts / forecasters taking values in an action domain A ⊆ R
k for some k ≥ 1;

(d) a scoring (or loss) function S : A×O → R. The scoring function is assumed
to be negatively oriented, that is, if a forecaster reports the quantity x ∈ A
and y ∈ O materializes, she is assigned the penalty S(x, y) ∈ R.

The observations yt can be real-valued (GDP growth for one year, maximal
temperature of one day), vector-valued (wind-speed, weight and height of per-
sons), functional-valued (path of the exchange rate Euro–Swiss franc over one
day), or also set-valued (area of rain on a given day, area affected by a flood).
In this article, we focus on point forecasts that may be vector-valued, which is
why we assume A ⊆ R

k for some k ≥ 1 and we equip the Borel set A with the
Borel σ-algebra. One is typically interested in a certain statistical property of
the underlying (conditional) distribution Ft of Yt. We assume that this prop-
erty can be expressed in terms of a functional T : F → A such as the mean, a
certain quantile, or a risk measure. Examples of vector-valued functionals are
the covariance matrix of a multivariate observation or a vector of quantiles at
different levels. Common examples for scoring functions are the absolute loss
S(x, y) = |x − y|, the squared loss S(x, y) = (x − y)2 (for A = O = R), or the
absolute percentage loss S(x, y) = |(x− y)/y| (for A = O = (0,∞)).

Forecast comparison is done in terms of realized scores

S̄(i)
n =

1

n

n∑
t=1

S(x
(i)
t , yt), i ∈ {1, . . . ,m}. (1.1)

That is, a forecaster is deemed to be the better the lower her realized score
is. However, there is the following caveat: The forecast ranking in terms of
realized scores not only depends on the forecasts and the realizations (as it
should definitely be the case), but also on the choice of the scoring function. In
order to avoid impure possibilities of manipulating the forecast ranking ex post
with the data at hand, it is necessary to specify a certain scoring function before
the inspection of the data. A fortiori, for the sake of transparency and in order
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to encourage truthful forecasts, one ought to disclose the choice of the scoring
function to the competing forecasters ex ante. But still, the optimal choice of
the scoring function remains an open problem. One can think of two situations:

(i) A decision-maker might be aware of their actual economic costs of utilizing
misspecified forecasts. In this case, the scoring function should reflect these
economic costs.

(ii) The actual economic costs might be unclear and the scoring function might
be just a tool for forecast ranking. However, the directive is given in terms
of the functional T : F → A one is interested in.

For situation (i) described above, one should use the readily economically in-
terpretable cost or scoring function. Therefore, the only concern is situation (ii).
In this paper, we consider predictions in a one-period setting, thus, dropping
the index t. This is justified by our objectives to understand the properties of
scoring functions S which do not change over time and is common in the litera-
ture (Murphy and Daan, 1985; Diebold and Mariano, 1995; Lambert, Pennock
and Shoham, 2008; Gneiting, 2011).

Assuming the forecasters are homines oeconomici and adopting the rationale
of expected utility maximization, given a concrete scoring function S, the most
sensible action consists in minimizing the expected score EFS(x, Y ) with respect
to the forecast x, where Y follows the distribution F , thus issuing the Bayes act
argminx∈A EFS(x, Y ). Hence, a scoring function should be incentive compatible
in that it encourages truthful and honest forecasts. In line with Murphy and
Daan (1985) and Gneiting (2011), we make the following definition.

Definition 1.1 (Consistency and elicitability). A scoring function is a map
S : A×O → R that is F-integrable.1 It is F-consistent for a functional T : F → A
if

S̄(T (F ), F ) ≤ S̄(x, F ) (1.2)

for all F ∈ F and for all x ∈ A, where S̄(x, F ) := EFS(x, Y ). It is strictly
F-consistent for T if it is F-consistent for T and if equality in (1.2) implies
x = T (F ). A functional T : F → A is called elicitable, if there exists a strictly
F-consistent scoring function for T .

Clearly, elicitability and consistent scoring functions are naturally linked also
to estimation problems, in particular, M-estimation (Huber, 1964; Huber and
Ronchetti, 2009) and regression with prominent examples being ordinary least
squares, quantile, or expectile regression (Koenker, 2005; Newey and Powell,
1987).

The necessity of utilizing strictly consistent scoring functions for meaningful
forecast comparison is impressively demonstrated in terms of a simulation study
in Gneiting (2011). However, for a given functional T : F → A, there is typically
a whole class of strictly consistent scoring functions for it, such as all Bregman
functions in case of the mean (Savage, 1971); further examples are given below.

1We say that a function a : O → R is F-integrable if it is F -integrable for each F ∈ F . A
function g : A× O → R is F-integrable if g(x, ·) is F-integrable for each x ∈ A.
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Patton (2017) shows that the forecast ranking based on (1.1) may depend on
the choice of the strictly consistent scoring function for T in finite samples, and
even at the population level if we compare two imperfect forecasts with each
other.

Therefore, we naturally have a threefold elicitation problem:

(i) Is T elicitable?
(ii) What is the class of strictly F-consistent scoring functions for T?
(iii) What are distinguished strictly F-consistent scoring functions for T?

Even though the denomination and the synopsis of the described problems un-
der the term ‘elicitation problem’ are novel, there is a rich strand of literature
in mathematical statistics and economics concerned with the threefold elicita-
tion problem. Foremost, one should mention the pioneering work of Osband
(1985), establishing a necessary condition for elicitability in terms of convex
level sets of the functional, and a necessary representation of strictly consistent
scoring functions, known as Osband’s principle (Gneiting, 2011). Whereas the
necessity of convex level sets holds in broad generality, Lambert (2013) could
specify sufficient conditions for elicitability for functionals taking values in a
finite set, and Steinwart et al. (2014) showed sufficiency of convex level sets for
real-valued functionals satisfying certain regularity conditions. Moments, ratios
of moments, quantiles, and expectiles are in general elicitable, whereas other im-
portant functionals such as variance, Expected Shortfall or the mode functional
are not (Savage, 1971; Osband, 1985; Weber, 2006; Gneiting, 2011; Heinrich,
2014).

Concerning subproblem (ii) of the elicitation problem, Savage (1971), Re-
ichelstein and Osband (1984), Saerens (2000), and Banerjee, Guo and Wang
(2005) gave characterizations for strictly consistent scoring functions for the
mean functional of a one-dimensional random variable in terms of Bregman
functions. Strictly consistent scoring functions for quantiles have been char-
acterized by Thomson (1979) and Saerens (2000). Gneiting (2011) provides a
characterization of the class of strictly consistent scoring functions for expec-
tiles. The case of vector-valued functionals apart from means of random vectors
has been treated substantially less than the one-dimensional case (Osband, 1985;
Banerjee, Guo and Wang, 2005; Lambert, Pennock and Shoham, 2008; Frongillo
and Kash, 2015a,b; Fissler and Ziegel, 2016).

The strict consistency of S only justifies a comparison of two competing
forecasts if one of them reports the true functional value. If both of them are
misspecified, it is per se not possible to draw a conclusion which forecast is
‘closer’ to the true functional value by comparing the realized scores. To this end,
some notions of order-sensitivity are desirable. According to Lambert (2013) we
say that a scoring function S is F-order-sensitive for a one-dimensional func-
tional T : F → A ⊆ R if for any F ∈ F and any x, z ∈ A such that either
z ≤ x ≤ T (F ) or z ≥ x ≥ T (F ), then S̄(x, F ) ≤ S̄(z, F ). This means, if a fore-
cast lies between the true functional value and some other forecast, then issuing
the forecast in-between should yield a smaller expected score than issuing the
forecast further away. In particular, order-sensitivity implies consistency. Vice
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versa, under weak regularity conditions on the functional, strict consistency also
implies order-sensitivity if the functional is real-valued; see Nau (1985, Proposi-
tion 3), Lambert (2013, Proposition 2), Bellini and Bignozzi (2015, Proposition
3.4).

This article is dedicated to a thorough investigation of order-sensitive scoring
functions for vector-valued functionals, thus contributing to a discussion of sub-
problem (iii) of the elicitation problem. Furthermore, we investigate to which
extent invariance or equivariance properties of elicitable functionals are reflected
in their respective consistent scoring functions.

Lambert, Pennock and Shoham (2008) introduced a notion of componentwise
order-sensitivity for the case of A ⊆ R

k. Friedman (1983) and Nau (1985) consid-
ered similar questions in the setting of probabilistic forecasts, coining the term
of effectiveness of scoring rules which can be described as order-sensitivity in
terms of a metric. In Section 3, we consider three notions of order-sensitivity in
the higher-dimensional setting: metrical order-sensitivity, componentwise order-
sensitivity, and order-sensitivity on line segments. We discuss their connections
(Lemma 3.5) and give conditions when such scoring functions exist (Lemma B.2,
Propositions 3.7, 3.8, Corollary 3.16) and of what form they are for the most
relevant functionals, such as vectors of quantiles (Propositions 3.11, 3.12, Exam-
ple 3.14), expectiles (Proposition 3.15), ratios of expectations (Propositions 3.6,
3.9, 3.10, 3.17), the pair of mean and variance (Proposition 3.18, Example 3.19),
and the pair consisting of Value at Risk and Expected Shortfall (Proposition
3.20, Example 3.21), two important risk measures in banking and insurance.

Complementing our results on order-sensitivity, in Section 2, we consider the
analytic properties of the expected score x �→ S̄(x, F ), x ∈ A ⊆ R

k, for some
scoring function S and some distribution F ∈ F . The (strict) consistency of S
for some functional T is equivalent the expected score having a (unique) global
minimum at x = T (F ). Order-sensitivity ensures monotonicity properties of
the expected score. As a technical result, we show that under weak regularity
assumptions on T , the expected score of a strictly consistent scoring function has
a unique local minimum – which, of course, coincides with the global minimum
at x = T (F ) (Proposition 2.6). Accompanied with a result on self-calibration
(Proposition 2.8), a continuity property of the inverse of the expected score,
which ensures that the minimum of the expected score is well-separated in the
sense of van der Vaart (1998), these two findings may be of interest on their
own right in the context of M-estimation (Theorem 2.9).

In Section 4, we consider functionals having an invariance or equivariance
property such as translation invariance or homogeneity. It is a natural question
whether a functional T that is, for example, translation equivariant has a consis-
tent scoring function that respects this property in the sense that if we evaluate
forecast performance of translated predictions and observations, the ranking
of predictive performance remains the same as that of the original data. In
parametric estimation problems, such a scoring function may allow to translate
the data without affecting the estimated parameter values. For one-dimensional
functionals, invariance of the scoring function often determines it uniquely up
to equivalence while this is not necessarily the case for higher-dimensional func-
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tionals (Proposition 4.7 and Corollary 4.12).
In Appendix A, we gather a list of common assumptions, which were origi-

nally introduced in Fissler and Ziegel (2016). Appendix B consists of technical
results, while all proofs are of the main part of this paper are deferred to Ap-
pendix C.

2. Analytic properties of expected scores

2.1. Monotonicity

Definition 2.1 (Mixture-continuity). Let F be convex. A functional T : F →
A ⊆ R

k is called mixture-continuous if for all F,G ∈ F the map

[0, 1] → A, λ �→ T ((1− λ)F + λG)

is continuous.

It is appealing that one does not have to specify a topology on F to de-
fine mixture-continuity because it suffices to work with the induced Euclidean
topology on [0, 1] and on A ⊆ R

k.
It turns out that mixture-continuity of a functional is strong enough to im-

ply order-sensitivity in the case of one-dimensional functionals (see Nau (1985,
Proposition 3), Lambert (2013, Proposition 2), Bellini and Bignozzi (2015,
Proposition 3.4)), and desirable monotonicity properties of the expected scores
also in higher dimensions (Propositions 2.4 and 2.6). At the same time, numer-
ous functionals of applied relevance are mixture-continuous, and we start by
giving examples and a sufficient condition (Proposition 2.2).

It is straight forward to see that the ratio of expectations is mixture-contin-
uous. Moreover, by the implicit function theorem, one can verify the mixture-
continuity of quantiles and expectiles directly under appropriate regularity con-
ditions (e.g., in the case of quantiles, all distributions in F should be C1 with
non-vanishing derivatives). Generalizing Bellini and Bignozzi (2015, Proposition
3.4c), we give a sufficient criterion for mixture-continuity in the next proposition.
Our version is not restricted to distributions with compact support (however,
the image of the functional must be bounded), and we formulate the result for
k-dimensional functionals.

Proposition 2.2. Let T : F → R
k be an elicitable functional with a strictly

F-consistent scoring function S : Rk × O → R such that S̄(·, F ) is continuous
for all F ∈ F . Then T is mixture-continuous on any F0 ⊆ F such that F0 is
convex and the image T (F0) is bounded.

Similarly to the original proof of Bellini and Bignozzi (2015), a sufficient
criterion for the continuity of S̄(·, F ) for any F ∈ F is that for all y ∈ O, the
score S(x, y) is quasi-convex and continuous in x.2

2We remark that for A ⊆ R, if a scoring function S is strictly Fp-consistent for some
functional T : Fp → A where Fp = {δy : y ∈ O} consists of all point measures on O, then the
quasi-convexity of x �→ S(x, y) for all y ∈ O is equivalent to the Fp-order-sensitivity of S for
T .
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Recall that, under appropriate regularity conditions on F , the asymmetric
piecewise linear loss Sα(x, y) = (1{y ≤ x} − α)(x − y) and the asymmetric
piecewise quadratic loss Sτ (x, y) = |1{y ≤ x}− τ |(x−y)2 are strictly consistent
scoring functions for the α-quantile and the τ -expectile, respectively, and both,
Sα as well as Sτ , are continuous in their first argument and convex. Hence,
Proposition 2.2 yields that both quantiles and expectiles are mixture-continuous.

Steinwart et al. (2014) used Osband’s principle (Osband, 1985) and the as-
sumption of continuity of T with respect to the total variation distance to show
order-sensitivity. Bellini and Bignozzi (2015) showed that the weak continuity of
a functional T implies its mixture-continuity. Consequently, one can also derive
the order-sensitivity in the framework of Steinwart et al. (2014) directly using
only mixture-continuity.

Lambert (2013) showed that it is a harder requirement to have order-sensitiv-
ity if T (F) is discrete. Then both approaches, invoking Osband’s principle or
using mixture-continuity, do not work because the interior of the image of T
is empty. Moreover, mixture-continuity implies that the functional is constant
(such that only trivial cases can be considered). Furthermore, it is proven in
Lambert (2013) that for a functional T with a discrete image, all strictly consis-
tent scoring functions are order-sensitive if and only if there is one order-sensitive
scoring function for T .In particular, there are functionals admitting strictly con-
sistent scoring functions that are not order-sensitive, one such example being
the mode functional.3

Let us turn attention to vector-valued functionals now. To understand the
monotonicity properties of the expected score of a mixture-continuous elicitable
functional T : F → A ⊆ R

k, it is useful to consider paths γ : [0, 1] → A ⊆ R
k,

γ(λ) = T (λF + (1 − λ)G) for F,G ∈ F . If T is elicitable, a classical result
asserts that T necessarily has convex level sets (Gneiting, 2011, Theorem 6).
This implies that the level sets of γ can only be closed intervals including the
case of singletons and the empty set. This rules out loops and some other possible
pathologies of γ. Furthermore, under the assumption that T is identifiable as
defined below, one can even show that the path γ is either injective or constant;
see Lemma B.1.

