
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Order type invariant labeling and comparison of point sets

Greg Aloupis∗ Muriel Dulieu† John Iacono† Stefan Langerman∗ Özgür Özkan†

Suneeta Ramaswami‡ Stefanie Wuhrer§

Abstract

We consider the problem of computing an order type in-

variant labeling for a given set of n points. In 2D, such a

labeling can be constructed in O(hn2) time, where h is the

size of the smallest convex layer. In 3D the time complex-

ity is O(n3 log n) if the point set is in general position1.

This is useful to test if two point sets have the same

order type within the same time bounds. It can also be

used as preprocessing for any order type invariant algo-

rithm, such as triangulation/tetrahedralization, or polygo-

nization.

1 Introduction

When an algorithm computes a structure such as a trian-

gulation or polygonization, and many solutions are pos-

sible, sometimes it is desirable that the same solution is

always returned for two combinatorially equivalent point

sets. With this in mind, we consider the problem of com-

puting an order type invariant labeling for a point set S.

In the plane, the order type of S is determined by as-

signing to every ordered triple of points pi, pj , pk an ori-

entation depending on their relative positions: clockwise,

counter-clockwise, or collinear. In 3D, order type labels

are assigned to ordered subsets of four points, depend-

ing on their arrangement (collinear, coplanar, left/right-

handed tetrahedra). An order type representation (OTR)

of S is any (possibly implicit) encoding of this informa-

tion.

Two unlabeled point sets S1 and S2 are combinatorially

equivalent if and only if they have the same order type,

or in other words if they have the same OTR for some la-

beling. If the point sets are labeled, then there must be a

bijection between S1 and S2, such that any triple in S1 has

the same orientation as its corresponding triple in S2. In

other words, the OTR of S1 will be identical to the OTR

∗Département d’Informatique, Université Libre de Bruxelles,

aloupis.greg@gmail.com,stefan.langerman@ulb.ac.be
†Department of Computer Science and Engineering, Polytech-

nic Institute of New York University, mdulieu@gmail.com,

jiacono@poly.edu, ozgurozkan@gmail.com
‡Department of Computer Science, Rutgers University,

rsuneeta@camden.rutgers.edu
§Cluster of Excellence MMCI, Saarland University,

swuhrer@mmci.uni-saarland.de
1Our original accepted submission contained claims about

higher dimensions and non-general position. After realizing that
there was a flaw in our proof, we have since needed to revoke
that portion of our work, as we work on a suitable correction.

for some permutation (or relabeling) of S2. Note that the

bijection is not necessarily unique.

Our goal is to provide an order type invariant (re)-

labeling of a given point set S (this labeling of S,

p′1, p
′
2, . . . , p

′
n is just a permutation of the given points).

This means that for any combinatorially equivalent

set S′ labeled by the algorithm as q′1, q
′
2, . . . , q

′
n, we

will have the property that OTR(p′1, p
′
2, . . . , p

′
n) =

OTR(q′1, q
′
2, . . . , q

′
n). The implication is that any algo-

rithm relying only on combinatorial structure will produce

the same output regardless of the initial labeling of S, if

our relabeling is used as preprocessing.

We show that in 2D an order type invariant labeling can

be computed in O(hn2) time, where h is the size of the

smallest convex layer of the given point set. The factor

h actually represents the size of the smallest subset of la-

belings (out of all n! labelings of S) that can be formed

“quickly” so that any labeling in the subset has a distin-

guishable OTR compared to any labeling left out. It seems

that producing such a subset is not harder than producing

a subset of “representative points” of S. So, equivalently

one could think of our first phase as finding h “special”

points among S. We first focus on how to report h label-

ings, in Section 3. These are further processed to report a

unique labeling, by comparing all OTRs, in Section 3. The

factor of O(n2) in the above term represents the smallest

known encoding of an OTR in 2D.

In 3D, for general position, we can quickly reduce S to

a subset consisting of a constant number of points (equiv-

alently, we obtain a constant number of labelings). Our

order type invariant labeling is done in O(n3 log n) time;

see Section 4.

Our labeling permits the comparison of two point sets,

to see if they have the same order type. See Section 5.

