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Abstract. Traces are equivalence classes of action sequences which can
be represented by partial orders capturing the causality in the behaviour
of a concurrent system. Generalised traces, on the other hand, are equiv-
alence classes of step sequences. They are represented by order structures
that can describe non-simultaneity and weak causality, phenomena which
cannot be expressed by partial orders alone. In this paper, we provide
a systematic classi�cation of di�erent subclasses of generalised traces in
terms of the order structures representing them. We also show how the
original trace model �ts into the overall framework.

Keywords: trace, independence, dependence graph, partial order, trace
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1 Introduction

Mazurkiewicz traces [14, 15] are a well-established, classical, and basic model for
representing and structuring sequential observations of concurrent behaviour;
see, e.g., [1, 10]. The fundamental assumption underlying trace theory is that
independent events (occurrences of actions) may be observed in any order. Se-
quences that di�er only w.r.t. the ordering of independent events are identi�ed as
belonging to the same concurrent run of the system under consideration. Thus a
trace is an equivalence class of sequences comprising all (sequential) observations
of a single concurrent run. The dependencies between the events of a trace are
invariant among (common to) all elements of the trace. They de�ne an acyclic
dependence graph which � through its transitive closure � determines the un-
derlying causality structure of the trace as a (labelled) partial order [16]. In fact,
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this partial order can also be obtained as the intersection of the labelled total or-
ders corresponding to the sequences forming the trace. Moreover, the sequences
belonging to the trace correspond exactly to the linearisations (saturations) of
this partial order. In [17] the necessary connection between the causal structures
(partial orders) and observations (total orders) is provided by showing that each
partial order is the intersection of all its linearisations (Szpilrajn's property).
Consequently, each trace can also be viewed as a labelled partial order which
is unique up to isomorphism, i.e., up to the names of the underlying elements;
see, e.g., [1, 3, 10]. Thus, to capture the essence of equivalence between di�erent
observations of the same run of a concurrent system, Mazurkiewicz traces bring
together two mathematical ideas both based on a notion of independence be-
tween actions expressed as a binary independence relation ind. On the one hand,
there are equations ab = ba generating the equivalence by expressing the com-
mutativity of occurrences of certain actions as determined by the independence
relation. As a result, sequences wabu and wbau of action occurrences are consid-
ered equivalent whenever 〈a, b〉 ∈ ind, irrespective of what w and u are. On the
other hand there is the idea of a common partial order structure that underlies
equivalent observations de�ned by the ordering of the occurrences of dependent
actions. However, being based on equating independence and lack of ordering,
the concurrency paradigm of Mazurkiewicz traces with the corresponding partial
order interpretation of concurrency is rather restricted [6].

In [5], a full generalisation of the theory of Mazurkiewicz traces is presented
for the case that actions could occur and may be observed as occurring simulta-
neously. Thus observations consist of sequences of steps, i.e., sets of one or more
actions that occur simultaneously. In order to retain the philosophy underlying
Mazurkiewicz traces, the extended set-up is based on a few explicit and simple
design choices. Instead of the single independence relation ind, now three basic
relations between pairs of di�erent actions are distinguished: simultaneity in-
dicating that actions may occur together in a step; serialisability indicating a
possible execution order for potentially simultaneous actions; and interleaving
indicating that actions can not occur simultaneously though no speci�c ordering
is required. These three relations are used to de�ne fundamental concurrency
alphabets and then applied to identify step sequences as observations of the
same concurrent run. In this more general case, the equations are of the form
A1A2 = B1B2 where the Ai and Bj are steps, and de�ned in terms of simul-
taneity, serialisability, and interleaving. The resulting equivalence classes of step
sequences are called generalised traces. Actually, in this paper we will work with
the, technically more convenient, de�nition of generalised traces provided by
generalised concurrency alphabets also introduced in [5]. These concurrency al-
phabets have only two relations: simultaneity as before and sequentialisability
which is a combination of serialisability and interleaving.

It is the main aim of this paper to characterise and discuss generalised traces
in more detail. As demonstrated in [5], the clear semantical meaning of the three
relations � simultaneity, serialisability, interleaving � allows for an intuitive
classi�cation of some natural subclasses of fundamental concurrency alphabets.
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A hierarchy of interesting families of generalised traces is presented in [5], in-
cluding new non-trivial classes of traces as well as the original Mazurkiewicz
traces, comtraces [7, 13], and g-comtraces [8]. Comtraces are equivalence classes
of step sequences derived from equations of the form AB = A]B using the two
relations simultaneity and serialisability. Likewise, g-comtraces are equivalence
classes of step sequences derived from equations of the form AB = A ] B and
AB = BA � using simultaneity, serialisability as well as interleaving. Actually,
as shown in [11], the equations used in [8] do not model the relevant aspects of
concurrent behaviours in a fully adequate way. This has been corrected in the
general set-up of [5] with generalised traces and fundamental concurrency alpha-
bet providing the full generalisation of Mazurkiewicz traces to step sequences.
There a complete picture is presented including extended dependence graphs and
a characterisation of the causal order structures underlying generalised traces as
the most general order structures from [4].

Modelling concurrency with order structures stems from the results of [2,
6] and [12]. The basic idea is that general concurrent causal behaviour is rep-
resented by a pair of relations, instead of just one, as in the standard (partial
order) approach (see, e.g., [16]). Depending on the assumptions for the chosen
model of concurrency, details vary, but basically there are two versions: one in
which the two relations are interpreted as standard causality (dependence or
precedence) and weak causality (not later than), respectively (see, e.g., [2, 6, 7]);
and an extended, general, version (suggested in [6, 11] but eventually de�ned
in [4]) with the two relations5 mutual exclusion and weak causality. The �rst
version has a relatively well developed theory and substantial applications (see,
e.g., [2, 6, 7, 9]). The second one, however, is relatively new and as such the start-
ing point for this paper where we identify the order structures that characterise
the subfamilies of generalised traces from the classi�cation in [5].

Notation

The inverse of a binary relation R is denoted by R−1, and the symmetric closure
by Rsym = R ∪ R−1. Moreover, R is a partial order relation if it is irre�exive
and transitive, and a total order relation if it is a partial order relation such that
Rsym = (X × X) \ idX . Given R ⊆ X × X, R0 = idX and Rn = Rn−1 ◦ R,
for all n ≥ 1. Then: R+ =

⋃
i≥1R

i and R is acyclic if R+ is asymmetric;

R∗ =
⋃
i≥0R

i = R+ ∪ idX ; R
� = R+ \ idX = R∗ \ idX is the irre�exive

transitive closure of R; and R~ = R∗∩ (R∗)−1 is the largest equivalence relation
contained in R∗.

Throughout the paper, Σ 6= ∅ is a �nite alphabet of actions, S = 2Σ \ {∅}
is the set of all steps, and S∗ is the set of step sequences. Let u = A1 . . . Ak ∈ S∗
be a step sequence. Then, for every action a ∈ Σ, #u(a) is the number of
occurrences of a within u; occ(u) = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ #u(a)} is the
set of action occurrences of u; and the position posu(α) within u of an action

5 with causality as a derived notion
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occurrence α = 〈a, i〉 ∈ occ(u) is the smallest index j ≤ k such that the number
of occurrences of a within A1 . . . Aj is exactly i.

Let EQ be a �nite set of equations on step sequences, each equation being
of the form u = v, where u and v are nonempty step sequences. This set of
equations induces a relation ≈ on step sequences comprising all pairs 〈tuw, tvw〉
such that t, w ∈ S∗, and u = v or v = u is an equation in EQ . Furthermore, ≡ is
the equivalence relation on step sequences de�ned as ≈∗.

2 Generalised traces

The report [5] presents a full generalisation of the theory of Mazurkiewicz traces
to the case that the smallest unit of observation is a set of actions (a step) rather
than a single action. Thus observation sequences consist of sequences of steps, i.e.,
sets of actions that occur simultaneously. In order to extend the Mazurkiewicz
trace approach to this more general situation, [5] proposes generalised concur-
rency alphabets Θ employing two relations de�ned for a set of atomic actions Σ,
namely simultaneity sim de�ning legal steps, and sequentialisation seq specifying
actions which can be swapped, or actions whose simultaneous occurrence means
that they can also occur one after another. Together sim and seq de�ne a set of
equations and then an equivalence relation for step sequences over Σ.

A generalised concurrency alphabet is a triple θ = 〈Σ, sim, seq〉 ∈ Θ, where
Σ is a �nite nonempty set, and sim and seq are two irre�exive relations over Σ
such that sim and seq \ sim are symmetric. The sets of steps and step sequences
de�ned by θ are given by Sθ = {A ⊆ Σ | A 6= ∅ ∧ (A × A) \ idΣ ⊆ sim} and
SSEQθ = S∗θ; and the induced equations are as follows, where A,B ∈ Sθ:

AB = BA if A×B ⊆ seq ∩ seq−1 (interleaving)
AB = A ∪B if A×B ⊆ seq ∩ sim (serialisability)

(1)

Note that if A,B ∈ Sθ and A×B ⊆ seq ∩ sim then A ∩B = ∅ and A ∪B ∈ Sθ,
and so the above equations (1) can never transform a step sequence in S∗θ into a
sequence of sets outside S∗θ.

