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Abstract 

Under mild conditions on the distribution function F, we analyze 

the asymptotic behavior in expectation of the smallest order statistic, 

both for the case that F is defined on (-~, ~) and for the case that 

F is defined on (0, ~). These results yield asymptotic estimates of 

the expected optimal value of the linear assignment problem under the 

assumption that the cost coefficienmare independent random variables 

with distribution function F. 
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1. INTRODUCTION 

Given-an n-x n matrix (aij ), the linear assignment problem (LAP), is 

n 
to find a permutation ~Sn that minimizes Li=l ai~(i; • This classical 

problem, which has many app1ications~ can he salven f>ff1cientlv hv A 

variety of algorithms (see, e.g., (Lawler 1976). It can be conveniently 

viewed as the problem of finding a minimum weight perfect matching in a 

complete bipartite graph. Here we shall be concerned with a probabilistic 

analysis of the value Z of the LAP, under the assumption that the 

coefficients a" are independent, identically distributed (i.i.d.) 
~J 

random variables with distribution function F. We shall be particularly 

interested in the asymptotic behavior of 

E! = E min 'P £ S 
n 

n 
2: i =l ~i'P(i) (1) 

Previous analysis of this nature have focused on several special 

choices for F. In the case that ~ij is uniformly distributed on (0, I), 

EZ = 0(1); the initial upper bound of 3 on the constant (Walkup 1979) was 

recently improved to 2 (Karp 1984). In the case that -a" is exponentially 
-lJ - -

distributed, E! = O(n log n) (Lou1ou 1983). 

We shall generalize the above results by showing that, under mild 

-1 conditions on F, E! is asymptotic to nF (lIn). The interpretation of 

this result is that the asymptotic behavior of E!/n is determined by 

that of the smallest order statistic. In Section 2, we establish lower 

and upper bounds on the expected value of this statistic, that may be of 

interest on their own. In Section 3, we apply the technique developed 

in (Walkup 1979) to these bounds to arrive at the desired result. As we 

shall see, the condition on F under which the result is valid, is in 

a sense both a necessary and a sufficient one. 
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2. ORDER STATISTICS 

Supp~e that X. (i=l, .", n) is a sequence of i.i.d. random 
- -1 

variables with distribution function F. It is well known that 

-1 
!i ~ F (Qi)' where the Ui are independent and uniformly distributed 

on (0,1), and where F-1 (y) = inf {vIF(v)~y}. The smallest order 

statistic (i.e., the minimum) of random variables , •• ,. Y will 
-n 

be denoted by !l:n, 

We first consider the cast that 

= -co (2) 

under the additional assumption that 

-f.oo 

l:xIF(dx) < ~ , (3) 

-"" 

We start by deriving an upper bound on E!l:n. 

Lemma 1 (F defined on (-"",+CO» 
-1 1 1 n 1 "" 

EX_ ~ F (~) (1-(1- -) ) + n (l-F(O»n- Ix F(dx) (4) 
-=-1.:n n n 

Proof: 

Hence, 

We observe that 

-1 
E!1:n = E min {F (U1) , 

= EF-1
(Q1:n) 

o 

-1 
••• , F (U) } 

-n 

(5) 

max {Qi' lin} (i=l, "', n). Clearly, EF-1(U )~EF-l(V ). 
-l:n -l:n 

EF-1 (U1 :n ) ~ 

F-
1

(1/n) Pr {V1 :n=1/n} + E(F-
1

(V1 :n) IV > lin) = 
-l:n 

1 1 -1 n-1 
F- (l/n) (l-Pr {U1:n~1/n}) + n I F (x) (I-x) dx (6) 

lin 
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Now (2) and (3) imply that the latter term is bounded by 

-1 
n 1 

F(O) 

-
F-l(x) (l_x)n-l dx ~ 

1 
n (l_F(O»n-l 1 

F(O) 

-1 F (x) dx = 

00 

n (l_F(O»n-l f x F(dx). 
o 

Together, (6) and (7) imply (4). 