Definition 2.3 (Identifiability). Let A ⊆ R
k. An F-integrable function V : A×

O → R
k is said to be an F-identification function for a functional T : F → A ⊆

R
k if

V̄ (T (F ), F ) = 0

for all F ∈ F . Furthermore, V is a strict F-identification function for T if
V̄ (x, F ) = 0 implies x = T (F ) for all F ∈ F and for all x ∈ A. A functional
T : F → A ⊆ R

k is said to be identifiable, if there exists a strict F-identification

3Note that due to Proposition 1 in Heinrich (2014), the mode functional is elicitable relative
to the class of probability measure F containing unimodal discrete measures. Moreover, inter-
preting the mode functional as a set-valued functional, it is elicitable in the sense of Gneiting
(2011, Definition 2). A strictly F-consistent scoring function is given by S(x, y) = 1{x �= y}.
The main result of Heinrich (2014) is that the mode functional is not elicitable relative to the
class F of unimodal probability measures with Lebesgue densities.
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function for T .

In line with Gneiting (2011, Section 2.4), one can often obtain an identifica-
tion function as the gradient of a sufficiently smooth scoring function. However,
the converse intuition is not so clear – at least in the higher dimensional setting
k > 1: Not all strict identification functions can be integrated to a strictly con-
sistent scoring function. They have to satisfy the usual integrability conditions
(Königsberger, 2004, p. 185); see also Fissler and Ziegel (2016, Corollary 3.3)
and the discussion thereafter.

Proposition 2.4. Let F be convex and T : F → A ⊆ R
k be mixture-continuous

and surjective. Let S : A×O → R be strictly F-consistent for T . Then for each
F ∈ F , t = T (F ) and each x ∈ A, x 	= t there is a continuous path γ : [0, 1] → A
such that γ(0) = x, γ(1) = t, and the function [0, 1] 
 λ �→ S̄(γ(λ), F ) is
decreasing. Additionally, for 0 ≤ λ < λ′ ≤ 1 such that γ(λ) 	= γ(λ′) it holds that
S̄(γ(λ), F ) > S̄(γ(λ′), F ).

Remark 2.5. (i) Proposition 2.4 remains valid if S is only F-consistent.
Then, we merely have that the function [0, 1] 
 λ �→ S̄(γ(λ), F ) is de-
creasing, so the last inequality in Proposition 2.4 is not necessarily strict.

(ii) If one assumes in Proposition 2.4 that T is also identifiable, one can use
the injectivity of γ implied by Lemma B.1 to see that the function [0, 1] 

λ �→ S̄(γ(λ), F ) is strictly decreasing.

Under certain (weak) regularity conditions, the expected scores of a strictly
consistent scoring function has no other local minimum apart from the global
one at x = T (F ).

Proposition 2.6. Let F be convex and T : F → A ⊆ R
k be mixture-continuous

and surjective. If S : A × O → R is strictly F-consistent for T , then for all
F ∈ F the expected score S̄(·, F ) : A → R has only one local minimum which is
at x = T (F ).

2.2. Self-calibration

With Proposition 2.4 it is possible to prove that, under mild regularity condi-
tions, strictly consistent scoring functions are self-calibrated which turns out to
be useful in the context of M-estimation.

Definition 2.7 (Self-calibration). A scoring function S : A × O → R is called
F-self-calibrated for a functional T : F → A ⊆ R

k with respect to a norm4 ‖ · ‖
on A if for all ε > 0 and for all F ∈ F there is a δ = δ(ε, F ) > 0 such that for
all x ∈ A and t = T (F )

S̄(x, F )− S̄(t, F ) < δ =⇒ ‖t− x‖ < ε.

4It is straight forward to use a metric instead of a norm on A but in this article we only
consider A ⊆ Rk, so we did not see any benefit in considering this more general case. See also
the discussion before Definition 3.4.
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The notion of self-calibration was introduced by Steinwart (2007) in the con-
text of machine learning. In a preprint version of Steinwart et al. (2014),5 the
authors translate this concept to the setting of scoring functions as follows (using
our notation):

“For self-calibrated S, every δ-approximate minimizer of S̄(·, F ), approx-
imates the desired property T (F ) with precision not worse than ε. [. . . ]
In some sense order sensitivity is a global and qualitative notion while
self-calibration is a local and quantitative notion.”

In line with this quotation, self-calibration can be considered as the continuity
of the inverse of the expected score S̄(·, F ) at the global minimum x = T (F )
– and as such, it is a local property of the inverse. This property ensures that
convergence of the expected score to its global minimum implies convergence of
the forecast to the true functional value. On the other hand, self-calibration of a
scoring function S is equivalent to the fact that the argmin T (F ) of the expected
score S̄(·, F ) is a well-separated point of minimum in the sense of van der Vaart
(1998, p. 45) – as such being a global property of the expected score itself. That
means that for any ε > 0

inf{S̄(x, F ) : ‖T (F )− x‖ ≥ ε} > S̄(T (F ), F ).

It is relatively straight forward to see that self-calibration implies strict consis-
tency: Let S be F-self-calibrated for T , F ∈ F , t = T (F ) and x ∈ A with x 	= t.
Then for ε := ‖x− t‖/2 > 0 there is a δ > 0 such that S̄(x, F )− S̄(t, F ) ≥ δ > 0.

In the preprint version of Steinwart et al. (2014) it is shown for k = 1 that
order-sensitivity implies self-calibration. The next Proposition shows that the
kind of order-sensitivity given by Proposition 2.4 also implies self-calibration for
k ≥ 1.

Proposition 2.8. Let F be convex, A ⊆ R
k be closed, and T : F → A be a

surjective and mixture-continuous functional. If S : A × O → R is strictly F-
consistent for T and S̄(·, F ) : A → R is continuous for all F ∈ F , then S is
F-self-calibrated for T .

We end this subsection about self-calibration by demonstrating its applica-
bility in the context of M-estimation.

Theorem 2.9. Let S : A×O → R be an F-self-calibrated scoring function for a
functional T : F → A ⊆ R

k. Then, the following assertion holds for all F ∈ F .
If Y1, Y2, . . . is a sequence of random variables with distribution F ∈ F such that

sup
x∈A

∣∣∣∣∣ 1n
n∑

i=1

S(x, Yi)− S̄(x, F )

∣∣∣∣∣ P−→ 0,

then

argmin
x∈A

1

n

n∑
i=1

S(x, Yi)
P−→ T (F ).

5Available at http://users.cecs.anu.edu.au/~williams/papers/P196.pdf

http://users.cecs.anu.edu.au/~williams/papers/P196.pdf
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The proof of Theorem 2.9 is a direct consequence of van der Vaart (1998,
Theorem 5.7). Recall that under some additional regularity conditions, it is also
possible to derive a Central Limit Theorem associated to the consistency result
established in Theorem 2.9. The rate is driven by the dependence structure of
the observations Y1, Y2, . . .. If they are independent the rate is typically n−1/2.
The form of the scoring function only enters via the asymptotic covariance. For
details, we refer the reader to Chapter 5.3 in van der Vaart (1998). A detailed
discussion of the asymptotic covariance and related efficiency considerations of
the estimator are beyond the scope of this paper.

3. Order-sensitivity

3.1. Different notions of order-sensitivity

The idea of order-sensitivity is that a forecast lying between the true functional
value and some other forecast is also assigned an expected score lying between
the two other expected scores. If the action domain is one dimensional, there
are only two cases to consider: both forecasts are on the left-hand side of the
functional value or on the right-hand side. However, if A ⊆ R

k for k ≥ 2, the
notion of ‘lying between’ is ambiguous. Two obvious interpretations for the mul-
tidimensional case are the componentwise interpretation and the interpretation
that one forecast is the convex combination of the true functional value and the
other forecast.

Definition 3.1 (Componentwise order-sensitivity). A scoring function S : A×
O → R is called componentwise F-order-sensitive for a functional T : F → A ⊆
R

k, if for all F ∈ F , t = T (F ) and for all x, z ∈ A we have that:

For all m ∈ {1, . . . , d} : zm ≤ xm ≤ Tm(F ) or zm ≥ xm ≥ Tm(F )

=⇒ S̄(x, F ) ≤ S̄(z, F ). (3.1)

Moreover, S is called strictly componentwise F-order-sensitive for T if S is
componentwise F-order-sensitive and if x 	= z in (3.1) implies that S̄(x, F ) <
S̄(z, F ).

Remark 3.2. In economic terms, a strictly componentwise order-sensitive scor-
ing function rewards Pareto improvements6 in the sense that improving the
prediction performance in one component without deteriorating the prediction
ability in the other components results in a lower expected score.

6The definition of the Pareto principle according to Scott and Marshall (2009): “A prin-
ciple of welfare economics derived from the writings of Vilfredo Pareto, which states that a
legitimate welfare improvement occurs when a particular change makes at least one person
better off, without making any other person worse off. A market exchange which affects no-
body adversely is considered to be a ‘Pareto-improvement’ since it leaves one or more persons
better off. ‘Pareto optimality’ is said to exist when the distribution of economic welfare cannot
be improved for one individual without reducing that of another.”
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Definition 3.3 (Order-sensitivity on line segments). Let ‖ · ‖ be the Euclidean
norm on R

k. A scoring function S : A × O → R is F-order-sensitive on line
segments for a functional T : F → A ⊆ R

k, if for all F ∈ F , t = T (F ), and for
all v ∈ S

k−1 := {x ∈ R
k : ‖x‖ = 1} the map

ψ : D = {s ∈ [0,∞) : t+ sv ∈ A} → R, s �→ S̄(t+ sv, F )

is increasing. If the map ψ is strictly increasing, we call S strictly F-order-
sensitive on line segments for T .

These two notions of order-sensitivity do not allow for a comparison of any
two misspecified forecasts, no matter where they are relative to the true func-
tional value. An intuitive requirement could be ‘the closer to the true functional
value the smaller the expected score’, thus calling for the notion of a metric.
Since, for a fixed functional T and some fixed distribution F , we always have
a fixed reference point T (F ) and we have the induced vector-space structure of
R

k on A, we shall only work with 
p-norms ‖ · ‖p, p ∈ [1,∞]. Recall that for

x ∈ R
k, ‖x‖p := (

∑k
i=1 |xi|p)1/p for p ∈ [1,∞) and ‖x‖∞ := supi=1,...,k |xi|. If

the assertion does not depend on the choice of p, we shall usually omit the p in
the notation. For other choices of A, it would be also interesting to replace the
norm by a metric in the following definition.

Definition 3.4 (Metrical order-sensitivity). Let p ∈ [1,∞]. A scoring function
S : A× O → R is metrically F-order-sensitive for a functional T : F → A ⊆ R

k

relative to the 
p-norm, if for all F ∈ F , t = T (F ) and for all x, z ∈ A we have
that

‖x− t‖p ≤ ‖z − t‖p =⇒ S̄(x, F ) ≤ S̄(z, F ). (3.2)

If additionally the inequalities in (3.2) are strict, we say that S is strictly met-
rically F-order-sensitive for T relative to ‖ · ‖p.

Similarly to (strict) consistency, all three notions of (strict) order-sensitivity
are preserved when considering two scoring functions that are equivalent.7

The notion of componentwise order-sensitivity corresponds almost literally
to the notion of accuracy-rewarding scoring functions introduced by Lambert,
Pennock and Shoham (2008). Metrically order-sensitivity scoring functions have
their counterparts in the field of probabilistic forecasting in effective scoring
rules introduced by Friedman (1983) and further investigated by Nau (1985).
Actually, the latter paper has also given the inspiration for the notion of order-
sensitivity on line segments. It is obvious that any of the three notions of (strict)
order-sensitivity implies (strict) consistency. The next lemma formally states
this result and gives some logical implications concerning the different notions
of order-sensitivity. The proof is standard and therefore omitted.

7Two scoring functions S1, S2 : A × O → R are equivalent if there is a positive constant
λ > 0 and an F-integrable function a : O → R such that S2(x, y) = λS1(x, y) + a(y), for all
(x, y) ∈ A× O.
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Lemma 3.5. Let T : F → A ⊆ R
k be a functional and S : A×O → R a scoring

function.

(i) Let p ∈ [1,∞). If S is (strictly) metrically F-order-sensitive for T relative
to the 
p-norm, then S is (strictly) componentwise F-order-sensitive for
T .

(i’) If S is (strictly) metrically F-order-sensitive for T relative to the 
∞-norm,
then S is componentwise F-order-sensitive for T .

(i”) If S is (strictly) metrically F-order-sensitive for T relative to the 
∞-norm,
then S is (strictly) F-consistent for T .

(ii) If S is (strictly) componentwise F-order-sensitive for T , then S is (strictly)
F-order-sensitive on line segments for T .

(iii) If S is (strictly) F-order-sensitive on line segments for T , then S is
(strictly) F-consistent for T .

3.2. Componentwise order-sensitivity

Under restrictive regularity assumptions, Lambert, Pennock and Shoham (2008,
Theorem 5) claim that whenever a functional has a componentwise order-sen-
sitive scoring function, the components of the functional must be elicitable.
Moreover, assuming that the measures in F have finite support, they assert
that any componentwise order-sensitive scoring function is the sum of strictly
consistent scoring functions for the components. Lemma B.2 shows the first
claim under less restrictive smoothness assumptions on the scoring function.
For many common examples of functionals, the second claim can be shown
relaxing the restrictive condition on F .

If Tm : F → Am ⊆ R, m ∈ {1, . . . k}, are mixture-continuous and elicitable
with strictly F-consistent scoring functions Sm : Am × O → R, then they are
order-sensitive according to Lambert (2013, Proposition 2) and Bellini and Big-

nozzi (2015, Proposition 3.4). Therefore, the sum
∑k

m=1 Sm(xm, y) is strictly
componentwise F-order-sensitive for (T1, . . . , Tk). More interestingly, one can
establish the reverse of the last assertion. Any strictly componentwise order-
sensitive scoring function must necessarily be additively separable. In Fissler
and Ziegel (2016, Section 4), we established a dichotomy for functionals with
elicitable components: In most relevant cases, the functional (the correspond-
ing strict identification function, respectively) satisfies Assumption (V4) therein
(e.g., when the functional is a vector of different quantiles and / or different ex-
pectiles with the exception of the 1/2-expectile), or it is a vector of ratios of
expectations with the same denominator, or it is a combination of both situa-
tions. Under some regularity conditions, Fissler and Ziegel (2016, Propositions
4.2 and 4.4) characterize the form of strictly consistent scoring functions for the
first two situations, whereas Fissler and Ziegel (2016, Remark 4.5) is concerned
with the third situation. For this latter situation, any strictly consistent scoring
function must be necessarily additive for the respective blocks of the functional.
And for the first situation, Fissler and Ziegel (2016, Proposition 4.2) yields the
additive form of S automatically. It remains to consider the case of Fissler and
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Ziegel (2016, Proposition 4.4), that is, a vector of ratios of expectations with
the same denominator.