Similarly as in the case of Mazurkiewicz traces, the equations (1) induce an
equivalence relation ≡ on the step sequences SSEQθ de�ned by θ. The equiva-
lence classes TSSEQθ of the relation ≡ are called (generalised) traces, and the
generalised trace containing a step sequence u ∈ SSEQθ is denoted by JuKθ.

There are six semantically meaningful relationships between pairs of actions
which together form a partition of Σ ×Σ:

(i) con = seq ∩ seq−1 ∩ sim is concurrency identifying actions which can be
executed simultaneously as well as in any order;

(ii) inl = (seq ∩ seq−1) \ sim is interleaving allowing a pair of actions to be
swapped, but disallowing simultaneous execution;

(iii) ssi = sim \ (seq ∪ seq−1) is strong simultaneity allowing a pair of actions to
be executed simultaneously, but disallowing serialisation and interleaving;
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Θ

Θsim\seq Θseq\sim Θseq∩sim

Θseq Θsim Θsim4seq

Θsim∪seq

Fig. 1. Subclasses of generalised concurrency alphabets.

(iv) sse = (seq \ seq−1) ∩ sim is semi-serialisability allowing a pair of simulta-
neously executed actions to be executed in the order given, but not in the
reverse order;

(v) wdp = (seq−1\seq)∩sim is weak dependence, the inverse of semi-serialisability;
and

(vi) rig = (Σ×Σ)\(sim∪(seq∩seq−1)) is rigid order allowing neither simultaneity
nor changing of the order of actions.

The Venn diagram of the relations sim and seq consists of three components,
namely sim\ seq, seq\ sim, and sim∩ seq. Hence, one can distinguish in a natural
way eight classes of generalised concurrency alphabets, as shown in Figure 1,
where the subscripts indicate which relations are empty. Out of the seven proper
subclasses of Θ, there is little to be gained from studying Θsim∪seq and Θseq as for
these each trace consists of only one step sequence. We will therefore concentrate
in this paper on the remaining �ve types of generalised concurrency alphabets,
viz.

Θseq\sim, Θsim, Θsim\seq, Θseq∩sim, and Θsim4seq

where sim4seq = (sim \ seq) ∪ (seq \ sim).

3 Order structures for generalised traces

The order theoretic treatment of generalised traces is based on relational struc-
tures 〈∆,
,@, `〉 comprising a �nite domain ∆, two binary relations 
 and @

on∆, and a domain labelling∆
`−→ Σ. To represent observational and causal rela-

tionships in the behaviours of concurrent systems we use OS, the order structures
from [4] which are an extension of an idea �rst proposed in [2, 6, 12]. Individual
observations (step sequences) are represented by saturated order structures, or
so-structures for short, and causal relationships are represented by invariant
order structures (io-structures). Formal de�nitions follow below.

An order structure is a relational structure os = 〈∆,
,@, `〉 with a symmet-
ric and irre�exive mutex relation 
 and an irre�exive weak causality relation
@. Intuitively, ∆ is the set of events that have happened during some execution
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of a concurrent system; x 
 y means that x occurred not simultaneously with
y, and x @ y that x occurred not later than y, i.e., before or simultaneously
with y. Hence if x @ y and x
 y, then x must have occurred before y. We will
therefore refer to the intersection @ ∩ 
 as causality (or precedence), denoting
it by ≺. Note that x @ y @ x intuitively means that x and y were observed
as simultaneous. It is assumed that os is separable meaning that 
 ∩ @~= ∅.
Separability excludes situations where events forming a weak causality cycle in
@~ are also involved in the mutex relationship. Furthermore, it is assumed that
os is label-linear meaning that 
 ∩ @ is a total order relation when restricted
to the domain elements labelled by the same action. Referring to the set-up of
Mazurkiewicz traces, order structures correspond to (labelled) acyclic relations.

An extension of the order structure os is any order structure 〈∆,
′,@′, `〉
such that 
 ⊆
′ and @ ⊆ @′.

An so-structure is a relational structure sos = 〈∆,
,@, `〉 satisfying

x 6= y ∧ x @ z @ y =⇒ x @ y
x
 y =⇒ x @sym y

x 6= y ∧ x 6
 y ⇐⇒ x @ y @ x
x 6= y ∧ `(x) = `(y) =⇒ x
 y

One can see that saturated order structures are the only order structures without
proper extensions. Referring to the set-up of Mazurkiewicz traces, so-structures
correspond to total order relations, i.e., the only acyclic relations which cannot
be extended without violating their acyclicity. We denote by satext(os) the set
of all saturated extensions of os ∈ OS.

An io-structure is a relational structure ios = 〈∆,
,@, `〉 satisfying

x 6@ x (I1)
x 6= y ∧ x @ z @ y =⇒ x @ y (I2)

x
 y =⇒ y 
 x 6= y (I3)
x ≺ z @ y ∨ x @ z ≺ y =⇒ x
 y (I4)

z 
 y ∧ z @ x @ z =⇒ x
 y (I5)
z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒ x
 y (I6)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (I7)

Invariant order structures are the only order structures which cannot be extended
without making the set of their saturated extensions smaller (follows from the
results of [5]). Referring to the set-up of Mazurkiewicz traces, io-structures cor-
respond to partial order relations, the only acyclic relations which cannot be
extended without making the set of their total order extensions smaller. Cru-
cially, IOS are exactly those order structures os for which satext(os) 6= ∅ and
os =

⋂
satext(os). In other words, io-structures are exactly those order struc-

tures which can be represented by their saturated extensions. This fundamental
property is a counterpart of Szpilrajn's Theorem [17] which implies that partial
orders are exactly those acyclic relations which can be represented by their total
order extensions.
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The order structure closure OS
os2ios−−−→ IOS corresponds to the transitive clo-

sure for acyclic relations, and is given by:

〈∆,
,@, `〉 os2ios7−−−→ 〈∆,@~ ◦
 ◦ @~ ∪ @~ ◦∇sym◦ @~,@�, `〉

where ∇ = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}.
Order structure closure is the unique mapping OS

f−→ IOS such that f(ios) =
ios, for every ios ∈ IOS, and satext(os) = satext ◦ f(os), for every os ∈ OS
(see [5]). This corresponds to the fact that transitive closure is the unique map-
ping from acyclic relations to partial orders which preserves the total order
extensions.

4 Relating generalised traces and order structures

In this section we will identify the order structures corresponding to the �ve
subclasses of generalised concurrency alphabets identi�ed in Section 2, but �rst
we recall from [5] the main results established for the general case.

Let θ = 〈Σ, sim, seq〉 be a generalised concurrency alphabet. An event domain

(for θ) is a set ∆ ⊆ Σ × N for which there is a mapping Σ
ε−→ N such that

∆ = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ ε(a)}.
An so-structure sos = 〈∆,
,@, `〉 is consistent with θ if ∆ is an event

domain for θ, 〈a, i〉 `7−→ a is the default labelling of ∆, and, for all distinct
〈a, i〉, 〈a, j〉, 〈b, k〉 ∈ ∆, we have:

〈a, i〉 ≺ 〈a, j〉 ⇐⇒ i < j and 〈a, i〉 @~ 〈b, k〉 =⇒ 〈a, b〉 ∈ sim .

We let SOSθ denote the set of all so-structures consistent with θ. Step
sequences de�ned by θ correspond to so-structures in SOSθ via the bijection

SSEQθ
sseq2sos−−−−−→ SOSθ such that sseq2sos(u) = 〈occ(u),
,@, `〉, where, for all

α, β ∈ occ(u) with posu(α) = k and posu(β) = m we have:

k 6= m =⇒ α
 β and k ≤ m ∧ α 6= β =⇒ α @ β .