Since l-F(O) < 1, we obtain as an immediate consequence that 

EX 
lim inf -l:n ~ 1 

n-7<>O F-l (l/n) 
1 
e 

(7) 

o 

(8) 

To derive a lower bound on E!l:n of the same form (and thus an upper 

-1 
bound on E~:n/F (lIn», an assumption is needed on the rate of 

decrease of F when x + - (0). We shall assume that F is a function 

of positive decrease at - 00 , 

F(-x) 
lim inf x + co F( -ax) 

i.e. , 

> 1 

that 

(9) 

for some a > 1. It can be shown (De Haan & Resnick 1981) that this 

condition implies that 

a(F) 
In (lim inf F(-x)/F(-ax» 

X-7<>O (10) 
a 

exists and is positive. The condition is satisfied, for instance, 

when F(x) decreases polynomial1y (0 < a(F) < (0) or exponentially 
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(a(F) = (0) fast when x + - 00. Condition (9) implies and is 

equivalent-with·(De Haan & Resnick 1981) 

lim sup 
y+<» 

with a > 1. Again, 

F-1 (l/ay) 

F-l (l/y) 
< 00 

lim 
In (lim sup y + 00 F-l (l/ay)/F-l (l/y) 

In a 

can be shown to exist and to be equal to S(F) = l/a(F). 

Theorem 1 (F defined on (- 00, + w» 

lim sup 
n~ 

EX -l:n 

F-1(I/n) 

< OC) 

if and only if F is a function of positive decrease at - 00 

with a(F) > 1. 

Proof. We note that 

1 F(O) 
= n f -1 n-l F (x) (I-x) dx + n f 

o 

The latter term is bounded by 

00 

n(l_F(O»n-l f x F(dx) 

and hence 

lim 
n~ 

1 
n f 

° 

F-1 (x) (l_x)n-l dx 
_F,,-(;,...:;O ...... ) _----::--_____ = 0 

F-1 (l/n) 

-5-
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(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



If nF(O) > 1, the former term is bounded from below by 

n 
1 - F(O) 

n 
1 - FCO) 

1 
1 - F(O) 

1 
1 - F(O) 

F(O) 
f 
o 

F(O) 
f 
0 

1 
f 
0 

-1 n F (x) (I-x) dx ~ 

-1 F (x) exp(-nx) dx = 

-1 F (x/n) exp(-x) dx + 

nF(O) 
f F-1 (x/n) exp(-x) dx 
1 

(17) 

-1 The monotonicity of F implies that, for large n, the latter term 

is at least as large as 

00 

F-1 (I/n) f exp(-x) dx 
1 - F(O) 1 

(18) 

Also, (11), a(F) > 1 and (Frenk 1983, Theorem 1.1.7) imply that there 

exist constants B>O and ~ E (0,1) such that for sufficiently large nand 

X E: (0,1) 

o < 

Cf. (12», so that, for sufficiently large n, 

1 
f 
o 

. -1 
F (x/n) exp (-x) dx 1 -8 

$ B f x exp ( -x) dx < co 

o 

-6-
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Together, (20) and (18) imply (13). 

Now, suppose that (13) is satisfied, i.e. , that 

F(O) -1 (1_x)n-1 n f F (x) dx 

lim sup 0 
-1 

< 00 

n -7- 00 

(l/n) F 

If a < nF(O), then 

-1 nF (a/n) 
a/n 
f (l_x)n-l dx ~ n 

F(D) 
f -1 n-1 F (x) (I-x) dx 

o D 

and hence 

-1 
F (a/n) 

F-l (l/n) 

1 
D( l-exp(-a) ) 

(21) 

(22) 

(23) 

Hence (cf. (11» F is of positive decrease with Cl(F) ;;.. 1, and all 

that has to be shown is that Cl(F) f 1. Thus, it is sufficient to 

show that Cl(F) = 1 implies that 

1 
f 
D 

-1 
. F (x/n) dx 

F-1 (l/n) 
= 

00 

1 -2 f F- (l/xn) x dx 
1 
____ ~~----------~ 00 

F-
l (l/n) 

(24) 

In (De Haan & Resnick 1981) it is shown that there exists a sequence 

nk and a fun·ction <p(i) ~ z (z ~ 1) such that 

-1 
F (l/xn

k
) 

F-l(l/~) 
.p(x) ~ x (25) 

for almost every x ~ 1, i.e., except in the ~ountably man~ points x 

where .p is discontinuous. But this implies the existence of a sequence 

with x E (2m,2m+l), such that for all N 
m 
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co 
-2 

f 
-1 F (l/xn

k
) x dx 

E N 1 1 ;:;: if? (x ) (--
lim'suPk-,;.oo m=l m x xm+l F-l(l/n

k
) m 

2 EN (1 _ 2m+l) 
m=l 2m+2 (26) 

which goes to + co when N ~ co • o 

Lemma 1 and Theorem 1 imply that, under conditions (2) and (3), the 

following statements are equivalent: 

(i) F is ,a function of positive decrease at - co with a(F) > 1; 

(it) l_e-l ~ lim inf E!l:n ~ lim sup 
n~oo n~oo 

(lIn) 

EX -l:n < co. 