Proposition 3.6. Let T : F → A ⊆ R
k be a ratio of expectations with the

same denominator, that is, T (F ) = EF [p(Y )]/EF [q(Y )] for some F-integrable
functions p : O → R

k, q : O → R such that EF [q(Y )] > 0 for all F ∈ F .8 Assume
that T is surjective, and that int(A) 	= ∅ is simply connected. Moreover, consider
the strict F-identification function V : A × O → R

k, V (x, y) = q(y)x − p(y)
and some strictly F-consistent scoring function S : A × O → R such that the
Assumptions (V1), (S2), (F1), and (VS1) hold. If S is strictly componentwise
F-order-sensitive for T , then S is of the form

S(x1, . . . , xk, y) =

k∑
m=1

Sm(xm, y), (3.3)

for almost all (x, y) ∈ A × O, where Sm : Am × O → R, m ∈ {1, . . . , k}, are
strictly F-consistent scoring functions for Tm : F → Am, Am := Tm(F) ⊆ R,
and Tm(F ) = EF [pm(Y )]/EF [q(Y )].

The notion of componentwise order-sensitivity has an appealing interpreta-
tion in the sense that it rewards Pareto improvements of the predictions; see
Remark 3.2. The results of Lemma B.2 and Proposition 3.6 give a clear under-
standing of the concept including its limitations to the case of functionals only
consisting of elicitable components.

Ehm et al. (2016) introduced Murphy diagrams for forecast comparison of
quantiles and expectiles. Murphy diagrams have the advantage that forecasts
are compared simultaneously with respect to all consistent scoring functions for
the respective functional. For many multivariate functionals such as ratios of
expectations, the methodology cannot be readily extended because there are
no mixture representations available for the class of all consistent scoring func-
tions. Proposition 3.6 shows that when considering only componentwise order-
sensitive consistent scoring functions, the situations is different and mixture
representations (and hence Murphy diagrams) are readily available for forecast
comparison.

3.3. Metrical order-sensitivity

For a real-valued functional T there can be at most one strictly metrically order-
sensitive scoring function, up to equivalence. To show this, we use Osband’s
principle and impose the corresponding regularity conditions.

8It is no loss of generality to assume that q̄(F ) > 0 for all F ∈ F in Proposition 3.6. In order
to ensure that T is well-defined, necessarily q̄(F ) �= 0 for all F ∈ F . However, Assumption
(V1) implies that F is convex. So if there are F1, F2 ∈ F such that q̄(F1) < 0 and q̄(F2) > 0
then there is a convex combination G of F1 and F2 such that q̄(G) = 0. Consequently, either
q̄(F ) > 0 for all F ∈ F or q̄(F ) < 0 for all F ∈ F , and by possibly changing the sign of p one
can assume that the first case holds.
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Proposition 3.7. Let T : F → A ⊆ R be a surjective, elicitable and identifiable
functional with an oriented strict F-identification function V : A × O → R. If
int(A) 	= ∅ is convex and S, S∗ : A×O → R are two strictly metrically F-order-
sensitive scoring functions for T such that the Assumptions (V1), (V2), (S1),
(F1) and (VS1) (with respect to both scoring functions) hold, then S and S∗ are
equivalent almost everywhere.

For the higher-dimensional setting we can show a slightly more limited ver-
sion of Proposition 3.7. Two scoring functions that are additively separable as in
(3.3) and that are strictly metrically order-sensitive for the same functional must
necessarily be equivalent. For most practically relevant cases – namely when we
consider an 
p-norm with p ∈ [1,∞) and when the functional possesses an iden-
tification function satisfying Assumption (V4) or that are ratios of expectations
with the same denominator – Lemma 3.5, Proposition 3.6 and Fissler and Ziegel
(2016, Proposition 4.2) yield that any metrically order-sensitive scoring function
– presuming there is one – is additively separable. Hence, for these situations,
metrically order-sensitive scoring functions are unique, up to equivalence.

Proposition 3.8. Let S : A×O → R be a strictly metrically F-order-sensitive
scoring function for a surjective functional T = (T1, . . . , Tk) : F → A ⊆ R

k of
the form

S(x1, . . . , xk, y) =
k∑

m=1

Sm(xm, y)

for all (x, y) ∈ A × O where Sm : Am × O → R, m ∈ {1, . . . , k}, Am = {xm ∈
R : ∃(z1, . . . , zk) ∈ A and zm = xm}, are strictly F-consistent scoring functions
for Tm. Assume that int(A) 	= ∅. Then, the following assertions hold:

(i) The scoring functions Sm, m ∈ {1, . . . , k}, are strictly metrically F-order-
sensitive for Tm.

(ii) Let λ1, . . . , λk > 0 and define the scoring function S∗ : A× O → R via

S∗(x1, . . . , xk) =

k∑
m=1

λmSm(xm, y).

Then S∗ is strictly metrically F-order-sensitive (with respect to the same

p-norm as S) if and only if λ1 = · · · = λk.

Next, we use the derived theoretical results to examine when some popular
functionals admit strictly metrically order-sensitive scoring functions, and if so,
of what form they are.

3.3.1. Ratios of expectations with the same denominator

We start with the one-dimensional characterization.

Proposition 3.9. Let F be convex and p, q : O → R two F-integrable functions
such that q̄(F ) > 0 for all F ∈ F . Define T : F → A ⊆ R, T (F ) = p̄(F )/q̄(F )
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and assume that T is surjective and int(A) 	= ∅ is convex. Then the following
two assertions are true:

(i) Any scoring function which is equivalent to

S : A× O → R, S(x, y) =
1

2
q(y)x2 − p(y)x (3.4)

is strictly metrically F-order-sensitive for T .
(ii) If F is such that Assumptions (V1), (F1) are satisfied with V (x, y) =

q(y)x − p(y), then any scoring function S∗ : A × O → R, which is strictly
metrically F-order-sensitive and satisfies Assumptions (S1) and (VS1), is
equivalent to S defined at (3.4) almost everywhere.

Now, we turn to the multivariate characterization.

Proposition 3.10. Let k ≥ 2, F be convex and p : O → R
k, q : O → R two F-

integrable functions such that q̄(F ) > 0 for all F ∈ F . Define T : F → A ⊆ R
k,

T (F ) = p̄(F )/q̄(F ) and assume that T is surjective and int(A) 	= ∅. Then, the
following assertions are true:

(i) Any scoring function which is equivalent to

S : A× O → R, S(x1, . . . , xk, y) =

k∑
m=1

1

2
q(y)x2

m − pm(y)xm (3.5)

is strictly metrically F-order-sensitive for T with respect to the 
2-norm.
(ii) If F is such that Assumptions (V1), (F1) are satisfied with V (x, y) =

q(y)x − p(y), then any scoring function S∗ : A × O → R, which is strictly
metrically F-order-sensitive with respect to the 
2-norm and satisfies As-
sumptions (S1) and (VS1), is equivalent to S defined at (3.5) almost ev-
erywhere.

(iii) If F is such that Assumptions (V1), (F1) are satisfied with V (x, y) =
q(y)x − p(y), then there is no scoring function S∗ : A × O → R which
satisfies Assumptions (S1) and (VS1) and which is strictly metrically F-
order-sensitive with respect to an 
p-norm with p ∈ [1,∞) \ {2}.

Savage (1971, Section 5) has already shown that in case of the mean, the
squared loss is essentially the only symmetric loss in the sense that it is the only
metrically order-sensitive loss for the mean. See also Patton (2017, Section 2.1)
for a discussion that symmetry – or metrical order-sensitivity – is not necessary
for strict consistency of scoring functions with respect to the mean.

3.3.2. Quantiles

Since we treat only point-valued functionals in this article, we shall assume that
the α-quantile of F is a singleton and identify the set with its unique element
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(henceforth, we shall refer to this assumption as F having a unique α-quantile).9

Furthermore, note that assuming the identifiability of the α-quantile with the
canonical identification function Vα(x, y) = 1{y ≤ x}−α on a class F amounts
to assuming that F (qα(F )) = α for all F ∈ F .10

Proposition 3.11. Let α ∈ (0, 1) and F be a family of distribution functions
F on R with unique α-quantiles qα(F ) satisfying F (qα(F )) = α for all F ∈ F .
Assume that there is an F0 ∈ F , such that its translation Fλ(·) = F0(· − λ)
is also an element of F for all λ ∈ R. Consequently, Tα = qα : F → A = R

is surjective. Under assumptions (V1) with respect to the strict identification
function Vα : R×R → R, Vα(x, y) = 1{y ≤ x}−α, there is no strictly metrically
F-order-sensitive scoring function for Tα satisfying Assumption (S1).

The reasons for the non-existence of a strictly metrically order-sensitive scor-
ing function for the α-quantile are of different nature in the two cases that
α 	= 1/2 and that α = 1/2 in the proof of Proposition 3.11. In both cases, we
used Osband’s principle to derive a representations of the derivative of the ex-
pected score. Assuming that the derivative has the form as stated in Osband’s
principle, one can directly derive a contradiction for α 	= 1/2. However, for
α = 1/2, this form merely implies that the distributions in F must be symmet-
ric around their medians. This is not contradictory to the form of the gradient
derived via Osband’s principle, but only to the assumption that F is convex.
Dropping this assumption, we can derive the following Lemma. The proof is
straight forward from Lemma B.3.

Proposition 3.12. Let F be a family of distribution functions on R with unique
medians T1/2 : F → R and finite first moments. If all distributions in F are
symmetric around their medians in the sense that

F (T1/2(F ) + x) = 1− F ((T1/2(F )− x)−) (3.6)

for all F ∈ F , x ∈ R, then any scoring function that is equivalent to the absolute
loss S : R × R → R, S(x, y) = |x − y|, is strictly metrically F-order-sensitive
with respect to the median.

9Recall that the α-quantile of a distribution F consists of all points x ∈ R satisfying
limt↑x F (t) ≤ α ≤ F (x).

10Actually, assuming F is convex and rich enough, this holds for any identification function
for the α-quantile. Indeed, consider some distribution function F0 ∈ F and some level α ∈
(0, 1). Fix some x0 ∈ R such that F0(x0) < α, implying that qα(F0) > x0. Assume that for
any λ ∈ [0, 1], the distribution

Fλ(x) =

{
F0(x), x < x0

(1− λ)F0(x) + λ, x ≥ x0

is an element of F . Then, there is some λ′ ∈ (0, 1) such that Fλ′ (x0) = α implying that
Fλ(x0) > α for all λ ∈ (λ′, 1] and qα(Fλ) = x0 for all λ ∈ [λ′, 1]. Assume that V is a strict F-
identification function for qα. That means V̄ (x0, Fλ) = 0 for all λ ∈ [λ′, 1] and V̄ (x0, Fλ) �= 0
for all λ ∈ [0, λ′). Consider some λ ∈ [λ′, 1]. Then,

V̄ (x0, Fλ) = (1− λ)V̄ (x0, F0) + λV̄ (x0, F1) = (1− λ)V̄ (x0, F0) �= 0.

This is a contradiction to V being a strict F-identification function for qα.
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As mentioned above, under the conditions of Proposition 3.12, the necessary
characterization of strictly consistent scoring functions via Osband’s principle
is not available. In particular, this means that we cannot use Proposition 3.7.
Indeed, if the distributions in F are symmetric around their medians in the sense
of (3.6) and under the integrability condition that all elements in F have a finite
first moment, the median and the mean coincide. Hence, any convex combination
of a strictly consistent scoring function for the mean and the median provides
a strictly consistent scoring function. A fortiori, any scoring function which is
equivalent to S(x, y) = (1−λ)|x−y|+λ|x−y|2, λ ∈ [0, 1] is strictly metrically F-
order-sensitive. However, the class of strictly metrically F-order-sensitive scoring
functions is even bigger – Lehmann and Casella (1998, Corollary 7.19, p. 50)
show that (subject to integrability conditions) for an even and strictly convex
function Φ: R → R, the score S(x, y) = Φ(x− y) is strictly metrically F-order-
sensitive for the median. Note that if the distributions in F are symmetric, their
center of symmetry, which is the functional solving (3.6), is unique (Fissler,
2017, Lemma 4.1.34), even if the median is not unique. The result of Lehmann
and Casella (1998, Corollary 7.19, p. 50) holds for this center of symmetry.
Acknowledging that some popular choices for Φ are not strictly convex (see
Example 3.14), the following proposition gives a refinement of their result.

Proposition 3.13. Let F be a class of symmetric distributions on R with center
of symmetry C : F → R, that is, F (C(F ) + x) = 1 − F ((C(F ) − x)−) for all
F ∈ F , x ∈ R. Let Φ: R → R be a convex and even function, and S : R ×
R → R, S(x, y) = Φ(x − y). For any x ∈ R, define the function Ψx : R → R,
Ψx(y) = 1

2 (Φ(x − y) + Φ(−x − y)), and for x, z ∈ R the set Mx,z = {y ∈
R : Ψx(y) − Ψz(y) > 0}. If for all F ∈ F and for all x, z ∈ R with |x| > |z|
one has that P(Y − C(F ) ∈ Mx,z) > 0, Y ∼ F , then S is strictly metrically
F-order-sensitive for C. In particular, if for all F ∈ F and for all x 	= 0 it holds
that P(Y − C(F ) ∈ Mx,0) > 0, Y ∼ F , then S is strictly F-consistent for C.

If Φ is strictly convex then Mx,z = R for all |x| > |z|.

Example 3.14. Let F be a class of symmetric distributions and S(x, y) =
Φ(x− y).

(i) If Φ(t) = |t|2, the squared loss arises. Since Φ is strictly convex, the squared
loss is strictly metrically F-order-sensitive.

(ii) For Φ(t) = |t|, S takes the form of the absolute loss. Then S is strictly met-
rically F-order-sensitive (and strictly F-consistent) if and only if C(F ) ∈
supp(F ) for all F ∈ F .11

(iii) Another prominent example of a metrically order-sensitive scoring func-
tion for the center of a symmetric distribution besides the absolute or
the squared loss is the so-called Huber loss which was presented in Huber

11With the support of F supp(F ) we denote the support of the measure induced by F . In
this context, C(F ) ∈ supp(F ) is equivalent to F having a unique median.
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(1964) and arises upon taking S(x, y) = Φ(x− y) with

Φ(t) =

{
1
2 t

2, for |t| < k,

k|t| − 1
2k

2, for |t| ≥ k,

where k ∈ R, k ≥ 0 is a tuning parameter. The Huber loss is strictly
metrically F-order-sensitive (strictly F-consistent) if and only if [C(F )−
k, C(F ) + k] ∩ supp(F ) 	= ∅ for all F ∈ F .

We emphasize that there are not only metrically-order sensitive strictly con-
sistent scoring functions for the center of symmetric distributions. One can also
use asymmetric scoring functions, for example those for the median or the mean,
to elicit the center of symmetry.

Due to the negative result of Proposition 3.11 we dispense with an inves-
tigation of scoring functions that are metrically order-sensitive for vectors of
different quantiles.

3.3.3. Expectiles

The special situation of the 1/2-expectile, which coincides with the mean func-
tional, was already considered in Subsection 3.3.1, so let τ 	= 1/2. It is obvious
that the canonical scoring function for the τ -expectile, that is, the asymmetric
squared loss

Sτ (x, y) = |1{y ≤ x} − τ |(x− y)2

is not metrically order-sensitive since x �→ Sτ (x + y, y) is not an even func-
tion. A fortiori, it turns out that (under some assumptions) there is no strictly
metrically F-order-sensitive scoring function for the τ -expectile for τ 	= 1/2.