Dependencies between events are captured by the map SSEQθ
sseq2osθ−−−−−→ OS

such that sseq2osθ(u) = 〈occ(u),
,@, `〉, where, for all α, β ∈ occ(u) with
posu(α) = k and posu(β) = m:

α
 β if 〈`(α), `(β)〉 /∈ sim ∩ seq ∧ k < m
or 〈`(α), `(β)〉 /∈ sim ∩ seq−1 ∧ k > m

α @ β if 〈`(α), `(β)〉 /∈ seq ∩ seq−1 ∧ k < m
or 〈`(α), `(β)〉 ∈ sim \ seq−1 ∧ k = m

(2)

or, alternatively:

α
 β if 〈`(α), `(β)〉 ∈ ssi ∪ wdp ∪ rig ∪ inl ∧ k < m
or 〈`(α), `(β)〉 ∈ ssi ∪ sse ∪ rig ∪ inl ∧ k > m

α @ β if 〈`(α), `(β)〉 ∈ ssi ∪ sse ∪ wdp ∪ rig ∧ k < m
or 〈`(α), `(β)〉 ∈ ssi ∪ sse ∧ k = m

(3)
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We refer to sseq2osθ(u) as the dependence graph of u. Crucially, if u ≡ w, then
sseq2osθ(u) = sseq2osθ(w), and so dependence graphs can be lifted to the level of
generalised traces via sseq2osθ(JuK) = sseq2osθ(u). Hence there are two kinds of
order structures capturing causal dependencies in the step sequences of SSEQθ
and traces in TSSEQθ, namely dependence graphs and their closures, i.e., OSθ =
sseq2osθ(SSEQθ) and IOSθ = os2ios(OSθ).
In what follows, for every set Φ of generalised concurrency alphabets, we will
denote OSΦ =

⋃
θ∈ΦOSθ and IOSΦ =

⋃
θ∈Φ IOSθ.

Generalised traces in TSSEQθ can be identi�ed with the invariant order struc-
tures in IOSθ and a suitable correspondence is established by the pair of inverse
bijections

TSSEQθ
os2ios ◦ sseq2osθ−−−−−−−−−−→ IOSθ

sseq2sos−1 ◦ satext−−−−−−−−−−−→ TSSEQθ .

Moreover, if an order structure os has injective labelling, then there is a gener-
alised concurrency alphabet θ and a step sequence u ∈ SSEQθ such that os is
isomorphic to sseq2osθ(u). Thus generalised concurrency alphabets can generate
all the complex patterns involving causal relationships captured by io-structures.

An example system model for which generalised traces and invariant order
structures provide a suitable semantical treatment are the elementary net sys-
tems with inhibitor and mutex arcs [11]. Note that every complex pattern (with-
out labels) can be obtained as a closure of dependence graph for a computation
enabled in an elementary net system with inhibitor and mutex arcs.

The restriction to subclasses of generalised concurrency alphabets can lead
to striking simpli�cations in the order structures involved and the corresponding
order structure closure. In particular, such simpli�cations enable a more concise
and e�cient treatment of the computational aspects involving generalised traces
and their corresponding order structures. In what follows, we will consider the
�ve non-trivial subclasses of generalised concurrency alphabets, aiming at as sim-
ple as possible descriptions of the order structures capturing the corresponding
invariant order structures.

4.1 Order structures for the alphabets in Θsim

A generalised concurrency alphabet µ = 〈Σ, sim, seq〉 ∈ Θsim has sim = ∅ and so
does not allow for true step sequences and there are no serialisability equations
as in (1). Moreover, con = ssi = sse = wdp = ∅, seq = seq−1 = inl and
rig = (Σ×Σ)\ inl. As a result, one can simplify the de�nition of the dependence
graph of a step sequence u ∈ SSEQµ, by replacing (3) with:

α
 β if k 6= m
α @ β if 〈`(α), `(β)〉 ∈ rig ∧ k < m .

(4)

It is possible to treat µ as a Mazurkiewicz concurrency alphabet 〈Σ, seq〉 with seq
and rig playing the roles of the standard independence and dependence relations,
respectively. As all step sequences in SSEQµ consist of singleton steps, they
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correspond one-to-one to the sequences in Σ∗. Moreover, the saturated order
structures in SOSµ correspond one-to-one to the sequences in Σ∗. Indeed, since
sim = ∅, we have that for every sos = 〈∆,
,@, `〉 ∈ SOSµ it is the case that
@~= id∆, and so ≺ is a total order relation.

The order structures OSsim re�ecting the causal dependencies in the gener-
alised traces over the alphabets of Θsim are those os = 〈∆,
,@, `〉 ∈ OS for
which
= (∆×∆)\ id∆. The corresponding invariant order structures can then
be provided with a simpler de�nition.

A relational structure 〈∆,
,@, `〉 belongs to IOSsim if

x 6@ x (A1)
x @ z @ y =⇒ x @ y (A2)

x 6= y ⇐⇒ x
 y (A3)
x 6= y ∧ `(x) = `(y) =⇒ x @sym y (A4)

The simpli�ed order closure OSsim
os2iossim−−−−−→ IOSsim is such that:

os2iossim(os) = 〈∆,
,@+, `〉 ,

for every os = 〈∆,
,@, `〉 ∈ OSsim. Hence it corresponds to the transitive
closure of an acyclic relation. The justi�cation of these de�nitions is provided
by the following results.

Theorem 1.

OSΘsim ⊂ OSsim ⊂ OS
∪ ∪ ∪

IOSΘsim ⊂ IOSsim ⊂ IOS

Theorem 2. os2iossim is a surjection with os2iossim = os2ios|OSsim .

Theorem 3. If os ∈ OSsim has an injective labelling, then there are µ ∈ Θsim

and u ∈ SSEQµ such that os is isomorphic to sseq2osµ(u).

Following Mazurkiewicz [15], the classical example of a system model for
which the generalised concurrency alphabets in Θsim and invariant order struc-
tures IOSsim provide a suitable semantical treatment are the elementary net
systems with sequential execution semantics. Note that every complex pattern
(without labels) can be obtained as a closure of dependence graph for a compu-
tation enabled in an elementary net system with sequential execution semantics.

4.2 Order structures for the alphabets in Θseq\sim

A generalised concurrency alphabet σ = 〈Σ, sim, seq〉 ∈ Θseq\sim is the one satis-
fying seq \ sim = ∅ and therefore we have seq ⊆ sim, rig = (Σ × Σ) \ sim, and
inl = ∅. As a result, one can simplify the de�nition of the dependence graph of
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a step sequence u ∈ SSEQσ, by replacing (3) with:

α
 β if 〈`(α), `(β)〉 ∈ ssi ∧ k 6= m
or 〈`(α), `(β)〉 ∈ sse ∧ k < m
or 〈`(α), `(β)〉 ∈ wdp ∧ k > m
or 〈`(α), `(β)〉 ∈ rig

α @ β if 〈`(α), `(β)〉 ∈ rig ∪ wdp ∧ k < m
or 〈`(α), `(β)〉 ∈ ssi ∪ sse ∧ k ≤ m

(5)

Alphabets in Θseq\sim do not allow true interleaving, and swapping of steps can
be achieved by splitting and combining. In [6], such alphabets are referred to as
comtrace alphabets.

The order structures OSseq\sim needed to re�ect causal dependencies in the
generalised traces over the concurrent alphabets of Θseq\sim are all those or-
der structures os = 〈∆,
,@, `〉 ∈ OS for which x 
 y =⇒ x @sym y. The
corresponding invariant order structures can then be provided with a simpler
de�nition.

A relational structure 〈∆,
,@, `〉 belongs to IOSseq\sim if

x 6@ x (B1)
x 6= y ∧ x @ z @ y =⇒ x @ y (B2)

x
 y =⇒ x @sym y ∧ y 
 x (B3)
x ≺ z @ y ∨ x @ z ≺ y =⇒ x
 y (B4)

x 6= y ∧ `(x) = `(y) =⇒ x
 y (B5)

The simpli�ed order closure OSseq\sim
os2iosseq\sim−−−−−−−→ IOSseq\sim is such that:

os2iosseq\sim(os) = 〈∆, (@∗ ◦ ≺ ◦ @∗)sym ,@�, `〉 ,

for every os = 〈∆,
,@, `〉 ∈ OSseq\sim. The justi�cation of these de�nitions is
provided by the following results.

Theorem 4.
OSΘseq\sim ⊂ OSseq\sim ⊂ OS
∪ ∪ ∪

IOSΘseq\sim ⊂ IOSseq\sim ⊂ IOS

Theorem 5. os2iosseq\sim is a surjection with os2iosseq\sim = os2ios|OSseq\sim .

Theorem 6. If os ∈ OSseq\sim has an injective labelling ` : ∆ → Σ, then there
are σ ∈ Θseq\sim and u ∈ SSEQσ such that os is isomorphic to sseq2osσ(u).

An example of a system model for which the generalised concurrency al-
phabets in Θseq\sim and invariant order structures IOSseq\sim provide a suitable
semantical treatment are the elementary net systems with inhibitor arcs [7]. Note
that every complex pattern (without labels) can be obtained as a closure of de-
pendence graph for a computation in an elementary net system with inhibitor
arcs.
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Finally, as shown below, traces generated by the alphabets in Θseq\sim are
histories satisfying the concurrency paradigm π3 of [6] by which actions that can
be executed in any order can also be executed simultaneously (but not necessarily
vice versa).

