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Abstract

We show how to extend previously proposed tree-structured dictionary machines 80

they can perform order statistics and other data operations. In particular, we consider

how to perform multi-selections, sorting, and operations based on the ranks of data.

items, such as ExtractU), which simultaneously selects and deletes the J"·th smallest

data item. All these data operations can be performed without ever interrupting the

pipelining of responses coming from the machine. Moreover, the extension allows for

graceful recovery from redundant operations, and it preserves the order of the responses.

Keywords. Dictionary machiD~J order statistics, pipe-lining, multiple-response queries.



1 Introduction

An application of VLSI which seeIIl8 to offer many rewards is that of manufacturing powerful,

special-purpose computing devices which allow general-purpose (host) computers to off-load some of

their computational burden. Specifically, one such application is the design of dictionary machines

(sometimes referred to as database machines) [1,2,3,4,6,7,8)9j. A dictionary machine is a computing

device which is to be used to allow a host computer to off-load certain operations for maintaining

and querying data. files.

For a dictionary machine to be attractive for use with a general-purpose computer, it should

obviously perform the required operations better than the general-purpose computer can. H the

types of operations are simple, a sequentiaJ. computer can perform fairly well, however. For example,

by using a simple hashing scheme a sequential computer can perform the operations Insert, Delete,

and Member in O(n) time in the worst case, but in practice hashing techniques come very close

to constant time performance. If we add ExtractMin to the list of operations, then a sequential

computer can perform any operation in O(Iog n) time in the worst case, by using any of the familiar

balanced search-tree data structures. But the cost of performing more complex operations on a

sequential computer can become quite prohibitive. For example, dynamic d-dimensional orthogonal

range queries take O(logd n) time and O(n logd-l n) space [10] on a sequential computer, and there

is little hope for imRrw:o:g.jhis 80 long as a sequential computer is nse,adLI~5~J _

One way that some dictionary machines excel over sequential machines is in their use of paral

lelism, especially their ability to pipe-line operations. A host computer using such a machine sends

it a. stream of operations, and gets back a stream of responses. In this context there are two useful

measures for evaluating a machine's performance: its latency time and its interval time (or periQclJ.

The latency time of a machine is the tir;ne it takes one operation to Dow through the machine, from

the input of the operation to the output of its first result. The interval time of a machine is the

time that elapses between consecutive responses.

One design which makes considerable use of this type of parallelism is the tree-structured

dictionary machine [1,2,3,6,8,9], depicted in Figure 1. Such a machine is structured as a binary

tree of processing elements (PE's), and stores data items internally, each PE having 0(1) storage

registers. There is an actual database machine which was recently introduced and is based on this

kind of structure [7]. In each of the previous designs data operations are sent to the dictionary

machine in a pipe-lined fashion, the execution of an operation beginning when it is input as a single

instruction to the tree's root processor. (These high-level instructions should not be confused with

the primitive instructions which comprise the instruction set for the CPU in a processing element

(PE).) A PE executes the instruction on its contents, then divides the instruction into two instances,

called bubbles, and sends them to its children, including its response (if there was one) with one of
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the bubbles. and its parent's response with the other. The instruction continues to be broadcast

down the tree in this manner, PE's broadcasting bubbles to their children. AB the bubbles from this

instruction move down the tree, being divided into more and more bubbles, they carry along the

responses that have been generated so far. When bubbles from this instruction reach the last level

of the tree still storing data items they stop being broadcast down the tree, and start moving back

up the tree to be output. possibly combining with each other as they move up. When a (response)

bubble arrives at the root, the root simply sends it back to the host.