F-1(1/n) 

Now let us deal with the (much simpler) case that 

lim n ~ 00 
F-~_l_) = ° 

n 
(27) 

No additional assumption such as (3) is needed. 

Lemma 2. (F defined on (0, co» 

n 
(28) 

Proof: Define 

.!ii = 
lIn if Ui > lIn 

(29) 

° if Ui ~ lIn 

Then 

EX = EF-l 
(.!!l :n) 2 EF-l 

(}il:n) -l:n 

o 
-1 Again, let us assume that F satisfies (11), or that, equivalently, 

F(x) 
F(ax) > 1 

-8-
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for some a < 1. Thus, F being defined on (0, 00), the function is 

-
assumed to be of positive decrease at 0. 

Theorem 2 (F defined on (0, 00»). 

lim sup n-klO 

EX -l:n < 00 

if and only if F is a function of positive decrease at 0. 

Proof: 

1 -1 
n f F (x) exp (-nx) dx 

° 
n 
f F-1 (x/n) exp (-x) dx 

° 
As before, we split the integral in two parts, corresponding to 

X £ (0,1) and x £ (1,n) respectively. The first part 1S 

bounded by 

1 
f exp (-x) dx 

° 
As in the proof of Theorem 1, we can bound 

n 
f 
1 

-1 
F (x/n) exp (-x) dx 

-9-
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by invoking (12). This yields the proof of (32). 

Conversely, (32) implies that, since for 0 < a < 1 

1 
J 

a/n 

n-l 
(I-x) dx 

1 
::;; f 

o 
-1 n-l 

F (x) (l-x) dx, 

we may conclude that 

lim sup n-+«> 

-1 
F (a/n) 

which leads directly to (11). 

1 
f (l_x)n-l dx 

a/n < 00 

Hence, in the case that (27) holds, we have the following two 

equivalent conditions: 

(i) F is a function of positive decrease at 0; 

(ii) 1 -::;; lim inf 
e n-+«> 

EX -l:n EX 
lim sup -l:n .< 00 

n-+«> 
F-l(l/n) 

(36) 

(37) 

o 

We note that no condition on a(F) occurs in (i). We also note that 

the case that F is defined on (c, 00) for any finite c can easily be 

reduced to the above one. 
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3. THE LINEAR ASSIGNMENT PROBLEM 

Our analysis of the linear assignment problem is based on a 

technique developed in (Walkup 1981). Very roughly speaking, this 

approach can be summarized as follows: if in a complete, randomly 

weighted bipartite graph all edges but a few of the smaller weighted 

ones at each node are removed, then the resulting graph will still 

contain a perfect matching with high probability. In that way we 

derive a probabilistic upper bound on the value Z of the LAP. 

More precisely, assume that the LAP coefficients a .. (i,j=l, ... ,n) 
-1.J 

are i.i.d. random variables with distribution function F. It is 

possible to construct two sequences bi , and 
-J 

variables such that 

d min {b." c i .} 
-1.J - J 

Indeed, since we desire that Pr {a" Z x} = 
-1.J 

of i.i.d. random 

Pr {min {b
i

" ~,} Z xl = Pr {b
i

. Z x} Pr {c
i

' Z x}, the common 
- J -.LJ - J - J 

distribution function F of b' j and C,' will have to satisfy 
-1 -1J 

l-F(x) - 2 (l-F(x» 

so that 

For future reference, we again observe that b .. dF-l(V, ,) and 
-1.J = -1J 

(38) 

(39) 

(40) 

--1 
F (W'j)' where V" and Wi' are i.i.d. and uniformly distributed 

-1. -1J - J 
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on (0,1). If we fix any pair of indices (i,j), then the order 

statistics-of Vi" .(j=l, "', n) are independent of and distributed 
-J 

as the order statistics of t\T •• (i=l, .•. , n); we shall denote these 
-1J 

order statistics by VI $ V2 $ ••• $ V 
-:n -:n -n:n and !'!.l:n $ !'!.2:n $ ••• $ ~:n 

respectively. 