Proposition 1. Let α and β be two action occurrences of a generalised trace τ
generated by σ ∈ Θseq\sim. Then

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β))
=⇒

(∃v ∈ τ : posv(α) = posv(β))

4.3 Order structures for the alphabets in Θsim\seq

A generalised concurrency alphabet κ = 〈Σ, sim, seq〉 ∈ Θsim\seq is the one
satisfying sim \ seq = ∅ and therefore we have ssi = sse = wdp = ∅ and
rig = (Σ × Σ) \ seq. As a result, one can simplify the de�nition of the depen-
dence graph of a step sequence u ∈ SSEQµ, by replacing (2) with:

α
 β if 〈`(α), `(β)〉 /∈ sim
α @ β if 〈`(α), `(β)〉 /∈ seq ∧ k < m

(6)

For the alphabets in Θsim\seq the serialisability equations are rich enough to split
any step in every possible way.

The order structures OSsim\seq are all those os = 〈∆,
,@, `〉 ∈ OS for which
x @sym y =⇒ x 
 y. The corresponding invariant order structures can also be
provided with a simpler de�nition.

A relational structure 〈∆,
,@, `〉 belongs to IOSsim\seq if:

x @ z @ y =⇒ x @ y (C1)
x @sym y =⇒ x
 y (C2)
x
 y =⇒ y 
 x 6= y (C3)

x 6= y ∧ `(x) = `(y) =⇒ x @sym y (C4)

The simpli�ed order closure OSsim\seq
os2iossim\seq−−−−−−−→ IOSsim\seq is such that:

os2iossim\seq(os) = 〈∆,
 ∪(@+)sym ,@+, `〉 ,

for every os = 〈∆,
,@, `〉 ∈ OSsim\seq. The justi�cation of these de�nitions is
provided by the following results.

Theorem 7.
OSΘsim\seq ⊂ OSsim\seq ⊂ OS
∪ ∪ ∪

IOSΘsim\seq ⊂ IOSsim\seq ⊂ IOS

Theorem 8. os2iossim\seq is a surjection with os2iossim\seq = os2ios|OSsim\seq .
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Theorem 9. If os ∈ OSsim\seq has an injective labelling ` : ∆ → Σ, then there
are κ ∈ Θsim\seq and u ∈ SSEQκ such that os is isomorphic to sseq2osκ(u).

Finally, as shown below, traces generated by the alphabets in Θsim\seq are
histories satisfying the concurrency paradigm π2 of [6].

Proposition 2. Let α and β be distinct action occurrences α and β of a gener-
alised trace τ generated by κ ∈ Θsim\seq. Then

(∃v ∈ τ : posv(α) = posv(β))
=⇒

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β))

4.4 Order structures for the alphabets in Θseq∩sim

A generalised concurrency alphabet ν ∈ Θsim∩seq is the one satisfying sim∩ seq =
∅, and so we have ssi = sim, sse = wdp = con = ∅, and rig = (Σ×Σ)\(sim]seq).
As a result, one can simplify the de�nition of the dependence graph of a step
sequence u ∈ SSEQµ, by replacing (2) with:

α
 β if k 6= m

α @ β if 〈`(α), `(β)〉 /∈ seq ∧ k ≤ m ∧ α 6= β
(7)

For the alphabets in Θsim∩seq steps can be only manipulated through the inter-
leaving equations.

The order structures OSsim∩seq are all those os = 〈∆,
,@, `〉 ∈ OS for which
x 6= y =⇒ x 
 y ∨ x @ y @ x, and the axiomatisation of the corresponding
invariant order structures becomes simpler.

A relational structure 〈∆,
,@, `〉 belongs to IOSsim∩seq if:

x 6
 x (D1)
x 6= y ∧ x @ z @ y =⇒ x @ y (D2)

x 6
 y ∧ x 6= y ⇐⇒ x @ y @ x (D3)
x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (D4)

The simpli�ed order closure OSsim∩seq
os2iossim∩seq−−−−−−−→ IOSsim∩seq is such that:

os2iossim∩seq(os) = 〈∆,
,@�, `〉 ,

for every os = 〈∆,
,@, `〉 ∈ OSsim∩seq. The justi�cation of these de�nitions is
provided by the following results.

Theorem 10.
OSΘseq∩sim ⊂ OSseq∩sim ⊂ OS
∪ ∪ ∪

IOSΘseq∩sim ⊂ IOSseq∩sim ⊂ IOS

Theorem 11. os2iosseq∩sim is a surjection with os2iosseq∩sim = os2ios|OSseq∩sim .

Theorem 12. If os ∈ OSseq∩sim has an injective labelling ` : ∆→ Σ, then there
are ν ∈ Θseq∩sim and u ∈ SSEQν such that os is isomorphic to sseq2osν(u).
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4.5 Order structures for the alphabets in Θsim4seq

A generalised concurrency alphabet ω = 〈Σ, sim, seq〉 ∈ Θsim4seq is the one
satisfying sim4seq = ∅ and therefore we have sim = seq = con, ssi = sse =
wdp = inl = ∅ and rig = (Σ × Σ) \ con. As a result, one can simplify the
de�nition of the dependence graph of a step sequence u ∈ SSEQµ, by replacing
(3) with:

α
 β if 〈`(α), `(β)〉 ∈ rig
α @ β if 〈`(α), `(β)〉 ∈ rig ∧ k < m

(8)

For the alphabets in Θsim4seq the interleaving equations are not really needed,
and the serialisability equations are rich enough to split and reorder steps in
every possible way. As a result, all steps can be completely sequentialised.

The order structures OSsim4seq are all those os = 〈∆,
,@, `〉 ∈ OS for which
x
 y ⇐⇒ x @sym y. The corresponding invariant order structures can also be
provided with a simpler de�nition. A relational structure 〈∆,
,@, `〉 belongs to
IOSsim4seq if

x 6@ x (E1)
x @ z @ y =⇒ x @ y (E2)

x
 y ⇐⇒ x @sym y (E3)
x 6= y ∧ `(x) = `(y) =⇒ x @sym y (E4)

The simpli�ed order closure OSsim4seq
os2iossim4seq−−−−−−−→ IOSsim4seq is such that:

os2iossim4seq(os) = 〈∆, (@+)sym ,@+, `〉 ,

for every os = 〈∆,
,@, `〉 ∈ OSsim4seq. The justi�cation of these de�nitions is
provided by the following results.

Theorem 13.
OSΘsim4seq

⊂ OSsim4seq ⊂ OS
∪ ∪ ∪

IOSΘsim4seq
⊂ IOSsim4seq ⊂ IOS

Theorem 14. os2iosseq4sim is a surjection with os2iosseq4sim = os2ios|OSseq4sim
.

Theorem 15. If os ∈ OSsim4seq has an injective labelling ` : ∆→ Σ, then there
are ω ∈ Θsim4seq and u ∈ SSEQω such that os is isomorphic to sseq2osω(u).

It may come as a surprise that although the structures IOSsim4seq are in a
one-to-one correspondence with partial orders, similarly as for IOSsim, the actual
de�nition of the two classes of order structures is di�erent.

Finally, as shown below, the generalised traces generated by the alphabets
in Θsim4seq are histories satisfying the true concurrency paradigm π8 of [6] and
a system model for which this subclass provides a suitable semantical treatment
are the elementary net systems with step sequence semantics. Note that every
complex pattern (without labels) can be obtained as a closure of dependence
graph for a computation in an elementary net system with step sequence seman-
tics.
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Proposition 3. Let α and β be distinct action occurrences α and β of a gener-
alised trace τ generated by ω ∈ Θsim4seq. Then

(∃v ∈ τ : posv(α) = posv(β))
⇐⇒

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β))
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A Proofs for the alphabets in Θsim

Lemma 1. IOSsim ⊆ IOS.

Proof. We �rst note that (I1) is simply (A1). To show (I2) we observe that:

x 6= y ∧ x @ z @ y =⇒(A2) x @ y .

To show (I3) we observe that:

x
 y =⇒(A3) x 6= y =⇒ x 6= y ∧ y 6= x =⇒(A3) x 6= y ∧ y 
 x .

To show (I4) we observe that:

x = y ∧ (x ≺ z @ y ∨ x @ z ≺ y) =⇒ x ≺ z @ x ∨ x @ z ≺ x
=⇒(A2) x @ x
=⇒(A1) false

and so we have:

x ≺ z @ y ∨ x @ z ≺ y =⇒ x 6= y =⇒(A3) x
 y .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(A2) z @ z =⇒(A1) false .

To show (I6) we observe that:

x = y ∧ x @ z @ y =⇒ x @ z @ x =⇒(A2,A1) false

and so we have:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒ x 6= y =⇒(A3) x
 y .

We �nally note that (I7) follows from (A3) and (A4). ut

Lemma 2. IOSsim ⊆ OSsim.

Proof. Follows from Lemma 1, IOS ⊆ OS, and (A3). ut

Lemma 3. os2iossim(OSsim) ⊆ IOSsim.

