COMPUTING SCIENCE

Order Structures for Subclasses of Generalised Traces

Ryszard Janicki, Jetty Kleijn, Maciej Koutny and Lukasz Mikulski

Order Structures for Subclasses of Generalised Traces

Ryszard Janicki, Jetty Kleijn, Maciej Koutny and Lukasz Mikulski

Abstract

Traces are equivalence classes of action sequences which can be represented by partial orders capturing the causality in the behaviour of a concurrent system. Generalised traces, on the other hand, are equivalence classes of step sequences. They are represented by order structures that can describe non-simultaneity and weak causality, phenomena which cannot be expressed by partial orders alone.

In this paper, we provide a systematic classification of different subclasses of generalised traces in terms of the order structures representing them. We also show how the original trace model fits into the overall framework.

Bibliographical details

JANICKI, R., KLEIJN, J., KOUTNY, M., AND MIKULSKI, L.
Order Structures for Subclasses of Generalised Traces
[By] R. Janicki, J. Kleijn, M. Koutny and L. Mikulski
Newcastle upon Tyne: Newcastle University: Computing Science, 2014.
(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1437)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1437

Abstract

Traces are equivalence classes of action sequences which can be represented by partial orders capturing the causality in the behaviour of a concurrent system. Generalised traces, on the other hand, are equivalence classes of step sequences. They are represented by order structures that can describe non-simultaneity and weak causality, phenomena which cannot be expressed by partial orders alone.

In this paper, we provide a systematic classification of different subclasses of generalised traces in terms of the order structures representing them. We also show how the original trace model fits into the overall framework.

Abstract

About the authors Ryszard Janicki is a Professor at the Department of Computing and Software, McMaster University, Hamilton,

 Ontario, Canada.Jetty Kleijn is a visiting fellow within the School of Computing Science, Newcastle University.
Maciej Koutny is a Professor in the School of Computing Science, Newcastle University. His research interests centre on the theory of distributed and concurrent systems, including both theoretical aspects of their semantics and application of formal techniques to the modelling and verification of such systems; in particular, model checking based on net unfoldings. He has also investigated non-interleaving semantics of priority systems, and the relationship between temporal logic and process algebras. Recently, he has been working on the development of a formal model combining Petri nets and process algebras as well as on Petri net based behavioural models of membrane systems.

Lukasz Mikulski obtained his PhD in 2012 from the University of Warsaw, Poland. He now works as a Lecturer at the Faculty of Mathematics and Computer Science of the Nicolaus Copernicus University, Torun, Poland.

Suggested keywords

TRACE

INDEPENDENCE
DEPENDENCE GRAPH
PARTIAL ORDER
TRACE OF STEP SEQUENCES
SIMULTANEITY
SERIALISABILITY
INTERLEAVING
GENERALISED CAUSAL ORDER STRUCTURE

Order Structures for Subclasses of Generalised Traces

Ryszard Janicki ${ }^{1}$, Jetty Kleijn ${ }^{2}$, Maciej Koutny ${ }^{3}$, and Łukasz Mikulski ${ }^{3,4}$
${ }^{1}$ Department of Computing and Software, McMaster University
Hamilton, ON, L8S 4K1, Canada
janicki@mcmaster.ca
${ }^{2}$ LIACS, Leiden University, P.O.Box 9512
NL-2300 RA Leiden, The Netherlands
h.c.m.kleijn@liacs.leidenuniv.nll
${ }^{3}$ School of Computing Science, Newcastle University Newcastle upon Tyne NE1 7RU, United Kingdom
\{maciej.koutny,lukasz.mikulski\}@ncl.ac.uk
${ }^{4}$ Faculty of Mathematics and Computer Science, Nicolaus Copernicus University
Toruń, Chopina 12/18, Poland
lukasz.mikulski@mat.umk.pl

Abstract

Traces are equivalence classes of action sequences which can be represented by partial orders capturing the causality in the behaviour of a concurrent system. Generalised traces, on the other hand, are equivalence classes of step sequences. They are represented by order structures that can describe non-simultaneity and weak causality, phenomena which cannot be expressed by partial orders alone. In this paper, we provide a systematic classification of different subclasses of generalised traces in terms of the order structures representing them. We also show how the original trace model fits into the overall framework.

Keywords: trace, independence, dependence graph, partial order, trace of step sequences, simultaneity, serialisability, interleaving, generalised causal order structure

1 Introduction

Mazurkiewicz traces $[14,15]$ are a well-established, classical, and basic model for representing and structuring sequential observations of concurrent behaviour; see, e.g., $[1,10]$. The fundamental assumption underlying trace theory is that independent events (occurrences of actions) may be observed in any order. Sequences that differ only w.r.t. the ordering of independent events are identified as belonging to the same concurrent run of the system under consideration. Thus a trace is an equivalence class of sequences comprising all (sequential) observations of a single concurrent run. The dependencies between the events of a trace are invariant among (common to) all elements of the trace. They define an acyclic dependence graph which - through its transitive closure - determines the underlying causality structure of the trace as a (labelled) partial order [16]. In fact,
this partial order can also be obtained as the intersection of the labelled total orders corresponding to the sequences forming the trace. Moreover, the sequences belonging to the trace correspond exactly to the linearisations (saturations) of this partial order. In [17] the necessary connection between the causal structures (partial orders) and observations (total orders) is provided by showing that each partial order is the intersection of all its linearisations (Szpilrajn's property). Consequently, each trace can also be viewed as a labelled partial order which is unique up to isomorphism, i.e., up to the names of the underlying elements; see, e.g., $[1,3,10]$. Thus, to capture the essence of equivalence between different observations of the same run of a concurrent system, Mazurkiewicz traces bring together two mathematical ideas both based on a notion of independence between actions expressed as a binary independence relation ind. On the one hand, there are equations $a b=b a$ generating the equivalence by expressing the commutativity of occurrences of certain actions as determined by the independence relation. As a result, sequences $w a b u$ and $w b a u$ of action occurrences are considered equivalent whenever $\langle a, b\rangle \in$ ind, irrespective of what w and u are. On the other hand there is the idea of a common partial order structure that underlies equivalent observations defined by the ordering of the occurrences of dependent actions. However, being based on equating independence and lack of ordering, the concurrency paradigm of Mazurkiewicz traces with the corresponding partial order interpretation of concurrency is rather restricted [6].

In [5], a full generalisation of the theory of Mazurkiewicz traces is presented for the case that actions could occur and may be observed as occurring simultaneously. Thus observations consist of sequences of steps, i.e., sets of one or more actions that occur simultaneously. In order to retain the philosophy underlying Mazurkiewicz traces, the extended set-up is based on a few explicit and simple design choices. Instead of the single independence relation ind, now three basic relations between pairs of different actions are distinguished: simultaneity indicating that actions may occur together in a step; serialisability indicating a possible execution order for potentially simultaneous actions; and interleaving indicating that actions can not occur simultaneously though no specific ordering is required. These three relations are used to define fundamental concurrency alphabets and then applied to identify step sequences as observations of the same concurrent run. In this more general case, the equations are of the form $A_{1} A_{2}=B_{1} B_{2}$ where the A_{i} and B_{j} are steps, and defined in terms of simultaneity, serialisability, and interleaving. The resulting equivalence classes of step sequences are called generalised traces. Actually, in this paper we will work with the, technically more convenient, definition of generalised traces provided by generalised concurrency alphabets also introduced in [5]. These concurrency alphabets have only two relations: simultaneity as before and sequentialisability which is a combination of serialisability and interleaving.

It is the main aim of this paper to characterise and discuss generalised traces in more detail. As demonstrated in [5], the clear semantical meaning of the three relations - simultaneity, serialisability, interleaving - allows for an intuitive classification of some natural subclasses of fundamental concurrency alphabets.

A hierarchy of interesting families of generalised traces is presented in [5], including new non-trivial classes of traces as well as the original Mazurkiewicz traces, comtraces [7,13], and g-comtraces [8]. Comtraces are equivalence classes of step sequences derived from equations of the form $A B=A \uplus B$ using the two relations simultaneity and serialisability. Likewise, g-comtraces are equivalence classes of step sequences derived from equations of the form $A B=A \uplus B$ and $A B=B A$ - using simultaneity, serialisability as well as interleaving. Actually, as shown in [11], the equations used in [8] do not model the relevant aspects of concurrent behaviours in a fully adequate way. This has been corrected in the general set-up of [5] with generalised traces and fundamental concurrency alphabet providing the full generalisation of Mazurkiewicz traces to step sequences. There a complete picture is presented including extended dependence graphs and a characterisation of the causal order structures underlying generalised traces as the most general order structures from [4].

Modelling concurrency with order structures stems from the results of [2, 6] and [12]. The basic idea is that general concurrent causal behaviour is represented by a pair of relations, instead of just one, as in the standard (partial order) approach (see, e.g., [16]). Depending on the assumptions for the chosen model of concurrency, details vary, but basically there are two versions: one in which the two relations are interpreted as standard causality (dependence or precedence) and weak causality (not later than), respectively (see, e.g., [2, 6, 7]); and an extended, general, version (suggested in $[6,11]$ but eventually defined in [4]) with the two relations ${ }^{5}$ mutual exclusion and weak causality. The first version has a relatively well developed theory and substantial applications (see, e.g., $[2,6,7,9])$. The second one, however, is relatively new and as such the starting point for this paper where we identify the order structures that characterise the subfamilies of generalised traces from the classification in [5].

Notation

The inverse of a binary relation R is denoted by R^{-1}, and the symmetric closure by $R^{s y m}=R \cup R^{-1}$. Moreover, R is a partial order relation if it is irreflexive and transitive, and a total order relation if it is a partial order relation such that $R^{\text {sym }}=(X \times X) \backslash i d_{X}$. Given $R \subseteq X \times X, R^{0}=i d_{X}$ and $R^{n}=R^{n-1} \circ R$, for all $n \geq 1$. Then: $R^{+}=\bigcup_{i>1} R^{i}$ and R is acyclic if R^{+}is asymmetric; $R^{*}=\bigcup_{i \geq 0} R^{i}=R^{+} \cup i d_{X} ; R^{\curlywedge}=R^{+} \backslash i d_{X}=R^{*} \backslash i d_{X}$ is the irreflexive transitive closure of R; and $R^{\circledast}=R^{*} \cap\left(R^{*}\right)^{-1}$ is the largest equivalence relation contained in R^{*}.

Throughout the paper, $\Sigma \neq \varnothing$ is a finite alphabet of actions, $\mathbb{S}=2^{\Sigma} \backslash\{\varnothing\}$ is the set of all steps, and \mathbb{S}^{*} is the set of step sequences. Let $u=A_{1} \ldots A_{k} \in \mathbb{S}^{*}$ be a step sequence. Then, for every action $a \in \Sigma, \#_{u}(a)$ is the number of occurrences of a within $u ; \operatorname{occ}(u)=\left\{\langle a, i\rangle \mid a \in \Sigma \wedge 1 \leq i \leq \#_{u}(a)\right\}$ is the set of action occurrences of u; and the position $\operatorname{pos}_{u}(\alpha)$ within u of an action

[^0]occurrence $\alpha=\langle a, i\rangle \in \operatorname{occ}(u)$ is the smallest index $j \leq k$ such that the number of occurrences of a within $A_{1} \ldots A_{j}$ is exactly i.

Let $E Q$ be a finite set of equations on step sequences, each equation being of the form $u=v$, where u and v are nonempty step sequences. This set of equations induces a relation \approx on step sequences comprising all pairs $\langle t u w, t v w\rangle$ such that $t, w \in \mathbb{S}^{*}$, and $u=v$ or $v=u$ is an equation in $E Q$. Furthermore, \equiv is the equivalence relation on step sequences defined as \approx^{*}.

2 Generalised traces

The report [5] presents a full generalisation of the theory of Mazurkiewicz traces to the case that the smallest unit of observation is a set of actions (a step) rather than a single action. Thus observation sequences consist of sequences of steps, i.e., sets of actions that occur simultaneously. In order to extend the Mazurkiewicz trace approach to this more general situation, [5] proposes generalised concurrency alphabets Θ employing two relations defined for a set of atomic actions Σ, namely simultaneity sim defining legal steps, and sequentialisation seq specifying actions which can be swapped, or actions whose simultaneous occurrence means that they can also occur one after another. Together sim and seq define a set of equations and then an equivalence relation for step sequences over Σ.

A generalised concurrency alphabet is a triple $\theta=\langle\Sigma$, sim, seq $\rangle \in \Theta$, where Σ is a finite nonempty set, and sim and seq are two irreflexive relations over Σ such that sim and seq \backslash sim are symmetric. The sets of steps and step sequences defined by θ are given by $\mathbb{S}_{\theta}=\left\{A \subseteq \Sigma \mid A \neq \varnothing \wedge(A \times A) \backslash i d_{\Sigma} \subseteq \operatorname{sim}\right\}$ and $\mathrm{SSEQ}_{\theta}=\mathbb{S}_{\theta}^{*}$; and the induced equations are as follows, where $A, B \in \mathbb{S}_{\theta}$:

$$
\begin{array}{llr}
A B=B A & \text { if } A \times B \subseteq \operatorname{seq} \cap \mathrm{seq}^{-1} & \text { (interleaving) } \\
A B=A \cup B & \text { if } A \times B \subseteq \operatorname{seq} \cap \operatorname{sim} & \text { (serialisability) } \tag{1}
\end{array}
$$

Note that if $A, B \in \mathbb{S}_{\theta}$ and $A \times B \subseteq \operatorname{seq} \cap \operatorname{sim}$ then $A \cap B=\varnothing$ and $A \cup B \in \mathbb{S}_{\theta}$, and so the above equations (1) can never transform a step sequence in \mathbb{S}_{θ}^{*} into a sequence of sets outside \mathbb{S}_{θ}^{*}.

Similarly as in the case of Mazurkiewicz traces, the equations (1) induce an equivalence relation \equiv on the step sequences SSEQ_{θ} defined by θ. The equivalence classes TSSEQ_{θ} of the relation \equiv are called (generalised) traces, and the generalised trace containing a step sequence $u \in \mathrm{SSEQ}_{\theta}$ is denoted by $\llbracket u \rrbracket_{\theta}$.

There are six semantically meaningful relationships between pairs of actions which together form a partition of $\Sigma \times \Sigma$:
(i) con $=\operatorname{seq} \cap \operatorname{seq}^{-1} \cap \operatorname{sim}$ is concurrency identifying actions which can be executed simultaneously as well as in any order;
(ii) $\mathrm{inl}=\left(\mathrm{seq} \cap \mathrm{seq}^{-1}\right) \backslash$ sim is interleaving allowing a pair of actions to be swapped, but disallowing simultaneous execution;
(iii) ssi $=\operatorname{sim} \backslash\left(\mathrm{seq} \cup \mathrm{seq}^{-1}\right)$ is strong simultaneity allowing a pair of actions to be executed simultaneously, but disallowing serialisation and interleaving;

Fig. 1. Subclasses of generalised concurrency alphabets.
(iv) sse $=\left(\operatorname{seq} \backslash \operatorname{seq}^{-1}\right) \cap \operatorname{sim}$ is semi-serialisability allowing a pair of simultaneously executed actions to be executed in the order given, but not in the reverse order;
(v) $\mathrm{wdp}=\left(\mathrm{seq}^{-1} \backslash \mathrm{seq}\right) \cap$ sim is weak dependence, the inverse of semi-serialisability; and
(vi) rig $=(\Sigma \times \Sigma) \backslash\left(\operatorname{sim} \cup\left(\right.\right.$ seq $\left.\left.^{\text {(seq }}{ }^{-1}\right)\right)$ is rigid order allowing neither simultaneity nor changing of the order of actions.