Much of the previous work on tree-structured dictionary machines [1,2,3,6,8,9] has dealt with

efficient ways of implementing simple operations, such as inserting a data item, deleting an item,

finding an item, etc. Because so much work has been spent optimizing the simple operations, one

might be lead to the misconception that a tree-structured dictionary machine cannot perform more

complex operations, such as rank-based queries. Some of these papers describe machine designs in

which data items are stored close to the top of the tree, thus optimizing the latency time of the

machine. Some describe machine designs which allow for graceful recovery from redundant Insert

and Delete operations. That is, the machine can recover gracefully if an Insert operation tries to

insert something that is already in the dictionary machine or if a Delete tries to remove something

that is not in the machine. In [9] Song describes a tree-structured dictionary machine which can

perform complex operations, such 88 multi-selection, sorting, and join. Still, the machine described

--------,d~o~es!!lnI1Ot8UJfPort-rank~88eaqueries, it requires that data Items be stored only at the leaves of the

tree, and operations cannot be redundant.

In this paper we show how to extend the previously proposed tree-structured dictionary ma

chines to be able to perform order statistics and other data operations, such 88 range-queries and

sorting, even in the presence of redundant operations. If we were to disallow redundant Insert's

and Delete's, then rank-based queries would be straight-forward to implement, for we could easily

maintain a rank field for each data item in the dictionary machine. This becomes non-trivial, how

ever, in the presence of redundant operations, especially if we allow for an operation Extract(i),

which simultaneously selects and deletes the j-th smallest data item. This Extract(i) operation

is a generalization of the ExtractMin and ExtractMax operations that some of the previous

designs support 11,6,8]. In section 3 we describe how to maintain data item ranks while allowing for

an Extract(j) operation as well 88 redundant Insert's and Delete's. In section 4 we show that

even if we allow for queries which could have a variable number of responses (such as range-queries)

we need not sacrifice any of the desirable qualities of the tree-structured dictionary machine. That

is, our design does not require that l"fl8ponse pipe-lining ever be turned off for such operations, nor

does it allow euch operations to corrupt data item ranks. The extension guarantees that the results

from different operations will never become "inter-mixed", and that the order of operation results

is the Bame as the order in which the operations were sent to the machine.
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2 The Machine Model

The machine model we will be using incorporates the common properties ofprevious tree-structured

dictionary machine designs [1,2,3,6,8,9]. Some of the previously proposed models have data items

stored only at the leaves of the tree) but for the purpose of more generality we will assume that a.

data. item can be stored at any node in the tree. Restricting items to the leaves is then a simple

special case.

We define the last level of the tree still containing data items to be the effective last level of the

tree. All previous designs execute instructions as described earlier, instructions being executed as

they flow down the tree to the effective laat level. An exception is reference [8] where instructions

can be executed as they are going up the tree. The algorithms we describe in this paper assume

that instructions execute as they travel down the tree. Modifying our model so that instrudions

execute on the way up would be fairly straightforward.

A data item is represented as a key-record pair (k,r), where k is a key uniquely identifying the

item, and r is a data record. In a database it is often useful for k to be a tuple (k1,k2 , ••• ,kd ).

Machine instrudions are denoted by i. An instrudion instance, or bubble. in the tree consists of

an instruction-response pair (i,b), where i is the instruction being executed and b is a response

from some PE which has executed i on its content8. We place no restrictions on the response b,

but typically it will be 0 (the null respo~~~,~,"c<>or,-"sollJmlIlee-1(!,k",r;r)/-ppaai"re-. _

There are six primitive operations which previously proposed machines can perform:

1. Insert(k,r), insert a (k,r) pair;

2. Delete(k): delete the (W, r) pair for which k' = kj

3. Update(k,r), replace (k,r') by (k,r);

4. Member(k): return the (M, r) pair for which 1r! = k if there is such a pair, otherwise, return

5. MinO: return the (k, r) pair which has the minimum k value among all those stored in the

machinej

6. ExtractMinO. Extract¥axO: simultaneously seled and delete the (k, r) pair with smallest

(largest) k value [1,6,81.

Since the implementation details for operations 1, 2 and 3 above differ from machine model to

machine model, we will not desQribe their implementation in any detail. For the details of various

implementations see the referenc;es at the end of this paper. The only thing we assume is that,

like all operations, content-modifying operations execute while travelling down the tree. We will
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describe how to perform the operations 4, 5, and 6 in this paper, since we describe generalizations

of these three operations.