Proposition 3.15. Let τ ∈ (0, 1), τ 	= 1/2, and Tτ = μτ : F → A ⊆ R, int(A) 	=
∅ convex, be the τ -expectile. Assume that Tτ is surjective, and that Assumption
(V1) holds with respect to the strict F-identification function Vτ (x, y) = 2|1{y ≤
x} − τ | (x − y). Suppose that V̄ (·, F ) is twice differentiable for all F ∈ F and
that there is a strictly F-consistent scoring function S : A × R → R such that
S̄(·, F ) is three times differentiable for all F ∈ F . In particular, let each F ∈ F
be differentiable with derivative f = F ′.
If there is a t ∈ A and F1, F2 ∈ F such that Tτ (F1) = Tτ (F2) = t, F1(t) = F2(t),
but F ′

1(t) = f1(t) 	= f2(t) = F ′
2(t), then S is not metrically F-order-sensitive.

Interestingly, the arguments provided in the proof of Proposition 3.15 leads
to an alternative proof that the squared loss is the only strictly metrically order-
sensitive scoring function for the mean, up to equivalence; see Remark C.1 for
details.

3.4. Order-sensitivity on line segments

Recalling Lemma 3.5, every componentwise order-sensitive scoring function is
also order-sensitive on line segments. However, for the particular class of linear
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functionals, the following corollary shows that any strictly consistent scoring
function is already strictly componentwise order-sensitive on line segments.12

Corollary 3.16. If F is convex and T : F → A ⊆ R
k is linear and surjective,

then any strictly F-consistent scoring function for T is strictly F-order-sensitive
on line segments.

Corollary 3.16 immediately leads the way to the result that the class of strictly
order-sensitive scoring functions on line segments is strictly bigger than the class
of strict componentwise order-sensitive scoring functions (for some functionals
with dimension k ≥ 2.) E.g. consider a vector of expectations satisfying the
conditions of Proposition 3.6 which are the same as the ones in Fissler and Ziegel
(2016, Proposition 4.4). Due to the latter result, there are strictly consistent
scoring functions – and hence, with Corollary 3.16, strictly order-sensitive on
line segments – which are not additively separable. By Proposition 3.6 they
cannot be strictly componentwise order-sensitive.

We can extend the result of Corollary 3.16 to the case of ratios of expectations
with the same denominator.

Proposition 3.17. Let T : F → A ⊆ R
k be a ratio of expectations with the

same denominator, that is, T (F ) = p̄(F )/q̄(F ) for some F-integrable functions
p : O → R

k, and q : O → R where we assume that q̄(F ) > 0 for all F ∈ F and
that A is open and convex. Any scoring function of the form

S(x, y) = −φ(x)q(y) +∇φ(x)(q(y)x− p(y)) (3.7)

is strictly F-order sensitive on line segments, where φ is strictly convex differ-
entiable function on A.

Fissler and Ziegel (2016, Proposition 4.4) shows that essentially all strictly
consistent scoring functions for T in the above Proposition 3.17 are of the form
at (3.7); see also Frongillo and Kash (2015a, Theorem 13).

Order-sensitivity on line segments is stable under applying an isomorphism
via the revelation principle (Gneiting, 2011, Theorem 4). However, dropping the
linearity assumption on the bijection in the revelation principle, order-sensitivity
on line segments is generally not preserved; see Subsection 3.4.1.

3.4.1. The pair (mean, variance)

The pair (mean, variance) is of importance not only from an applied point of
view but it is also an interesting example in the theory about elicitability. Due to
the lack of convex level sets, variance is not elicitable (Gneiting, 2011, Theorem
6). However, the pair (mean, variance) is a bijection of the (elicitable) pair

12According to Abernethy and Frongillo (2012), we call a functional T : F → A linear,
if it behaves linearly for mixtures of distributions. That is, for any F,G ∈ F such that
(1 − λ)F + λG ∈ F for λ ∈ [0, 1] it holds that T ((1 − λ)F + λG) = (1 − λ)T (F ) + λT (G).
Examples of linear functionals are expectations of transformations, that is, T (F ) = EF [p(Y )]
for some F-integrable function p : O → Rk.
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(mean, second moment), and, invoking the revelation principle (Gneiting, 2011,
Theorem 4), variance is jointly elicitable with the mean. The revelation principle
provides an explicit link between the class of strictly consistent scoring functions
for the first two moments which are of Bregman-type (Fissler and Ziegel, 2016,
Proposition 4.4) and the respective class for mean and variance.

As the pair (mean, variance) has of a non-elicitable component, if fails to
be componentwise order-sensitive (Lemma B.2) and therefore, it is also not
metrically order-sensitive. A priori, order-sensitivity on line segments is not
ruled out. Corollary 3.16 implies that any strictly consistent scoring function
for the pair of the first and second moment is order-sensitive on line segments.
Even though the bijection connecting (mean, variance) with the pair of the
first two moments is not linear, the following proposition gives necessary and
sufficient conditions for scoring functions to be order-sensitive on line segments
for (mean, variance). Example 3.19 shows the existence of order-sensitive scoring
functions on line segments for (mean, variance).

Proposition 3.18. Let F be a class of distributions on R with finite second
moments such that the functional T = (mean, variance) : F → A is surjective
on A = R × (0,∞). Let Assumptions (F1) and (V1) be satisfied with the strict

F-identification function V : A×R → R
2, V (x1, x2, y) =

(
x1−y, x2+x2

1−y2
)�

.
Let S : A×R → R be a scoring function that is (jointly) continuous and for any
y ∈ R, the function A 
 x �→ S(x, y) be twice continuously differentiable. Then
S is F-order-sensitive on line segments for T if and only if S is of the form

S(x1, x2, y) = −φ(x1, x2 + x2
1) +∇φ(x1, x2 + x2

1)

(
x1 − y

x2 + x2
1 − y2

)
+ a(y), (3.8)

where a : R → R is some F-integrable function and φ : A′ → R, A′ = {(x1, x2 +
x2
1) ∈ R

2 |x ∈ A} = {(m1,m2) ∈ R
2 |m2

1 < m2}, is a convex, three times
continuously differentiable function such that the second order partial derivatives
φij := ∂i∂jφ satisfy

φ12(m1,m2) = −2m1φ22(m1,m2) (3.9)

φ11(m1,m2) ≥ (m2 + 3m2
1)φ22(m1,m2) (3.10)

for all (m1,m2) ∈ A′.

Example 3.19. An example for a class of strictly convex C3-function φ : A′ →
R satisfying (3.9) and (3.10) with equality is given by

φ(m1,m2) =
(
m2 −m2

1

)−1
+ b1m1 + b2m2 + b3, b1, b2, b3 ∈ R.

For the case b1 = b2 = b3 = 0, the resulting scoring function of the form at (3.8)
is

S(x1, x2, y) = x−2
2

(
x2
1 − 2x2 − 2x1y + y2

)
. (3.11)

Interestingly, this results not only in an order-sensitive scoring function on line
segments for the pair (mean, variance), but it is also a mixed positively homo-
geneous scoring function of degree −2; see Section 4.2.
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3.4.2. The pair (Value at Risk, Expected Shortfall)

Value at Risk (VaR) and Expected Shortfall (ES) are popular risk measures in
banking and insurance. For a financial position Y with distribution F and a
level α ∈ (0, 1), they are defined as

VaRα(F ) := F−1(α) := inf{x ∈ R : F (x) ≥ α},

ESα(F ) :=
1

α

∫ α

0

VaRβ(F ) dβ

=
1

α
EF [Y 1{Y ≤ VaRα(F )}] + 1

α
VaRα(F )

(
α− F (VaRα(F ))

)
.

Note that if F is continuous at VaRα(F ), that means, if F (VaRα(F )) = α, one
can write ESα(F ) equivalently as EF [Y |Y ≤ VaRα(F )]. Our sign convention
implies that risky positions yield large negative values of VaRα or ESα. Intu-
itively, VaRα gives the worst loss out of the best (1 − α) × 100% of all cases,
whereas ESα gives the average loss given one exceeds VaRα. Merits and pitfalls
of these two important risk measures are discussed in Embrechts et al. (2014);
Embrechts and Hofert (2014) where numerous further references are given.

VaRα, as a quantile, is elicitable under mild regularity conditions, whereas
ESα fails to be elicitable (Gneiting, 2011). However, recently it was shown
in Fissler and Ziegel (2016, Theorem 5.2 and Corollary 5.5) that the pair
(VaRα,ESα) is elicitable and the class of strictly convex scoring functions was
characterized to be of the form (3.12) (under the conditions of Osband’s prin-
ciple, Fissler and Ziegel (2016, Theorem 3.2, Corollary 3.3)). Note that the
proof of Fissler and Ziegel (2016, Theorem 5.2(ii) and Corollary 5.5) is impre-
cise for the case that a distribution F ∈ F is not continuous at its α-quantile.
Moreover, one needs to impose additional assumptions on the action domain A
which are satisfied, for example, if A coincides with the maximal action domain
{(x1, x2) ∈ R

2 : x1 ≥ x2}; see Fissler and Ziegel (2019) for details.

Proposition 3.20. Let α ∈ (0, 1), F be a class of continuously differentiable
distribution functions on R with finite first moments and unique α-quantiles.
Let A ⊆ {(x1, x2) ∈ R

2 : x1 ≥ x2} be convex. Define A2 as the projection of A
onto the second coordinate axis and let S : A× R → R be a scoring function of
the form

S(x1, x2, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y) (3.12)

+ φ′(x2)
(
x2 +

(
1{y ≤ x1} − α

)x1

α
− 1{y ≤ x1}

y

α

)
− φ(x2),

with g : R → R differentiable and increasing and φ : A2 → R twice differentiable,
and φ′ > 0, φ′′ > 0. If

φ′(x) + (x− z)φ′′(x) ≥ 0, for all x, z ∈ A2, (3.13)

then S is strictly F-order-sensitive on line segments for (VaRα,ESα).
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One might wonder if Proposition 3.20 establishes an alternative set of condi-
tions for strict consistency of scoring functions for (VaRα,ESα) different from
the ones introduced in Fissler and Ziegel (2019, Proposition 2). Indeed, this is
the case since strict order-sensitivity on line segments implies strict consistency.
However, it is not the condition at (3.13) which is essential for the strict consis-
tency, but rather the condition that g be increasing and φ′ > 0, and φ′′ > 0.

Example 3.21. Consider the action domain A = {x ∈ R
2 : x1 ≥ x2, x2 < 0},

so A2 = (−∞, 0). For all φ in the family {φb : (−∞, 0) → R : b ∈ (0, 1]} where
φ1(x) = − log(|x|), x < 0 and for b ∈ (0, 1)

φb(x) =
1

b− 1
|x|1−b, x < 0,

condition (3.13) is satisfied.

A strict F-identification function V : A × O → R for a functional T : F →
A ⊆ R is oriented for T if

V̄ (x, F ) > 0 ⇐⇒ x > T (F ) (3.14)

for all F ∈ F , x ∈ A (Lambert, Pennock and Shoham, 2008; Steinwart et al.,
2014). One possible generalization of orientation for higher-dimensional func-
tionals is the following. Let T : F → A ⊆ R

k be a functional with a strict
F-identification function V : A × O → R

k. Then V is called an oriented strict
F-identification function for T if

v�V̄ (T (F ) + sv, F ) > 0 ⇐⇒ s > 0

for all v ∈ S
k−1 := {x ∈ R

k : ‖x‖ = 1}, for all F ∈ F and for all s ∈ R such that
T (F ) + sv ∈ A.

Our notion of orientation differs from the one proposed by Frongillo and Kash
(2015a). In contrast to their definition, our definition is per se independent of
a (possibly non-existing) strictly consistent scoring function for T . Moreover,
whereas their definition has connections to the convexity of the expected score,
our definition shows strong ties to order-sensitivity on line segments.

If the gradient of an expected score induces an oriented identification func-
tion, then the scoring function is strictly order-sensitive on line segments, and
vice versa. However, the existence of an oriented identification function is not
sufficient for the existence of a strictly order-sensitive scoring function on line
segments. The reason is that – due to integrability conditions – the identification
function is not necessarily the gradient of some (scoring) function.

4. Equivariant functionals and order-preserving scoring functions

Many statistical functionals have an invariance or equivariance property. For
example, the mean is a linear functional, and hence, it is equivariant under
linear transformations. So E[ϕ(X)] = ϕ(E[X]) for any random variable X and
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any linear map ϕ : R → R (of course, the same is true for the higher-dimensional
setting). On the other hand, the variance is invariant under translations, that
is Var(X − c) = Var(X) for any c ∈ R, but scales quadratically, so Var(λX) =
λ2 Var(X) for any λ ∈ R. The next definition strives to formalize such notions.

Definition 4.1 (π-equivariance). Let F be a class of probability distributions
on O and A be an action domain. Let Φ be a group of bijective transformations
ϕ : O → O, Φ∗ a group of bijective transformations ϕ∗ : A → A, and π : Φ → Φ∗

be a map. A functional T : F → A is π-equivariant if for all ϕ ∈ Φ

T (L(ϕ(Y ))) = (πϕ)(T (L(Y )))

for all random variables Y such that L(Y ) ∈ F .

Example 4.2. (i) For A = O = R, the mean functional is π-equivariant for
Φ = Φ∗ = {x �→ x + c, c ∈ R} the translation group and π the identity
map, or for Φ = Φ∗ = {x �→ λx, λ ∈ R \ {0}} the multiplicative group and
again π the identity map.

(ii) For A = O = R
k, the multivariate mean functional is π-equivariant for

Φ = Φ∗ = {x �→ x + c, c ∈ R
k} the translation group and π the identity

map.
(iii) For A = O = R, Value at Risk at level α, Expected Shortfall at level α

and the τ -expectile are π-equivariant for Φ = Φ∗ = {x �→ x+ c, c ∈ R} the
translation group and π the identity map, or for Φ = Φ∗ = {x �→ λx, λ >
0} the multiplicative group and again π the identity map.

(iv) For A = [0,∞) and O = R, the variance is π-equivariant for Φ = {x �→
x + c, c ∈ R} the translation group and Φ∗ = {idA} the trivial group
consisting only of the identity on A, such that π is the constant map.

(v) For A = [0,∞) and O = R, the variance is π-equivariant for Φ = Φ∗ =
{x �→ λx, λ ∈ R \ {0}} the multiplicative group, and π((x �→ λx)) = (x �→
λ2x).

(vi) Let A = R
k, O = R and T be the functional whose mth component

is the mth moment. Then T is π-equivariant with Φ = {y �→ λy, λ ∈
R \ {0}}, Φ∗ = {x �→ (λmxm)km=1, λ ∈ R \ {0}}, and π((y �→ λy)) = (x �→
(λmxm)km=1).

If a functional T is elicitable, π-equivariance can also be expressed in terms
of strictly consistent scoring functions; see also Gneiting (2011, p. 750).