The Venn diagram of the relations sim and seq consists of three components, namely sim \backslash seq, seq \backslash sim, and sim \cap seq. Hence, one can distinguish in a natural way eight classes of generalised concurrency alphabets, as shown in Figure 1, where the subscripts indicate which relations are empty. Out of the seven proper subclasses of Θ, there is little to be gained from studying $\Theta_{\text {sim }}$ seq and $\Theta_{\text {seq }}$ as for these each trace consists of only one step sequence. We will therefore concentrate in this paper on the remaining five types of generalised concurrency alphabets, viz.

$$
\Theta_{\text {seq } \backslash \operatorname{sim}}, \Theta_{\text {sim }}, \Theta_{\text {sim } \backslash \text { seq }}, \Theta_{\text {seq } \cap \text { sim }}, \text { and } \Theta_{\text {sim } \triangle \text { seq }}
$$

where $\operatorname{sim} \triangle$ seq $=($ sim \backslash seq $) \cup($ seq $\backslash \operatorname{sim})$.

3 Order structures for generalised traces

The order theoretic treatment of generalised traces is based on relational structures $\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ comprising a finite domain Δ, two binary relations \rightleftharpoons and \sqsubset on Δ, and a domain labelling $\Delta \xrightarrow{\ell} \Sigma$. To represent observational and causal relationships in the behaviours of concurrent systems we use OS, the order structures from [4] which are an extension of an idea first proposed in [2, 6, 12]. Individual observations (step sequences) are represented by saturated order structures, or so-structures for short, and causal relationships are represented by invariant order structures (IO-structures). Formal definitions follow below.

An order structure is a relational structure $o s=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ with a symmetric and irreflexive mutex relation \rightleftharpoons and an irreflexive weak causality relation \sqsubset. Intuitively, Δ is the set of events that have happened during some execution
of a concurrent system; $x \rightleftharpoons y$ means that x occurred not simultaneously with y, and $x \sqsubset y$ that x occurred not later than y, i.e., before or simultaneously with y. Hence if $x \sqsubset y$ and $x \rightleftharpoons y$, then x must have occurred before y. We will therefore refer to the intersection $\sqsubset \cap \rightleftharpoons$ as causality (or precedence), denoting it by \prec. Note that $x \sqsubset y \sqsubset x$ intuitively means that x and y were observed as simultaneous. It is assumed that os is separable meaning that $\rightleftharpoons \cap \sqsubset^{\circledast}=\varnothing$. Separability excludes situations where events forming a weak causality cycle in \sqsubset^{\circledast} are also involved in the mutex relationship. Furthermore, it is assumed that os is label-linear meaning that $\rightleftharpoons \cap \sqsubset$ is a total order relation when restricted to the domain elements labelled by the same action. Referring to the set-up of Mazurkiewicz traces, order structures correspond to (labelled) acyclic relations.

An extension of the order structure os is any order structure $\left\langle\Delta, \rightleftharpoons^{\prime}, \sqsubset^{\prime}, \ell\right\rangle$ such that $\rightleftharpoons \subseteq \rightleftharpoons^{\prime}$ and $\sqsubset \subseteq \square^{\prime}$.

An so-structure is a relational structure sos $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ satisfying

$$
\begin{aligned}
x \neq y \wedge \quad x \sqsubset z \sqsubset y & \Longrightarrow x \sqsubset y \\
x \rightleftharpoons y & \Longrightarrow x \sqsubset \text { sym } y \\
x \neq y \wedge & x \neq y
\end{aligned} \quad \Longleftrightarrow x \sqsubset y \sqsubset x .
$$

One can see that saturated order structures are the only order structures without proper extensions. Referring to the set-up of Mazurkiewicz traces, so-structures correspond to total order relations, i.e., the only acyclic relations which cannot be extended without violating their acyclicity. We denote by satext(os) the set of all saturated extensions of $o s \in \mathrm{OS}$.

An IO-structure is a relational structure $\operatorname{ios}=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ satisfying

$$
\begin{align*}
& x \not \subset x \text { (I1) } \tag{I1}\\
& x \neq y \wedge x \sqsubset z \sqsubset y \quad \Longrightarrow \quad x \sqsubset y \tag{I2}\\
& x \rightleftharpoons y \quad \Longrightarrow \quad y \rightleftharpoons x \neq y \tag{I3}\\
& x \prec z \sqsubset y \vee \quad x \sqsubset z \prec y \quad \Longrightarrow \quad x \rightleftharpoons y \tag{I4}\\
& z \rightleftharpoons y \wedge \quad z \sqsubset x \sqsubset z \quad \Longrightarrow \quad x \rightleftharpoons y \tag{I5}\\
& z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \quad \Longrightarrow \quad x \rightleftharpoons y \tag{I6}\\
& x \neq y \wedge \ell(x)=\ell(y) \Longrightarrow x \prec^{\text {sym }} y \tag{I7}
\end{align*}
$$

Invariant order structures are the only order structures which cannot be extended without making the set of their saturated extensions smaller (follows from the results of [5]). Referring to the set-up of Mazurkiewicz traces, IO-structures correspond to partial order relations, the only acyclic relations which cannot be extended without making the set of their total order extensions smaller. Crucially, IOS are exactly those order structures os for which satext $(o s) \neq \varnothing$ and $o s=\bigcap \operatorname{satext}(o s)$. In other words, IO-structures are exactly those order structures which can be represented by their saturated extensions. This fundamental property is a counterpart of Szpilrajn's Theorem [17] which implies that partial orders are exactly those acyclic relations which can be represented by their total order extensions.

The order structure closure $\mathrm{OS} \xrightarrow{\text { os2ios }} \mathrm{IOS}$ corresponds to the transitive closure for acyclic relations, and is given by:

$$
\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \stackrel{\text { os2ios }}{\longmapsto}\left\langle\Delta, \sqsubset^{\circledast} \circ \rightleftharpoons \circ \sqsubset^{\circledast} \cup \sqsubset^{\circledast} \circ \nabla^{\text {sym }} \circ \sqsubset^{\circledast}, \sqsubset^{\curlywedge}, \ell\right\rangle
$$

where $\nabla=\left\{\langle x, y\rangle \mid \exists z, w: z \rightleftharpoons w \wedge x \sqsubset^{*} z \sqsubset^{*} y \wedge x \sqsubset^{*} w \sqsubset^{*} y\right\}$.
Order structure closure is the unique mapping OS $\xrightarrow{\mathrm{f}} \mathrm{IOS}$ such that $\mathrm{f}($ ios $)=$ ios, for every ios $\in I O S$, and satext $(o s)=$ satext $\circ \mathrm{f}(o s)$, for every os $\in \mathrm{OS}$ (see [5]). This corresponds to the fact that transitive closure is the unique mapping from acyclic relations to partial orders which preserves the total order extensions.

4 Relating generalised traces and order structures

In this section we will identify the order structures corresponding to the five subclasses of generalised concurrency alphabets identified in Section 2, but first we recall from [5] the main results established for the general case.

Let $\theta=\langle\Sigma, \operatorname{sim}$, seq \rangle be a generalised concurrency alphabet. An event domain (for θ) is a set $\Delta \subseteq \Sigma \times \mathbb{N}$ for which there is a mapping $\Sigma \xrightarrow{\epsilon} \mathbb{N}$ such that $\Delta=\{\langle a, i\rangle \mid a \in \Sigma \wedge 1 \leq i \leq \epsilon(a)\}$.

An so-structure $\operatorname{sos}=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ is consistent with θ if Δ is an event domain for $\theta,\langle a, i\rangle \stackrel{\ell}{\mapsto} a$ is the default labelling of Δ, and, for all distinct $\langle a, i\rangle,\langle a, j\rangle,\langle b, k\rangle \in \Delta$, we have:

$$
\langle a, i\rangle \prec\langle a, j\rangle \Longleftrightarrow i<j \quad \text { and } \quad\langle a, i\rangle \sqsubset^{\circledast}\langle b, k\rangle \Longrightarrow\langle a, b\rangle \in \operatorname{sim} .
$$

We let SOS_{θ} denote the set of all so-structures consistent with θ. Step sequences defined by θ correspond to so-structures in SOS_{θ} via the bijection $\mathrm{SSEQ}_{\theta} \xrightarrow{\text { sseq2sos }} \mathrm{SOS}_{\theta}$ such that $\operatorname{sseq} 2 \operatorname{sos}(u)=\langle o c c(u), \rightleftharpoons, \sqsubset, \ell\rangle$, where, for all $\alpha, \beta \in \operatorname{occ}(u)$ with $\operatorname{pos}_{u}(\alpha)=k$ and $\operatorname{pos}_{u}(\beta)=m$ we have:

$$
k \neq m \Longrightarrow \alpha \rightleftharpoons \beta \quad \text { and } \quad k \leq m \wedge \alpha \neq \beta \Longrightarrow \alpha \sqsubset \beta .
$$

Dependencies between events are captured by the map SSEQ ${ }_{\theta} \xrightarrow{\text { sseq } 2 o s_{\theta}}$ OS
 $\operatorname{pos}_{u}(\alpha)=k$ and $\operatorname{pos}_{u}(\beta)=m$:

$$
\begin{array}{lll}
\alpha \rightleftharpoons \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \notin \operatorname{sim} \cap \operatorname{seq}^{-1} & \wedge k<m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \notin \operatorname{sim} \cap \operatorname{seq}^{-1} & \wedge k>m \tag{2}\\
\alpha \sqsubset \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \notin \operatorname{seq} \cap \operatorname{seq}^{-1} & \wedge k<m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{sim} \backslash \operatorname{seq}^{-1} & \wedge k=m
\end{array}
$$

or, alternatively:

$$
\begin{array}{lll}
\alpha \rightleftharpoons \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{ssi} \cup \text { wdp } \cup \mathrm{rig} \cup \text { inl } & \wedge k<m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{ssi} \cup \text { sse } \cup \mathrm{rig} \cup \mathrm{inl} & \wedge k>m \tag{3}\\
\alpha \sqsubset \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{ssi} \cup \text { sse } \cup \mathrm{wdp} \cup \text { rig } & \wedge k<m \\
\text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{ssi} \cup \text { sse } & \wedge k=m
\end{array}
$$

We refer to $\operatorname{sseq} 2 \operatorname{sos}_{\theta}(u)$ as the dependence graph of u. Crucially, if $u \equiv w$, then $\operatorname{sseq}^{20 s_{\theta}}(u)={\operatorname{sseq} 20 s_{\theta}(w) \text {, and so dependence graphs can be lifted to the level of }}^{\text {a }}$ generalised traces via $\operatorname{sseq}^{2} 2 \mathrm{~s}_{\theta}(\llbracket u \rrbracket)={\operatorname{sseq} 20 s_{\theta}}^{(u)}$. Hence there are two kinds of order structures capturing causal dependencies in the step sequences of SSEQ_{θ} and traces in TSSEQ_{θ}, namely dependence graphs and their closures, i.e., $\mathrm{OS}_{\theta}=$ $\operatorname{sseq} 2 \cos _{\theta}\left(\mathrm{SSEQ}_{\theta}\right)$ and $\mathrm{IOS}_{\theta}=\operatorname{os} 2 \mathrm{ios}\left(\mathrm{OS}_{\theta}\right)$.
In what follows, for every set Φ of generalised concurrency alphabets, we will denote $\mathrm{OS}_{\Phi}=\bigcup_{\theta \in \Phi} \mathrm{OS}_{\theta}$ and $\mathrm{IOS}_{\Phi}=\bigcup_{\theta \in \Phi} \mathrm{IOS}_{\theta}$.

Generalised traces in TSSEQ $_{\theta}$ can be identified with the invariant order structures in IOS_{θ} and a suitable correspondence is established by the pair of inverse bijections

$$
\mathrm{TSSEQ}_{\theta} \xrightarrow{\text { os2ios o sseq2os }}{ }_{\theta} \mathrm{IOS}_{\theta} \xrightarrow{\text { sseq2sos }}{ }^{-1} \circ \text { satext } \mathrm{TSSEQ}_{\theta} .
$$

Moreover, if an order structure os has injective labeling, then there is a generalised concurrency alphabet θ and a step sequence $u \in \operatorname{SSEQ}_{\theta}$ such that os is isomorphic to sseq2os ${ }_{\theta}(u)$. Thus generalised concurrency alphabets can generate all the complex patterns involving causal relationships captured by io-structures.

An example system model for which generalised traces and invariant order structures provide a suitable semantical treatment are the elementary net systems with inhibitor and mutex arcs [11]. Note that every complex pattern (without labels) can be obtained as a closure of dependence graph for a computation enabled in an elementary net system with inhibitor and mutex arcs.

The restriction to subclasses of generalised concurrency alphabets can lead to striking simplifications in the order structures involved and the corresponding order structure closure. In particular, such simplifications enable a more concise and efficient treatment of the computational aspects involving generalised traces and their corresponding order structures. In what follows, we will consider the five non-trivial subclasses of generalised concurrency alphabets, aiming at as simple as possible descriptions of the order structures capturing the corresponding invariant order structures.

4.1 Order structures for the alphabets in $\Theta_{\text {sim }}$

A generalised concurrency alphabet $\mu=\langle\Sigma$, sim, seq $\rangle \in \Theta_{\text {sim }}$ has sim $=\varnothing$ and so does not allow for true step sequences and there are no serialisability equations as in (1). Moreover, con $=\mathrm{ssi}=\mathrm{sse}=\mathrm{wdp}=\varnothing$, seq $=\operatorname{seq}^{-1}=\mathrm{inl}$ and rig $=(\Sigma \times \Sigma) \backslash$ inl. As a result, one can simplify the definition of the dependence graph of a step sequence $u \in \mathrm{SSEQ}_{\mu}$, by replacing (3) with:

$$
\begin{array}{lll}
\alpha \rightleftharpoons \beta & \text { if } & k \neq m \\
\alpha \sqsubset \beta & \text { if } & \langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{rig} \wedge k<m . \tag{4}
\end{array}
$$

It is possible to treat μ as a Mazurkiewicz concurrency alphabet $\langle\Sigma$, seq \rangle with seq and rig playing the roles of the standard independence and dependence relations, respectively. As all step sequences in SSEQ_{μ} consist of singleton steps, they
correspond one-to-one to the sequences in Σ^{*}. Moreover, the saturated order structures in SOS_{μ} correspond one-to-one to the sequences in Σ^{*}. Indeed, since $\operatorname{sim}=\varnothing$, we have that for every sos $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \operatorname{SOS}_{\mu}$ it is the case that $\sqsubset^{\circledast}=i d_{\Delta}$, and so \prec is a total order relation.

The order structures $\mathrm{OS}_{\text {sim }}$ reflecting the causal dependencies in the generalised traces over the alphabets of $\Theta_{\text {sim }}$ are those os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}$ for which $\rightleftharpoons=(\Delta \times \Delta) \backslash i d_{\Delta}$. The corresponding invariant order structures can then be provided with a simpler definition.

A relational structure $\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ belongs to $\mathrm{IOS}_{\text {sim }}$ if

$$
\begin{array}{rlrl}
x \sqsubset z \sqsubset y & \Longrightarrow & x \not \subset x & \text { (A1) } \\
x \sqsubset y & \text { (A2) } \\
x \neq y & \Longleftrightarrow & x \rightleftharpoons y & \text { (A3) } \\
x \neq y \wedge \ell(x)=\ell(y) & \Longrightarrow & x \sqsubset^{\text {sym }} y & \text { (A4) }
\end{array}
$$

The simplified order closure $\mathrm{OS}_{\text {sim }} \xrightarrow{\text { os2iossim }} \mathrm{IOS}_{\text {sim }}$ is such that:

$$
{\operatorname{os} 2 i o s_{\text {sim }}(o s)}=\left\langle\Delta, \rightleftharpoons, \sqsubset^{+}, \ell\right\rangle,
$$

for every os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim }}$. Hence it corresponds to the transitive closure of an acyclic relation. The justification of these definitions is provided by the following results.

Theorem 1.