An Insert(k, r) is redundant if there is already a pair (k) r') in the tree) and a Delete(k) or

Update(k,r) is redundant if there is no pair (k,r') in the tree. Not all machine models allow

for redundant operations, and some of the ones that do allow for them require that all redundant

Insert's be treated like Update's. Our solution to the redundancy problem is to change the way

instructions are pipelined through the machine similar to the method used by Atallah and Kosaraju

in [1], thus allowing for general kinds of recovery from redundant operations. Instead of only going

up and down the tree once) instructions will now go up and down the tree twice. In the first round

trip the content-modifying instructions will be tagged either "redundant" or "non-redundant" (all

non-content-modifying instructions are trivially non-redundant). Then, in the second round trip,

the non-redundant instructions will perform just as before when we assumed all instructions were

non-redundant. The redundant instructions will perform some error recovery procedure (usually

a no-operation) in their second round trip. For example, a redundant Insert(k)r) could act as a

non-redundant Update(k, r) or it could simply do nothing, allowing the (k, r') pair already in the

machine to remain unchanged. This is, of course, more general than a "hard-wired" redundancy

handling mechanism.

IT we restrict the content-modifying instructions to Insert(k, r)' Delete(k), and Update(k, r),

-----~ttlh""en_theorigina!acliem-eoflttalla:l:i anaKosaraju [1] WIll correctly tag an IDstructlons as "I'edun

dant" or "non-redundant" by the end of the first round trip through the machine. We will review

their scheme here, and then in the next section show how to extend it for our model. Their scheme

called for instructions traveling up the tree in their first round trip to examine both the (k,r) pairs

in the tree and the instructions traveling down the tree in their second round trip (see Figure 2)

and execute the following tagging rules as they went.

Tagging Rules:

1. A non-redundant Insert(k, r) becomes redundant, or a redundant Delete(k) or Update(k, r)

becomes non-redundant, by finding a pair (k, r') in the tree or by seeing a non-redundant

Insert(k, r') instruction making its way down the tree in its second round trip.

2. A redundantInsert(k, r) becomes non-redundant, or a non-redundant Delete(k) or Update(k, r)

becomes redundant, by seeing a non-redundant Delete(k) in its second round trip down the

tree.

Initially, all Insert(k, r) instructions are tagged non-redundant, and all Delete(k) and Update(k, r)

instructions are tagged redundant. On the way up the tree in the first round trip the tags are com

bined according to the following rule. IT the tags for the two instances of the same Delete(k) (or
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Update(k,r)) instruction differ when they are sent to a parent PE, then the combined bubble is

tagged non-redundant. If. on the other hand, the tags for two instances of the same Insert(k,r)

differ, then the combined bubble is tagged redundant. Note that in each case we are tagging the

instruction opposite to the tag the instruction had when it was input to the machine.

Unfortunately, if we are to implement rank-based queries, including an operation Extract(j)

which deletes an item based on its rank. then the redundancy scheme presented above is not

sufficient to correctly tag operations as "redundantll or "non-redundant.ll This is because an

Extract(j) can cause a redundant Insert(k.r) to become non-redundant or a non-redundant

Delete(k) or Update(k,r) to become redundant, and there is currently no way to tell if the

instruction is affected by the Extract(j) coming down the tree in its second round trip. We solve

this problem in the next section.

3 Order Statistics

There are a number of useful data operations which use the ranks of data items as operands:

selecting the median element, extracting the j-th smallest element, or selecting the j-th largest

element, to name a few. In this section we show how to implement these types of rank-based

queries. The first operation we describe is selecting the J·-th smallest data item in the dictionary

------tltree. 1£ we-add-a-rank-field----to--the---{k,r}-register-of each PE, to stole the rank of k. then we can

add a new instruction Select(j), which returns the (k,r) pair with j-th smallest k value. APE

storing (k, r) can easily update the rank of k by incrementing its rank for every non-redundant

Insert(k', r') with 1r! < k and decrementing it for every non-redundant Delete(k') with k' < k. If

the key k is really a tuple (k1, k2, ... ,kd), then the rank of k can also be a tuple (rl' r2, •.• ,rd).