Now, let G be the complete directed bipartite graph on S={sl' 
-n 

.... , 
and T={t 1, "', t } with weight b i . on arc (si' t.) and c .. on arc 

n - J J -1J 

s } 
n 

(tj , si). For any realization bij(w), cij(w), we construct Gn(d,w) by 

removing arc (si' tj) unless bij(w) is one of the d smallest weights 

at s. and by removing arc (t., s.) unless ci.(w) is one of the d 
1 J 1. J 

smallest weights at t .. Let us define P(n,d) to be the probability 
J 

that G (d) contains a (perfect) matching. A counting argument can 
-n 

now be used to prove (Walkup 1981) that 

l-p(n,2) $ ;n (41) 

l-P(n,d) $ 1~2 
d (d+1) (d-2) 

(-) (d~3) 
n 

(42) 

We use these estimates to prove two theorems about the asymptotic value 

of EZ. Again, we first deal with the case that 

lim n-+<:o 
-1 

F (l/n)=-oo 

under the additional assumption that 

+00 
flxIF(dx) <00 

-00 

-12-
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Theorem 3 (F defined on (-~, +00» 

If F is a function of positive decrease at _00 with a(F) > I, then 

3 2 (1 - 1/2) ~ lim infn+oo ~ lim sUPn+oo ----~---
2e nF-l (l/n) nF (l/n) 

EZ EZ 
< ~ 

Proof. Since 

(46) 

the upper bound in (45) is an immediate consequence of Theorem 1. 

For the lower bound we apply (41) and (42) as follows. 

Obviously, 

EZ = P(n,2) E(~I~(2) contains a matching) 

+ (1-P(n,2» E(~I~(2) does not contain a matching) (47) 

The second conditional expectation is bounded trivially by 

nEa = 0(n2) (cf. (44». The first conditional expectation 
-n:n 

is bounded by 

--1 
nEF (max {~2:n' ~2:n})· 

Hence it suffices to prove that 

lim inf 
n-*'" 

To this end, define x =1 - (1_1/n)1/2 and note from (40) that 
n 

j-l(x) = F~l(l/n)' so that 
n 

-13-
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Ep-l(max {v W}) ~ 
-2:n' -w:n 

F-l(l/n) P {v < W < } + r -2:n - xn ' -Z:n - xn 

E(p-l(max {~2:n' ~2:n}) Imax {v ,W } ~ x ) 
-2:n -Z:n n 

To bound the first term, note that 

Pr {V_Z •• n ~ x ,WZ ~ x } = n -:n n 

({ X })
2 

Pr V ~ == -2:n n 

( n (n) xk (l-x )n-k)2 = 
Lk=2 k n n 

n n-l 2 
(1 - (I-x) - nx (l-x) ) n n n 

which tends to (1_3/(Ze1/ 2»Z as n~. 

The second term in (50) is equal to 

1 
f F-l(x)d(Pr{~Z:n s x}2) = 

x 
n 

1 
2n(n-1) f p-1(x) Pr{~2:n s 

x 

n-2 x} x(l-x) dx 

n 

1/2 After a transformation x:=1-(1-y) (d. (40», we find that 

(52) for large n is bounded by 

1 
n(n-l) (l-F(O»(n-3)/2 f F-1(y)dy, 

F(O) 

thus completing the proof of (49). 

-14-
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Again, the case that 

(54) 

is much simpler to analyze. 

Theorem 4. (F defined on (0, 00» 

If F is a function of positive decrease at 0, then 

o < lim inf 
n-+«> nF-l(l/n) 

EZ < co (55) 

Proof. We have. for all d ~ 3, that 

EZ ~ (l-P(n,d» E(ZIG (d) does not contain a matching) + - - -n 

+ P(n,d) E(ZIG (d) does contain a matching) - -n 

(56) 

As in (19) , we use constants B, S > 0 to bound 

d2+d+4 1 -d2+d+3+S n- /nF- (l/n) by Bn ,and choose d such that 

-d2+d+3+S<O. For this value d, we bound EF-1 (max {~d:n' ~d:n}) as 

before by 

These two bounding arguments yield that lim sup E_Z/nF-1 (1/n) < 00. n-+«> 

-1 
The lower bound on lim infn-+«> E~/nF (lin) follows from (46). C 

The conditions of positive decrease on F turned out to be necessary as 

well as sufficient to describe the asymptotic behavior of the smallest 

order statistic (Theorems 1 and 2) that play an important role in the 

above theorems. It can easily be seen that this condition is necessary 

and sufficient in Theorem 4 as well, and one suspects that the same 

holds for Theorem 3. 



Theorems 3 and 4 capture the behavior of the expected LAP value for a 

wide rang~of distributions. To derive almost sure convergence results 

under the same mild conditions of F, the results from (Walkup 1981] 

would have to be strengthened further. For special cases such as the 

uniform distribution,however, almost sure results can indeed be 

derived quite easily (see [Van Houweninge 1984]). 
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