Proof. Let os = 〈∆,
,@, `〉 ∈ OSsim and ios = os2iossim(os) = 〈∆, 
̂, @̂, `〉.
To show (A1) suppose that x @̂ x which means x @+ x. Since @ is irre�exive,
there is y 6= x satisfying x @∗ y @∗ x. Hence, by the separability of os, x 6
 y,
contradicting the de�nition of OSsim.
To show (A2) we observe that:

x @̂ z @̂ y =⇒ x @+ z @+ y =⇒ x @+ y =⇒ x @̂ y .

We then observe that (A3) follows from
= (∆×∆)\ id∆. Finally, (A4) follows
from the libel-linearity of os, as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y =⇒ x @̂
sym

y .

Hence ios ∈ IOSsim. ut
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Proof of Theorem 1

Let us consider one by one all the inclusions:

� IOS ⊂ OS follows from the general results proven in [5] and

os =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OS \ IOS .

� IOSsim ⊂ OSsim follows from os ∈ OSsim \ IOSsim and Lemma 2.
� IOSΘsim ⊂ OSΘsim follows from os ∈ OSΘsim \ IOSΘsim and the general results
proven in [5].

� OSsim ⊂ OS follows from the de�nition of OSsim and

os ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OS \ OSsim .

� IOSsim ⊂ IOS follows from os ′ ∈ IOS \ IOSsim and Lemma 1.
� OSΘsim ⊂ OSsim can be proven by taking µ ∈ Θsim, u ∈ SSEQµ, and os =

sseq2osµ(u). We know that os ∈ OS. Suppose that α, β ∈ occ(u) and α 6= β.
Then, by sim = ∅, posu(α) 6= posu(β). Hence, by (4), we have α
os β, and
so os ∈ OSsim. Moreover, we note that

os ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ OSsim\OSΘsim .

� IOSΘsim ⊂ IOSsim follows from os ′′ ∈ IOSsim \ IOSΘsim , OSΘsim ⊆ OSsim and
Lemma 3.

Moreover, note that os ∈ OSsim \ IOS and os ′ ∈ IOS \ OSsim which justi�es that
IOS and OSsim are not related. Similarly, there is no inclusion between IOSsim
and OSΘsim since os ∈ OSΘsim \ IOSsim and os ′′ ∈ IOSsim \ OSΘsim . ut

Proof of Theorem 2

We �rst show that os2iossim = os2ios|OSsim . Let os = 〈∆,
,@, `〉 ∈ OSsim and
ios = os2ios(os) = 〈∆, 
̂, @̂, `〉. In this case @~= id∆ which follows directly
from 
= (∆ × ∆) \ id∆ and the separability of os. As a result, we also have
@�=@+. Hence

os2ios(os) = 〈∆,
 ∪ ∇sym ,@+, `〉 ,
where ∇ = {〈x, y〉 | ∃z, w : z 
 w∧x @∗ z @∗ y∧x @∗ w @∗ y}. Moreover, ∇ is
irre�exive (as 
̂ is irre�exive) and 
= (∆×∆) \ id∆. We therefore obtain:

os2ios(os) = 〈∆,
,@+, `〉 .

We then observe that os2iossim(OSsim) = IOSsim follows from Lemma 1,
Lemma 2, Lemma 3, os2iossim = os2ios|OSsim , and the fact that os2ios is the
identity on IOS, as then we obtain

os2iossim(OSsim) ⊆ IOSsim

and
os2iossim(OSsim) ⊇ os2iossim(IOSsim) = os2ios(IOSsim) = IOSsim.

ut
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Proof of Theorem 3

Let os = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that ∆ =
Σ ×{1}. Then, from the general results proved in [5] it follows that there exists
sos ∈ satext(os) which, by the de�nition of OSsim satis�es 
sos= (∆×∆) \ id∆.
Hence u = sseq2sos−1(sos) is a sequence of singleton steps. Let µ = 〈Σ,∅, seq〉,
where:

seq =

{
〈a, b〉 ∈ Σ ×Σ

∣∣∣∣ posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉 ∨
posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉

}
.

Clearly, µ ∈ Θsim and u ∈ SSEQµ. It is easy to check that os = sseq2osµ(u). ut

B Proofs for the alphabets in Θseq\sim

Lemma 4. IOSseq\sim ⊆ IOS.

Proof. We �rst note that (I1), (I2) and (I4) are respectively (B1), (B2) and
(B4). To show (I3) we observe that:

x
 y =⇒(B3) x @sym y ∧ y 
 x =⇒(B1) x 6= y ∧ y 
 x .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(B3) z 
 y ∧ z @ x @ z ∧ z @sym y ∧ y 
 z
=⇒ x @ z ≺ y ∨ y ≺ z @ x
=⇒(B4) x
 y ∨ y 
 x
=⇒(B3) x
 y .

To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y
=⇒(B3) z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ z′ @sym z ∧ z′ 
 z
=⇒(B1) (x @ z ≺ z′ @ y ∨ x @ z′ ≺ z @ y) ∧ x 6= z ∧ y 6= z
=⇒(B2,B4) x @ z ≺ y ∨ x ≺ z @ y
=⇒(B4) x
 y .

We �nally note that (I7) follows from (B3) and (B5). ut

Lemma 5. IOSseq\sim ⊆ OSseq\sim.

Proof. Follows from Lemma 4, IOS ⊆ OS, and (B3). ut

Lemma 6. os2iosseq\sim(OSseq\sim) ⊆ IOSseq\sim.

Proof.
Let os = 〈∆,
,@, `〉 ∈ OSseq\sim and ios = os2iosseq\sim(os) = 〈∆, 
̂, @̂, `〉.
To show (B1), we observe that:

x @̂ x =⇒ x @� x =⇒ false .
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To show (B2), we observe that:

x 6= y ∧ x @̂ z @̂ y =⇒ x 6= y ∧ x @� z @� y =⇒ x @� y =⇒ x @̂ y .

To show (B3) we observe that all we need is to prove that x
̂y =⇒ x@̂
sym

y,
in the following way:

x 
̂ y =⇒ x(@∗ ◦ ≺ ◦ @∗)symy =⇒ x 6= y ∧ x(@+)symy

=⇒ x(@�)symy =⇒ x @̂
sym

y ,

where x 
̂ y =⇒ x 6= y follows from Lemma 4 and (I3). Finally, (B5) follows
from the libel-linearity of os, as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺̂sym
y =⇒ x 
̂y .

Hence ios ∈ IOSseq\sim. ut

Proof of Theorem 4

Let us consider one by one all the inclusions:

� IOS ⊂ OS was already justi�ed in the proof of Theorem 1. Note, however,
that we also have

os =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉}, {〈x, y〉, 〈y, z〉},

{x 7→ a, y 7→ b, z 7→ c}

〉
∈ OS \ IOS .

� IOSseq\sim ⊂ OSseq\sim follows from os ∈ OSseq\sim \ IOSseq\sim and Lemma 5.
� IOSΘseq\sim ⊂ OSΘseq\sim follows from os ∈ OSΘseq\sim \ IOSΘseq\sim and the general
results proven in [5].

� OSseq\sim ⊂ OS follows from the de�nition of OSseq\sim and

os ′ = 〈{x, y}, {〈x, y〉},∅, {x 7→ a, y 7→ b}〉 ∈ OS \ OSseq\sim .

� IOSseq\sim ⊂ IOS follows from os ′ ∈ IOS \ IOSseq\sim and Lemma 4.
� OSΘseq\sim ⊂ OSseq\sim can be proven by taking σ ∈ Θseq\sim, u ∈ SSEQσ and

os = sseq2osσ(u) = 〈∆,
,@, `〉. Since we know that os ∈ OS, we only need
to show that 
 ⊆ @sym . This, however, follows from (5) and the fact that
in this case rig = (Σ × Σ) \ sim. Hence os ∈ OSseq\sim. Moreover, we note
that

os ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ OSseq\sim \ OSΘseq\sim .

� IOSΘseq\sim ⊆ IOSseq\sim follows from Lemma 6, os ′′ ∈ IOSseq\sim \ IOSΘseq\sim

and OSΘseq\sim ⊆ OSseq\sim.

Moreover, note that os ∈ OSseq\sim \ IOS and os ′ ∈ IOS \OSseq\sim which justi�es
that IOS and OSseq\sim are not related. Similarly, os ∈ OSΘseq\sim \ IOSseq\sim and
os ′′ ∈ IOSseq\sim \ OSΘseq\sim , hence there is no inclusion between IOSseq\sim and
OSΘseq\sim . ut
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Proof of Theorem 5

We �rst show that os2iosseq\sim = os2ios|OSseq\sim . Let os = 〈∆,
,@, `〉 ∈ OSseq\sim
and ios = os2ios(os) = 〈∆, 
̂, @̂, `〉. We �rst observe that

@~ ◦
 ◦ @~ = @~ ◦ ≺sym ◦ @~ and ∇ = @∗ ◦ ≺ ◦ @∗

which follows from x
 y =⇒ x @sym y. Hence


̂ = @~ ◦(@∗ ◦ ≺ ◦ @∗)sym◦ @~ = (@∗ ◦ ≺ ◦ @∗)sym .