Theorem 2. os 2 ios sim is a surjection with os $2 \mathrm{ios}_{\mathrm{sim}}=\mathrm{os} 2 \mathrm{ios}_{\mathrm{os}_{\text {sim }}}$.
Theorem 3. If os $\in \mathrm{OS}_{\text {sim }}$ has an injective labelling, then there are $\mu \in \Theta_{\text {sim }}$ and $u \in \mathrm{SSEQ}_{\mu}$ such that os is isomorphic to ${\operatorname{sseq} 20 \mathrm{~s}_{\mu}(u) \text {. }}_{\text {. }}$

Following Mazurkiewicz [15], the classical example of a system model for which the generalised concurrency alphabets in $\Theta_{\text {sim }}$ and invariant order structures $I O S_{\text {sim }}$ provide a suitable semantical treatment are the elementary net systems with sequential execution semantics. Note that every complex pattern (without labels) can be obtained as a closure of dependence graph for a computation enabled in an elementary net system with sequential execution semantics.

4.2 Order structures for the alphabets in $\Theta_{\text {seq }} \backslash$ sim

A generalised concurrency alphabet $\sigma=\langle\Sigma, \operatorname{sim}$, seq $\rangle \in \Theta_{\text {seq } \backslash \text { sim }}$ is the one satisfying seq $\backslash \operatorname{sim}=\varnothing$ and therefore we have seq \subseteq sim, rig $=(\Sigma \times \Sigma) \backslash$ sim, and inl $=\varnothing$. As a result, one can simplify the definition of the dependence graph of
a step sequence $u \in \mathrm{SSEQ}_{\sigma}$, by replacing (3) with:

$$
\begin{array}{lll}
\alpha \rightleftharpoons \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{ssi} & \wedge k \neq m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{sse} & \wedge k<m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{wdp} & \wedge k>m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{rig} & \tag{5}\\
\alpha \sqsubset \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{rig} \cup \text { wdp } & \wedge k<m \\
& \text { or }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{ssi} \cup \text { sse } & \wedge k \leq m
\end{array}
$$

Alphabets in $\Theta_{\text {seq }} \backslash$ sim do not allow true interleaving, and swapping of steps can be achieved by splitting and combining. In [6], such alphabets are referred to as comtrace alphabets.

The order structures $\mathrm{OS}_{\text {seq } \backslash \text { sim }}$ needed to reflect causal dependencies in the generalised traces over the concurrent alphabets of $\Theta_{\text {seq } \backslash \text { sim }}$ are all those order structures os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}$ for which $x \rightleftharpoons y \Longrightarrow x \sqsubset^{\text {sym }} y$. The corresponding invariant order structures can then be provided with a simpler definition.

A relational structure $\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ belongs to $\mathrm{IOS}_{\text {seq } \backslash \text { sim }}$ if

$$
\begin{align*}
& x \not \subset x \\
x \neq y \wedge \quad x \sqsubset z \sqsubset y & \Longrightarrow x \sqsubset y \tag{DL}\\
x \rightleftharpoons y & \Longrightarrow x \sqsubset \text { sym } y \wedge y \rightleftharpoons x \\
x \prec z \sqsubset y \vee x \sqsubset z \prec y & \Longrightarrow x \rightleftharpoons y \tag{B4}\\
x \neq y \wedge \ell(x)=\ell(y) & \Longrightarrow x \rightleftharpoons y \tag{B5}
\end{align*}
$$

The simplified order closure $\mathrm{OS}_{\text {seq } \backslash \text { sim }} \xrightarrow{\text { os2ios }_{\text {seq } \backslash \text { sim }}} \mathrm{IOS}_{\text {seq } \backslash \text { sim }}$ is such that:

$$
{\operatorname{os} 2 \operatorname{ios}_{\mathrm{seq}} \backslash \operatorname{sim}}(o s)=\left\langle\Delta,\left(\sqsubset^{*} \circ \prec \circ \sqsubset^{*}\right)^{s y m}, \sqsubset^{\curlywedge}, \ell\right\rangle,
$$

for every os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {seq } \backslash \text { sim }}$. The justification of these definitions is provided by the following results.

Theorem 4.

Theorem 5. os $2 \mathrm{ios}_{\text {seq }} \backslash$ sim is a surjection with os $2 \mathrm{ios}_{\text {seq }} \backslash \operatorname{sim}=\left.o s 2 \mathrm{ios}\right|_{\mathrm{OS}_{\text {seq } \backslash \operatorname{sim}}}$.
Theorem 6. If os $\in \mathrm{OS}_{\mathrm{seq} \backslash \text { sim }}$ has an injective labelling $\ell: \Delta \rightarrow \Sigma$, then there are $\sigma \in \Theta_{\text {seq } \backslash \text { sim }}$ and $u \in \mathrm{SSEQ}_{\sigma}$ such that os is isomorphic to $\operatorname{sseq}^{2} \mathrm{os}_{\sigma}(u)$.

An example of a system model for which the generalised concurrency alphabets in $\Theta_{\text {seq } \backslash \text { sim }}$ and invariant order structures $\mathrm{IOS}_{\text {seq } \backslash \text { sim }}$ provide a suitable semantical treatment are the elementary net systems with inhibitor arcs [7]. Note that every complex pattern (without labels) can be obtained as a closure of dependence graph for a computation in an elementary net system with inhibitor arcs.

Finally, as shown below, traces generated by the alphabets in $\Theta_{\text {seq }} \backslash$ sim are histories satisfying the concurrency paradigm π_{3} of [6] by which actions that can be executed in any order can also be executed simultaneously (but not necessarily vice versa).

Proposition 1. Let α and β be two action occurrences of a generalised trace τ generated by $\sigma \in \Theta_{\text {seq } \backslash \text { sim }}$. Then

$$
\begin{gathered}
\left(\exists u \in \tau: \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)\right) \wedge\left(\exists w \in \tau: \operatorname{pos}_{w}(\alpha)>\operatorname{pos}_{w}(\beta)\right) \\
\Longrightarrow \\
\left(\exists v \in \tau: \operatorname{pos}_{v}(\alpha)=\operatorname{pos}_{v}(\beta)\right)
\end{gathered}
$$

4.3 Order structures for the alphabets in $\Theta_{\text {sim }} \backslash$ seq

A generalised concurrency alphabet $\kappa=\langle\Sigma, \operatorname{sim}$, seq $\rangle \in \Theta_{\text {sim } \backslash \text { seq }}$ is the one satisfying $\operatorname{sim} \backslash$ seq $=\varnothing$ and therefore we have ssi $=$ sse $=\mathrm{wdp}=\varnothing$ and rig $=(\Sigma \times \Sigma) \backslash$ seq. As a result, one can simplify the definition of the dependence graph of a step sequence $u \in \mathrm{SSEQ}_{\mu}$, by replacing (2) with:

$$
\begin{array}{ll}
\alpha \rightleftharpoons \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \notin \operatorname{sim} \\
\alpha \sqsubset \beta & \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \notin \operatorname{seq} \quad \wedge k<m \tag{6}
\end{array}
$$

For the alphabets in $\Theta_{\text {sim } \backslash \text { seq }}$ the serialisability equations are rich enough to split any step in every possible way.

The order structures $\mathrm{OS}_{\text {sim } \backslash \text { seq }}$ are all those $o s=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}$ for which $x \sqsubset^{\text {sym }} y \Longrightarrow x \rightleftharpoons y$. The corresponding invariant order structures can also be provided with a simpler definition.

A relational structure $\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ belongs to $\mathrm{IOS}_{\text {sim }} \backslash$ seq if:

$$
\begin{aligned}
x \sqsubset z \sqsubset y & \Longrightarrow & x \sqsubset y & (\text { C1) } \\
x \sqsubset^{\text {sym }} y & \Longrightarrow & x \rightleftharpoons y & \text { (C2) } \\
x \rightleftharpoons y & \Longrightarrow & y \rightleftharpoons x \neq y & \text { (C3) } \\
x \neq y \wedge \ell(x)=\ell(y) & \Longrightarrow & x \sqsubset^{\text {sym }} y & \text { (C4) }
\end{aligned}
$$

The simplified order closure $\mathrm{OS}_{\text {sim } \backslash \text { seq }} \xrightarrow{\text { os2ios }_{\text {sim } \backslash \text { seq }}} \mathrm{IOS}_{\text {sim } \backslash \text { seq }}$ is such that:

$$
\operatorname{os} 2 \mathrm{ios}_{\text {sim } \backslash \text { seq }}(o s)=\left\langle\Delta, \rightleftharpoons \cup\left(\sqsubset^{+}\right)^{s y m}, \sqsubset^{+}, \ell\right\rangle,
$$

for every os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim } \backslash \text { seq }}$. The justification of these definitions is provided by the following results.

Theorem 7.

Theorem 8. os $2 \mathrm{ios}_{\mathrm{sim} \backslash \text { seq }}$ is a surjection with $\mathrm{os} 2 \mathrm{ios}_{\mathrm{sim} \backslash \text { seq }}=\mathrm{os} 2 \mathrm{ios} \mathrm{os}_{\mathrm{sim} \backslash \text { seq }}$.

Theorem 9. If os $\in \mathrm{OS}_{\text {sim } \backslash \text { seq }}$ has an injective labelling $\ell: \Delta \rightarrow \Sigma$, then there are $\kappa \in \Theta_{\text {sim } \backslash \text { seq }}$ and $u \in \mathrm{SSEQ}_{\kappa}$ such that os is isomorphic to $\operatorname{sseq}^{2} \mathrm{os}_{\kappa}(u)$.

Finally, as shown below, traces generated by the alphabets in $\Theta_{\text {sim }} \backslash$ seq are histories satisfying the concurrency paradigm π_{2} of [6].
Proposition 2. Let α and β be distinct action occurrences α and β of a generalised trace τ generated by $\kappa \in \Theta_{\text {sim } \backslash \text { seq }}$. Then

$$
\begin{gathered}
\left(\exists v \in \tau: \operatorname{pos}_{v}(\alpha)=\operatorname{pos}_{v}(\beta)\right) \\
\Longrightarrow \\
\left(\exists u \in \tau: \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)\right) \wedge\left(\exists w \in \tau: \operatorname{pos}_{w}(\alpha)>\operatorname{pos}_{w}(\beta)\right)
\end{gathered}
$$

4.4 Order structures for the alphabets in $\Theta_{\text {seq } \cap \text { sim }}$

A generalised concurrency alphabet $\nu \in \Theta_{\text {sim } \cap \text { seq }}$ is the one satisfying $\operatorname{sim} \cap$ seq $=$ \varnothing, and so we have ssi $=\operatorname{sim}$, sse $=\mathrm{wdp}=\mathrm{con}=\varnothing$, and $\mathrm{rig}=(\Sigma \times \Sigma) \backslash(\operatorname{sim} \uplus \mathrm{seq})$. As a result, one can simplify the definition of the dependence graph of a step sequence $u \in \operatorname{SSEQ}_{\mu}$, by replacing (2) with:

$$
\begin{align*}
& \alpha \rightleftharpoons \beta \quad \text { if } k \neq m \tag{7}\\
& \alpha \sqsubset \beta \quad \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \notin \operatorname{seq} \wedge k \leq m \wedge \alpha \neq \beta
\end{align*}
$$

For the alphabets in $\Theta_{\text {sim } \cap \text { seq }}$ steps can be only manipulated through the interleaving equations.

The order structures $\mathrm{OS}_{\text {sim }}$ seq are all those os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}$ for which $x \neq y \Longrightarrow x \rightleftharpoons y \vee x \sqsubset y \sqsubset x$, and the axiomatisation of the corresponding invariant order structures becomes simpler.

A relational structure $\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ belongs to $\mathrm{IOS}_{\text {sim }}$ seq if:

$$
\begin{aligned}
& x \neq x \\
x \neq y \wedge x \sqsubset z \sqsubset y & \Longrightarrow x \sqsubset y \\
x \neq y \wedge x \neq y & \Longleftrightarrow x \sqsubset y \sqsubset x \\
x \neq y \wedge \ell(x)=\ell(y) & \Longrightarrow x \prec^{\text {sym }} y
\end{aligned}
$$

The simplified order closure $\mathrm{OS}_{\text {sim } \cap \text { seq }} \xrightarrow{\text { os2ios }_{\text {sim } \cap \text { seq }}}{ } \mathrm{OS}_{\text {sim } \cap \text { seq }}$ is such that:

$$
{\operatorname{os} 2 i_{\text {os }}^{\text {sim } \cap \text { seq }}}(o s)=\left\langle\Delta, \rightleftharpoons, \sqsubset^{\curlywedge}, \ell\right\rangle
$$

for every os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {simnseq }}$. The justification of these definitions is provided by the following results.
Theorem 10.

Theorem 11. os $2 \mathrm{ios}_{\text {seq }}$ sim is a surjection with ${\text { os } 2 \mathrm{ios}_{\text {seq }} \text { sim }}=o s 2 \mathrm{ios} \mid \mathrm{OS}_{\text {seqnsim }}$.
Theorem 12. If os $\in \mathrm{OS}_{\text {seqnsim }}$ has an injective labelling $\ell: \Delta \rightarrow \Sigma$, then there are $\nu \in \Theta_{\text {seqnsim }}$ and $u \in \mathrm{SSEQ}_{\nu}$ such that os is isomorphic to ${\operatorname{sseq} 2 \mathrm{os}_{\nu}}(u)$.

4.5 Order structures for the alphabets in $\Theta_{\text {sim }} \triangle$ seq

A generalised concurrency alphabet $\omega=\langle\Sigma, \operatorname{sim}$, seq $\rangle \in \Theta_{\text {sim }} \triangle$ seq is the one satisfying $\operatorname{sim} \triangle$ seq $=\varnothing$ and therefore we have sim $=$ seq $=$ con, ssi $=$ sse $=$ $\mathrm{wdp}=\mathrm{inl}=\varnothing$ and rig $=(\Sigma \times \Sigma) \backslash$ con. As a result, one can simplify the definition of the dependence graph of a step sequence $u \in$ SSEQ $_{\mu}$, by replacing (3) with:

$$
\begin{align*}
& \alpha \rightleftharpoons \beta \quad \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{rig} \\
& \alpha \sqsubset \beta \quad \text { if }\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{rig} \wedge k<m \tag{8}
\end{align*}
$$

For the alphabets in $\Theta_{\text {sim } \triangle \text { seq }}$ the interleaving equations are not really needed, and the serialisability equations are rich enough to split and reorder steps in every possible way. As a result, all steps can be completely sequentialised.

The order structures $\mathrm{OS}_{\text {sim } \triangle \text { seq }}$ are all those os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}$ for which $x \rightleftharpoons y \Longleftrightarrow x \sqsubset^{s y m} y$. The corresponding invariant order structures can also be provided with a simpler definition. A relational structure $\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$ belongs to $10 S_{\text {sim } \triangle \text { seq }}$ if

$$
\begin{array}{rlr}
& x \not \subset x & \text { (E1) } \\
x \sqsubset z \sqsubset y & \Longrightarrow x \sqsubset y & \text { (E2) } \\
x \rightleftharpoons y & \Longleftrightarrow x \sqsubset^{\text {sym }} y & \text { (E3) } \\
x \neq y \wedge \ell(x)=\ell(y) & \Longrightarrow x \sqsubset^{\text {sym }} y & \text { (E4) }
\end{array}
$$

The simplified order closure $\mathrm{OS}_{\text {sim } \triangle \text { seq }} \xrightarrow{\text { os } 2 \text { ios }_{\text {sim }}^{\text {seq }} \text { seq }} \mathrm{IOS}_{\text {sim } \triangle \text { seq }}$ is such that:

$$
{\operatorname{os} 2 \operatorname{ios}_{\text {sim }} \triangle \text { seq }}(o s)=\left\langle\Delta,\left(\sqsubset^{+}\right)^{s y m}, \sqsubset^{+}, \ell\right\rangle,
$$

for every os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim }} \triangle$ seq . The justification of these definitions is provided by the following results.