2 Related work

Goodman and Pollack [7] showed that the number of

order types on n points is at least n4n+O(n/ logn) and

at most n6n. They improved the upper bound later to
(

n
2

)4n(1+O(1/ log(n/2)))
[8]. Aichholzer et al. [1] enumer-

ated all order types for up to 10 points, and thus estab-

lished that any two such point sets in general position with

the same number of hull points have isomorphic triangula-

tions. Aichholzer and Krasser [2] extended this to sets of

11 points. Goodman et al. [10] showed that the coordinate

representation of order type requires exponential storage.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



28th European Workshop on Computational Geometry, 2012

The most related work is that of Goodman and Pol-

lack [9], in which an efficient OTR was defined for any di-

mension d. Their OTR in 2D stores the number of points to

the left of the vector through every ordered pair of points.

In 3D, for each ordered triple of points, it stores the num-

ber of points in the halfspace bounded by the halfplane

through the triple, with normal vector equal to the cross

product of the triple. This extends easily to any dimen-

sion d, where the OTR has size O(nd). Note that there

is no assumption on general position. Interestingly, they

showed that this is sufficient to determine exactly which

points are in any particular halfspace. The time to com-

pute their OTR was given as O(nd log n). Note that it has

been established elsewhere that in 2D the time complexity

is quadratic [6, 4].

Goodman and Pollack also defined canonical orderings,

which are essentially a subset of all n! orderings (label-

ings) that can be checked to determine if two sets are com-

binatorially equivalent. For 2D they gave h canonical or-

derings, one for each convex hull point p. For each p,

the remaining points can be labeled by a clockwise sort

around p, starting from any direction that does not inter-

sect the convex hull. It is easy to see that if two point

sets S1,S2 have the same order type, then the OTR of S1

will match the OTR for at least one of the canonical order-

ings of S2. This was a great improvement over the n! OTR

comparisons that would have to be made using brute force.

Since two OTRs can be compared in quadratic time, two

point sets can be compared in O(hn2) time. Note that one

does not need the improvement of [6, 4] to avoid spending

Θ(n2 log n) time computing each of the h OTRs. Since

each of these OTRs represents the same point set, once

one is computed the others can be obtained by a permu-

tation, i.e. in quadratic time each. This is why quadratic

time is spent for each of the h comparisons.

In 3D the canonical orderings were based on the di-

rected edges of the convex hull (at most 6n − 12 in total,

which can be reported in O(n log n) time). For each such

edge, a labeling of S could be obtained via a clockwise

plane-sweep starting from a tangent plane containing the

edge. The OTR corresponding to one of these labelings

can be computed in O(n3 log n) time, and each of the re-

maining takes cubic time, by a permutation on the first.

So, two point sets can be compared, by in turn comparing

an OTR of one to ≤ 6n−12 OTRs of the other. Each such

OTR comparison takes cubic time. Therefore two sets can

be compared in O(n4) time.

Such sweeps can be extended to any fixed dimension d,

according to [9]. There are O(nbd/2c) canonical orderings.

Each corresponds to a “face flag”, which can be thought

of as a directed simplex. Each ordering can be computed

in O(n log n) time once its face flag is known. Finding all

face flags takes O(nd) time for general position; otherwise

in O(n(d(d+3)/2)) time.

For each ordering, an OTR is produced: the first in

O(nd log n) time, and the rest in O(nd) time. There-

fore, for general position, it takes O(nb3d/2c) time to com-

pare two point sets (comparing O(nbd/2c) orderings, all of

which are constructed in O(nb3d/2c) time, and where each

comparison takes O(nd) time). For non-general position

the comparison is dominated by the time to compute all

face flags: O(n(d(d+3)/2)).

3 Order type invariant labeling in 2D

We use “canonical” labelings, similarly to Goodman and

Pollack [9]. Instead of using the convex hull and letting h

represent its size, we set h to be the number of points on

the convex layer c∗ with smallest size. It takes O(n log n)
time to compute all convex layers [3].

Assume for now that c∗ contains more than one point.

We select the starting vector for any point p on c∗ to be the

one through its clockwise neighbor on c∗. This is an order

type invariant choice. Still, we can end up with h = O(n)
canonical labelings. For point sets with more than a con-

stant number of convex layers, h = o(n). For random

point sets, h is sub-linear as well; see [5]. Note that the

worst case is not the point set in convex position, for this

is trivial to label (there are n possible distinct sequential

labelings of a cycle, but they are all symmetric and combi-

natorially equivalent). It is worse to have a constant num-

ber of layers, each with a linear number of points.

Finally, if p is the only point on the smallest layer, then

it is defined as the first point of our order type invariant

labeling of S. We remove it from S and repeat. We will

repeat at most once because even if we end up with a sin-

gle point for a second time, the two points permit us to

uniquely sort the rest.