The algorithms we present below consider the rank to be a single integer, but changing them for

the case of a tuple of ranks should be obvious.

Adding the operation Select (j) does not corrupt the redundancy checking mechanism presented

in the previous section. because it does not alter the contents of the dictionary machine. However, if

we include the instruction Extract(j), which simultaneously selects and deletes the (k, r) pair with

the j-th smallest k value, then, as we have already observed, the previous scheme i.s not enough.

Let i be some content-modifying instruction, using the key k, which is in its first round trip

moving up the machine. Of course, as it is moving through the machine it exists as a number

of instances (bubbles). We define the relative rank of k for a bubble of i which is in its first

round trip moving up the tree and is currently at some PE P to be the rank of k if we were

to complete executing all the instructions which have already passed through P in their second

(executing) round trip moving down the machine (see Figure 3). To rectify the problem introduced

by Extract(j) we add a rank field to each bubble of every content-modifying instruction i. In
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i's first round trip through the machine this rank field will store the relative rank of k, and in i's

second round trip through the machine this field will store the actual rank of k. The rank field is

used. in the instruction's first round trip through the machine so that it will be able to tell if it is

affected by an Extract(j) moving down the machine in its second round trip. This rank field is

also used in the second round trip to help compute the ranks of bubbles of instructions in their

first round trip. Now, when an instruction i is moving up the tree in its first round trip it will be

compared against those instructions coming down the tree in their second round trip by examining

their rank fields as well as their redundancy tags. We denote the rank field of a bubble B = (i,b)

by B.rank. For a non-redundant bubble B = (i,b) which is moving up the tree in its first round

trip we use the following rules to update its rank field (note that similar rules should be used to

update the rank field of a (k,r) pair in the tree):

1. Upon encountering a non-redundant Insert(k, r) with rank field less than B.rank, then in

crement B.rank by 1.

2. Upon encountering a non-redundant Delete(k) with rank field less than B.rank, then decre

ment B.rank by 1.

3. Upon encountering an Extraet(j) where j < B.rank then decrement B.rank by 1.

-------'C~omputing_the-initia!-<ank-of-a-I:lel.t"fkTor-l:fpdate(k. ,) bubble is "haight-forward. W/ll'hreJen,,------

one of these bubbles becomes non-redundant, it sets its rank to the rank of what ever made it non-

redundant: either a (k)r) pair in the tree or an Insert(k,r') instruction, which by an inductive

argument has a correct rank field. But, since an Inseri(k,r) is non·redundant as soon as it is input

to the machine, computing its initial. rank is not as easy.

Initially, an Insert(k,r) instruction will have rank 1. AJJ it travels down the tree in ita first

round trip if a bubble B of i is ~nt to a PE storing a (k', r' ) pair with k' < k, then set B.rank :=

max(B.rank,rank(k') + 1). This rank is then propagated down to the children PE's.

Lemma: Let i be some Insert(k) r) instruction. At least one bubble for i will contain the correct

relative rank of k by the time the bubble reaches the effective last level of the tree.

Proof: The correct relative ra:Q.k of k for a bubble of i =Insert(k,r) at the effective last level of

the tree is one greater than the maximum rank of all (k', r') pairs, k' < k, which were in the tree

when the bubbles of i Bowed ppst them. Since bubbles for the instruction i pass by every PE in

the tree storing a (k', r') pair, then there is certainly some bubble for i which will pass through the

PE storing the immediate predecessor of (k, r) (if there was one) .•

Since the correct relative rapk of k for a bubble of i =Insert(k, r) is the maximum over all

the bubbles of i, in combining instances as they move up the tree, we take the rank of a combined

bubble to be the maximum raul«: of its two children bubbles.
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Note that a bubble of i =Insert(k,r) with the correct relative rank of k might not have the

correct actual rank of k over all data items in the tree at any particular time before reaching the

top of the tree, however. This is because there may be a Delete(k') instruction, 1r! ~ k, in the tree

ahead of i but a bubble of i went by (k', r') before it was deleted. This is not a problem, however,

because i will encounter the Delete(k') coming down the tree as i is moving up the tree.