Lemma 4.3. Let S : A×O → R be a strictly F-consistent scoring function for
a functional T : F → A and let π : Φ → Φ∗. Then, T is π-equivariant if and
only if for all ϕ ∈ Φ

argmin
x∈A

S̄((πϕ)(x),L(ϕ(Y ))) = argmin
x∈A

S̄(x,L(Y ))

for all random variables Y such that L(Y ) ∈ F .

The proof of Lemma 4.3 is direct. It implies that the scoring function

Sπ,ϕ : A× O → R, (x, y) �→ Sπ,ϕ(x, y) = S((πϕ)(x), ϕ(y)) (4.1)
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is also strictly F-consistent for T . Similarly to the motivation of order-sensitivity
of scoring functions, for fixed π : Φ → Φ∗, it is a natural requirement on a scoring
function S that for all ϕ ∈ Φ the ranking of any two forecasts is the same in
terms of S and in terms of Sπ,ϕ.

Definition 4.4 (π-order-preserving). Let π : Φ → Φ∗. A scoring function S : A×
O → R is π-order-preserving with respect to F if for all ϕ ∈ Φ one has

sgn
(
S̄(x, F )− S̄(x′, F )

)
= sgn

(
S̄π,ϕ(x, F )− S̄π,ϕ(x

′, F )
)

for all F ∈ F and for all x, x′ ∈ A, where Sπ,ϕ is defined at (4.1). S is linearly
π-order-preserving if for all ϕ ∈ Φ and for all x, x′ ∈ A there is a λ > 0 such
that

λ
(
S(x, y)− S(x′, y)

)
= Sπ,ϕ(x, y)− Sπ,ϕ(x

′, y) (4.2)

for all y ∈ O. If S is linearly π-order-preserving with a λ > 0 independent of
x, x′ ∈ A, then we call S uniformly linearly π-order-preserving.

The following lemma is immediate.

Lemma 4.5. Let π : Φ → Φ∗. If a scoring function S : A × O → R is lin-
early π-order-preserving, it is π-order-preserving with respect to any class F of
probability distributions on O.

The two practically most relevant examples of uniform linear π-order preserv-
ingness are translation invariance and positive homogeneity of scoring functions,
or, to be more precise, of score differences. They are described in the two sub-
sequent subsections.

4.1. Translation invariance

Consider a translation equivariant functional such as the mean treated in Exam-
ple 4.2 (ii). Then, a scoring function S : Rk×R

k → R is said to have translation
invariant score differences if it is uniformly linearly π-equivariant with λ = 1 for
all ϕ ∈ Φ. In formulae, we require S to satisfy

S(x− z, y − z)− S(x′ − z, y − z) = S(x, y)− S(x′, y) (4.3)

for all x, x′, y, z ∈ R
k. Note that what is particularly appealing is that the action

domain and the observation domain coincide and, in particular, have the same
dimension. However, there are also other functionals such as vectors of different
quantiles or expectiles, or the vector (VaRα,ESα) satisfying properties one can
naturally call translation equivariant, but that have the drawback that A 	= O
(typically, O is of lower dimension than A). Then, translation invariance means
that the score is invariant under a simultaneous translation of the observation
and the forecast along respective linear subspaces of A and O.

Let A ⊆ R
k, O = R

d and m ∈ {1, . . . ,min{k, d}}. Let MO ∈ R
d×m and

MA ∈ R
k×m be two matrices with rank m. Define the transformation groups

Φ := ΦMO
:= {y �→ y −MOz, z ∈ R

m},
Φ∗ := Φ∗

MA
:= {x �→ x−MAz, z ∈ R

m},



Order-sensitivity and equivariance of scoring functions 1191

where we impose that x − MAz ∈ A for all x ∈ A, z ∈ R
m. Then, the map

π = πMO,MA
: ΦMO

→ Φ∗
MA

naturally induced by MO and MA is given as

πMO,MA
((y �→ y −MOz)) = (x �→ x−MAz).

We say that a functional T : F → R
k is linearly equivariant if there are such

matrices MO,MA such that T is πMO,MA
-equivariant.

Example 4.6. (i) Let O = R, A = {(x1, x2) ∈ R
2 : x2 ≤ x1} and T =

(VaRα,ESα) with some generic F . Then T is πMO,MA
-equivariant with

MO = idR and MA = (1, 1)�.
(ii) Let O = R, A = R × [0,∞) and T = (mean, variance) : F → A where all

F ∈ F have finite second moments. Then T is πMO,MA
-equivariant with

MO = idR and MA = (1, 0)�.
(iii) Let O = R, A = R

k and T be a vector of k different quantiles. Let M ∈
R

k×k have rank at least 1 and consider the functional TM = M(T ). Then
TM is πMO,MA

-equivariant with MO = idR and MA = M(1, . . . , 1)�.

Adopting this notion, we say that a scoring function S : A × R
d → R is

linearly (MO,MA)-invariant for two matrices MO ∈ R
d×m, MA ∈ R

k×m with
rank(MO) = rank(MA) = m ∈ {1, . . . ,min{k, d}} if

S(x−MAz, y −MOz) = S(x, y)

for all x ∈ A, y ∈ R
d, z ∈ R

m. Similarly, we will speak about linearly (MO,MA)-
invariant identification functions and score differences.

Given a certain functional T : F → R
k and some MO ∈ R

d×m, MA ∈ R
k×m

with rank(MO) = rank(MA) = m ∈ {1, . . . ,min{k, d}}, one can wonder about
the class of strictly consistent scoring functions that are linearly (MO,MA)-
invariant. Clearly, with respect to Lemma 4.3 and Lemma 4.5, this class is empty
if the functional T is not πMO,MA

-equivariant. In the situation that A = O = R
k

and MO = MA = idRk the following proposition characterizes the gradients of
linearly (idRk , idRk)-invariant strictly consistent scoring function (if such scoring
functions exist).

Proposition 4.7. Let T : F → R
k be a surjective, identifiable functional with a

linearly (idRk , idRk)-invariant strict F-identification function V : Rk×R
k → R

k.
Then, the following assertions hold.

(i) T is πid
Rk

,id
Rk
-equivariant.

(ii) Assume there is a strictly F-consistent scoring function S : Rk × R
k → R

for T with linearly (idRk , idRk)-invariant score differences. Then, under
Assumptions (V1) and (S1), there is a constant matrix h ∈ R

k×k such
that

∇S̄(x, F ) = h V̄ (x, F ) (4.4)

for all x ∈ R
k and for all F ∈ F .

Using Fissler and Ziegel (2016, Proposition 4.4) one can establish the converse
of Proposition 4.7: If V is a linearly (idRk , idRk)-invariant strict F-identification
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function, then (4.4) implies that S has linearly (idRk , idRk)-invariant score dif-
ferences. The following lemma shows how to normalize scores with translation
invariant score differences to obtain a translation invariant score.

Lemma 4.8. Let S : Rk × R
k → R a strictly F-consistent scoring function

for T : F → R
k with linearly (idRk , idRk)-invariant score differences. If for all

y ∈ R
k, the point measures δy are in F and the function y �→ S(T (δy), y) is

F-integrable, then

S0(x, y) := S(x, y)− S(T (δy), y) (4.5)

is a linearly (idRk , idRk)-invariant, non-negative, strictly F-consistent scoring
function for T .

In case of the mean functional on R, Proposition 4.7 has already been shown
by Savage (1971) who showed that the squared loss is the only strictly con-
sistent scoring function for the mean that is of prediction error form, up to
equivalence.13 Furthermore it implies that general τ -expectiles and α-quantiles
have essentially one linearly (idR, idR)-invariant strictly consistent scoring func-
tion only, namely the canonical choices Sτ (x, y) = |1{y ≤ x} − τ |(x − y)2 and
Sα(x, y) = (1{y ≤ x} − α)(x− y).

The uniqueness – up to equivalence – disappears for k > 1. For example,
for the the 2-dimensional mean functional, the previous results yield that any
scoring function S : R2 × R

2 → R of the form

S(x, y) =
h11

2
(x1 − y1)

2 +
h22

2
(x2 − y2)

2 + h12y2(y1 − x1) + h12x2(x1 − y1)

is strictly consistent for the 2-dimensional mean functional and it is linearly
(idR2 , idR2)-invariant, for any h11 > 0 and h11h22 − h2

12 > 0.
Due to the additive separability of strictly consistent scoring functions for

vectors consisting of different quantiles and expectiles (Fissler and Ziegel, 2016,
Proposition 4.2), strictly consistent scoring functions that are linearly (idR, idRk)-
invariant for these vectors are not unique. However, the only flexibility in that
class consists in choosing different weights for the respective summands of the
scores.

The pair (mean, variance) is a πMO,MA
-equivariant functional with MO and

MA as in Example 4.6(ii). Curiously, it has a linearly (MO,MA)-invariant iden-

tification function V (x1, x2, y) =
(
x1 − y, x2 − (x1 − y)2

)�
but does not possess

a strictly consistent linearly (MO,MA)-invariant scoring function.

Proposition 4.9. Let F be a class of distributions on R with finite second
moments such that the functional T = (mean, variance) : F → A is surjective
on A = R × I,where I ⊆ [0,∞) is an interval. Let Assumptions (F1) and
(V1) be satisfied with the strict F-identification functions V : A × R → R

2,

V (x1, x2, y) =
(
x1 − y, x2 − (x1 − y)2

)�
and V ∗ : A × R → R

2, V ∗(x1, x2, y) =(
x1−y, x2+x2

1−y2
)�

. Let S : A×R → R be a F-consistent scoring function for

13That means that the scoring function is a function in x− y only.



Order-sensitivity and equivariance of scoring functions 1193

T that is (jointly) continuous, and for any y ∈ R, the function A 
 x �→ S(x, y)
is twice continuously differentiable. If S has linearly (MO,MA)-invariant score
differences, then there is a λ ≥ 0 and an F-integrable functional a : R → R such
that

S(x1, x2, y) = λ(x1 − y)2 + a(y).

In particular, S cannot be strictly F-consistent for T .

The functional (VaRα,ESα), α ∈ (0, 1), is also a relevant πMO,MA
-equivariant

functional with MO and MA as in Example 4.6(i). However, scoring functions
with linearly (MO,MA)-invariant score differences only exist for restricted classes
of distribution functions F which may not be natural choices in risk management
applications.

Proposition 4.10. Let α ∈ (0, 1). Let F be a class of distribution func-
tions on R with finite first moments and unique α-quantiles. Consider T =
(VaRα,ESα) : F → {(x1, x2) ∈ R

2 : x2 ≤ x1}. Then, the following assertions
hold:

(i) Suppose there is some c > 0 such that

ESα(F ) + c > VaRα(F ) for all F ∈ F . (4.6)

That is, T (F) ⊆ Ac := {(x1, x2) ∈ R
2 : x2 ≤ x1 < x2 + c}. Then, any

scoring function S : Ac × R → R, which is equivalent to

Sc(x1, x2, y) = (1{y ≤ x1} − α)c(x1 − y) + α(x2
2/2 + x2

1/2− x1x2)

+ 1{y ≤ x1}(−x2(y − x1) + y2/2− x2
1/2), (4.7)

is strictly F-consistent for T and has linearly (MO,MA)-invariant score
differences with MO = idR, MA = (1, 1)�.

(ii) Under the conditions of Fissler and Ziegel (2016, Theorem 5.2(iii)), there
are strictly F-consistent scoring functions for T with linearly (MO,MA)-
invariant score differences if and only if there is some c > 0 such that
(4.6) holds. Then, any such scoring function is necessarily equivalent to
Sd defined at (4.7) almost everywhere, with d ≥ c.

The scoring function Sc has a close relationship to the class of scoring func-
tions SW proposed in Acerbi and Szekely (2014); see Fissler and Ziegel (2016,
Equation (5.6)). Indeed, Sc(x1, x2, y) = c

(
1{y ≤ x1}−α

)
(x−y)+SW (x1, x2, y)

with W = 1. That means it is the sum of the standard α-pinball loss for VaRα

– which is translation invariant – and S1. In the same flavor, the condition at
(4.6) is similar to the one at Fissler and Ziegel (2016, Equation (5.7)). Since
ESα ≤ VaRα, the maximal action domain where Sc is strictly consistent is the
stripe Ac = {(x1, x2) ∈ R

2 : x2 ≤ x1 < x2+ c}. Of course, by letting c → ∞, one
obtains the maximal sensible action domain {(x1, x2) ∈ R

2 : x1 ≥ x2} for the
pair (VaRα,ESα). However, considering the properly normalized version Sc/c,
this converges to a strictly consistent scoring function for VaRα as c → ∞, but
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which is independent of the forecast for ESα. Hence, there is a caveat concern-
ing the tradeoff between the size of the action domain and the sensitivity in
the ES-forecast. This might cast doubt on the usage of scoring functions with
translation invariant score differences for (VaRα,ESα) in general.

Interestingly, the scoring function Sc at (4.7) has positively homogeneous
score differences if and only if c = 0. However, A0 = ∅, which means that
the requirement of translation invariance and homogeneity for score differ-
ences are mutually exclusive in case of strictly consistent scoring functions for
(VaRα,ESα).

4.2. Homogeneity

If one is interested in a positively homogeneous functional of degree one such
as the mean, expectiles, quantiles, or ES, a scoring function S : R × R → R

is said to have positively homogeneous score differences of degree b ∈ R for
this functional if the scoring function is uniformly linearly π-equivariant with
Φ = {R 
 x �→ cx ∈ R, c > 0} the multiplicative group, π the identity on Φ and
λ = cb in (4.2). This means that S needs to satisfy

S(cx, cy)− S(cz, cy) = cb
(
S(x, y)− S(z, y)

)
(4.8)

for all x, z, y ∈ R and c > 0. Since positive homogeneity of score differences is
equivalent to invariance of forecast rankings under a change of unit, it has been
argued that it is important in financial applications (Acerbi and Szekely, 2014).
Nolde and Ziegel (2017) give a characterization of scoring functions with posi-
tively homogeneous score differences for many risk measures of applied interest,
such as VaR/ quantiles, expectiles, and the pair (VaR, ES); cf. Patton (2011)
for results concerning the mean functional.

If the functional T is vector-valued, the degree of homogeneity can be different
in the respective components, e.g. in case of the pair (mean, variance) or the
vector consisting of the first k moments; cf. Example 4.2(vi). One can denote
this property by mixed positive homogeneity, which means in case of the vector
of the first k moments that

T (L(cY )) = Λ(c)T (L(Y )) (4.9)

for all c > 0, where Λ(c) is the k × k-diagonal matrix with diagonal elements
c, c2, . . . , ck.14 In this situation, an interesting instant for uniformly linearly π-
order-preserving scoring functions S : A×R → R are those with mixed positively
homogeneous score differences of degree b ∈ R. That is,

S(Λ(c)x, cy)− S(Λ(c)z, cy) = cb
(
S(xy)− S(z, y)

)
(4.10)

for all x, z ∈ A, y ∈ R, and for all c > 0. With k = 2, corresponding assertions
hold for the pair (mean, variance) and the respecitve scoring functions.

14Of course, we tacitly assume that for all x ∈ A and for all c > 0, we have Λ(c)x ∈ A.
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Proposition 4.11. Let A ⊆ R
k such that Λ(c)x ∈ A for all c > 0, x ∈ A.