We then observe that os2iosseq\sim(OSseq\sim) = IOSseq\sim follows directly
from Lemma 4, Lemma 5, Lemma 6, os2iosseq\sim = os2ios|OSseq\sim , and the fact
that os2ios is the identity on IOS, as then we obtain

os2iosseq\sim(OSseq\sim) ⊆ IOSseq\sim

and

os2iosseq\sim(OSseq\sim) ⊇ os2iosseq\sim(IOSseq\sim)

= os2ios(IOSseq\sim) = IOSseq\sim.

ut

Proof of Theorem 6

Let os = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that
∆ = Σ × {1}. Then, from the general results proved in [5] it follows that there
exists sos ∈ satext(os). Let u = sseq2sos−1(sos), and σ = 〈Σ, sim, seq〉, where:

sim = {〈a, b〉 ∈ Σ ×Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b)∨
(posu(〈a, 1〉) 6= posu(〈b, 1〉) ∧ 〈a, 1〉 6
 〈b, 1〉)}

seq = {〈a, b〉 ∈ Σ ×Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b ∧ 〈b, 1〉 6@ 〈a, 1〉)
∨(posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉)
∨(posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉)} .

We then observe that sim is symmetric since 
 is symmetric, and seq \ sim is
symmetric because it is empty (it follows from seq ⊆ sim, as we show below).
Hence σ is a generalised concurrency alphabet. To show σ ∈ Θseq\sim we need to
show that seq ⊆ sim.

Let 〈a, b〉 ∈ seq. If posu(〈a, 1〉) = posu(〈b, 1〉) then, clearly, 〈a, b〉 ∈ sim.
If posu(〈a, 1〉) < posu(〈b, 1〉) and 〈a, 1〉 6@ 〈b, 1〉 then, by os ∈ OSseq\sim, we
obtain 〈a, 1〉 6
 〈b, 1〉 or 〈a, 1〉
 〈b, 1〉 ∧ 〈b, 1〉 @ 〈a, 1〉.
Moreover, by posu(〈a, 1〉) < posu(〈b, 1〉), we obtain 〈b, 1〉 6@ 〈a, 1〉 and so we have
〈a, 1〉 6
 〈b, 1〉. Hence 〈a, b〉 ∈ sim, and so σ ∈ Θseq\sim.

We then observe that u ∈ SSEQσ as posu(〈a, 1〉) = posu(〈b, 1〉) and a 6= b
together imply 〈a, b〉 ∈ sim, and it is easy to check that os = sseq2osσ(u).
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Proof of Proposition 1

Let ios = os2ios ◦ sseq2osκ(u) = os2ios ◦ sseq2osκ(w). From posu(α) < posu(β)
it follows that there is sosu ∈ satext(ios) such that α ≺sosu β. Similarly, from
posw(α) > posw(β) it follows that there is sosw ∈ satext(ios) such that β ≺sosw

α. Hence, α 6@ios β 6@ios α. Moreover, by ios ∈ OSseq\sim, α 6
ios β. This, by
the general results proved in [5], there is sosv ∈ satext(ios) such that α @sosv

β @sosv α. Then the conclusion holds by taking v = sseq2os−1σ (sosv). ut

C Proofs for the alphabets in Θsim\seq

Lemma 7. IOSsim\seq ⊆ IOS.

Proof. To show (I1) we observe that:

x @ x =⇒(C2) x
 x =⇒(C3) x 6= x =⇒ false .

To show (I2) we observe that:

x 6= y ∧ x @ z @ y =⇒(C1) x @ y .

We then note that (I3) is simply (C3), and to show (I4) we observe that:

x ≺ z @ y ∨ x @ z ≺ y =⇒(C1) x @ y =⇒(C2) x
 y .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(C1) z @ z =⇒(C2,C3) false .

To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒(C1) x @ y =⇒(C2) x
 y .

We �nally note that (I7) follows from (C2) and (C4). ut

Lemma 8. IOSsim\seq ⊆ OSsim\seq.

Proof. Follows from Lemma 7, IOS ⊆ OS, and (C2). ut

Lemma 9. os2iossim\seq(OSsim\seq) ⊆ IOSsim\seq.

Proof.
Let os = 〈∆,
,@, `〉 ∈ OSsim\seq and ios = os2iossim\seq(os) = 〈∆, 
̂, @̂, `〉.
ios ∈ IOSsim\seq. To show (C1) we observe that:

x @̂ z @̂ y =⇒ x @+ z @+ y =⇒ x @+ y =⇒ x @̂ y .

To show (C2) we observe that:

x @̂ y =⇒ x @+ y =⇒ x 
̂ y .
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To show (C3) we observe that:

x 
̂ y =⇒ x
 y ∨ x(@+)symy =⇒ y 
 x ∨ y(@+)symx =⇒ y 
̂ x .

Moreover, x
̂y =⇒ x 6= y follows from the general results proved in [5]. Finally,
(C4) follows from the libel-linearity of os, as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺̂sym
y =⇒ x @̂

sym
y .

Hence ios ∈ IOSsim\seq. ut

Proof of Theorem 7

Let us consider one by one all the inclusions:

� IOS ⊂ OS was already justi�ed in the proof of Theorem 1. Note, however,
that we also have

os =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉}, {〈x, y〉, 〈y, z〉},

{x 7→ a, y 7→ b, z 7→ c}

〉
∈ OS \ IOS .

� IOSsim\seq ⊂ OSsim\seq follows from os ∈ OSsim\seq \ IOSsim\seq and Lemma 8.

� IOSΘsim\seq ⊂ OSΘsim\seq follows from os ∈ OSΘsim\seq \ IOSΘsim\seq and the general
results proven in [5].

� OSsim\seq ⊂ OS follows from the de�nition of OSsim\seq and

os ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OS \ OSsim\seq .

� IOSsim\seq ⊂ IOS follows from os ′ ∈ IOS \ IOSsim\seq and Lemma 7.

� OSΘsim\seq ⊂ OSsim\seq can be shown by taking κ ∈ Θsim\seq, u ∈ SSEQκ, and
os = sseq2osκ(u). Since we know from the general theory that os ∈ OS, we
only need to show that @sym

os ⊆
os . This, however, follows from (6). Hence
os ∈ OSsim\seq. Moreover, we note that

os ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ OSsim\seq \ OSΘsim\seq .

� IOSΘsim\seq ⊆ IOSsim\seq follows from Lemma 9 os ′′ ∈ IOSsim\seq \ IOSΘsim\seq

and OSΘsim\seq ⊆ OSsim\seq.

Moreover, note that os ∈ OSsim\seq \ IOS and os ′ ∈ IOS \OSsim\seq which justi�es
that IOS and OSsim\seq are not related. Similarly, os ∈ OSΘsim\seq \ IOSsim\seq and
os ′′ ∈ IOSsim\seq \ OSΘsim\seq , hence there is no inclusion between IOSsim\seq and
OSΘsim\seq .

ut
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Proof of Theorem 8

We �rst show that os2iossim\seq = os2ios|OSsim\seq . Let os = 〈∆,
,@, `〉 ∈ OSsim\seq
and ios = os2ios(os) = 〈∆, 
̂, @̂, `〉. We �rst observe that in such a case @~=
id∆ which follows from x @sym y =⇒ x 
 y and the separability of os. As a
result, we also have @�=@+. Hence

os2ios(os) = 〈∆,
 ∪ ∇sym ,@+, `〉 ,

where ∇ = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}. We will now
show that (
 ∪ ∇sym) = (
 ∪ (@+)sym).
Suppose �rst that x∇y which means that x 6= y (which follows from the general
theory), and there is z such that x @∗ z @∗ y. Hence x @+ y showing that the
(⊆) inclusion holds. To show the reverse inclusion, suppose that x @+ y. If x @ y
then, by the de�nition of OSsim\seq, we have x 
 y. Otherwise, there is z such
that x @ z @∗ y. Then, again by the de�nition of OSsim\seq, z 
 x. We therefore
obtain that 〈x, y〉 ∈ ∇, after taking w = x. Hence

os2ios(os) = 〈∆,
 ∪ (@+)sym ,@+, `〉 .

We then observe that os2iossim\seq(OSsim\seq) = IOSsim\seq follows from Lemma 7,
Lemma 8, Lemma 9, os2iossim\seq = os2ios|OSsim\seq , and the fact that os2ios is the
identity on IOS, as then we obtain

os2iossim\seq(OSsim\seq) ⊆ IOSsim\seq

and

os2iossim\seq(OSsim\seq) ⊇ os2iossim\seq(IOSsim\seq)

= os2ios(IOSsim\seq) = IOSsim\seq.

ut

Proof of Theorem 9

Let os = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that
∆ = Σ × {1}. Then, from the general results proved in [5] it follows that there
exists sos ∈ satext(os). Let u = sseq2sos−1(sos), and κ = 〈Σ, sim, seq〉, where:

sim = {〈a, b〉 ∈ Σ ×Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b)∨
(posu(〈a, 1〉) 6= posu(〈b, 1〉) ∧ 〈a, 1〉 6
 〈b, 1〉)}

seq = {〈a, b〉 ∈ Σ ×Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b)
∨(posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉)
∨(posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉)} .