Lemma: By the time any content-modifying instruction has completed its first round trip through

the machine, with all its first-trip instances being combined back into one bubble, it contains the

correct rank of the (k, r) pair it is to affect.

Proof; Let i be some content-modifying instruction. We have established that if i =Insert(k, r),

then as bubbles for i start up the tree in i's first round trip there is at least one with the correct

relative rank of k. Also, if i =Delete(k) or i =Update(k) r) then as soon as a bubble of i becomes

non-redundant it contains the correct relative rank of k. H a bubble of i with correct relative rank

encounters an instruction coming down the tree in its second round trip then the ranking rules

given above are clearly sufficient to correctly update the relative rank for thiB bubble. Finally,

since we have made sure that the correct relative rank of k for i moves up the tree with i, then

by the time i arrives back at the root as one bubble the rank of that bubble will be the relative

rank of k. The instruction i is now the next instruction to be sent down for execution; hence, the

relative rank of k for i is in fact the actual rank of k.•

So, we add the following rule to the redundancy rules:

3. A redundantInsert(k, r) becomes non-redundant, or anon-redundant Delete(k) or Update(k, r)

becomes redundant, if it encounters an Extract(i) instruction travelling down the machine

in its second round trip with j equal to the the rank field for that instruction.

The Extract(J") instruction trivially stores the rank of the item it will affect, so we need not add

any rank field to it. Moreover, the only time Extract(j) can be redundant is if there are less

than j elements being stored in the machine. But, as should be apparent by the way Extract(i)

affects other instructions, the fact that n < j does not corrupt the instruction of the machine,

and is discovered by the time the response bubbles from the Extract(j) instruction reach the root

processor.

Theorem: An instruction ia cQrrectly tagged as redundant or non-redundant by the time it is

finished travelling through the tJ'oe for the first time, even in the presence of Extract (j) instruc

tions.

Proof; We have already established the theorem for the basic three content-modifying instruc

tions. So we need to prove that lUI instruction is correctly tagged in the presence of Extract (j)

instructions. From the previous lemma) for an instruction i moving up the tree in its first round
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trip, where i is a non-redundant Insert(k, r) or a redundant Delete(k) or Update(k,r), there is at

least one bubble of i with the correct relative rank of k. If i on its way up encounters an Extract(j)

on its way down with; equal to its relative rank, then it is affected by this Extract(j). Note that

the redundancy rule 3 above correctly handles this case. Since we have already established the

theorem for the other content-modifying instructions, this completes the proof. •

3.1 Using the Value of n

Another important piece of information that should be allowed to be included in machine instruc

tions is"l the number of (k,r) pairs in the machine, This makes operations such as extracting the

maximum element, selecting the median, or selecting the ;-th largest element possible. One might

be tempted to require that every PE store the value of n to be able to implement these operations,

but the only PE which needs to store the value of n is the root proceasor. AJJ.y instruction that

uses the value of" as an argument can have the actual value substituted as soon as the instruction

reaches the root after its first round trip through the machine. This is because the root processor

will store the correct value of n for that instruction, having processed all content-modifying instruc

tions which precede it. For example) when an instruction such as SelectMedianO or SelectMaxO

reaches the root PE the root simply changes the instruction into the appropriate Select(j) instruc

tion. Similarly, the root can convert an ExtractMaxO or ExtractMedianO operation to an

Extract(j) in this way, as well. After this change, the instruction proceeds in its second round

trip as before.