Let S : A × R → R be a consistent scoring function for the vector of the first k
moments of the form

S(x, y) = −φ(x) +∇φ(x)
(
x− (y, y2, . . . , yk)�

)
+ a(y), (4.11)

where φ : A → R is convex and differentiable with gradient ∇φ (considered as
a row vector). Then S has mixed positively homogeneous score differences of
degree b ∈ R if and only if for all c > 0 the map

x �→ ∇φ(Λ(c)x)Λ(c)− cb∇φ(x) (4.12)

is constant.

Recall that the scoring functions of the form at (4.11) are essentially all
consistent scoring functions for the vector of different moments (Fissler and
Ziegel, 2016, Proposition 4.4). Using Proposition 4.11 it is straight forward to
derive consistent scoring functions for (mean, variance) with mixed positively
homogeneous score differences.

Corollary 4.12. Let F be a class of distributions on R with finite second mo-
ments such that the functional T = (mean, variance) : F → A ⊆ R × [0,∞)
is surjective, where for all (x1, x2) ∈ A and c > 0, (cx1, c

2x2) ∈ A. Let As-
sumptions (F1) and (V1) be satisfied with the strict F-identification function

V : A×R → R
2, V (x1, x2, y) =

(
x1 − y, x2 + x2

1 − y2
)�

. Let S : A×R → R be a
strictly F-consistent scoring function for T that is (jointly) continuous and for
any y ∈ R, the function A 
 x �→ S(x, y) be twice continuously differentiable.
Then S has mixed positively homogeneous score differences of degree b ∈ R if
and only if

S(x1, x2, y) = −φ(x1, x2+x2
1)+∇φ(x1, x2+x2

1)

(
x1 − y

x2 + x2
1 − y2

)
+a(y), (4.13)

where φ : A → R is strictly convex, twice continuously differentiable, and more-
over for all c > 0 the map

A 
 (x1, x2) �→ ∇φ(cx1, c
2x2 + c2x2

1)

(
c 0
0 c2

)
− cb∇φ(x1, x2 + x2

1) (4.14)

is constant.

It appears that the class of (strictly) convex functions φ satisfying (4.12) is
rather flexible. One subclass is the class of additively separable functions φ.
That is,

φ(x) =

k∑
m=1

φm(xm), (4.15)

where each φm needs to be convex and xm �→ cmφ′
m(cmxm)−cbφ′

m(xm) constant.
Reviewing Nolde and Ziegel (2017, Theorem 5) and restricting attention to the
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case A ⊆ (0,∞)k, φm can be an element of the class Ψb/m, where Ψb consists of
functions ψb : (0,∞) → R of the form

ψb(y) =

⎧⎪⎨
⎪⎩
d0 + d1y

b/(b(b− 1)), for b ∈ R \ {0, 1}
d0 + d1y log(y) + d2y, for b = 1

d0 − d1 log(y) + d2y, for b = 0

with constants d1 > 0, d0, d2 ∈ R. On the other hand, there are choices of φ not
satisfying such an additive decomposition as in (4.15). One such example can
be found in Example 3.19 for b = −2, and is of the form φ(x1, x2) = (x2−x2

1)
−1

for x2 > x2
1.

Appendix A: Assumptions

We present a list of assumptions used in this paper. For more details about their
interpretations and implications, please see Fissler and Ziegel (2016) were they
were originally introduced.

Assumption (V1). Let F be a convex class of distribution functions on R and
assume that for every x ∈ int(A) there are F1, . . . , Fk+1 ∈ F such that

0 ∈ int
(
conv

({
V̄ (x, F1), . . . , V̄ (x, Fk+1)

}))
.

Note that if V : A×R → R
k is a strict F-identification function for T : F → A

which satisfies Assumption (V1), then for each x ∈ int(A) there is an F ∈ F
such that T (F ) = x.

Assumption (V2). For every F ∈ F , the function V̄ (·, F ) is continuous.

Assumption (V3). For every F ∈ F , the function V̄ (·, F ) is continuously
differentiable.

Assumption (V4). Let assumption (V3) hold. For all r ∈ {1, . . . , k} and for
all t ∈ int(A) ∩ T (F) there are F1, F2 ∈ T−1({t}) such that

∂lV̄l(t, F1) = ∂lV̄l(t, F2) ∀l ∈ {1, . . . , k} \ {r}, ∂rV̄r(t, F1) 	= ∂rV̄r(t, F2).

Assumption (F1). For every y ∈ R there exists a sequence (Fn)n∈N of distri-
butions Fn ∈ F that converges weakly to the Dirac-measure δy such that the
support of Fn is contained in a compact set K for all n.

Assumption (VS1). Suppose that the complement of the set

C := {(x, y) ∈ A× R | V (x, ·) and S(x, ·) are continuous at the point y}

has (k + d)-dimensional Lebesgue measure zero.
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Assumption (S1). For every F ∈ F , the function S̄(·, F ) : A → R, x �→
S̄(x, F ), is continuously differentiable.

Assumption (S2). For every F ∈ F , the function S̄(·, F ) is continuously dif-
ferentiable and the gradient is locally Lipschitz continuous. Furthermore, S̄(·, F )
is twice continuously differentiable at t = T (F ) ∈ int(A).

Appendix B: Auxiliary results

Lemma B.1. Let F be convex and T : F → A ⊆ R
k be identifiable with a strict

F-identification function V : A × O → R
k. Then for any F,G ∈ F , the path

γ : [0, 1] → A, γ(λ) = T (λF + (1− λ)G), is either constant or injective.

Proof. Let F,G ∈ F such that t = T (F ) = T (G). For any λ ∈ [0, 1], one
has V̄ (t, λF + (1 − λ)G) = λV̄ (t, F ) + (1 − λ)V̄ (t, G) = 0. Since V is a strict
F-identification function for T , t = γ(λ) for all λ ∈ [0, 1].

Now let T (F ) 	= T (G) and let 0 ≤ λ < λ′ ≤ 1. Since V is a strict F-
identification function, V̄ (T (F ), G) 	= 0 (and symmetrically V̄ (T (G), F ) 	= 0.)
Assume that γ(λ) = γ(λ′). Define Hλ = λF +(1−λ)G, Hλ′ = λ′F +(1−λ′)G.
There are μ, μ′ ∈ R such that F = μHλ+(1−μ)Hλ′ and G = μ′Hλ+(1−μ′)Hλ′ .
Hence,

V̄ (γ(λ), F ) = μV̄ (γ(λ), Hλ) + (1− μ)V̄ (γ(λ), Hλ′) = 0,

and similarly V̄ (γ(λ), G) = 0. Consequently, T (F ) = γ(λ) = T (G), which is a
contradiction to the assumption that T (F ) 	= T (G). This implies that γ(λ) 	=
γ(λ′).

Lemma B.2. Let T = (T1, . . . , Tk) : F → A ⊆ R
k be a k-dimensional functional

with components Tm : F → Am ⊆ R where A = A1×· · ·×Ak. If there is a strictly
componentwise F-order-sensitive scoring function S : A × O → R for T , then
the components Tm, m ∈ {1, . . . , k}, are elicitable.

Proof. Fix m ∈ {1, . . . , k}. Let F ∈ F and x, z ∈ A such that Tm(F ) = xm,
xi = zi for all i 	= m and xm 	= zm. Due to the strict componentwise F-order-
sensitivity of S this implies that S̄(x, F ) < S̄(z, F ). This in turn means that for
any z = (z1, . . . , zk) ∈ A the map Sm,z : Am × O → R,

(xm, y) �→ Sm,z(xm, y) := S(z1, . . . , zm−1, xm, zm+1, . . . , zk, y) (B.1)

is a strictly F-consistent scoring function for Tm.

Lemma B.3. Let F be convex and T : F → A ⊆ R
k be mixture-continuous

and surjective. Let S : A × O → R be (strictly) F-consistent for T . Then S is
(strictly) metrically F-order-sensitive for T relative to ‖ · ‖ if and only if for all
F ∈ F , t = T (F ) and x, z ∈ A we have the implication

‖x− t‖ = ‖z − t‖ =⇒ S̄(x, F ) = S̄(z, F ). (B.2)
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Proof. Let S be metrically F-order sensitive for T relative to d. Let F ∈ F ,
t = T (F ), x, z ∈ A such that ‖x − t‖ = ‖z − t‖. Then we have both S̄(x, F ) ≤
S̄(z, F ) and S̄(z, F ) ≤ S̄(x, F ).

Assume that (B.2) holds and S is (strictly) F-consistent. Let F ∈ F with
t = T (F ) and x, z ∈ A. Suppose that ‖x−t‖ ≤ ‖z−t‖. If ‖x−t‖ = ‖z−t‖, (B.2)
implies that S̄(x, F ) = S̄(z, F ) and there is nothing to show. If ‖x−t‖ < ‖z−t‖,
we can apply Proposition 2.4. There is a continuous path γ : [0, 1] → A such that
γ(0) = z and γ(1) = t, and the function [0, 1] 
 λ �→ S̄(γ(λ), F ) is decreasing.
Due to continuity there is a λ′ ∈ [0, 1] such that ‖γ(λ′)− t‖ = ‖x− t‖. Invoking
(B.2) it holds that S̄(x, F ) = S̄(γ(λ′), F ) ≤ S̄(z, F ). If S is strictly F-consistent
then the latter inequality is strict.

Appendix C: Proofs

C.1. Proofs for Section 2

Proof of Proposition 2.2. Let F0 ⊆ F be convex such that T (F0) ⊆ [−C,C]k

for some C > 0. Let F,G ∈ F0. Define hF,G : [−C,C]k × [0, 1] → R via

hF,G(x, λ) = S̄(x, (1− λ)F + λG) = (1− λ)S̄(x, F ) + λS̄(x,G).

Then hF,G is jointly continuous, and due to the strict consistency

T ((1− λ)F + λG) = argmin
x∈[−C,C]k

hF,G(x, λ).

By virtue of the Berge Maximum Theorem (Aliprantis and Border, 2006, The-
orem 17.31 and Lemma 17.6), the function λ �→ argminx∈[−C,C]k hF,G(x, λ) is
continuous.

Proof of Proposition 2.4. Let F ∈ F , t = T (F ) and x 	= t. Then there is some
G ∈ F with x = T (G). Define γ : [0, 1] → A, λ �→ T (λF + (1− λ)G). Clearly,
γ(0) = x and γ(1) = t. Due to the mixture-continuity of T , the path γ is
also continuous. The rest follows along the lines of the proof of Nau (1985,
Proposition 3). Let 0 ≤ λ < λ′ ≤ 1. If γ(λ) = γ(λ′), there is nothing to show.
So assume that γ(λ) 	= γ(λ′). Define Hλ = λF +(1−λ)G, and Hλ′ analogously.
Then, for μ := (λ′ − λ)/(1 − λ) ∈ (0, 1], it holds that Hλ′ = μF + (1 − μ)Hλ.
The strict consistency of S implies that

μS̄(γ(λ′), F ) + (1− μ)S̄(γ(λ′), Hλ) = S̄(γ(λ′), Hλ′)

< S̄(γ(λ), Hλ′) = μS̄(γ(λ), F ) + (1− μ)S̄(γ(λ), Hλ) ,

which is equivalent to

1− μ

μ

(
S̄(γ(λ′), Hλ)− S̄(γ(λ), Hλ)

)
< S̄(γ(λ), F )− S̄(γ(λ′), F ) .

By strict consistency of S, the left-hand side is non-negative yielding the asser-
tion.
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Proof of Proposition 2.6. Let F ∈ F with t = T (F ). Due to the strict F-
consistency of S, the expected score S̄(·, F ) has a local minimum at t. Assume
there is another local minimum at some x 	= t. Then there is a distribution
G ∈ F with x = T (G). Consider the path γ : [0, 1] → A, λ �→ T (λF+(1−λ)G).
Due to Proposition 2.4 the function λ �→ S̄(γ(λ), F ) is decreasing and strictly
decreasing when we move on the image of the path from x to t. Hence S̄(·, F )
cannot have a local minimum at x = γ(0).

Proof of Proposition 2.8. Let F ∈ F , t = T (F ) and ε > 0. Define

δ := min{S̄(z, F )− S̄(t, F ) : z ∈ A, ‖z − t‖ = ε}.

Due to the continuity of S̄(·, F ), the minimum is well-defined and, as a con-
sequence of the strict F-consistency of S for T , δ is positive. Let x ∈ A. If
‖x− t‖ = ε, we have, by the definition of δ, that S̄(x, F )− S̄(t, F ) ≥ δ. Assume
that ‖x − t‖ > ε. Then there is a distribution G ∈ F with T (G) = x. Due to
Proposition 2.4 there is a continuous path γ : [0, 1] → A such that γ(0) = x,
γ(1) = t and such that S̄(γ(λ), F ) is decreasing in λ. Moreover, if λ < λ′ such
that γ(λ) 	= γ(λ′) it holds that S̄(γ(λ), F ) > S̄(γ(λ′), F ). Due to the con-
tinuity of γ there is some x′ ∈ γ([0, 1]) with ‖x′ − t‖ = ε. Then we obtain
S̄(x, F )− S̄(t, F ) > S̄(x′, F )− S̄(t, F ) ≥ δ.

C.2. Proofs for Section 3

Proof of Proposition 3.6. Due to the fact that for fixed y ∈ O, V (x, y) is a
polynomial in x, Assumption (V3) is automatically satisfied. Let h : int(A) →
R

k×k be the matrix-valued function given in Osband’s principle; see Fissler and
Ziegel (2016, Theorem 3.2). By Fissler and Ziegel (2016, Proposition 4.4(i)) we
have that

∂lhrm(x) = ∂rhlm(x), hrl(x) = hlr(x) (C.1)

for all r, l,m ∈ {1, . . . , k}, l 	= r, where the first identity holds for almost all
x ∈ int(A) and the second identity for all x ∈ int(A). Moreover, the matrix(
hrl(x)

)
l,r=1,...,k

is positive definite for all x ∈ int(A). If we can show that

hlr = 0 for l 	= r, we can use the first part of (C.1) and deduce that for all
m ∈ {1, . . . , k} there are positive functions gm : A′

m → R, where A′
m = {xm ∈

R : ∃(z1, . . . , zk) ∈ int(A) and zm = xm}, such that

hmm(x1, . . . , xk) = gm(xm)

for all (x1, . . . , xk) ∈ int(A). Then, we can conclude like in the proof of Fissler
and Ziegel (2016, Proposition 4.2(ii)).15

15The arguments in Fissler and Ziegel (2016, Proposition 4.2(ii)) use Fissler and Ziegel
(2016, Proposition 3.4). There is a flaw in the latter result which has been pointed out in
Brehmer (2017). We present a corrected version of the result in the erratum Fissler and Ziegel
(2019).
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Fix l, r ∈ {1, . . . , k} with l 	= r and F ∈ F such that T (F ) ∈ int(A). Due to
the strict F-consistency of Sl,z defined at (B.1) we have that

0 =
d

dxl
S̄l,z(xl, F ) = ∂S̄l,z(xl, F ) = ∂lS̄(z1, . . . , zl−1, xl, zl+1, . . . , zk, F )

whenever xl = Tl(F ) and for all z ∈ int(A). This means the map int(A) 
 z �→
∂S̄l,z(Tl(F ), F ) is constantly 0. Hence, for all x ∈ int(A)

∂r∂lS̄(x, F ) = 0

whenever xl = Tl(F ). Using the special form of V and Fissler and Ziegel (2016,
Corollary 3.3), we have for x = t = T (F ) that

0 = ∂r∂lS̄(t, F ) = hlr(t)∂rV̄r(t, F ) = hlr(t)q̄(F )

and by assumption q̄(F ) > 0. Using the surjectivity of T we obtain that hlr(t) =
0 for all t ∈ int(A), which ends the proof.