We then observe that sim is symmetric since
 is symmetric, and seq\sim is sym-
metric because sim and seq are symmetric. Hence κ is a generalised concurrency
alphabet. To show κ ∈ Θsim\seq we need to show that sim ⊆ seq.
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Let 〈a, b〉 ∈ sim. If posu(〈a, 1〉) = posu(〈b, 1〉) and a 6= b then clearly we
have 〈a, b〉 ∈ seq. Moreover, if posu(〈a, 1〉) 6= posu(〈b, 1〉) and 〈a, 1〉 6
 〈b, 1〉
then, by os ∈ OSsim\seq, posu(〈a, 1〉) 6= posu(〈b, 1〉) and 〈a, 1〉 6@sym 〈b, 1〉. Hence
〈a, b〉 ∈ seq, and so κ ∈ Θsim\seq.

We then observe that u ∈ SSEQκ as posu(〈a, 1〉) = posu(〈b, 1〉) and a 6= b
together imply 〈a, b〉 ∈ sim, and it is easy to check that os = sseq2osκ(u). ut

Proof of Proposition 2

Let ios = os2ios ◦ sseq2osκ(v). From posv(α) = posv(β) it follows directly that
〈`(α), `(β)〉 ∈ sim and there is sos ∈ satext(ios) such that α @sos β @sos α.
Hence, α 6
ios β. Moreover, by the simpli�ed form of the sseq2osκ mapping
and the order closure, α 6@ios β and β 6@ios α. This, by the general results
proved in [5], means that there are sos ′, sos ′′ ∈ satext(ios) such that α ≺sos′ β
and β ≺sos′′ α. Then the conclusion holds by taking u = sseq2os−1κ (sos ′) and
w = sseq2os−1κ (sos ′′). ut

D Proofs for the alphabets in Θseq∩sim

Lemma 10. IOSseq∩sim ⊆ IOS.

Proof. We �rst note that:

x @ y @ x ∧ x
 y =⇒(D3) x 6
 y ∧ x 6= y ∧ x
 y =⇒ false (*)

Hence, by (D1),

x
 y ⇐⇒ x 6= y ∧ ¬(x @ y @ x) (**)

To show (I1) we observe that:

x @ x =⇒ x @ x @ x =⇒(D3) x 6
 x ∧ x 6= x =⇒ false.

Then we note that (I2) is simply (D2). To show (I3) we observe that:

x
 y =⇒(**) x 6= y ∧ ¬(x @ y @ x)
=⇒ x 6= y ∧ (y 6= x ∧ ¬(y @ x @ y))
=⇒(**) x 6= y ∧ y 
 x .

To show (I4) we observe that:

x 6
 y ∧ x ≺ z @ y =⇒(**) (x = y ∨ x @ y @ x) ∧ x ≺ z @ x
=⇒(D1) (x = y ∨ x @ y @ x) ∧

x @ z @ y ∧ x
 z ∧ z 6= x
=⇒ x @ z @ x ∧ x
 z ∨

x @ z @ y @ x ∧ x
 z ∧ z 6= x
=⇒(D2) x @ z @ x ∧ x
 z ∨ x @ z @ x ∧ x
 z
=⇒ x @ z @ x ∧ x
 z
=⇒(D3) false .
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Similarly, x 6
 y ∧ x @ z ≺ y =⇒ false. Hence we have:

x ≺ z @ y ∨ x @ z ≺ y =⇒ x
 y .

To show (I5) we �rst observe that:

z 
 y ∧ z @ x @ z ∧ x @ y @ x
=⇒(D1) z 
 y ∧ z @ x @ y @ x @ z ∧ z 6= y
=⇒(D2) z 
 y ∧ z @ y @ z
=⇒(*) false ,

z 
 y ∧ z @ x @ z ∧ x = y
=⇒ z 
 y ∧ z @ y @ z
=⇒(*) false .

Hence we have:

z 
 y ∧ z @ x @ z =⇒ ¬(y @ x @ y) ∧ x 6= y =⇒(**) x
 y .

To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ x @ y @ x
=⇒(D1) z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ x @ y @ x ∧

z 6= z′ ∧ z 6= x ∧ y 6= z
=⇒ z 
 z′ ∧ z @ y @ x @ z′ @ y @ x @ z ∧

z 6= z′ ∧ z 6= x ∧ y 6= z
=⇒(D2) z 
 z′ ∧ z @ x @ z′ @ y @ z ∧ z 6= z′

=⇒(D2) z 
 z′ ∧ z @ z′ @ z
=⇒(*) false

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ x = y
=⇒(D1) z 
 z′ ∧ z @ x @ z′ @ x @ z ∧ z 6= z′

=⇒(D2) z 
 z′ ∧ z @ z′ @ z
=⇒(*) false .

Hence we have:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒ ¬(y @ x @ y) ∧ x 6= y =⇒(**) x
 y .

We �nally note that (I7) is simply (D4). ut

Lemma 11. IOSseq∩sim ⊆ OSseq∩sim.

Proof. Follows from Lemma 10, IOS ⊆ OS, and (D3). ut

Lemma 12. os2iosseq∩sim(OSseq∩sim) ⊆ IOSseq∩sim.

Proof.
Let os = 〈∆,
,@, `〉 ∈ OSseq∩sim and ios = os2iosseq∩sim(os) = 〈∆, 
̂, @̂, `〉.
To show (D1) we observe that 
̂ =
, and to show (D2), we observe that:

x 6= y ∧ x @̂ z @̂ y =⇒ x 6= y ∧ x @� z @� y =⇒ x @� y =⇒ x @̂ y .
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To show (D3) we observe that:

@~ = @∗ ∩ (@∗)−1 = (@� ]id∆) ∩ (@� ]id∆)−1 = (@� ∩(@�)−1) ] id∆,

hence


̂ =
 = (∆×∆)\ @~= (∆×∆) \ (@� ∩ (@�)−1 ] id∆),

and so
x̂6
 y ∧ x 6= y ⇐⇒ x @̂ y @̂ x.

Finally, (D4) follows from the libel-linearity of os, as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y =⇒ x ≺̂sym
y .

Hence ios ∈ IOSseq∩sim ut

Proof of Theorem 10

Let us consider one by one all the inclusions:

� IOS ⊂ OS was already justi�ed in the proof of Theorem 1. Note, however,
that we also have

os =

〈
{x, y, z}, {〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, x〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OS \ IOS .

� IOSseq∩sim ⊂ OSseq∩sim follows from os ∈ OSseq∩sim\IOSseq∩sim and Lemma 11.
� IOSΘseq∩sim ⊂ OSΘseq∩sim follows from os ∈ OSΘseq∩sim \IOSΘseq∩sim and the general
results proven in [5].

� OSseq∩sim ⊂ OS follows from the de�nition of OSseq∩sim and

os ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OS \ OSseq∩sim .

� IOSseq∩sim ⊂ IOS follows from os ′ ∈ IOS \ IOSseq∩sim and Lemma 10.
� OSΘseq∩sim ⊂ OSseq∩sim can be shown by taking ν ∈ Θseq∩sim, u ∈ SSEQν , and

os = sseq2osν(u) = 〈∆,
,@, `〉. Since we know that os ∈ OS, we only need
to demonstrate that:

(∆×∆) \ id∆ ⊆
 ∪ (@ ∩ @−1) .

The above holds since, by (7), posu(α) = posu(β)∧α 6= β implies α @ β @ α,
and posu(α) 6= posu(β) implies α 
 β. Hence os ∈ OSseq∩sim. Moreover, we
note that

os ′′ =

〈 {x, y, z},
{〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},
{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ OSseq∩sim \ OSΘseq∩sim .

� IOSΘseq∩sim ⊂ IOSseq∩sim follows from Lemma 12, os ′′ ∈ IOSseq∩sim \ IOSΘseq∩sim

and OSΘseq∩sim ⊆ OSseq∩sim.

Moreover, note that os ∈ OSseq∩sim \ IOS and os ′ ∈ IOS\OSseq∩sim which justi�es
that IOS and OSseq∩sim are not related. Similarly, os ∈ OSΘseq∩sim \ IOSseq∩sim and
os ′′ ∈ IOSseq∩sim \ OSΘseq∩sim , hence there is no inclusion between IOSseq∩sim and
OSΘseq∩sim . ut
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Proof of Theorem 11

We show that os2iosseq∩sim = os2ios|OSseq∩sim . Let os = 〈∆,
,@, `〉 ∈ OSseq∩sim
and ios = os2ios(os) = 〈∆, 
̂, @̂, `〉. We �rst observe that in such a case we have

= (∆ × ∆)\ @~, which follows from x 6= y ⇒ x 
 y ∨ x @ y @ z and the
separability of os. By the general theory we know that

(@~ ◦
 ◦ @~ ∪ @~ ◦∇sym◦ @~)∩ @~ = ∅.

and since 
 ⊆ @~ ◦
 ◦ @~ we obtain

os2ios(os) = 〈∆,
,@�, `〉 .