Theorem 13.

Theorem 14. os $2 \operatorname{ios}_{\text {seq }} \triangle$ sim is a surjection with os $2 \mathrm{ios}_{\text {seq } \triangle \operatorname{sim}}=\operatorname{os} 2 \mathrm{ios} \mid \mathrm{os}_{\text {seq } \Delta \operatorname{sim}}$.
Theorem 15. If os $\in \mathrm{OS}_{\text {sim } \triangle \text { seq }}$ has an injective labelling $\ell: \Delta \rightarrow \Sigma$, then there

It may come as a surprise that although the structures $I O S_{\text {sim } \triangle \text { seq }}$ are in a one-to-one correspondence with partial orders, similarly as for $I O S_{\text {sim }}$, the actual definition of the two classes of order structures is different.

Finally, as shown below, the generalised traces generated by the alphabets in $\Theta_{\operatorname{sim} \triangle \text { seq }}$ are histories satisfying the true concurrency paradigm π_{8} of [6] and a system model for which this subclass provides a suitable semantical treatment are the elementary net systems with step sequence semantics. Note that every complex pattern (without labels) can be obtained as a closure of dependence graph for a computation in an elementary net system with step sequence semantics.

Proposition 3. Let α and β be distinct action occurrences α and β of a generalised trace τ generated by $\omega \in \Theta_{\text {sim }} \triangle$ seq. Then

$$
\begin{gathered}
\left(\exists v \in \tau: \operatorname{pos}_{v}(\alpha)=\operatorname{pos}_{v}(\beta)\right) \\
\Longleftrightarrow \\
\left(\exists u \in \tau: \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)\right) \wedge\left(\exists w \in \tau: \operatorname{pos}_{w}(\alpha)>\operatorname{pos}_{w}(\beta)\right)
\end{gathered}
$$

References

1. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. River Edge, NJ, USA (1995)
2. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation of functions. In: LICS, pp. 72-85. IEEE Computer Society (1987)
3. Hoogeboom, H.J., Rozenberg, G.: Dependence graphs. In: V. Diekert, G. Rozenberg (eds.) The Book of Traces, pp. 43-67. World Scientific (1995)
4. Janicki, R., Kleijn, J., Koutny, M., Mikulski, L.: Causal structures for general concurrent behaviours. In: M.S. Szczuka, L. Czaja, M. Kacprzak (eds.) CS\&P, CEUR Workshop Proceedings, vol. 1032, pp. 193-205. CEUR-WS.org (2013)
5. Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł.: Generalising traces. TR-CS ??, Newcastle University (2014)
6. Janicki, R., Koutny, M.: Structure of concurrency. Theor. Comput. Sci. 112(1), 5-52 (1993)
7. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1-16 (1995)
8. Janicki, R., Le, D.T.M.: Modelling concurrency with comtraces and generalized comtraces. Inf. Comput. 209(11), 1355-1389 (2011)
9. Juhás, G., Lorenz, R., Mauser, S.: Complete process semantics of petri nets. Fundam. Inform. 87(3-4), 331-365 (2008). URL http://iospress.metapress.com/content/821071384884624r/
10. Kleijn, J., Koutny, M.: Formal languages and concurrent behaviours. In: G.B. Enguix, M.D. Jiménez-López, C. Martín-Vide (eds.) New Developments in Formal Languages and Applications, Studies in Computational Intelligence, vol. 113, pp. 125-182. Springer (2008)
11. Kleijn, J., Koutny, M.: Mutex causality in processes and traces of general elementary nets. Fundam. Inform. 122(1-2), 119-146 (2013)
12. Lamport, L.: The mutual exclusion problem: part I - a theory of interprocess communication. J. ACM 33(2), 313-326 (1986). DOI 10.1145/5383.5384. URL http://doi.acm.org/10.1145/5383.5384
13. Le, D.T.M.: On three alternative characterizations of combined traces. Fundam. Inform. 113(3-4), 265-293 (2011)
14. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University (1977)
15. Mazurkiewicz, A.W.: Basic notions of trace theory. In: J.W. de Bakker, W.P. de Roever, G. Rozenberg (eds.) REX Workshop, Lecture Notes in Computer Science, vol. 354, pp. 285-363. Springer (1988)
16. Pratt, V.: Modeling concurrency with partial orders. International Journal of Parallel Programming 15(1), 33-71 (1986)
17. Szpilrajn, E.: Sur l'extension de l'ordre partiel. Fundam. Math. 16, 386-389 (1930)

A Proofs for the alphabets in $\Theta_{\text {sim }}$

Lemma 1. $\mathrm{IOS}_{\text {sim }} \subseteq \mathrm{IOS}$.
Proof. We first note that (I1) is simply (A1). To show (I2) we observe that:

$$
x \neq y \wedge x \sqsubset z \sqsubset y \Longrightarrow_{(A 2)} x \sqsubset y .
$$

To show (I3) we observe that:

$$
x \rightleftharpoons y \Longrightarrow_{(\text {A3) }} x \neq y \Longrightarrow x \neq y \wedge y \neq x \Longrightarrow_{(\text {A3) }} x \neq y \wedge y \rightleftharpoons x .
$$

To show (I4) we observe that:

$$
\begin{aligned}
x=y \wedge(x \prec z \sqsubset y \vee x \sqsubset z \prec y) & \Longrightarrow \\
& x \prec z \sqsubset x \vee x \sqsubset z \prec x \\
& \Longrightarrow_{(\text {A2) }} \\
& x \sqsubset x \\
& \text { (A1) } \text { false }
\end{aligned}
$$

and so we have:

$$
x \prec z \sqsubset y \vee x \sqsubset z \prec y \Longrightarrow x \neq y \Longrightarrow_{(A 3)} x \rightleftharpoons y .
$$

To show (I5) we observe that:

$$
z \rightleftharpoons y \wedge z \sqsubset x \sqsubset z \Longrightarrow_{(A 2)} z \sqsubset z \Longrightarrow_{(A 1)} \text { false }
$$

To show (I6) we observe that:

$$
x=y \wedge x \sqsubset z \sqsubset y \Longrightarrow x \sqsubset z \sqsubset x \Longrightarrow_{(A 2, A 1)} \text { false }
$$

and so we have:

$$
z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \Longrightarrow x \neq y \Longrightarrow_{(A 3)} x \rightleftharpoons y .
$$

We finally note that (I7) follows from (A3) and (A4).
Lemma 2. $\mathrm{IOS}_{\text {sim }} \subseteq \mathrm{OS}_{\text {sim }}$.
Proof. Follows from Lemma 1, IOS $\subseteq \mathrm{OS}$, and (A3).
Lemma 3. os 2 ios $_{\text {sim }}\left(\mathrm{OS}_{\text {sim }}\right) \subseteq \mathrm{IOS}_{\text {sim }}$.
Proof. Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim }}$ and $i o s=$ os2ios $_{\text {sim }}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \widehat{\sqsubset}, \ell\rangle$.
To show (A1) suppose that $x \widehat{\sqsubset} x$ which means $x \sqsubset^{+} x$. Since \sqsubset is irreflexive, there is $y \neq x$ satisfying $x \sqsubset^{*} y \sqsubset^{*} x$. Hence, by the separability of os, $x \neq y$, contradicting the definition of $\mathrm{OS}_{\text {sim }}$.
To show (A2) we observe that:

$$
x \hat{\sqsubset} z \hat{\sqsubset} y \Longrightarrow x \sqsubset^{+} z \sqsubset^{+} y \Longrightarrow x \sqsubset^{+} y \Longrightarrow x \hat{\sqsubset} y .
$$

We then observe that (A3) follows from $\rightleftharpoons=(\Delta \times \Delta) \backslash i d_{\Delta}$. Finally, (A4) follows from the libel-linearity of os, as shown below:

$$
x \neq y \wedge \ell(x)=\ell(y) \Longrightarrow x \prec^{s y m} y \Longrightarrow x \hat{\sqsubset}^{s y m} y
$$

Hence ios $\in \mathrm{IOS}_{\text {sim }}$.

Proof of Theorem 1

Let us consider one by one all the inclusions:
$-\operatorname{IOS} \subset O S$ follows from the general results proven in [5] and

$$
o s=\left\langle\begin{array}{r}
\{x, y, z\}, \\
\{\langle x, y\rangle,\langle y, x\rangle,\langle y, z\rangle,\langle z, y\rangle,\langle x, z\rangle,\langle z, x\rangle\}, \\
\{\langle x, y\rangle,\langle y, z\rangle\},\{x \mapsto a, y \mapsto b, z \mapsto c\}
\end{array}\right\rangle \in \mathrm{OS} \backslash \mathrm{IOS} .
$$

$-\mathrm{IOS}_{\text {sim }} \subset \mathrm{OS}_{\text {sim }}$ follows from os $\in \mathrm{OS}_{\text {sim }} \backslash \mathrm{IOS}_{\text {sim }}$ and Lemma 2.
$-\mathrm{IOS}_{\Theta_{\text {sim }}} \subset \mathrm{OS}_{\Theta_{\text {sim }}}$ follows from os $\in \mathrm{OS}_{\theta_{\text {sim }}} \backslash \mathrm{IOS}_{\theta_{\text {sim }}}$ and the general results proven in [5].
$-O S_{\text {sim }} \subset O S$ follows from the definition of $O S_{\text {sim }}$ and

$$
o s^{\prime}=\langle\{x, y\}, \varnothing,\{\langle x, y\rangle\},\{x \mapsto a, y \mapsto b\}\rangle \in \mathrm{OS} \backslash \mathrm{OS}_{\text {sim }} .
$$

$-\mathrm{IOS}_{\text {sim }} \subset I O S$ follows from os' $\in \operatorname{IOS} \backslash I O S_{\text {sim }}$ and Lemma 1.
$-\mathrm{OS}_{\Theta_{\text {sim }}} \subset \mathrm{OS}_{\text {sim }}$ can be proven by taking $\mu \in \Theta_{\text {sim }}, u \in \mathrm{SSEQ}_{\mu}$, and os $=$ $\operatorname{sseq}^{20} \mathrm{~s}_{\mu}(u)$. We know that os $\in \mathrm{OS}$. Suppose that $\alpha, \beta \in \operatorname{occ}(u)$ and $\alpha \neq \beta$. Then, by sim $=\varnothing, \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$. Hence, by (4), we have $\alpha \rightleftharpoons_{o s} \beta$, and so os $\in \mathrm{OS}_{\text {sim }}$. Moreover, we note that

$$
o s^{\prime \prime}=\left\langle\begin{array}{c}
\{x, y, z\},\{\langle x, y\rangle,\langle y, x\rangle,\langle x, z\rangle,\langle z, x\rangle,\langle y, z\rangle,\langle z, y\rangle\}, \\
\{\langle x, y\rangle,\langle x, z\rangle\},\{x \mapsto a, y \mapsto a, z \mapsto b\}
\end{array}\right\rangle \in \mathrm{OS}_{\text {sim }} \backslash \mathrm{OS}_{\Theta_{\text {sim }}} .
$$

$-\mathrm{IOS}_{\Theta_{\text {sim }}} \subset \mathrm{IOS}_{\text {sim }}$ follows from os ${ }^{\prime \prime} \in \mathrm{IOS}_{\text {sim }} \backslash \mathrm{IOS}_{\theta_{\text {sim }}}, \mathrm{OS}_{\theta_{\text {sim }}} \subseteq \mathrm{OS}_{\text {sim }}$ and Lemma 3.

Moreover, note that $o s \in \mathrm{OS}_{\text {sim }} \backslash I O S$ and $o s^{\prime} \in \operatorname{IOS} \backslash \mathrm{OS}_{\text {sim }}$ which justifies that $I O S$ and $O S_{\text {sim }}$ are not related. Similarly, there is no inclusion between $I O S_{\text {sim }}$ and $\mathrm{OS}_{\theta_{\text {sim }}}$ since os $\in \mathrm{OS}_{\theta_{\text {sim }}} \backslash I O S_{\text {sim }}$ and os ${ }^{\prime \prime} \in \mathrm{IOS}_{\text {sim }} \backslash \mathrm{OS}_{\Theta_{\text {sim }}}$.

Proof of Theorem 2

We first show that os2ios sim $_{\text {sim }}=$ os2ios $\left.\right|_{\text {os }} ^{\text {sim }}$. Let $o s=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim }}$ and ios $=\operatorname{os2} 2 \operatorname{ios}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \hat{\complement}, \ell\rangle$. In this case $\sqsubset^{\circledast}=i d_{\Delta}$ which follows directly from $\rightleftharpoons=(\Delta \times \Delta) \backslash i d_{\Delta}$ and the separability of os. As a result, we also have $\left\llcorner^{\wedge}=\left\llcorner^{+}\right.\right.$. Hence

$$
\operatorname{os2ios}(o s)=\left\langle\Delta, \rightleftharpoons \cup \nabla^{s y m}, ᄃ^{+}, \ell\right\rangle,
$$

where $\nabla=\left\{\langle x, y\rangle \mid \exists z, w: z \rightleftharpoons w \wedge x \sqsubset^{*} z \sqsubset^{*} y \wedge x \sqsubset^{*} w \sqsubset^{*} y\right\}$. Moreover, ∇ is irreflexive (as \rightleftharpoons is irreflexive) and $\rightleftharpoons=(\Delta \times \Delta) \backslash i d_{\Delta}$. We therefore obtain:

$$
\operatorname{os2ios}(o s)=\left\langle\Delta, \rightleftharpoons, \sqsubset^{+}, \ell\right\rangle .
$$

We then observe that os2ioss ${ }_{\text {sim }}\left(\mathrm{OS}_{\text {sim }}\right)=\mathrm{IOS}_{\text {sim }}$ follows from Lemma 1 , Lemma 2, Lemma 3, os2ios sim $=$ os2ios $_{\text {os }_{\text {sim }}}$, and the fact that os2ios is the identity on IOS, as then we obtain

$$
\text { os2ios }_{\text {sim }}\left(O S_{\text {sim }}\right) \subseteq I O S_{\text {sim }}
$$

and

$$
\text { os2ios }_{\text {sim }}\left(O S_{\text {sim }}\right) \supseteq \text { os2ios sim }\left(I O S_{\text {sim }}\right)=\operatorname{os} 2 \text { ios }\left(I O S_{\text {sim }}\right)=I O S_{\text {sim }} .
$$

Proof of Theorem 3

Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since the labelling ℓ is injective, we may assume that $\Delta=$ $\Sigma \times\{1\}$. Then, from the general results proved in [5] it follows that there exists sos $\in \operatorname{satext}(o s)$ which, by the definition of $\mathrm{OS}_{\text {sim }}$ satisfies $\rightleftharpoons_{\text {sos }}=(\Delta \times \Delta) \backslash i d_{\Delta}$. Hence $u=\operatorname{sseq} 2 \operatorname{sos}^{-1}($ sos $)$ is a sequence of singleton steps. Let $\mu=\langle\Sigma, \varnothing$, seq \rangle, where:

$$
\text { seq }=\left\{\begin{array}{l|l}
\langle a, b\rangle \in \Sigma \times \Sigma & \begin{array}{l}
\operatorname{pos}_{u}(\langle a, 1\rangle)<\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \not \subset\langle b, 1\rangle \\
\operatorname{pos}_{u}(\langle b, 1\rangle)<\operatorname{pos}_{u}(\langle a, 1\rangle) \wedge\langle b, 1\rangle \not \subset\langle a, 1\rangle
\end{array}
\end{array}\right\} .
$$

Clearly, $\mu \in \Theta_{\text {sim }}$ and $u \in \operatorname{SSEQ}_{\mu}$. It is easy to check that os $=\operatorname{sseq} 2 o s_{\mu}(u)$.