Proof of Proposition 3.7. We apply Osband’s principle, that is, Fissler and
Ziegel (2016, Theorem 3.2) to S. Consequently, there is a function h : int(A) → R

such that
d

dx
S̄(x, F ) = h(x)V̄ (x, F ) (C.2)

for all F ∈ F , x ∈ int(A). Due to the strict F-consistency of S and the orienta-
tion of V , it holds that h ≥ 0. We show that actually h > 0. Applying Lemma
B.3, one has that

S̄(T (F ) + x, F ) = S̄(T (F )− x, F ) (C.3)

for all F ∈ F , x ∈ R such that T (F ) + x, T (F ) − x ∈ int(A). Hence, also the
derivative with respect to x of the left-hand side of (C.3) must coincide with
the derivative on the right-hand side. This yields, using (C.2),

h(T (F ) + x)V̄ (T (F ) + x, F ) = −h(T (F )− x)V̄ (T (F )− x, F ) (C.4)

for all F ∈ F , x ∈ R such that T (F ) + x, T (F ) − x ∈ int(A). Assume h(z) = 0
for some z ∈ int(A). Then, by surjectivity of T and convexity of int(A), for all
z′ ∈ int(A) \ {z} there exists an F ∈ F and x ∈ R \ {0} such that z = T (F ) + x
and z′ = T (F ) − x. Since V is a strict F-identification function for T , both
V̄ (T (F )+x, F ) 	= 0 and V̄ (T (F )−x, F ) 	= 0. Hence, (C.4) implies that h(z′) = 0.
This implies that h identically vanishes on int(A) which contradicts the strict
F-consistency of S.

Therefore, V ∗(x, y) := h(x)V (x, y) is an oriented strict F-identification func-
tion for T . Applying Osband’s principle to S∗, one obtains a function h∗ :
int(A) → R such that d/(dx)S̄∗(x, F ) = h∗(x)V̄ ∗(x, F ) for all F ∈ F , x ∈ R

such that T (F )+x, T (F )−x ∈ int(A). Due to the analogue of (C.3) for S∗ and
(C.4), one obtains

h∗(T (F ) + x)V̄ ∗(T (F ) + x, F ) = −h∗(T (F )− x)V̄ ∗(T (F )− x, F )

= h∗(T (F )− x)V̄ ∗(T (F ) + x, F ).
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for all F ∈ F , x ∈ R with T (F ) + x, T (F )− x ∈ int(A). By a similar reasoning
as above, one can deduce that h∗ must be constant and positive. Now, the claim
follows by Fissler and Ziegel (2016, Proposition 3.4); see Fissler and Ziegel (2019)
for a correction.

Proof of Proposition 3.8. (i) Let m ∈ {1, . . . , k}, F ∈ F with t = T (F ) ∈
int(A). Let μ ∈ R and x, z ∈ int(A) with xi = zi = ti for all i 	= m and
with xm = tm + μ and zm = tm − μ, such that |x − t| = |z − t|. Due to
Lemma B.3 and due to the particular additive form of S, we have

0 = S̄(x, F )− S̄(z, F ) = S̄m(xm, F )− S̄m(zm, F )

= S̄m(tm + μ, F )− S̄m(tm − μ, F ).

Again with Lemma B.3 one obtains the assertion.
(ii) The only interesting direction is to assume that S∗ is strictly metrically

F-order-sensitive (with respect to the same 
p-norm as S). We will show
that λ1 = λm for all m ∈ {2, . . . , k}. Let F ∈ F , t = T (F ) ∈ int(A),
x, z ∈ int(A) with ‖x − t‖p = ‖z − t‖p > 0 and xi = zi = ti for all
i ∈ {2, . . . , k}\{m}. Moreover, let x1 	= z1 = t1. Due to Lemma B.3 we
have that S̄(x, F )− S̄(z, F ) = S̄∗(x, F )− S̄∗(z, F ) = 0. Moreover,

0 = S̄(x, F )− S̄(z, F ) =

k∑
i=1

S̄i(xi, F )− S̄i(zi, F )

= S̄1(x1, F )− S̄1(z1, F ) + S̄m(xm, F )− S̄m(zm, F ).

Setting ε := S̄1(x1, F )− S̄1(z1, F ) > 0, one obtains with the same calcula-
tion

0 = S̄∗(x, F )− S̄∗(z, F )

= λ1

(
S̄1(x1, F )− S̄1(z1, F )

)
+ λm

(
S̄m(xm, F )− S̄m(zm, F )

)
= ε(λ1 − λm).

Proof of Proposition 3.9. (i) We can apply Lemma B.3. Let F ∈ F . Then

R 
 x �→ S̄(T (F ) + x, F ) =
1

2
q̄(F )x2 − 1

2

p̄(F )2

q̄(F )

is an even function in x. Moreover, equivalence of scoring functions pre-
serves (strict) metrical order-sensitivity.

(ii) The convexity of A is implied by the mixture-continuity of T and the
convexity of F . Then, the claim follows with Proposition 3.7.

Proof of Proposition 3.10. To show (i) we apply again Lemma B.3. For any F ∈
F , x ∈ R

k, we have S̄(T (F )+x, F ) = (1/2)q̄(F )‖x‖22−1/(2q̄(F ))
∑k

m=1 p̄m(F )2

which only depends on the 
2-norm of x.
We prove (ii) and (iii) together. Assume there is a scoring function S∗ sat-

isfying the conditions above, so in particular, it is strictly metrically F-order-
sensitive with respect to the 
p-norm for p ∈ [1,∞). Invoking Lemma 3.5(i), S∗
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is strictly componentwise F-order-sensitive for T . Thanks to Proposition 3.6,
S∗ is additively separable. By Proposition 3.9(i), it is of the form

S∗(x1, . . . , xk) =
k∑

m=1

λm

(
1

2
q(y)x2

m − pm(y)xm

)
+

k∑
m=1

am(y).

If p = 2, part (i) and Proposition 3.8(ii) yield that λ1 = · · · = λk, and
hence, S and S∗ are equivalent. For p 	= 2, we obtain S̄(T (F ) + x, F ) =

(1/2)q̄(F )
∑k

m=1 λmx2
m − 1/(2q̄(F ))

∑k
m=1 p̄m(F )2. It is not hard to see that

there are always x, x′ with ‖x‖p = ‖x′‖p but S̄(T (F ) + x, F ) 	= S̄(T (F ) +
x′, F ).

Proof of Proposition 3.11. Assume that there exists a strictly metrically F-
order-sensitive scoring function Sα : R × R → R satisfying Assumption (S1).
Due to Lemma B.3, for any F ∈ F and any x ∈ R

S̄α(Tα(F ) + x, F ) = S̄α(Tα(F )− x, F ).

Using Osband’s principle (Fissler and Ziegel, 2016, Theorem 3.2) and taking the
derivative with respect to x on both sides, this yields

h(Tα(F ) + x)V̄α(Tα(F ) + x, F ) = −h(Tα(F )− x)V̄α(Tα(F )− x, F ) (C.5)

for some positive function h : R → R (the fact that h ≥ 0 follows from the
strict consistency of Sα and the surjectivity of Tα, and h > 0 follows like in
the proof of Proposition 3.7). Assume that Tα(F0) = 0. For λ ∈ R, we have
Tα(F0(· − λ)) = λ. Therefore, (C.5) implies

h(λ+ x)

h(λ− x)
= − V̄α(λ− x, F0(· − λ))

V̄α(λ+ x, F0(· − λ))
= −F0(−x)− α

F0(x)− α
. (C.6)

Setting λ = ±x, one can see that h(±∞) := limx→±∞ h(x) exists and that
h(+∞) = h(0)α/(1− α), h(−∞) = h(0)(1− α)/α, hence, h(+∞)/h(−∞) = 1.
On the other hand, for fixed λ ∈ R, we obtain

h(+∞)

h(−∞)
= lim

x→∞
h(λ+ x)

h(λ− x)
=

α

1− α
.

As a consequence, the only remaining possibility is α = 1/2. For fixed x ∈ R,
we have

1 =
h(+∞)

h(+∞)
= lim

λ→∞

h(λ+ x)

h(λ− x)
= −F0(−x)− 1/2

F0(x)− 1/2

implying that h must be constant using (C.5), and that F0 must be symmetric
around its median, i.e. F0(x) = 1 − F0(−x) for all x ∈ R.16 Moreover, since

16This equation implies that F0 is necessarily continuous. This fact also follows directly
from Assumption (S1) and the assumption that F is closed under translations of F0. Indeed,
assume that F0 is discontinuous at some point x0. Then h has to be discontinuous at that
point. But since F0 has at most countably many points of discontinuity, there is some λ0 ∈ R

such that Fλ0
is continuous at x0. But this would imply that the derivative of S̄(·, Fλ0

) is
discontinuous at x0, which contradicts the assumptions.
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h is constant, (C.5) implies that also any other distribution F ∈ F must be
symmetric around its median, i.e. F (T1/2(F ) + x) = 1− F (T1/2(F )− x) for all
x ∈ R. However, if F0 is symmetric around its median, then any translation Fλ

of F0 is symmetric around its median. But then, there is a convex combination of
F0 and Fλ with mixture-parameter β ∈ (0, 1), β 	= 1/2, such that βF0+(1−β)Fλ

is not symmetric around its median if λ 	= 0. Consequently, the conditions of
the proposition are violated such that a strictly metrically F-order-sensitive
function for the median does not exist in this setting.

Proof of Proposition 3.13. Let |x| > |z|. Note that due to the convexity of Φ,
it holds that Ψx ≥ Ψz. Let F ∈ F with center of symmetry c = C(F ) and let

Y ∼ F . Then, using the fact that Φ is even and that Y − c
d
= c−Y , one obtains

S̄(c+ x, F )− S̄(c+ z, F ) = EF [Φ(x− (Y − c))− Φ(z − (Y − c))]

= EF [Ψx(Y − c)−Ψz(Y − c)] > 0 .

This shows the strict metrical F-order-sensitivity. The strict F-consistency fol-
lows upon taking z = 0.

Proof of Proposition 3.15. Under the assumptions, Osband’s principle yields
the existence of a function h : int(A) → R, h > 0 (by an argument like in
the proof of Proposition 3.7) such that for all F ∈ F , x ∈ int(A)

d

dx
S̄(x, F ) = h(x)V̄ (x, F ).

Using the same argument as in the proof of Osband’s principle (Fissler and
Ziegel, 2016, Theorem 3.2), h is twice differentiable. Assume that S is metri-
cally F-order sensitive. Then, due to Lemma B.3, for any F ∈ F the function
gF : A 
 x �→ gF (x) = S̄(Tτ (F ) + x, F ) is an even function. Hence, invoking the
smoothness assumptions, the third derivative of gF must be odd. So necessarily
g′′′F (0) = 0. Denoting tF = Tτ (F ), some tedious calculations lead to

g′′′F (0) = 2h′(tF )
(
F (tF )(1− 2τ) + τ

)
+ 2h(tF )f(tF )(1− 2τ). (C.7)

Recalling that h > 0 and τ 	= 1/2 implies g′′′F1
(0) 	= g′′′F2

(0). So S cannot be
metrically F-order-sensitive.

Remark C.1. Inspecting the proof of Proposition 3.15, equation (C.7) yields
for τ = 1/2

g′′′F (0) = h′(tF )

for any F ∈ F , tF = Tτ (F ). With the surjectivity of Tτ this proves that h′ = 0,
such that h is necessarily constant. Hence, we get an alternative proof that the
squared loss is the only strictly metrically order-sensitive scoring function for
the mean, up to equivalence.

Proof of Corollary 3.16. The linearity of T implies that T is mixture-continuous.
Then the assertion follows directly by Proposition 2.4 and the special form of
the image of the path γ in the proof therein, which is a line segment.
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Proof of Proposition 3.17. Let F ∈ F , t = T (F ), v ∈ S
k−1 and 0 ≤ s < s′ such

that t+ sv, t+ s′v ∈ A. Then S̄(t+ sv, F ) = q̄(F )(−φ(t+ sv) + s∇φ(t+ sv)v).
The subgradient inequality yields

S̄(t+ sv, F )− S̄(t+ s′v, F ) < q̄(F )
(
(s′ − s)∇φ(t+ s′v)v

+s∇φ(t+ sv)v − s′∇φ(t+ s′v)v
)
≤ 0.

Proof of Proposition 3.18. Let S be F-order-sensitive on line segments. This
implies that S is F-consistent. Using the revelation principle, S′ : A′ × R → R,

S′(m1,m2, y) = S(m1,m2 −m2
1, y) (C.8)

is an F-consistent scoring function for T ′ = (T1, T2 + T 2
1 ) : F → A′, the pair

of the first and second moment. Moreover, S′ fulfils the same regularity con-
ditions as S. Fissler and Ziegel (2016, Proposition 4.4) holds mutatis mutandis
also for consistent scoring functions with φ convex. It is straight forward to
check that the conditions for Fissler and Ziegel (2016, Proposition 4.4) are ful-
filled for S′ and T ′ with the canonical identification function V ′ : A′ ×R → R

2,

V ′(m1,m2, y) =
(
m1 − y,m2 − y2

)�
. Hence, S′ is necessarily of the form

S′(m1,m2, y) = −φ(m1,m2) +∇φ(m1,m2)

(
m1 − y
m2 − y2

)
+ a(y),

where a : R → R is some F-integrable function and φ : A′ → R is a convex
C3-function with gradient ∇φ (considered as a row vector) and Hessian ∇2φ =
(φij)i,j=1,2. In summary, (C.8) yields the form at (3.8).
Now, we verify conditions (3.9) and (3.10). Let F ∈ F , with (t1, t2) = T (F ).
For v ∈ R

2, ‖v‖ = 1, s ∈ R with s̄ := t+ sv ∈ A, it holds that

d

ds
S̄(t+ sv, F ) = s (v1, v2 + 2v1s̄1)∇2φ

(
s̄1, s̄2 + s̄21

)( v1
v2 + 2v1s̄1 − sv21

)

= s (v1, v2 + 2v1s̄1)∇2φ
(
s̄1, s̄2 + s̄21

)( v1
v2 + 2v1s̄1

)
(C.9)

− s2v31
(
φ12

(
s̄1, s̄2 + s̄21

)
+ 2s̄1φ22

(
s̄1, s̄2 + s̄21

))
(C.10)

− s2v21v2 φ22

(
s̄1, s̄2 + s̄21

)
. (C.11)

Since (φij)i,j=1,2 is positive semi-definite, the term at (C.9) is non-negative
and the term at (C.11) has the sign of −v2. Consider v = (1, 0)�. Due to the
surjectivity of T it holds that for all c1 ∈ R, c2 > 0, s ∈ R there exists a
distribution F+ ∈ F such that T1(F

+) + s = c1 and T2(F
+) = c2. Hence,

s−1 d

ds
S̄(t+ sv, F+) = (1, 2c1)∇2φ

(
c1, c2 + c21

)( 1
2c1

)
− s

(
φ12

(
c1, c2 + c21

)
+ 2c1φ22

(
c1, c2 + c21

))
. (C.12)

Due to the F-order-sensitivity of S, the term on the left-hand side of (C.12) is
non-negative for all s ∈ R. Since |s| can be arbitrarily large, the term φ12

(
c1, c2+

c21
)
+ 2c1φ22

(
c1, c2 + c21

)
must vanish and we obtain (3.9).
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Finally, let v be such that v1, v2 	= 0 and w.l.o.g. v2 > 0. Then

s−1 d

ds
S̄(s̄, F )

= (v1, v2 + 2v1s̄1)∇2φ
(
s̄1, s̄2 + s̄21

)( v1

v2 + 2v1s̄1

)
− sv21v2 φ22

(
s̄1, s̄2 + s̄21

)
= v21φ11

(
s̄1, s̄2 + s̄21

)
− sv21v2φ22

(
s̄1, s̄2 + s̄21

)
+ (v2 + 2v1s̄1)

[
2v1φ12

(
s̄1, s̄2 + s̄21

)
+ 4v1s̄1φ22

(
s̄1, s̄2 + s̄21

)
+ (v2 − 2v1s̄1)φ22

(
s̄1, s̄2 + s̄21

)]
= v21

(
φ11

(
s̄1, s̄2 + s̄21

)
− (sv2 + 4s̄21)φ22

(
s̄1, s̄2 + s̄21

))
+ v22φ22

(
s̄1, s̄2 + s̄21

)
.