We observe that os2iosseq∩sim(OSseq∩sim) = IOSseq∩sim follows from Lemma 10,
Lemma 11, Lemma 12 os2iosseq∩sim = os2ios|OSseq∩sim , and the fact that os2ios is
the identity on IOS, as then we obtain

os2iosseq∩sim(OSseq∩sim) ⊆ IOSseq∩sim

and

os2iosseq∩sim(OSseq∩sim) ⊇ os2iosseq∩sim(IOSseq∩sim)

= os2ios(IOSseq∩sim) = IOSseq∩sim.

ut

Proof of Theorem 12

Let os = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that
∆ = Σ × {1}. Then, from the general results proved in [5] it follows that there
exists sos ∈ satext(os) which, by the de�nition of OSseq∩sim and separability of
OS satis�es

(∆×∆) = id∆]
sos ](@sos ∩ @−1sos) .

Let ν = 〈Σ, sim, seq〉, where:

sim = {〈a, b〉 ∈ Σ ×Σ | posu(〈a, 1〉) = posu(〈b, 1〉)}
seq = {〈a, b〉 ∈ Σ ×Σ | (posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉)

∨(posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉)} .

Clearly, ν ∈ Θseq∩sim and u ∈ SSEQν . It is easy to check that os = sseq2osν(u).
ut

E Proofs for the alphabets in Θsim4seq

Lemma 13. IOSsim4seq ⊆ IOS.
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Proof. We �rst note that (I1) is simply (E1). To show (I2) we observe that

x 6= y ∧ x @ z @ y =⇒(E2) x @ y .

To show (I3) we observe that

x
 y =⇒(E3) x @sym y =⇒(E3) y 
 x .

and we observe that if x
 x then we obtain a contradiction as follows:

x
 x =⇒(E3) x @sym x =⇒ x @ x =⇒(E1) x 6= x .

To show (I4) we observe that:

x ≺ z @ y ∨ x @ z ≺ y =⇒(E2) x @ y =⇒(E3) x
 y .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(E2) z @ z =⇒(E1) false .

To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒(E2) x @ y =⇒(E3) x
 y .

We �nally note that (I7) follows from (E3) and (E4). ut

Lemma 14. IOSsim4seq ⊆ OSsim4seq.

Proof. Follows from Lemma 13, IOS ⊆ OS, and (E3). ut

Lemma 15. os2iossim4seq(OSsim4seq) ⊆ IOSsim4seq.

Proof.
Let os = 〈∆,
,@, `〉 ∈ OSsim4seq and ios = os2iossim4seq(os) = 〈∆, 
̂, @̂, `〉.
To show (E1) we observe that x @̂ x together with x 6@ x imply that there are
y, z such that x @∗ y @ z @∗ x. Hence, by the de�nition of OSsim4seq, y 
 z,
contradicting the separability of os.
To show (E2) we observe that:

x @̂ z @̂ y =⇒ x @+ z @+ y =⇒ x @+ y =⇒ x @̂ y .

To show (E3) we observe that:

x @̂
sym

y ⇐⇒ x(@+)symy ⇐⇒ x 
̂ y .

Finally, (E4) follows from the libel-linearity of os, as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺̂sym
y =⇒ x @̂

sym
y .

Hence ios ∈ IOSsim4seq. ut
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Proof of Theorem 13

Let us consider one by one all the inclusions:

� IOS ⊂ OS was already justi�ed in the proof of Theorem 1. Note, however,
that we also have

os =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉},
{〈x, y〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OS \ IOS .

� IOSsim4seq ⊂ OSsim4seq follows from os ∈ OSsim4seq\IOSsim4seq and Lemma 14.
� IOSΘsim4seq

⊂ OSΘsim4seq
follows from os ∈ OSΘsim4seq

\ IOSΘsim4seq
and the

general results proven in [5].
� OSsim4seq ⊂ OS follows from the de�nition of OSsim4seq and

os ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OS \ OSsim\seq .

� IOSsim4seq ⊂ IOS follows from os ′ ∈ IOS \ IOSsim4seq and Lemma 13.
� OSΘsim4seq

⊂ OSsim4seq can be proven by taking ω ∈ Θsim4seq, u ∈ SSEQω, and
os = sseq2osω(u). Since os ∈ OS, we only need to show that @sym

os = 
os .
This, however, follows from (8). Moreover, we note that

os ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ OSsim4seq \ OSΘsim4seq

.

� IOSΘsim4seq
⊆ IOSsim4seq follows from Lemma 15, os ′′ ∈ IOSsim4seq\IOSΘsim4seq

and OSΘsim4seq
⊆ OSsim4seq.

Moreover, note that os ∈ OSsim4seq\IOS and os ′ ∈ IOS\OSsim4seq which justi�es
that IOS and OSsim4seq are not related. Similarly, os ∈ OSΘsim4seq

\ IOSsim4seq and
os ′′ ∈ IOSsim4seq \OSΘsim4seq

, hence there is no inclusion between IOSsim4seq and
OSΘsim4seq

. ut

Proof of Theorem 14

We show that os2iossim4seq = os2ios|OSsim4seq
. Let os = 〈∆,
,@, `〉 ∈ OSsim4seq

and ios = os2ios(os) = 〈∆, 
̂, @̂, `〉. We �rst observe that in such a case we have
@~= id∆ which follows from x @sym y ⇐⇒ x 
 y and the separability of os.
As a result, we also have @�=@+. Hence

os2ios(os) = 〈∆,
 ∪ ∇sym ,@+, `〉 ,

where ∇ = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}. We will now
show that (
 ∪ ∇sym) = (@+)sym .
Suppose �rst that x∇y which means that x 6= y (which follows from the general
theory), and there is z such that x @∗ z @∗ y. Hence x @+ y showing that the
(⊆) inclusion holds. To show the reverse inclusion, suppose that x @+ y. If x @ y
then, by the de�nition of OSsim4seq, we have x 
 y. Otherwise, there is z such
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that x @ z @∗ y. Then, again by the de�nition of OSsim4seq, z 
 x. We therefore
obtain that 〈x, y〉 ∈ ∇, after taking w = x. Hence

os2ios(os) = 〈∆, (@+)sym ,@+, `〉 .

We observe that os2iossim4seq(OSsim4seq) = IOSsim4seq follows from Lemma 13,
Lemma 14, Lemma 15, os2iossim4seq = os2ios|OSsim4seq

, and the fact that os2ios is
the identity on IOS, as then we obtain

os2iossim4seq(OSsim4seq) ⊆ IOSsim4seq

and

os2iossim4seq(OSsim4seq) ⊇ os2iossim4seq(IOSsim4seq)

= os2ios(IOSsim4seq) = IOSsim4seq.

ut

Proof of Theorem 13

Let os = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that
∆ = Σ × {1}. Then, from the general results proved in [5] it follows that there
exists sos ∈ satext(os). Let u = sseq2sos−1(sos), and ω = 〈Σ, sim, seq〉, where:

seq = sim = {〈a, b〉 ∈ Σ ×Σ | (posu(〈a, 1〉) 6= posu(〈b, 1〉) ∧ 〈a, 1〉 6
 〈b, 1〉)} .

We then observe that sim is symmetric since 
 is symmetric. Hence ω is a
generalised concurrency alphabet. Clearly, ω ∈ Θsim4seq and u ∈ SSEQω. It is
easy to check that os = sseq2osκ(u). ut

Proof of Proposition 3

Let ios = os2ios◦sseq2osω(v). By posv(α) = posv(β), we obtain 〈`(α), `(β)〉 ∈ sim
and there is sos ∈ satext(ios) such that α @sos β @sos α. Hence, α 6
ios β. More-
over, by the order closure, α 6@ios β and β 6@ios α. This, by the general results
proved in [5], means that there are sos ′, sos ′′ ∈ satext(ios) such that α ≺sos′ β
and β ≺sos′′ α. Then the �rst implication holds by taking u = sseq2os−1ω (sos ′)
and w = sseq2os−1ω (sos ′′).

On the other hand, let ios = os2ios◦sseq2osω(u) = os2ios◦sseq2osω(w). Then
there exist sosu, sosw ∈ satext(ios) such that α ≺sosu β and β ≺sosw α, and so,
by the order closure, α 6
ios β. This, by the general results proved in [5], means
that there exists sos ∈ satext(ios) such that α @sos β @sos α. Hence the second
implication holds by taking v = sseq2os−1ω (sos), which ends the proof. ut
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