The convex layer idea is simply a heuristic way of nar-

rowing down the candidate labelings, from all permuta-

tions. The general idea is to apply any combinatorial test

that easily ranks points, and keep only those points that

have highest rank. If several points achieve the highest

rank, we can apply another combinatorial test, and so on.

So far, we have followed this idea by saying that the points

of highest rank are those on a particular convex hull layer.

Of course, we cannot apply an endless series of tests, for

this will eventually become computationally expensive.

The challenge is to select the most efficient tests possible.

We have tried several combinations of heuristics (see full

paper). Curiously, none so far have resulted in a worst-

case sub-linear set of labelings, within O(n3) time.

By now we have chosen O(h) = O(n) order type in-

variant labelings. We compute the OTR for each labeling

p′1, . . . , p
′
n, in quadratic time. Recall that this is a concate-

nation of n(n− 1) variables, each of which represents the

number of points to the left of the vector from one point

to another. The order of the variables is given by a lexi-

cographic description of the vector index. This implicitly

encodes any combinatorial differences missed by the sim-

ple geometric tests of the preceding section.

The rest is simple: we choose the largest lexicographic

OTR as our solution. Since each OTR is a list of quadratic

size, this takes O(hn2) time. If several lists tie for the



EuroCG 2012, Assisi, Italy, March 19–21, 2012

highest rank, we choose arbitrarily among them. Clearly

any of these lists will provide the same combinatorial out-

put if given to a combinatorial algorithm (for instance,

for triangulation). Furthermore, if we are given two point

sets, comparing their respective lexicographically selected

OTRs will determine if they have the same order type. In

2D this is just a variant of the method of Goodman and

Pollack, described in Section 2. Instead of comparing h

OTR’s from one set to one arbitrary OTR of the other, we

compare h OTRs among themselves for each set, and then

compare the winners.

4 Labeling in R
3

Recall that in 3D the order type of S depends on the spatial

relation among every quadruple of points.

In 2D we used only those points on the smallest convex

layer, to determine a subset of labelings. The nice thing

about 2D is that it is easy to obtain one labeling per point.

In 3D it still makes sense (although only heuristically) to

use only those points on the smallest convex layer, so we

begin by discarding all other points. The objective is to

obtain a labeled (ordered) triple of points, in an order type

invariant way. From these, it is possible to label all re-

maining points with a sweep.

From the smallest convex layer, we will iteratively keep

removing points, and in fact we will be satisfied if we

can reduce S to any constant number of candidate points.

However we want at least three non-collinear points, or

possibly two if they happen to be convex hull neighbors.

As in 2D, if we remove too many points, we can store

the few remaining and re-iterate on the removed set. Even

if we end up with a collinear triple after three iterations

of discarding, it is easy to ensure that the next iteration

will give a non-collinear point; simply exclude all points

collinear to the triple from that iteration. So this part of the

algorithm does not rely on general position.

Once we have our desired constant number of points,

for every ordered non-collinear triple among them, we can

carry out a uniquely directed plane sweep to relabel S.

By [9], the OTR for each such labeling can be computed

in O(n3 log n) time. Again, the overall solution will

be the lexicographically largest OTR. For a constant

number of candidate points, the number of triples, and

thus the number of OTRs to compare, is constant. Each

representation has size O(n3), so it takes cubic time to

choose lexicographically. Therefore the overall run-time

is also O(n3 log n). What remains is to show how to

remove all but a constant number of points, in an order

type invariant way.

Let L be the points of the smallest convex layer. Let

CH(L) denote the convex hull of L. The following sim-

ple procedure does just what we need; it identifies a con-

stant number of points from S. Let P = L. Repeat the

following steps until no points are removed from P in step

2.

1. Compute CH(P ). Remove all interior points from

P , including non-extreme collinear points.

2. Remove from P all points except those that have the

lowest vertex degree on CH(P ).

If more than three points survive, CH(P ) must be a

polyhedron with all vertex degrees being equal. If S

is in general position then every face of CH(P ) must

be a triangle. It can be shown, using Euler’s formula,

that CH(P ) must be combinatorially equivalent to a

tetrahedron, octahedron, or icosahedron. Each has only a

constant number of vertices.

Step 1 takes O(n log n) time. Step 2 takes linear time

since the sum of vertex degrees is linear. There are fewer

than n iterations since at least one point is removed each

time. Thus this procedure takes O(n2 log n) time, which

does not affect the time complexity dominated by OTR

computations.