Due to the surjectivity of T it holds that for all c1 ∈ R, c2 > 0, s < c2/v2 there
exists a distribution F+ ∈ F such that T1(F

+)+sv1 = c1 and T2(F
+)+sv2 = c2.

Consequently, one obtains the lower bound

s−1 d

ds
S̄(s̄, F+) ≥ v21

(
φ11

(
c1, c2 + c21

)
− (c2 + 4c21)φ22

(
c1, c2 + c21

))
+ v22φ22

(
c1, c2 + c21

)
and this bound is asymptotically attained for s ↑ c2/v2. As v2 can be arbi-
trarily small, it is necessary and sufficient for order sensitivity on line segments
that the map A 
 (c1, c2) �→ φ11

(
c1, c2 + c21

)
− (c2 + 4c21)φ22

(
c1, c2 + c21

)
is

non-negative which is equivalent to (3.10). The reverse direction follows with
analogous considerations.

Proof of Proposition 3.20. Let F ∈ F with density f , t = (t1, t2) = T (F ),
v = (v1, v2) ∈ S

2, and s > 0 such that t+ sv ∈ A. Then, after some calculation,
we find

d

ds
S̄(t1 + sv1, t2 + sv2, F ) = (F (t1 + sv1)−α)v1

(
g′(t1 + sv1)+

1

α
φ′(t2 + sv2)

)

+ sv22φ
′′(t2 + sv2) + v2φ

′′(t2 + sv2)
( 1

α

∫ t1+sv1

t1

F (y)dy − sv1

)
. (C.13)

We have

αsv1 ≤
∫ t1+sv1

t1

F (y)dy ≤ F (t1 + sv1)sv1. (C.14)

Note that by assumption g′ ≥ 0, φ′ > 0, φ′′ > 0, and, furthermore (F (t1+sv1)−
α)v1 > 0 for v1 	= 0. Therefore, if v2 ≥ 0, the first two summands on the right-
hand side of (C.13) are strictly positive and the last one is non-negative using
the first inequality in (C.14). For v2 < 0, we find using the second inequality in
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(C.14)

d

ds
S̄(t1 + sv1, t2 + sv2, F )

> (F (t1 + sv1)− α)v1
1

α
φ′(t2 + sv2) + v2

1

α
φ′′(t2 + sv2)

(
F (t1 + sv1)− α

)
sv1

=
1

α
(F (t1 + sv1)− α)v1

(
φ′(t2 + sv2) + sv2φ

′′(t2 + sv2)
)
≥ 0,

where the last inequality is due to the assumption at (3.13).

C.3. Proofs for Section 4

Proof of Proposition 4.7. If a random variable Y has distribution F with F ∈ F ,
we write F − z for the distribution of Y − z where z ∈ R

k. To show the first
part, consider any F ∈ F and z ∈ R

k. Then

0 = EF [V (T (F ), Y )] = EF [V (T (F )− z, Y − z)].

Since V is a strict F-identification function for T , T (F − z) = T (F )− z.
For the second part, Fissler and Ziegel (2016, Theorem 3.2) implies that there

exists a matrix-valued function h : Rk → R
k×k such that

∇S̄(x, F ) = h(x)V̄ (x, F )

for all x ∈ R
k and for all F ∈ F . We will show that h is constant. Since

S̄(x, F )− S̄(x′, F ) = S̄(x− z, F − z)− S̄(x′ − z, F − z) for all x, x′, z ∈ R
k and

F ∈ F , we obtain by taking the gradient with respect to x

h(x)V̄ (x, F ) = h(x− z)V̄ (x− z, F − z) = h(x− z)V̄ (x, F ), (C.15)

where the second identity is due to the linear (idRk , idRk)-invariance of V . So
(C.15) is equivalent to

V̄ (x, F ) ∈ ker
(
h(x− z)− h(x)

)
.

Now, one can use Assumption (V1) and Fissler and Ziegel (2016, Remark 3.1),
which implies that

ker
(
h(x− z)− h(x)

)
= R

k.

Since x, z ∈ R
k were arbitrary, the function h is constant.

Proof of Lemma 4.8. If S has linearly (idRk , idRk)-invariant score differences, S
satisfies (4.3) for all x, x′, y, z ∈ R

k. Due to Lemma 4.3, T must be πid
Rk

,id
Rk
-

equivariant, hence, T (δy) − z = T (δy−z). This yields that S0 defined at (4.5)
is linearly (idRk , idRk)-invariant. Since S and S0 are of equivalent form, also S0

is strictly F-consistent for T . The non-negativity follows directly from the fact
that F contains all point measures and from the strict consistency.
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Proof of Proposition 4.9. Fissler and Ziegel (2016, Theorem 3.2) asserts that
there is a matrix-valued function h : int(A) → R

2×2 such that for all (x1, x2) ∈
int(A) and for all F ∈ F we have

∇S̄(x, F ) = h(x1, x2)V̄ (x1, x2, F ). (C.16)

Due to the special form of V and Assumption (F1), this equation holds also
pointwise for all y ∈ R. Moreover, the function h is continuously differentiable.
Assume that S has linearly (MO,MA)-invariant score differences. This implies,
combined with the previous result, that for all (x1, x2) ∈ int(A), and for all
y, z ∈ R

h(x1, x2)V (x1, x2, y) = ∇xS(x1, x2, y)

= ∇xS(x1 + z, x2, y + z)

= h(x1 + z, x2)V (x1 + z, x2, y + z)

= h(x1 + z, x2)V (x1, x2, y).

An application of Assumption (V1) (similarly to the proof of Proposition 4.7)
yields that h must be necessarily constant in its first argument.

On the other hand, arguing as in the proof of Proposition 3.18 with identifi-
cation function V ∗, the revelation principle yields that

S(x1, x2, y) = −φ(x1, x2+x2
1)+∇φ(x1, x2+x2

1)

(
x1 − y

x2 + x2
1 − y2

)
+a(y), (C.17)

where a : R → R is some F-integrable function and, due to our assumptions and
Fissler and Ziegel (2016, Proposition 4.4), φ : A′ → R is C3 and convex with
gradient ∇φ and Hessian (φij)i,j=1,2. Using the representation at (C.17), one
obtains ∂2S(x1, x2, y) = φ22(x1, x2 + x2

1)(x2 + x2
1 − y2). A comparison to the

form at (C.16) yields that

h22(x1, x2) = φ22(x1, x2 + x2
1)

h21(x1, x2) = 2x1φ22(x1, x2 + x2
1).

Since ∂1h22(x1, x2) vanishes, we obtain that 0 = ∂1h21(x1, x2) = 2φ22(x1, x2 +
x2
1). As the Hessian of φ must be positive semi-definite φ11 ≥ 0 and φ12 =

φ21 = 0. Since φ is C3, we have that ∂2φ11 = ∂1φ12 = 0, hence φ11 is constant
in the first argument. Equating the first component of (C.16) and (C.17) and
using that h12 = h21 = 0, we find that φ11(x1, x2 + x2

1) = h11(x1, x2). As h11

is constant in x1, this implies that φ11 is also constant in its second argument
which yields the claim.

Proof of Proposition 4.10. The scoring function Sc is of equivalent form as given
at (3.12) with g(x1) = −x2

1/2 + cx1 and φ(x) = (α/2)x2
2. This means that φ is

strictly convex and the function x1 �→ x1φ
′(x2)/α + g(x1) is strictly increasing

in x1 if and only if x2 + c > x1, that is, if and only if (x1, x2) ∈ Ac. Moreover,
one can verify that the action domain Ac satisfies the conditions introduced in
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Fissler and Ziegel (2019, Proposition 2). Hence, the latter proposition implies
the strict F-consistency of Sc. Finally, a direct computation yields that Sc(x1+
z, x2 + z, y + z) = Sc(x1, x2, y) for all (x1, x2) ∈ Ac, y, z ∈ R. This proves the
first part.

Under the conditions of Fissler and Ziegel (2016, Theorem 5.2(iii)), any
strictly F-consistent scoring function S : A×R → R, where A = T (F), is almost
everywhere of the form given at (3.12) with g continuously differentiable and φ
twice continuously differentiable. By translation invariance of score differences
the function Ψ: R× A× A× R → R,

Ψ(z, x1, x2, x
′
1, x

′
2, y) = S(x1 + z, x2 + z, y + z)− S(x′

1 + z, x′
2 + z, y + z)

− S(x1, x2, y) + S(x′
1, x

′
2, y)

constantly vanishes. Let z, y ∈ R and (x1, x2), (x
′
1, x

′
2) ∈ A. Then

0 =
d

dx2
Ψ(z, x1, x2, x

′
1, x

′
2, y)

=
(
x2 − x1 +

1

α
1{y ≤ x1}(x1 − y)

)
(φ′′(x2 + z)− φ′′(x2)),

hence φ′′ is constant, that is, φ(x2) = d1x
2
2+d2x2+d3 with d1 > 0 (ensuring the

strict convexity of φ) and d2, d3 ∈ R. Similarly, the derivative of Ψ with respect
to z must vanish for all z, y ∈ R and (x1, x2), (x

′
1, x

′
2) ∈ A. A calculation yields

0 =
d

dz
Ψ(z, x1, x2, x

′
1, x

′
2, y)

=
(
1{y ≤ x1} − α

)
g′(x1 + z)− 1{y ≤ x1}g′(y + z)

−
(
1{y ≤ x′

1} − α
)
g′(x′

1 + z) + 1{y ≤ x′
1}g′(y + z)

+
2d1
α

(
1{y ≤ x1}(x1 − y)− x1

)
− 2d1

α

(
1{y ≤ x′

1}(x′
1 − y)− x′

1

)
.

This implies that necessarily g′(x1) = (−2d1/α)x1+d4 for some d4 ∈ R. Hence,
g(x1) = (−d1/α)x

2
1 + d4x1 + d5 for some d5 ∈ R. Now, by Fissler and Ziegel

(2016, Theorem 5.3(iii)), the function

ψx2(x1) = x1φ
′(x2)/α+ g(x1) = x1(2d1x2 + d2)/α− d1x

2
1/α+ d4x1 + d5

must be strictly increasing in x1 which holds if and only if

x2 +
d2 + d4α

2d1
> x1.

This condition is satisfied for all (x1, x2) ∈ A = T (F) if and only there is
a c > 0 such that T (F) ⊆ Ac and d := (d2 + d4α)/(2d1) ≥ c. The scoring
function at (3.12) with φ(x2) = d1x

2
2 + d2x2 + d3, d1 > 0, d2, d3 ∈ R, g(x1) =

(−d1/α)x
2
1 + d4x1 + d5, d4, d5 ∈ R is equivalent to Sd defined at (4.7), which

concludes the proof.
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Proof of Proposition 4.11. Suppose φ satisfies (4.12). This implies that for any
c > 0 the map z �→ φ(Λ(c)z) − cbφ(z) is an affine function. Moreover, a Taylor
expansion yields that for all x, z ∈ A

φ(Λ(c)z)− cbφ(z) =
(
∇φ(Λ(c)x)Λ(c)− cb∇φ(x)

)
(z − x) + φ(Λ(c)x)− cbφ(x).

Then, a direct calculation yields the result.
Now, suppose (4.10) is satisfied. Its left-hand side equals

−φ(Λ(c)x) +∇φ(Λ(c)x)Λ(c)x+ φ(Λ(c)z)−∇φ(Λ(c)z)Λ(c)z

+
(
∇φ(Λ(c)z)Λ(c)−∇φ(Λ(c)x)Λ(c)

)
(y, y2, . . . , yk)�,

whereas the right-hand side is

− cbφ(x) + cb∇φ(x)x+ cbφ(z)− cb∇φ(z)z

+ cb
(
∇φ(z)−∇φ(x)

)
(y, y2, . . . , yk)�.

Both terms are polynomials in y of degree k, which leads to the identity

∇φ(Λ(c)z)Λ(c)−∇φ(Λ(c)x)Λ(c) = cb
(
∇φ(z)−∇φ(x)

)
.

This is exactly condition (4.12).

Proof of Corollary 4.12. The form at (4.13) follows as in the proof of Proposi-
tion 3.18. The rest follows by Proposition 4.11.
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ing and insightful discussions about the topic.

We are grateful to the editor, an anonymous associate editor and an anony-
mous referee for their valuable comments which helped to improve the presen-
tation of the paper.

References

Abernethy, J. D. and Frongillo, R. (2012). A Characterization of Scoring
Rules for Linear Properties. In Proceedings of the 25th Annual Conference on
Learning Theory. Proceedings of Machine Learning Research 23 27.1–27.13.
PMLR, Edinburgh, Scotland.

Acerbi, C. and Szekely, B. (2014). Backtesting Expected Shortfall. Risk
Magazine 27 76–81.

Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Anal-
ysis: A Hitchhiker’s Guide, 3rd ed. Springer, Berlin Heidelberg New York.
MR2378491

http://www.ams.org/mathscinet-getitem?mr=2378491


1210 T. Fissler and J. F. Ziegel

Banerjee, A., Guo, X. and Wang, H. (2005). On the Optimality of Condi-
tional Expectation as a Bregman Predictor. IEEE Transactions on Informa-
tion Theory 51 2664–2669. MR2246384

Bellini, F. and Bignozzi, V. (2015). On elicitable risk measures. Quantitative
Finance 15 725–733. MR3334566

Brehmer, J. R. (2017). Elicitability and its Application in Risk Management,
Master’s thesis, University of Mannheim.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy.
Journal of Business and Economic Statistics 13 253–263. MR3303732

Ehm, W., Gneiting, T., Jordan, A. and Krüger, F. (2016). Of quan-
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