4 Multiple Responses

In most of the previous tree machine designs an instruction moved from level to level in the tree at

the same time. But this is not neceBS&ry to 88Bure that response pipe-lining never be disabled. In

fact, it is not even to be desired if the machine is to perform instructions which can have multiple

responses. So, to provide for multiple responses, we distinguish between two kinds of responses

that a PE in our model can p~oduce: atomic and fusing. Atomic responses are responses which

are in their final form as soon as they are created, !lJld are never combined with other responses.

For example, the responses from a range-query instruction could be a collection of data items, each

of which needs to be output as an atomic entity. Fusing responses are responses which need to

be combined (fused) with other responses before the answer is in its final form. For example, the

response from a Delete(k) instrllction could be that each PE indicates by responding with a "yesD

or "noD whether it deleted the spscified item or not. For the host to know if the item was deleted

all of the responses would need ~ be combined into just one answer: "yes" or "no," ~ we will

show, by being able to designate whether an operation requires atomic or fusing responses we never
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have to disable response pipe-lining.

Each instruction will be accompanied by two extra bits, identifying their "type" when they are

travelling through the machine: the color bit and the bubble-type bit. The color bit is assigned by

the root proceBSOr to each instruction as it is input to the machine, assigning 0 and 1 to each one

in an alternating fashion, so that consecutive instructions alwa.ys differ in this bit. This is used to

help maintain the order of instructions moving through the machine, as well as making sure that

the bubbles of two different instructions never become inter-mixed. The bubble-type bit identifies

whether the response to an instruction is atomic or fusing.

A simple communication rule can be used here to allow for multi-response instructions and

still maintain response pipe-lining, accompanied by some way to prevent instruction inter-mixing.

Simply put, a PE will not send a message to another PE unless the latter is ready to receive a

message. Also, a PE must send messages to its two children simultaneously: it cannot send a

message to one child without sending a message to the other (and therefore both children must be

ready). Instruction inter-mixing is prevented by having null atomic responses (with b = 0) act as

fusing bubbles. We describe the scheme in detail below:

Input algorIthm. for an interior node PE:

An interior node PE repeats the process of reading an instruction-response (i, b)

pair from its parent (see Figure-4.af.,.-..computing---i~nse--b!---to-i-,--and-sending---anc---------

instruction-response pair to each of its children (see Figure 4b). H the PE has no

response to this instruction, then it sets b' := 0. After its two children become ready,

then the PE sends (i, b) to its left child and (i, b') to its right, simultaneously.

Input/Output algorithm. for an effective last level PE:

An effective laat level PE repeats the process of reading an instruction-response pair

(i,b) from its parent, computing its response b' to i, and then performing the output

algorithm below as if it were an interior node PE which had just read b and b' from its

children.

Output algorithm for an Interior node PE:

An interior node PE repeats the process of reading instruction-response pairs from

ita two children, and sencling instruction-response pairs to its parent. It always com

pletes processing the bubbles from one instruction before moving on to the bubbles from

another. Note that a processor can test this just by checking the color bit of incoming

bubbles. In particular1 syppose the PE has just read two bubbles with the same color

from its children (as in Figure 6a). The PE proceeds as follows:
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- H the bubbles are fusing bubbles, then the PE combines the two bubbles and sends

the result to its parent (see Figure 5b).

- H one of the bubbles is the null response (0), then the PE sends the other bubble

to the parent and discards the null response. IT they are both the null responses,

then one null response is sent to the parent.

- H both bubbles are atomic, then the PE chooses one and sends it to the parent

(see Figure 5c). This causes one of the PE's input registers to become empty, so

the PE reads another bubble into that register (from the connected child PE). The

PE then repea.ts this process as long as both bubbles are the same color. When

one of the children sends a bubble from the next instruction, then the PE sends

bubbles from the other child to its parent until it is done processing bubbles for

this instruction (and both bubbles it has read from its children are the same color

again).

Observation: Along any path from input root to output root, instruction bubbles will be in the

exact order in which they were input.

Proof: .A£, an instruction is moving down the tree, a PE sends the two bubbles from that instruc

tion to its children simultaneously. So instruction bubbles cannot become out of order as they are

-----'m""ovvin"'"'g<lown the tree. Bubbles cannot become out 01 order as they are moving up the tree, either.