5 Comparing the order type of two sets

As mentioned, the method of Goodman and Pollack [9]

compares order types of three-dimensional point sets in

general position in O(n4) time. The evaluation is done by

comparing the OTR for each canonical labeling of S1 to

one arbitrary OTR from S2.

We have ongoing research to improve OTR represen-

tation and computation. For now, in Section 4 we have

shown that the number of canonical labelings can be re-

duced to a constant. It costs O(n3 log n) time to compute

the OTR for each, and with a lexicographic sort we can

select one representative OTR for any point set. Then S1

and S2 are compared by matching their OTRs.

6 Final notes

Given an order-type invariant labeling of S, we can solve

the following problems in an order-type invariant way.

Consider any problem involving building a graph by

adding edges to S, based on combinatorial comparisons,

i.e. based on order type. Examples of such problems

include triangulation/tetrahedralization, polygonization,

finding a non-crossing matching, finding a non-crossing

spanning tree, or computing a halving line or a ham-

sandwich cut. An order type invariant labeling can be

constructed as preprocessing, so that any combinatorially

equivalent input will produce the same output.

We ask whether an OTR can be computed in o(n3 log n)
time in 3D, and whether any worst-case sub-cubic al-

gorithm exists for the planar case. For the latter, we

specifically ask whether a sub-linear number of canonical

labelings can be computed in sub-cubic time. Of course,

the other possibility also exists (if the number of labelings

remains linear): that of reporting an OTR in sub-quadratic



28th European Workshop on Computational Geometry, 2012

time. This is unlikely, as it implies the existence of an

OTR that can be stored in sub-quadratic space. Whether

this can be done was an open problem posed in [8].

Note that without general position, in 3D it is possible

to follow the vertex-degree pruning step with another

test for each vertex. That is, we can enumerate the size

of surrounding faces, and keep only those vertices that

qualify lexicographically. This would result in a polyhe-

dron where every vertex appears identical, with respect to

degree and surrounding face sizes. A topological proof

of Archimedes’ theorem (see [11, 12]) tells us that such

a polyhedron is isomorphic to a semi-regular polyhedron

(i.e., one of the Platonic or Archimedean solids, prisms,

or antiprisms), or to the pseudorhombicuboctahedron.

Among these, only the prisms and antiprisms may have

more than constant size, and this is why general position

is assumed. Our ongoing work involves resolving the

case where pruning results in a prism of more than

constant size (and where repetition of our algorithm on

the discarded set of points recursively yields such prisms

as well).

We thank the other participants of the 2011 Mid-Winter

Workshop on Computational Geometry for providing a

stimulating research environment.

References

[1] O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumer-

ating order types for small point sets with applications. Or-

der, 19(3):265–281, 2002.

[2] O. Aichholzer and H. Krasser. Abstract order type exten-

sion and new results on the rectilinear crossing number.

In Symposium on Computational Geometry, pages 91–98,

2005.

[3] B. Chazelle. On the convex layers of a planar point set.

IEEE Transactions on Information Theory, 31(4):509–517,

1985.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of

geometric duality. In IEEE Symposium on Foundations of

Computer Science, pages 217–225. IEEE, 1983.

[5] K. Dalal. Counting the onion. Master’s thesis, McGill Uni-

versity, 2004.

[6] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing

arrangements of lines and hyperplanes with applications.

SIAM Journal of Computing, 15(2):341–363, 1986.

[7] J. Goodman and R. Pollack. Upper bounds for configu-

rations and polytopes in R
d. Discrete & Computational

Geometry, 1:219–227, 1986.

[8] J. Goodman and R. Pollack. The complexity of point con-

figurations. Discrete Applied Mathematics, 31:167–180,

1991.

[9] J. E. Goodman and R. Pollack. Multidimensional sorting.

SIAM Journal on Computing, 12(3):484–507, 1983.

[10] J. E. Goodman, R. Pollack, and B. Sturmfels. Coordinate

representation of order types requires exponential storage.

In ACM Symposium on Theory of Computing, 1989.

[11] M. Villarino. On the Archimedean or semiregular polyhe-

dra. Technical Report arXiv:math/0505488v1, 2005.

[12] T. Walsh. Characterizing the vertex neighbourhoods of

semi-regular polyhedra. Geometriae Dedicata, 1:117–123,

1972.