B Proofs for the alphabets in $\Theta_{\text {seq }} \backslash$ sim

Lemma 4. $\mathrm{IOS}_{\text {seq } \backslash \text { sim }} \subseteq I O S$.
Proof. We first note that (I1), (I2) and (I4) are respectively (B1), (B2) and (B4). To show (I3) we observe that:

$$
x \rightleftharpoons y \Longrightarrow{ }_{(\text {B3 })} x \sqsubset^{\text {sym }} y \wedge y \rightleftharpoons x \Longrightarrow_{(\text {B1 })} x \neq y \wedge y \rightleftharpoons x .
$$

To show (I5) we observe that:

$$
\begin{aligned}
z \rightleftharpoons y \wedge z \sqsubset x \sqsubset z & \Longrightarrow_{(B 3)} \\
& z \rightleftharpoons y \wedge z \sqsubset x \sqsubset z \wedge z \sqsubset^{\text {sym }} y \wedge y \rightleftharpoons z \\
& \Longrightarrow{ }_{(B 4)} \\
& x \sqsubset z \prec y \vee y \prec z \sqsubset x \\
& \Longrightarrow{ }_{(\text {B3 })}
\end{aligned} \quad x \rightleftharpoons y .
$$

To show (I6) we observe that:

$$
\begin{aligned}
z & \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \\
& \Longrightarrow\left(\text { B3) } \quad z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \wedge z^{\prime} \sqsubset^{\text {sym }} z \wedge z^{\prime} \rightleftharpoons z\right. \\
& \Longrightarrow\left(\text { (B1) } \quad\left(x \sqsubset z \prec z^{\prime} \sqsubset y \vee x \sqsubset z^{\prime} \prec z \sqsubset y\right) \wedge x \neq z \wedge y \neq z\right. \\
& \Longrightarrow{ }_{(\text {B2,B4 })} x \sqsubset z \prec y \vee x \prec z \sqsubset y \\
& \Longrightarrow{ }_{(\text {B4 })} \quad x \rightleftharpoons y .
\end{aligned}
$$

We finally note that (I7) follows from (B3) and (B5).
Lemma 5. $\mathrm{IOS}_{\text {seq } \backslash \text { sim }} \subseteq \mathrm{OS}_{\text {seq } \backslash \text { sim }}$.
Proof. Follows from Lemma 4, IOS \subseteq OS, and (B3).
Lemma 6. os $2 \mathrm{ios}_{\text {seq } \backslash \text { sim }}\left(\mathrm{OS}_{\text {seq } \backslash \text { sim }}\right) \subseteq \mathrm{IOS}_{\text {seq } \backslash \text { sim }}$.
Proof.

To show (B1), we observe that:

$$
x \widehat{\sqsubset} x \Longrightarrow x \sqsubset^{\curlywedge} x \Longrightarrow \text { false } .
$$

To show (B2), we observe that:

$$
x \neq y \wedge x \widehat{\sqsubset} z \widehat{\sqsubset} y \Longrightarrow x \neq y \wedge x \sqsubset^{\curlywedge} z \sqsubset^{\curlywedge} y \Longrightarrow x \sqsubset^{\curlywedge} y \Longrightarrow x \hat{\sqsubset} y .
$$

To show (B3) we observe that all we need is to prove that $x \widehat{\rightleftharpoons} y \Longrightarrow \widehat{\sqsubset}^{\text {sym }} y$, in the following way:

$$
\begin{aligned}
x \rightleftharpoons y & \Longrightarrow x\left(\sqsubset^{*} \circ \prec \circ \sqsubset^{*}\right)^{\text {sym }} y \Longrightarrow x \neq y \wedge x\left(\sqsubset^{+}\right)^{\text {sym }} y \\
& \Longrightarrow x\left(\sqsubset^{\curlywedge}\right)^{s y m} y \Longrightarrow \widehat{\sqsubset}^{\text {sym }} y,
\end{aligned}
$$

where $x \risingdotseq y \Longrightarrow x \neq y$ follows from Lemma 4 and (I3). Finally, (B5) follows from the libel-linearity of os, as shown below:

$$
x \neq y \wedge \ell(x)=\ell(y) \Longrightarrow x \widehat{\prec}^{\text {sym }} y \Longrightarrow x \widehat{\rightleftharpoons} y
$$

Hence $i o s \in \mathrm{IOS}_{\text {seq } \backslash \text { sim }}$.

Proof of Theorem 4

Let us consider one by one all the inclusions:
$-I O S \subset O S$ was already justified in the proof of Theorem 1. Note, however, that we also have

$$
\text { os }=\left\langle\begin{array}{rl}
\{x, y, z\},\{\langle x, y\rangle, & \langle y, x\rangle\},\{\langle x, y\rangle,\langle y, z\rangle\}, \\
\{x \mapsto a, y \mapsto b, z \mapsto c\}
\end{array}\right\rangle \in \mathrm{OS} \backslash \mathrm{IOS} .
$$

$-\mathrm{IOS}_{\text {seq } \backslash \text { sim }} \subset \mathrm{OS}_{\text {seq } \backslash \text { sim }}$ follows from os $\in \mathrm{OS}_{\text {seq } \backslash \text { sim }} \backslash \mathrm{IOS}_{\text {seq } \backslash \text { sim }}$ and Lemma 5.
$-\mathrm{IOS}_{\Theta_{\text {seq } \backslash \text { sim }}} \subset \mathrm{OS}_{\Theta_{\text {seq }} \text { sim }}$ follows from os $\in \mathrm{OS}_{\Theta_{\text {seq } \backslash \text { sim }}} \backslash \mathrm{IOS}_{\Theta_{\text {seq } \backslash \text { sim }}}$ and the general results proven in [5].
$-\mathrm{OS}_{\text {seq } \backslash \text { sim }} \subset \mathrm{OS}$ follows from the definition of $\mathrm{OS}_{\text {seq } \backslash \text { sim }}$ and

$$
o s^{\prime}=\langle\{x, y\},\{\langle x, y\rangle\}, \varnothing,\{x \mapsto a, y \mapsto b\}\rangle \in \mathrm{OS} \backslash \mathrm{OS}_{\text {seq } \backslash \text { sim }}
$$

$-\mathrm{IOS}_{\text {seq } \backslash \text { sim }} \subset \mathrm{IOS}$ follows from $o s^{\prime} \in \operatorname{IOS} \backslash \mathrm{IOS}_{\text {seq } \backslash \text { sim }}$ and Lemma 4.
$-\mathrm{OS}_{\Theta_{\text {seq \sim }}} \subset \mathrm{OS}_{\text {seq } \backslash \text { sim }}$ can be proven by taking $\sigma \in \Theta_{\text {seq } \backslash \text { sim }}, u \in \mathrm{SSEQ}_{\sigma}$ and os $=\operatorname{sseq} 2 \cos _{\sigma}(u)=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since we know that os $\in \mathrm{OS}$, we only need to show that $\rightleftharpoons \subseteq \sqsubset^{\text {sym }}$. This, however, follows from (5) and the fact that in this case rig $=(\Sigma \times \Sigma) \backslash$ sim. Hence os $\in \mathrm{OS}_{\text {seq } \backslash \operatorname{sim}}$. Moreover, we note that

$$
o s^{\prime \prime}=\left\langle\begin{array}{c}
\{x, y, z\},\{\langle x, y\rangle,\langle y, x\rangle,\langle x, z\rangle,\langle z, x\rangle\}, \\
\{\langle x, y\rangle,\langle x, z\rangle\},\{x \mapsto a, y \mapsto a, z \mapsto b\}
\end{array}\right\rangle \in \mathrm{OS}_{\text {seq } \backslash \operatorname{sim}} \backslash \mathrm{OS}_{\Theta_{\text {seq } \backslash \text { sim }}}
$$

$-\operatorname{IOS}_{\Theta_{\text {seq } \backslash \text { sim }}} \subseteq I O S_{\text {seq } \backslash \text { sim }}$ follows from Lemma 6 , os $s^{\prime \prime} \in I O S_{\text {seq } \backslash \text { sim }} \backslash I O S_{\Theta_{\text {seq } \backslash \text { sim }}}$ and $\mathrm{OS}_{\Theta_{\text {seq \sim }} \subseteq \mathrm{OS}_{\text {seq } \backslash \text { sim }} .}$

Moreover, note that os $\in \mathrm{OS}_{\text {seq } \backslash \text { sim }} \backslash \mathrm{IOS}$ and $o s^{\prime} \in \mathrm{IOS} \backslash \mathrm{OS}_{\text {seq } \backslash \text { sim }}$ which justifies that IOS and $\mathrm{OS}_{\text {seq } \backslash \text { sim }}$ are not related. Similarly, os $\in \mathrm{OS}_{\Theta_{\text {seq } \backslash \text { sim }}} \backslash I O S_{\text {seq } \backslash \text { sim }}$ and $o s^{\prime \prime} \in \mathrm{IOS}_{\text {seq } \backslash \text { sim }} \backslash \mathrm{OS}_{\Theta_{\text {seq } \backslash \text { sim }}}$, hence there is no inclusion between $\mathrm{IOS}_{\text {seq } \backslash \text { sim }}$ and $\mathrm{OS}_{\Theta_{\text {seq \sim }}}$.

Proof of Theorem 5

We first show that os2ios seq \backslash sim $=$ os2ios $\mid \mathrm{os}_{\text {seq } \backslash \text { sim }}$. Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {seq } \backslash \text { sim }}$ and ios $=\operatorname{os} 2 \operatorname{ios}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \widehat{\sqsubset}, \ell\rangle$. We first observe that

$$
\sqsubset^{\circledast} \circ \rightleftharpoons \circ \sqsubset^{\circledast}=\sqsubset^{\circledast} \circ \prec^{s y m} \circ \sqsubset^{\circledast} \text { and } \nabla=\sqsubset^{*} \circ \prec \circ \sqsubset^{*}
$$

which follows from $x \rightleftharpoons y \Longrightarrow x \sqsubset^{\text {sym }} y$. Hence

$$
\widehat{\rightleftharpoons}=\sqsubset^{\circledast} \circ\left(\sqsubset^{*} \circ \prec \circ \square^{*}\right)^{s y m} \circ \sqsubset^{\circledast}=\left(\sqsubset^{*} \circ \prec \circ \sqsubset^{*}\right)^{s y m}
$$

We then observe that os2ios seq \backslash sim $\left(\mathrm{OS}_{\text {seq } \backslash \text { sim }}\right)=1 O S_{\text {seq } \backslash \text { sim }}$ follows directly from Lemma 4, Lemma 5, Lemma 6, os2ios seq \backslash sim $=$ os 2 ios $\left.\right|_{\mathrm{Os}_{\text {seq } \backslash \text { sim }}}$, and the fact that os2ios is the identity on IOS, as then we obtain

$$
\mathrm{os} 2 \mathrm{ios}_{\text {seq } \backslash \operatorname{sim}}\left(\mathrm{OS}_{\text {seq } \backslash \operatorname{sim}}\right) \subseteq \mathrm{IOS}_{\text {seq } \backslash \text { sim }}
$$

and

$$
\begin{aligned}
& \text { os2ios } s_{\text {seq } \backslash \text { sim }}\left(\mathrm{OS}_{\text {seq } \backslash \text { sim }}\right) \supseteq \text { os2ios }_{\text {seq } \backslash \text { sim }}\left(\mathrm{IOS}_{\text {seq } \backslash \text { sim }}\right) \\
& =o s 2 \mathrm{ios}\left(\mathrm{IOS}_{\text {seq } \backslash \text { sim }}\right)=I O S_{\text {seq } \backslash \text { sim }} .
\end{aligned}
$$

Proof of Theorem 6

Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since the labelling ℓ is injective, we may assume that $\Delta=\Sigma \times\{1\}$. Then, from the general results proved in [5] it follows that there exists sos $\in \operatorname{satext}(o s)$. Let $u=\operatorname{sseq} 2 \operatorname{sos}^{-1}($ sos $)$, and $\sigma=\langle\Sigma$, sim, seq \rangle, where:

$$
\begin{aligned}
\operatorname{sim}=\{\langle a, b\rangle \in \Sigma \times \Sigma \mid & \left(\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge a \neq b\right) \vee \\
& \left.\left(\operatorname{pos}_{u}(\langle a, 1\rangle) \neq \operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \not \equiv\langle b, 1\rangle\right)\right\} \\
\operatorname{seq}=\{\langle a, b\rangle \in \Sigma \times \Sigma \mid & \left(\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge a \neq b \wedge\langle b, 1\rangle \not \subset\langle a, 1\rangle\right) \\
& \vee\left(\operatorname{pos}_{u}(\langle a, 1\rangle)<\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \not \subset\langle b, 1\rangle\right) \\
& \left.\vee\left(\operatorname{pos}_{u}(\langle b, 1\rangle)<\operatorname{pos}_{u}(\langle a, 1\rangle) \wedge\langle b, 1\rangle \not \subset\langle a, 1\rangle\right)\right\} .
\end{aligned}
$$

We then observe that sim is symmetric since \rightleftharpoons is symmetric, and seq \backslash sim is symmetric because it is empty (it follows from seq \subseteq sim, as we show below). Hence σ is a generalised concurrency alphabet. To show $\sigma \in \Theta_{\text {seq } \backslash \text { sim }}$ we need to show that seq \subseteq sim.

Let $\langle a, b\rangle \in$ seq. If $\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle)$ then, clearly, $\langle a, b\rangle \in$ sim. If $\operatorname{pos}_{u}(\langle a, 1\rangle)<\operatorname{pos}_{u}(\langle b, 1\rangle)$ and $\langle a, 1\rangle \not \subset\langle b, 1\rangle$ then, by os $\in \mathrm{OS}_{\text {seq } \backslash \text { sim }}$, we obtain $\langle a, 1\rangle \neq\langle b, 1\rangle$ or $\langle a, 1\rangle \rightleftharpoons\langle b, 1\rangle \wedge\langle b, 1\rangle \sqsubset\langle a, 1\rangle$.
Moreover, by $\operatorname{pos}_{u}(\langle a, 1\rangle)<\operatorname{pos}_{u}(\langle b, 1\rangle)$, we obtain $\langle b, 1\rangle \not \subset\langle a, 1\rangle$ and so we have $\langle a, 1\rangle \neq\langle b, 1\rangle$. Hence $\langle a, b\rangle \in \operatorname{sim}$, and so $\sigma \in \Theta_{\text {seq } \backslash \text { sim }}$.

We then observe that $u \in \mathrm{SSEQ}_{\sigma}$ as $\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle)$ and $a \neq b$ together imply $\langle a, b\rangle \in \operatorname{sim}$, and it is easy to check that os $=\operatorname{sseq}^{2} \mathrm{os}_{\sigma}(u)$.

Proof of Proposition 1

Let $i o s=$ os2ios $\circ{\operatorname{sseq} 20 s_{\kappa}}(u)=$ os2ios $\circ{\operatorname{sseq} 20 s_{\kappa}}^{(}(w)$. From $\operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$ it follows that there is $\operatorname{sos}_{u} \in \operatorname{satext}($ ios $)$ such that $\alpha \prec_{\text {sos }_{u}} \beta$. Similarly, from $\operatorname{pos}_{w}(\alpha)>\operatorname{pos}_{w}(\beta)$ it follows that there is $\operatorname{sos}_{w} \in \operatorname{satext}($ ios $)$ such that $\beta \prec_{\text {sos }_{w}}$ α. Hence, $\alpha \not$ ios $_{\text {ios }} \beta \not$ ios $_{\text {ios }} \alpha$. Moreover, by ios $\in \mathrm{OS}_{\text {seq } \backslash \operatorname{sim}}, \alpha \neq$ ios β. This, by the general results proved in [5], there is $\operatorname{sos}_{v} \in \operatorname{satext}($ ios $)$ such that $\alpha \sqsubset_{\text {sos }_{v}}$ $\beta \sqsubset_{\operatorname{sos}_{v}} \alpha$. Then the conclusion holds by taking $v=\operatorname{sseq}^{2} \mathrm{os}_{\sigma}^{-1}\left(\operatorname{sos}_{v}\right)$.