IT an instruction calls for fusing responses, then its bubbles only combine with other fusing bubbles

from the same instruction. H an instruction calls for atomic responscs then the 0 responses prevent

the responses from two different instructions from becoming inter-mixed.•

There is always some response that is being output at the root, so the machine is pipe-lining

responses as fast as is possible: the interval time for the machine is constant. Note that this does

not mean that instructions can be sent to the machine at a constant rate, however, since the time

delay for an instruction depends on the number of bubbles that must be output for every instruction

which precedes it.

With the added power of these techniques, providing for multi-selections becomes straight

forward. We define a multi-selection operation, adding a new instruction, Select(F). to our in

struction list. The instruction Select(F) returns all the (k, r) pairs (as atomic responses) for which

the boolean function F(k) is true. The only restriction we place on F is that a PE storing (k, r)

receiving a Select(F) instruction can compute F(k) without conununicating with any other PE's.

H F(k) is true, then the PE gonerates an atomic response b' = (k,r)j otherwise, it generates b' = 0,

which is discarded as it moves up the tree (see the output algorithm above). Note that this is a

generalization of the Select(j) instruction of the previous section, since the function F can use the

rank of k as one of its arguments.
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It is Dot hard to see that the rank-maintaining and redundancy-checking mechanisms of the

previous section will work even in the presence of multi-response instructions.

Now, to perform, say, a. d-dimensional range-query one encodes the query 88 a. boolean function

involving a key k, which is actually a tuple (k1,k2, ••• ,kd). to test ifea.ch of the d fields (coordinates)

of k are within specified ranges. Since operation pipe-lining is never turned off, m consecutive d

dimensional range queries can be performed in o(log n + m + t) time, where t is the total number

of (k, r) pairs which need to be output. This is a substantial improvement over what is possible

on a. sequential computer. in which the problem requires O(mlogd n + t) time with 0(nlogd- 1 n)

space [51.

Note that in the output algorithm for interior node PE's the method for choosing between two

atomic bubbles from the same instruction was never specified. If we make the choice criterion that

of always selecting the minimum (or maximum) of the two, then the output will be sorted, for each

PE will be merging two sorted lists coming from its children. Being able to sort the output from

an operation allows many other data. operations to be realizable in the tree machine. For example,

Song noted in [9) that once a tree-structured dictionary machine can sort its output, it can also

perform projections and various grouping operations.

5 Conclusion

We have presented ways of extending any of the proposed tree-structured dictionary machines to

be able to perform order statistics, such as selecting or extracting the j-th smallest element, and

other data operations. such as multi-responses and Borting. Moreover. our model allows for general

recovery from redundant operations, and allows multiple responses from single instructions, without

compromising machine performance by disabling response pipe-lining.
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Host

Instructions {j I}Responses
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Figure 1: Instruction pipe-lining in the dictionary machine.

j t .t I
Broadcast Tagging Execute Output

Figure 2: The phases of inatru~tiopsBowing through the machine. The first round trip consists of
a Broadcast phase and a Tagging phase; the second round trip consists of an Execute phase and
an Output phase.
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Figure 3: The relative rank of i, currently in some PE P, is the rank it would have after executing
all the instructions (indicated by a heavy line) which are past P in their second round trip.

j (i,b)

[k, r] [?I

(i,~/",~,b')

(a) (b)

Figure 4: Input cycle. (a) a proc~asor recieves an (i, b) pair from its parent; (b) a processor executes
ion (k,r) and sends (i,b) left and (i,b') right.
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)0
(a)

I(i,5') I(i,51)

[i,5I] [i,b,] [--J [--I [--I [i,5,J

(i,5.)'i' " (i,5,) /"'" /"'"

Figure 5: Output cycle. (a) input two response bubbles from children; (b) if i calls for fusing
responses, combine bl and b2 and send result h' to parent; (e) if i calls for atomic responses, pick
one of bl and b2 to send to parent.
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