C Proofs for the alphabets in $\Theta_{\text {sim } \backslash \text { seq }}$

Lemma 7. $\mathrm{IOS}_{\text {sim } \backslash \text { seq }} \subseteq I O S$.
Proof. To show (I1) we observe that:

$$
x \sqsubset x \Longrightarrow_{(C 2)} x \rightleftharpoons x \Longrightarrow_{(C 3)} x \neq x \Longrightarrow \text { false } .
$$

To show (I2) we observe that:

$$
x \neq y \wedge x \sqsubset z \sqsubset y \Longrightarrow_{(C 1)} x \sqsubset y .
$$

We then note that (I3) is simply (C3), and to show (I4) we observe that:

$$
x \prec z \sqsubset y \vee x \sqsubset z \prec y \Longrightarrow_{(C 1)} x \sqsubset y \Longrightarrow_{(\text {C2 })} x \rightleftharpoons y .
$$

To show (I5) we observe that:

$$
z \rightleftharpoons y \wedge z \sqsubset x \sqsubset z \Longrightarrow_{(C 1)} z \sqsubset z \Longrightarrow_{(C 2, C 3)} \text { false . }
$$

To show (I6) we observe that:

$$
z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \Longrightarrow_{(C 1)} x \sqsubset y \Longrightarrow_{(C 2)} x \rightleftharpoons y
$$

We finally note that (I7) follows from (C2) and (C4).
Lemma 8. $\mathrm{IOS}_{\text {sim } \backslash \text { seq }} \subseteq O S_{\text {sim } \backslash \text { seq }}$.
Proof. Follows from Lemma 7, $\mathrm{IOS} \subseteq \mathrm{OS}$, and (C2).
Lemma 9. os $2 \mathrm{ios}_{\text {sim } \backslash \text { seq }}\left(\mathrm{OS}_{\text {sim } \backslash \text { seq }}\right) \subseteq \mathrm{IOS}_{\text {sim } \backslash \text { seq }}$.
Proof.
 ios $\in \mathrm{IOS}_{\text {sim } \backslash \text { seq }}$. To show (C1) we observe that:

$$
x \hat{\sqsubset} z \hat{\sqsubset} y \Longrightarrow x \sqsubset^{+} z \sqsubset^{+} y \Longrightarrow x \sqsubset^{+} y \Longrightarrow x \text { ᄃ } y .
$$

To show (C2) we observe that:

$$
x \widehat{\sqsubset} y \Longrightarrow x \sqsubset^{+} y \Longrightarrow x \risingdotseq y .
$$

To show (C3) we observe that:

$$
x \risingdotseq y \Longrightarrow x \rightleftharpoons y \vee x\left(\sqsubset^{+}\right)^{s y m} y \Longrightarrow y \rightleftharpoons x \vee y\left(\sqsubset^{+}\right)^{s y m} x \Longrightarrow y \risingdotseq x
$$

Moreover, $x \Longleftarrow y \Longrightarrow x \neq y$ follows from the general results proved in [5]. Finally, (C4) follows from the libel-linearity of os, as shown below:

$$
x \neq y \wedge \ell(x)=\ell(y) \Longrightarrow x \widehat{\imath}^{\text {sym }} y \Longrightarrow x \widehat{\sqsubset}^{s y m} y
$$

Hence $i o s \in \mathrm{IOS}_{\text {sim } \backslash \text { seq }}$.

Proof of Theorem 7

Let us consider one by one all the inclusions:
$-I O S \subset O S$ was already justified in the proof of Theorem 1. Note, however, that we also have

$$
\text { os }=\left\langle\begin{array}{rl}
\{x, y, z\},\{\langle x, y\rangle,\langle y, x\rangle,\langle y, z\rangle, & \langle z, y\rangle\},\{\langle x, y\rangle,\langle y, z\rangle\}, \\
& \{x \mapsto a, y \mapsto b, z \mapsto c\}
\end{array}\right\rangle \in \mathrm{OS} \backslash \mathrm{IOS} .
$$

$-\mathrm{IOS}_{\text {sim } \backslash \text { seq }} \subset \mathrm{OS}_{\text {sim } \backslash \text { seq }}$ follows from os $\in \mathrm{OS}_{\text {sim } \backslash \text { seq }} \backslash I O S_{\text {sim } \backslash \text { seq }}$ and Lemma 8.
$-\mathrm{IOS}_{\Theta_{\text {sim } \backslash \text { seq }}} \subset \mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}}$ follows from os $\in \mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}} \backslash \mathrm{IOS}_{\Theta_{\text {sim } \backslash \text { seq }}}$ and the general results proven in [5].
$-\mathrm{OS}_{\text {sim } \backslash \text { seq }} \subset \mathrm{OS}$ follows from the definition of $\mathrm{OS}_{\text {sim } \backslash \text { seq }}$ and

$$
o s^{\prime}=\langle\{x, y\}, \varnothing,\{\langle x, y\rangle\},\{x \mapsto a, y \mapsto b\}\rangle \in \mathrm{OS} \backslash \mathrm{OS}_{\text {sim } \backslash \text { seq }} .
$$

$-\mathrm{IOS}_{\text {sim } \backslash \text { seq }} \subset I O S$ follows from $o s^{\prime} \in \operatorname{IOS} \backslash \mathrm{IOS}_{\text {sim } \backslash \text { seq }}$ and Lemma 7.
$-\mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}} \subset \mathrm{OS}_{\text {sim } \backslash \text { seq }}$ can be shown by taking $\kappa \in \Theta_{\text {sim } \backslash \text { seq }}, u \in \operatorname{SSEQ}_{\kappa}$, and os $={\operatorname{sseq} 2 \mathrm{os}_{\kappa}}^{(u)}$. Since we know from the general theory that os $\in \mathrm{OS}$, we only need to show that $\sqsubset_{o s}^{s y m} \subseteq \rightleftharpoons_{o s}$. This, however, follows from (6). Hence os $\in \mathrm{OS}_{\text {sim }} \backslash$ seq. . Moreover, we note that

$$
o s^{\prime \prime}=\left\langle\begin{array}{c}
\{x, y, z\},\{\langle x, y\rangle,\langle y, x\rangle,\langle x, z\rangle,\langle z, x\rangle\}, \\
\{\langle x, y\rangle,\langle x, z\rangle\},\{x \mapsto a, y \mapsto a, z \mapsto b\}
\end{array}\right\rangle \in \mathrm{OS}_{\text {sim } \backslash \text { seq }} \backslash \mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}}
$$

$-\mathrm{IOS}_{\Theta_{\text {sim } \backslash \text { seq }}} \subseteq I O S_{\text {sim } \backslash \text { seq }}$ follows from Lemma 9 os ${ }^{\prime \prime} \in \mathrm{IOS}_{\text {sim } \backslash \text { seq }} \backslash I O S_{\Theta_{\text {sim } \backslash \text { seq }}}$ and $\mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}} \subseteq \mathrm{OS}_{\text {sim } \backslash \text { seq }}$.

Moreover, note that os $\in \mathrm{OS}_{\text {sim } \backslash \text { seq }} \backslash I O S$ and $o s^{\prime} \in I O S \backslash \mathrm{OS}_{\text {sim } \backslash \text { seq }}$ which justifies that IOS and $\mathrm{OS}_{\text {sim } \backslash \text { seq }}$ are not related. Similarly, os $\in \mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}} \backslash I O S_{\text {sim }} \backslash$ seq and $o s^{\prime \prime} \in \mathrm{IOS}_{\text {sim } \backslash \text { seq }} \backslash \mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}}$, hence there is no inclusion between $\mathrm{IOS}_{\text {sim } \backslash \text { seq }}$ and $\mathrm{OS}_{\Theta_{\text {sim } \backslash \text { seq }}}$.

Proof of Theorem 8

We first show that os2ios sim \backslash seq $=$ os2ios $\mid \mathrm{os}_{\text {sim } \backslash \text { seq }}$. Let $o s=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim }}$ seq and ios $=\operatorname{os} 2 \operatorname{ios}(o s)=\langle\Delta, \risingdotseq, \widehat{\sqsubset}, \ell\rangle$. We first observe that in such a case $\sqsubset^{\circledast}=$ $i d_{\Delta}$ which follows from $x \sqsubset^{\text {sym }} y \Longrightarrow x \rightleftharpoons y$ and the separability of os. As a result, we also have $\square^{\wedge}=\square^{+}$. Hence

$$
\operatorname{os2ios}(o s)=\left\langle\Delta, \rightleftharpoons \cup \nabla^{s y m}, \sqsubset^{+}, \ell\right\rangle
$$

where $\nabla=\left\{\langle x, y\rangle \mid \exists z, w: z \rightleftharpoons w \wedge x \sqsubset^{*} z \sqsubset^{*} y \wedge x \sqsubset^{*} w \sqsubset^{*} y\right\}$. We will now show that $\left(\rightleftharpoons \cup \nabla^{\text {sym }}\right)=\left(\rightleftharpoons \cup\left(\sqsubset^{+}\right)^{\text {sym }}\right)$.
Suppose first that $x \nabla y$ which means that $x \neq y$ (which follows from the general theory), and there is z such that $x \square^{*} z \square^{*} y$. Hence $x \square^{+} y$ showing that the (\subseteq) inclusion holds. To show the reverse inclusion, suppose that $x \sqsubset^{+} y$. If $x \sqsubset y$ then, by the definition of $\mathrm{OS}_{\text {sim } \backslash \text { seq }}$, we have $x \rightleftharpoons y$. Otherwise, there is z such that $x \sqsubset z \sqsubset^{*} y$. Then, again by the definition of $\mathrm{OS}_{\text {sim } \backslash \text { seq }}, z \rightleftharpoons x$. We therefore obtain that $\langle x, y\rangle \in \nabla$, after taking $w=x$. Hence

$$
\operatorname{os} 2 \operatorname{ios}(o s)=\left\langle\Delta, \rightleftharpoons \cup\left(\sqsubset^{+}\right)^{s y m}, \sqsubset^{+}, \ell\right\rangle
$$

We then observe that os2ios sim \backslash seq $\left(\mathrm{OS}_{\text {sim } \backslash \text { seq }}\right)=\mathrm{IOS}_{\text {sim }}$ seq follows from Lemma 7 , Lemma 8, Lemma 9, os $2 \mathrm{ios}_{\text {sim } \backslash \text { seq }}=$ os2ios $\left.\right|_{o s_{\text {sim } \backslash \text { seq }}}$, and the fact that os2ios is the identity on IOS, as then we obtain

$$
{\text { os } 2 \mathrm{ios}_{\text {sim }} \backslash \text { seq }}\left(\mathrm{OS}_{\text {sim } \backslash \text { seq }}\right) \subseteq \mathrm{IOS}_{\text {sim } \backslash \text { seq }}
$$

and

$$
\begin{aligned}
& \text { os2ios }_{\text {sim } \backslash \text { seq }}\left(\mathrm{OS}_{\text {sim } \backslash \text { seq }}\right) \supseteq \text { os2ios }_{\text {sim } \backslash \text { seq }}\left(\mathrm{IOS}_{\text {sim } \backslash \text { seq }}\right) \\
& \\
& =\text { os2ios }\left(\mathrm{IOS}_{\text {sim } \backslash \text { seq }}\right)=\mathrm{IOS}_{\text {sim } \backslash \text { seq }} .
\end{aligned}
$$

Proof of Theorem 9

Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since the labelling ℓ is injective, we may assume that $\Delta=\Sigma \times\{1\}$. Then, from the general results proved in [5] it follows that there exists sos $\in \operatorname{satext}(o s)$. Let $u=\operatorname{sseq} 2 \operatorname{sos}^{-1}(\operatorname{sos})$, and $\kappa=\langle\Sigma$, sim, seq \rangle, where:

$$
\begin{aligned}
\operatorname{sim}=\{\langle a, b\rangle \in \Sigma \times \Sigma \mid & \left(\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge a \neq b\right) \vee \\
& \left.\left(\operatorname{pos}_{u}(\langle a, 1\rangle) \neq \operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \neq\langle b, 1\rangle\right)\right\} \\
\text { seq }=\{\langle a, b\rangle \in \Sigma \times \Sigma \mid & \left(\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge a \neq b\right) \\
& \vee\left(\operatorname{pos}_{u}(\langle a, 1\rangle)<\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \not \subset\langle b, 1\rangle\right) \\
& \left.\vee\left(\operatorname{pos}_{u}(\langle b, 1\rangle)<\operatorname{pos}_{u}(\langle a, 1\rangle) \wedge\langle b, 1\rangle \not \subset\langle a, 1\rangle\right)\right\} .
\end{aligned}
$$

We then observe that sim is symmetric since \rightleftharpoons is symmetric, and seq \backslash sim is symmetric because sim and seq are symmetric. Hence κ is a generalised concurrency alphabet. To show $\kappa \in \Theta_{\text {sim } \backslash \text { seq }}$ we need to show that sim \subseteq seq.

Let $\langle a, b\rangle \in \operatorname{sim}$. If $\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle)$ and $a \neq b$ then clearly we have $\langle a, b\rangle \in$ seq. Moreover, if $\operatorname{pos}_{u}(\langle a, 1\rangle) \neq \operatorname{pos}_{u}(\langle b, 1\rangle)$ and $\langle a, 1\rangle \neq\langle b, 1\rangle$ then, by os $\in \mathrm{OS}_{\text {sim } \backslash \text { seq }}, \operatorname{pos}_{u}(\langle a, 1\rangle) \neq \operatorname{pos}_{u}(\langle b, 1\rangle)$ and $\langle a, 1\rangle \not \chi^{s y m}\langle b, 1\rangle$. Hence $\langle a, b\rangle \in \mathrm{seq}$, and so $\kappa \in \Theta_{\text {sim }} \backslash$ seq .

We then observe that $u \in$ SSEQ $_{\kappa}$ as $\operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle)$ and $a \neq b$ together imply $\langle a, b\rangle \in \operatorname{sim}$, and it is easy to check that $o s=\operatorname{sseq}_{2} \mathrm{os}_{\kappa}(u)$.

Proof of Proposition 2

Let $i o s=$ os2ios $\circ \operatorname{sseq} 2 o s_{\kappa}(v)$. From $\operatorname{pos}_{v}(\alpha)=\operatorname{pos}_{v}(\beta)$ it follows directly that $\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{sim}$ and there is sos $\in \operatorname{satext}(i o s)$ such that $\alpha \sqsubset_{\text {sos }} \beta \sqsubset_{\text {sos }} \alpha$. Hence, $\alpha \neq$ ios β. Moreover, by the simplified form of the sseq $2 \mathrm{os}_{\kappa}$ mapping and the order closure, $\alpha \not \chi_{\text {ios }} \beta$ and $\beta \not \chi_{\text {ios }} \alpha$. This, by the general results proved in [5], means that there are sos ${ }^{\prime}$, sos ${ }^{\prime \prime} \in \operatorname{satext}(i o s)$ such that $\alpha \prec_{\text {sos }^{\prime}} \beta$ and $\beta \prec_{\text {sos }}{ }^{\prime \prime} \alpha$. Then the conclusion holds by taking $u=\operatorname{sseq}^{2} 2 \mathrm{os}_{\kappa}^{-1}\left(\operatorname{sos}^{\prime}\right)$ and $w=\operatorname{sseq}^{2} \mathrm{os}_{\kappa}^{-1}\left(\operatorname{sos}^{\prime \prime}\right)$.

D Proofs for the alphabets in $\Theta_{\text {seq } \cap \text { sim }}$

Lemma 10. $\mathrm{IOS}_{\text {seq } \cap \text { sim }} \subseteq I O S$.
Proof. We first note that:

$$
\left.x \sqsubset y \sqsubset x \wedge x \rightleftharpoons y \Longrightarrow_{(D 3)} x \neq y \wedge x \neq y \wedge x \rightleftharpoons y \Longrightarrow \text { false } \quad \quad^{*}\right)
$$

Hence, by (D1),

$$
x \rightleftharpoons y \quad \Longleftrightarrow \quad x \neq y \wedge \neg(x \sqsubset y \sqsubset x) \quad\left({ }^{* *}\right)
$$

To show (I1) we observe that:

$$
x \sqsubset x \Longrightarrow x \sqsubset x \sqsubset x \Longrightarrow_{(D 3)} x \neq x \wedge x \neq x \Longrightarrow \text { false } .
$$

Then we note that (I2) is simply (D2). To show (I3) we observe that:

$$
\begin{aligned}
x \rightleftharpoons y & \Longrightarrow\left(^{* *}\right) \\
& x \neq y \wedge \neg(x \sqsubset y \sqsubset x) \\
& \Longrightarrow{ }_{\left({ }^{* *}\right)} \\
& x \neq y \wedge(y \neq x \wedge \neg(y \sqsubset x \sqsubset y)) \\
& x \wedge x .
\end{aligned}
$$

To show (I4) we observe that:

$$
\begin{aligned}
& x \neq y \wedge x \prec z \sqsubset y \quad \Longrightarrow{ }_{\left({ }^{* *}\right)} \quad(x=y \vee x \sqsubset y \sqsubset x) \wedge x \prec z \sqsubset x \\
& \Longrightarrow(D 1) \quad(x=y \vee x \sqsubset y \sqsubset x) \wedge \\
& x \sqsubset z \sqsubset y \wedge x \rightleftharpoons z \wedge z \neq x \\
& \Longrightarrow \quad x \sqsubset z \sqsubset x \wedge x \rightleftharpoons z \vee \\
& x \sqsubset z \sqsubset y \sqsubset x \wedge x \rightleftharpoons z \wedge z \neq x \\
& \Longrightarrow{ }_{(D 2)} \quad x \sqsubset z \sqsubset x \wedge x \rightleftharpoons z \vee x \sqsubset z \sqsubset x \wedge x \rightleftharpoons z \\
& \Longrightarrow \quad x \sqsubset z \sqsubset x \wedge x \rightleftharpoons z \\
& \Longrightarrow{ }_{(D 3)} \text { false . }
\end{aligned}
$$

Similarly, $x \neq y \wedge x \sqsubset z \prec y \Longrightarrow$ false. Hence we have:

$$
x \prec z \sqsubset y \vee x \sqsubset z \prec y \Longrightarrow x \rightleftharpoons y .
$$

To show (I5) we first observe that:

$$
\begin{aligned}
z \rightleftharpoons y \wedge & z \sqsubset x \sqsubset z \wedge x \sqsubset y \sqsubset x \\
& \Longrightarrow(D 1) \quad z \rightleftharpoons y \wedge z \sqsubset x \sqsubset y \sqsubset x \sqsubset z \wedge z \neq y \\
& \Longrightarrow(D 2) \quad z \rightleftharpoons y \wedge z \sqsubset y \sqsubset z \\
& \Longrightarrow\left(^{*}\right) \quad \text { false }, \\
z \rightleftharpoons y \wedge & z \sqsubset \sqsubset z \wedge x=y \\
& \Longrightarrow \quad z \rightleftharpoons y \wedge z \sqsubset y \sqsubset z \\
& \Longrightarrow\left(^{*}\right) \quad \text { false } .
\end{aligned}
$$

Hence we have:

$$
z \rightleftharpoons y \wedge z \sqsubset x \sqsubset z \Longrightarrow \neg(y \sqsubset x \sqsubset y) \wedge x \neq y \Longrightarrow{ }_{\left({ }^{* *}\right)} x \rightleftharpoons y
$$

To show (I6) we observe that:

$$
\begin{aligned}
z \rightleftharpoons z^{\prime} \wedge & x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \wedge x \sqsubset y \sqsubset x \\
& \Longrightarrow(D 1) \quad z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \wedge x \sqsubset y \sqsubset x \wedge \\
& z \neq z^{\prime} \wedge z \neq x \wedge y \neq z \\
& \Longrightarrow \quad z \rightleftharpoons z^{\prime} \wedge z \sqsubset y \sqsubset x \sqsubset z^{\prime} \sqsubset y \sqsubset x \sqsubset z \wedge \\
& z \neq z^{\prime} \wedge z \neq x \wedge y \neq z \\
& \Longrightarrow(D 2) \quad z \rightleftharpoons z^{\prime} \wedge z \sqsubset x \sqsubset z^{\prime} \sqsubset y \sqsubset z \wedge z \neq z^{\prime} \\
& \Longrightarrow{ }_{(D 2)} z \rightleftharpoons z^{\prime} \wedge z \sqsubset z^{\prime} \sqsubset z \\
& \Longrightarrow \text { false }^{*} \\
z \rightleftharpoons z^{\prime} \wedge & x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \wedge x=y \\
& \Longrightarrow{ }_{(D 1)} z \rightleftharpoons z^{\prime} \wedge z \sqsubset x \sqsubset z^{\prime} \sqsubset x \sqsubset z \wedge z \neq z^{\prime} \\
& \Longrightarrow(D 2) \quad z \rightleftharpoons z^{\prime} \wedge z \sqsubset z^{\prime} \sqsubset z \\
& \Longrightarrow \text { (*) }^{*} \quad \text { false } .
\end{aligned}
$$

Hence we have:
$z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \Longrightarrow \neg(y \sqsubset x \sqsubset y) \wedge x \neq y \Longrightarrow{ }_{\left({ }^{* *}\right)} x \rightleftharpoons y$.
We finally note that (I^{7}) is simply (D_{4}).
Lemma 11. $\mathrm{IOS}_{\text {seq } \cap \text { sim }} \subseteq \mathrm{OS}_{\text {seqnsim }}$.
Proof. Follows from Lemma 10, IOS \subseteq OS, and (D3).
Lemma 12. os 2 ios $_{\text {seq } \cap \text { sim }}\left(O S_{\text {seq } \cap \text { sim }}\right) \subseteq I O S_{\text {seq } \cap \text { sim }}$.
Proof.
Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {seqnsim }}$ and $i o s=\operatorname{os2ios~}_{\text {seq } \cap \operatorname{sim}}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \widehat{\sqsubset}, \ell\rangle$.
To show (D1) we observe that $\rightleftharpoons \rightleftharpoons \rightleftharpoons$, and to show (D2), we observe that:

$$
x \neq y \wedge x \widehat{\sqsubset} z \widehat{\sqsubset} y \Longrightarrow x \neq y \wedge x \sqsubset^{\curlywedge} z \sqsubset^{\curlywedge} y \Longrightarrow x \sqsubset^{\curlywedge} y \Longrightarrow x \hat{\sqsubset} y .
$$

To show (D3) we observe that:

$$
\sqsubset^{\circledast}=\sqsubset^{*} \cap\left(\sqsubset^{*}\right)^{-1}=\left(\sqsubset^{\curlywedge} \uplus i d_{\Delta}\right) \cap\left(\sqsubset^{\curlywedge} \uplus i d_{\Delta}\right)^{-1}=\left(\sqsubset^{\curlywedge} \cap\left(\sqsubset^{\curlywedge}\right)^{-1}\right) \uplus i d_{\Delta},
$$

hence

$$
\widehat{\rightleftharpoons}=\rightleftharpoons(\Delta \times \Delta) \backslash \sqsubset^{\circledast}=(\Delta \times \Delta) \backslash\left(\sqsubset^{\curlywedge} \cap\left(\sqsubset^{\curlywedge}\right)^{-1} \uplus i d_{\Delta}\right),
$$

and so

$$
x \widehat{\neq y} y x \neq y \Longleftrightarrow x \hat{\sqsubset} y \hat{\sqsubset} x .
$$

Finally, (D4) follows from the libel-linearity of os, as shown below:

$$
x \neq y \wedge \ell(x)=\ell(y) \Longrightarrow x \prec^{s y m} y \Longrightarrow x \widehat{\prec}^{s y m} y
$$

Hence ios $\in \mathrm{IOS}_{\text {seqnsim }}$

Proof of Theorem 10

Let us consider one by one all the inclusions:
$-I O S \subset O S$ was already justified in the proof of Theorem 1. Note, however, that we also have

$$
\text { os }=\left\langle\begin{array}{r}
\{x, y, z\},\{\langle y, z\rangle,\langle z, y\rangle,\langle x, z\rangle,\langle z, x\rangle\}, \\
\{\langle x, y\rangle,\langle y, x\rangle,\langle y, z\rangle\},\{x \mapsto a, y \mapsto b, z \mapsto c\}
\end{array}\right\rangle \in \mathrm{OS} \backslash \mathrm{IOS} .
$$

$-\mathrm{IOS}_{\text {seqnsim }} \subset \mathrm{OS}_{\text {seqnsim }}$ follows from os $\in \mathrm{OS}_{\text {seqnsim }} \backslash I O S_{\text {seqnsim }}$ and Lemma 11.
$-\mathrm{IO}_{\Theta_{\text {seqnsim }}} \subset \mathrm{OS}_{\theta_{\text {seqnsim }}}$ follows from os $\in \mathrm{OS}_{\theta_{\text {seansim }}} \backslash \operatorname{IOS}_{\theta_{\text {seqnsim }}}$ and the general results proven in [5].
$-O S_{\text {seqnsim }} \subset O S$ follows from the definition of $O S_{\text {seqnsim }}$ and

$$
o s^{\prime}=\langle\{x, y\}, \varnothing,\{\langle x, y\rangle\},\{x \mapsto a, y \mapsto b\}\rangle \in \mathrm{OS} \backslash \mathrm{OS}_{\text {seqnsim }} .
$$

$-\mathrm{IOS}_{\text {seqnsim }} \subset \mathrm{IOS}$ follows from os ${ }^{\prime} \in \operatorname{IOS} \backslash I \mathrm{~S}_{\text {seqnsim }}$ and Lemma 10.
 $o s=\operatorname{sseq}^{2 o s}{ }_{\nu}(u)=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since we know that os $\in \mathrm{OS}$, we only need to demonstrate that:

$$
(\Delta \times \Delta) \backslash i d_{\Delta} \subseteq \rightleftharpoons \cup\left(\sqsubset \cap \sqsubset^{-1}\right) .
$$

The above holds since, by $(7), \operatorname{pos}_{u}(\alpha)=\operatorname{pos}_{u}(\beta) \wedge \alpha \neq \beta$ implies $\alpha \sqsubset \beta \sqsubset \alpha$, and $\operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$ implies $\alpha \rightleftharpoons \beta$. Hence os $\in \mathrm{OS}_{\text {seqnsim }}$. Moreover, we note that

$$
o s^{\prime \prime}=\left\langle\begin{array}{r}
\left\{\begin{array}{r}
\{x, y, z\}, \\
\{\langle x, y\rangle,\langle y, x\rangle,\langle x, z\rangle,\langle z, x\rangle,\langle y, z\rangle,\langle z, y\rangle\}, \\
\{\langle x, y\rangle,\langle x, z\rangle\},\{x \mapsto a, y \mapsto a, z \mapsto b\}
\end{array}\right\rangle \in \mathrm{OS}_{\text {seq } n \text { sim }} \backslash \mathrm{OS}_{\Theta_{\text {seq } \cap \text { sim }}} .
\end{array}\right.
$$

$-\mathrm{IOS}_{\Theta_{\text {seansim }}} \subset I O S_{\text {seqnsim }}$ follows from Lemma 12 , os $s^{\prime \prime} \in \mathrm{IOS}_{\text {seqnsim }} \backslash \mathrm{IOS}_{\Theta_{\text {seqnsim }}}$ and $\mathrm{OS}_{\Theta_{\text {seqnsim }} \subseteq} \subseteq \mathrm{OS}_{\text {seqnsim }}$.
Moreover, note that os $\in \mathrm{OS}_{\text {seqnsim }} \backslash I O S$ and $o s^{\prime} \in \mathrm{IOS} \backslash \mathrm{OS}_{\text {seqnsim }}$ which justifies that IOS and $\mathrm{OS}_{\text {seqnsim }}$ are not related. Similarly, os $\in \mathrm{OS}_{\Theta_{\text {seqnsim }} \backslash I O S_{\text {seqnsim }} \text { and }}$ $o s^{\prime \prime} \in \mathrm{IO}_{\text {seqnsim }} \backslash \mathrm{OS}_{\theta_{\text {seqnsim }}}$, hence there is no inclusion between $\mathrm{IO}_{\text {seqnsim }}$ and $\mathrm{OS}_{\theta_{\text {seqnsim }}}$.

Proof of Theorem 11

We show that os2ios seqnsim $=$ os2ios $\left.\right|_{\text {os }_{\text {seqnsim }}}$. Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {seqnsim }}$ and ios $=\operatorname{os} 2 \operatorname{ios}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \widehat{\sqsubset}, \ell\rangle$. We first observe that in such a case we have $\rightleftharpoons=(\Delta \times \Delta) \backslash \sqsubset^{\circledast}$, which follows from $x \neq y \Rightarrow x \rightleftharpoons y \vee x \sqsubset y \sqsubset z$ and the separability of os. By the general theory we know that

$$
\left(\sqsubset^{\circledast} \circ \rightleftharpoons \circ \sqsubset^{\circledast} \cup \sqsubset^{\circledast} \circ \nabla^{s y m} \circ \sqsubset^{\circledast}\right) \cap \sqsubset^{\circledast}=\varnothing .
$$

and since $\rightleftharpoons \subseteq \sqsubset^{\circledast} \circ \rightleftharpoons \circ \sqsubset^{\circledast}$ we obtain

$$
\operatorname{os2ios}(o s)=\left\langle\Delta, \rightleftharpoons, \sqsubset^{\curlywedge}, \ell\right\rangle
$$

We observe that os2ios seqnsim $\left(\mathrm{OS}_{\text {seqnsim }}\right)=\mathrm{IOS}_{\text {seqnsim }}$ follows from Lemma 10 ,
 the identity on IOS, as then we obtain

$$
\text { os2ios }_{\text {seqnsim }}\left(\mathrm{OS}_{\text {seqnsim }}\right) \subseteq \mathrm{IOS}_{\text {seq } \cap \text { sim }}
$$

and

$$
\begin{aligned}
& \text { os2ios } \text { seqnsim }\left(\mathrm{OS}_{\text {seq } \cap \text { sim }}\right) \supseteq \text { os2ios }_{\text {seq } \cap \text { sim }}\left(\mathrm{IOS}_{\text {seq } \cap \text { sim }}\right) \\
& =\operatorname{os} 2 \operatorname{ios}\left(I O S_{\text {seq } \cap \text { sim }}\right)=I O S_{\text {seq } \cap \text { sim }} .
\end{aligned}
$$

Proof of Theorem 12

Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since the labelling ℓ is injective, we may assume that $\Delta=\Sigma \times\{1\}$. Then, from the general results proved in [5] it follows that there exists sos $\in \operatorname{satext}(o s)$ which, by the definition of $\mathrm{OS}_{\text {seqnsim }}$ and separability of OS satisfies

$$
(\Delta \times \Delta)=i d_{\Delta} \uplus \rightleftharpoons_{\text {sos }} \uplus\left(\sqsubset_{\text {sos }} \cap \sqsubset_{\text {sos }}^{-1}\right) .
$$

Let $\nu=\langle\Sigma$, sim, seq \rangle, where:

$$
\begin{aligned}
\operatorname{sim}= & \left\{\langle a, b\rangle \in \Sigma \times \Sigma \mid \operatorname{pos}_{u}(\langle a, 1\rangle)=\operatorname{pos}_{u}(\langle b, 1\rangle)\right\} \\
\text { seq }=\{\langle a, b\rangle \in \Sigma \times \Sigma \mid & \left(\operatorname{pos}_{u}(\langle a, 1\rangle)<\operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \not \subset\langle b, 1\rangle\right) \\
& \left.\vee\left(\operatorname{pos}_{u}(\langle b, 1\rangle)<\operatorname{pos}_{u}(\langle a, 1\rangle) \wedge\langle b, 1\rangle \not \subset\langle a, 1\rangle\right)\right\} .
\end{aligned}
$$

Clearly, $\nu \in \Theta_{\text {seqnsim }}$ and $u \in \operatorname{SSEQ}_{\nu}$. It is easy to check that $o s={\operatorname{sseq} 20 s_{\nu}}(u)$.

E Proofs for the alphabets in $\Theta_{\text {sim } \triangle \text { seq }}$

Lemma 13. $I O S_{\text {sim } \triangle \text { seq }} \subseteq I O S$.

Proof. We first note that (I1) is simply (E1). To show (I2) we observe that

$$
x \neq y \wedge x \sqsubset z \sqsubset y \Longrightarrow_{\text {(E2) }} x \sqsubset y .
$$

To show (I3) we observe that

$$
x \rightleftharpoons y \Longrightarrow_{(E 3)} x \sqsubset^{\text {sym }} y \Longrightarrow_{(E 3)} y \rightleftharpoons x .
$$

and we observe that if $x \rightleftharpoons x$ then we obtain a contradiction as follows:

$$
x \rightleftharpoons x \Longrightarrow_{(E 3)} x \sqsubset^{\text {sym }} x \Longrightarrow x \sqsubset x \Longrightarrow_{(E 1)} x \neq x .
$$

To show (I4) we observe that:

$$
x \prec z \sqsubset y \vee x \sqsubset z \prec y \Longrightarrow_{(E 2)} x \sqsubset y \Longrightarrow_{(E 3)} x \rightleftharpoons y
$$

To show (I5) we observe that:

$$
z \rightleftharpoons y \wedge z \sqsubset x \sqsubset z \Longrightarrow_{(E 2)} z \sqsubset z \Longrightarrow_{(E 1)} \text { false . }
$$

To show (I6) we observe that:

$$
z \rightleftharpoons z^{\prime} \wedge x \sqsubset z \sqsubset y \wedge x \sqsubset z^{\prime} \sqsubset y \Longrightarrow_{(E 2)} x \sqsubset y \Longrightarrow_{(E 3)} x \rightleftharpoons y .
$$

We finally note that (I7) follows from (E3) and (E4).
Lemma 14. $\mathrm{IOS}_{\text {sim } \triangle \text { seq }} \subseteq \mathrm{OS}_{\text {sim }} \triangle$ seq .
Proof. Follows from Lemma 13, IOS \subseteq OS, and (E3).
Lemma 15. os 2 ios $_{\text {sim }} \triangle$ seq $\left(O S_{\text {sim }} \triangle\right.$ seq $) \subseteq \mathrm{IOS}_{\text {sim } \triangle \text { seq }}$.
Proof.
Let $o s=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle \in \mathrm{OS}_{\text {sim }} \triangle$ seq and ios $=$ os2ios $_{\text {sim }} \triangle_{\text {seq }}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \widehat{\sqsubset}, \ell\rangle$.
To show (E1) we observe that $x \widehat{\sqsubset} x$ together with $x \not \subset x$ imply that there are y, z such that $x \sqsubset^{*} y \sqsubset z \sqsubset^{*} x$. Hence, by the definition of $\mathrm{OS}_{\text {sim } \triangle \mathrm{seq}}, y \rightleftharpoons z$, contradicting the separability of os.
To show (E2) we observe that:

$$
x \widehat{\sqsubset} z \hat{\sqsubset} y \Longrightarrow x \sqsubset^{+} z \sqsubset^{+} y \Longrightarrow x \sqsubset^{+} y \Longrightarrow x \hat{\sqsubset} y .
$$

To show (E3) we observe that:

$$
x \hat{\sqsubset}^{s y m} y \Longleftrightarrow x\left(\sqsubset^{+}\right)^{s y m} y \Longleftrightarrow x \widehat{\rightleftharpoons} y .
$$

Finally, (E4) follows from the libel-linearity of os, as shown below:

$$
x \neq y \wedge \ell(x)=\ell(y) \Longrightarrow x \widehat{\imath}^{\text {sym }} y \Longrightarrow x \hat{\sqsubset}^{s y m} y
$$

Hence ios $\in \mathrm{IOS}_{\text {sim } \triangle \text { seq }}$.

Proof of Theorem 13

Let us consider one by one all the inclusions:
$-I O S \subset O S$ was already justified in the proof of Theorem 1. Note, however, that we also have

$$
o s=\left\langle\begin{array}{c}
\{x, y, z\},\{\langle x, y\rangle,\langle y, x\rangle,\langle y, z\rangle,\langle z, y\rangle\}, \\
\{\langle x, y\rangle,\langle y, z\rangle\},\{x \mapsto a, y \mapsto b, z \mapsto c\}
\end{array}\right\rangle \in \mathrm{OS} \backslash \mathrm{IOS} .
$$

$-\mathrm{IOS}_{\text {sim } \triangle \text { seq }} \subset \mathrm{OS}_{\text {sim } \triangle \text { seq }}$ follows from os $\in \mathrm{OS}_{\text {sim } \triangle \text { seq }} \backslash \mathrm{IOS}_{\text {sim } \triangle \text { seq }}$ and Lemma 14.
$-\mathrm{IOS}_{\Theta_{\text {sim } \Delta \text { seq }}} \subset \mathrm{OS}_{\Theta_{\text {sim } \Delta \text { seq }}}$ follows from os $\in \mathrm{OS}_{\Theta_{\text {sim } \Delta \text { seq }}} \backslash I O S_{\Theta_{\text {sim } \Delta \text { seq }}}$ and the general results proven in [5].
$-\mathrm{OS}_{\text {sim } \triangle \text { seq }} \subset \mathrm{OS}$ follows from the definition of $\mathrm{OS}_{\text {sim }} \triangle$ seq and

$$
o s^{\prime}=\langle\{x, y\}, \varnothing,\{\langle x, y\rangle\},\{x \mapsto a, y \mapsto b\}\rangle \in \mathrm{OS} \backslash \mathrm{OS}_{\text {sim } \backslash \text { seq }} .
$$

$-\mathrm{IOS}_{\text {sim } \triangle \text { seq }} \subset \mathrm{IOS}$ follows from $o s^{\prime} \in \operatorname{IOS} \backslash \mathrm{IOS}_{\text {sim }} \triangle$ seq and Lemma 13.
$-\mathrm{OS}_{\Theta_{\text {sim } \triangle \text { seq }}} \subset \mathrm{OS}_{\text {sim } \triangle \text { seq }}$ can be proven by taking $\omega \in \Theta_{\text {sim } \triangle \text { seq }}, u \in \operatorname{SSEQ}_{\omega}$, and os $=\operatorname{sseq}^{2 o s}{ }_{\omega}(u)$. Since os $\in \mathrm{OS}$, we only need to show that $\sqsubset_{o s}^{s y m}=\rightleftharpoons_{o s}$. This, however, follows from (8). Moreover, we note that

$$
o s^{\prime \prime}=\left\langle\begin{array}{c}
\{x, y, z\},\{\langle x, y\rangle,\langle y, x\rangle,\langle x, z\rangle,\langle z, x\rangle\}, \\
\{\langle x, y\rangle,\langle x, z\rangle\},\{x \mapsto a, y \mapsto a, z \mapsto b\}
\end{array}\right\rangle \in \mathrm{OS}_{\text {sim } \triangle \text { seq }} \backslash \mathrm{OS}_{\Theta_{\text {sim } \Delta \text { seq }}} .
$$

$-\mathrm{IOS}_{\Theta_{\text {sim } \triangle \text { seq }}} \subseteq \mathrm{IOS}_{\text {sim } \triangle \text { seq }}$ follows from Lemma 15 , os $s^{\prime \prime} \in \operatorname{IOS}_{\text {sim } \triangle \text { seq }} \backslash I O S_{\Theta_{\text {sim } \triangle \text { seq }}}$ and $\mathrm{OS}_{\Theta_{\text {sim } \triangle \text { seq }}} \subseteq \mathrm{OS}_{\text {sim } \triangle \text { seq }}$.

Moreover, note that os $\in \mathrm{OS}_{\text {sim } \triangle \text { seq }} \backslash I O S$ and $o s^{\prime} \in \operatorname{IOS} \backslash \mathrm{OS}_{\text {sim } \triangle \text { seq }}$ which justifies that IOS and $\mathrm{OS}_{\text {sim } \triangle \text { seq }}$ are not related. Similarly, os $\in \mathrm{OS}_{\Theta_{\text {sim } \triangle \text { seq }}} \backslash I O S_{\text {sim } \triangle \text { seq }}$ and $o s^{\prime \prime} \in \mathrm{IOS}_{\text {sim } \triangle \text { seq }} \backslash \mathrm{OS}_{\Theta_{\text {sim } \triangle \text { seq }}}$, hence there is no inclusion between $\mathrm{IOS}_{\text {sim } \triangle \text { seq }}$ and $\mathrm{OS}_{\Theta_{\text {sim } \Delta \text { seq }}}$.

Proof of Theorem 14

 and $\operatorname{ios}=\operatorname{os} 2 \operatorname{ios}(o s)=\langle\Delta, \widehat{\rightleftharpoons}, \widehat{\sqsubset}, \ell\rangle$. We first observe that in such a case we have $\sqsubset^{\circledast}=i d_{\Delta}$ which follows from $x \sqsubset^{\text {sym }} y \Longleftrightarrow x \rightleftharpoons y$ and the separability of os. As a result, we also have $\square^{\curlywedge}=\square^{+}$. Hence

$$
\operatorname{os2\operatorname {ios}(os)}=\left\langle\Delta, \rightleftharpoons \cup \nabla^{s y m}, \sqsubset^{+}, \ell\right\rangle
$$

where $\nabla=\left\{\langle x, y\rangle \mid \exists z, w: z \rightleftharpoons w \wedge x \sqsubset^{*} z \sqsubset^{*} y \wedge x \sqsubset^{*} w \sqsubset^{*} y\right\}$. We will now show that $\left(\rightleftharpoons \cup \nabla^{\text {sym }}\right)=\left(\sqsubset^{+}\right)^{\text {sym }}$.
Suppose first that $x \nabla y$ which means that $x \neq y$ (which follows from the general theory), and there is z such that $x \sqsubset^{*} z \square^{*} y$. Hence $x \square^{+} y$ showing that the (\subseteq) inclusion holds. To show the reverse inclusion, suppose that $x \sqsubset^{+} y$. If $x \sqsubset y$ then, by the definition of $\mathrm{OS}_{\text {sim }} \triangle$ seq, we have $x \rightleftharpoons y$. Otherwise, there is z such
that $x \sqsubset z \sqsubset^{*} y$. Then, again by the definition of $\mathrm{OS}_{\text {sim } \triangle \text { seq }}, z \rightleftharpoons x$. We therefore obtain that $\langle x, y\rangle \in \nabla$, after taking $w=x$. Hence

$$
\operatorname{os} 2 \operatorname{ios}(o s)=\left\langle\Delta,\left(\sqsubset^{+}\right)^{s y m}, \sqsubset^{+}, \ell\right\rangle .
$$

We observe that os 2 ios $s_{\text {sim } \triangle \text { seq }}\left(\mathrm{OS}_{\text {sim }} \triangle\right.$ seq $)=I O S_{\text {sim }} \triangle$ seq follows from Lemma 13 , Lemma 14, Lemma $15{\text {, os } 2 \text { ios }_{\text {sim }} \triangle \text { seq }}=$ os 2 ios $\left.\right|_{o s} ^{\text {sim } \triangle \text { seq }}$, and the fact that os 2 ios is the identity on IOS, as then we obtain

$$
\text { os2ios }_{\text {sim } \triangle \text { seq }}\left(O S_{\text {sim } \triangle \text { seq }}\right) \subseteq \mathrm{IOS}_{\text {sim } \triangle \text { seq }}
$$

and

$$
\begin{aligned}
& \text { os2ios } \text { sim } \triangle \text { seq }\left(\mathrm{OS}_{\text {sim } \triangle \text { seq }}\right) \supseteq \text { os } 2 \text { ios }_{\text {sim } \triangle \text { seq }}\left(\mathrm{IOS}_{\text {sim } \triangle \text { seq }}\right) \\
& =\operatorname{os} 2 \mathrm{ios}\left(\mathrm{IOS}_{\text {sim } \triangle \text { seq }}\right)=I O S_{\text {sim } \triangle \text { seq }} .
\end{aligned}
$$

Proof of Theorem 13

Let os $=\langle\Delta, \rightleftharpoons, \sqsubset, \ell\rangle$. Since the labelling ℓ is injective, we may assume that $\Delta=\Sigma \times\{1\}$. Then, from the general results proved in [5] it follows that there exists sos $\in \operatorname{satext}(o s)$. Let $u=\operatorname{sseq} 2 \operatorname{sos}^{-1}(\operatorname{sos})$, and $\omega=\langle\Sigma$, sim, seq \rangle, where:

$$
\operatorname{seq}=\operatorname{sim}=\left\{\langle a, b\rangle \in \Sigma \times \Sigma \mid\left(\operatorname{pos}_{u}(\langle a, 1\rangle) \neq \operatorname{pos}_{u}(\langle b, 1\rangle) \wedge\langle a, 1\rangle \nRightarrow\langle b, 1\rangle\right)\right\}
$$

We then observe that sim is symmetric since \rightleftharpoons is symmetric. Hence ω is a generalised concurrency alphabet. Clearly, $\omega \in \Theta_{\text {sim } \triangle \text { seq }}$ and $u \in \operatorname{SSEQ}_{\omega}$. It is easy to check that $o s=\operatorname{sseq}^{2} 2 \mathrm{~s}_{\kappa}(u)$.

Proof of Proposition 3

Let ios $=$ os2iososseq2os ${ }_{\omega}(v)$. By $\operatorname{pos}_{v}(\alpha)=\operatorname{pos}_{v}(\beta)$, we obtain $\langle\ell(\alpha), \ell(\beta)\rangle \in \operatorname{sim}$ and there is sos $\in \operatorname{satext}($ ios $)$ such that $\alpha \sqsubset_{\text {sos }} \beta \sqsubset_{\text {sos }} \alpha$. Hence, $\alpha \not \psi_{\text {ios }} \beta$. Moreover, by the order closure, $\alpha \not$ Łios $_{\text {ios }} \beta$ and $\beta \not \chi_{\text {ios }} \alpha$. This, by the general results proved in [5], means that there are sos' ${ }^{\prime}$, sos ${ }^{\prime \prime} \in \operatorname{satext}(i o s)$ such that $\alpha \prec_{\text {sos }}{ }^{\prime} \beta$ and $\beta \prec_{\text {sos }}{ }^{\prime \prime} \alpha$. Then the first implication holds by taking $u=\operatorname{sseq}^{2} \operatorname{os}_{\omega}^{-1}\left(\operatorname{sos}^{\prime}\right)$ and $w=\operatorname{sseq}^{2} \mathrm{os}_{\omega}^{-1}\left(\operatorname{sos}^{\prime \prime}\right)$.
 there exist $\operatorname{sos}_{u}, \operatorname{sos}_{w} \in \operatorname{satext}($ ios $)$ such that $\alpha \prec_{\text {sos }_{u}} \beta$ and $\beta \prec_{\text {sos }_{w}} \alpha$, and so, by the order closure, $\alpha \not \vDash_{\text {ios }} \beta$. This, by the general results proved in [5], means that there exists sos $\in \operatorname{satext}($ ios $)$ such that $\alpha \sqsubset_{\text {sos }} \beta \sqsubset_{\text {sos }} \alpha$. Hence the second implication holds by taking $v=\operatorname{sseq}^{2} 2 \mathrm{~s}_{\omega}^{-1}(s o s)$, which ends the proof.

[^0]: ${ }^{5}$ with causality as a derived notion

