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   1. By an ordered semigroup, we mean a system S(•, <), which satisfies 

the following conditions: 

   I. S is a semigroup with respect to the multiplication • ; 

   II. S is simply ordered by < ; 

   III. if a and b are elements of S such that a < b, then ac < be and ca <_ cb 

for all c E S. 

   Many authors, especially Alimov [1], Clifford [2], [4], [5], Hion [8] and 

Conrad [6], studied such semigroups with some restrictions. Alimov studied 

ordered semigroups which satisfy the conditions I, II and the stronger 

   III'. if a and b are elements of S such that a < b, then ac < be and ca < cb 

for all c B S. 

But many ordered topological semigroups do not satisfy the condition III'. The 

remaining authors made rather artificial restrictions, and, as far as we know, 

none discussed ordered semigroups in our general sense. Indeed, the structure 

of such semigroups seems to be very complicated. However, it can be seen 

that, in any ordered semigroup, the set of all idempotents, if it is non-void, 

constitutes a subsemigroup. And, in this note, as the first step of the general 

study of ordered semigroups, we treat ordered idempotent semigroups i. e. 

ordered semigroups in which every element is idempotent. 

   In §~ 2-6 we discuss the structure of ordered idempotent semigroups, and 

in § 7 we show that some properties in previous sections, characterize ordered 

idempotent semigroups. As an appendix of this note, in the final § 8, we re-

mark the characterizations of two special idempotent semigroups. 

   2. In this section, we give some preliminary properties of ordered idem-

potent semigroups. First we mention, without proof, an interesting following 

result of Clifford about idempotet semigroups. 

   LEMMA 1 (Theorem 3 of Clifford [3]). An idempotent semigroup S can be 

decomposed into subsets {D,,: c A} in such a way that 

   (i) for any pair of subsets Da and Dp, the set {xy, yx; x Da, y E Dp} is con-

tained in a third Dr, and that 

   (ii) all the elements of every Da can be arranged in a rectangular form, such
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that a and b are elements in the same row if and only if ab = a and ba = b, and 

that a and b are elements in the same column if and only if ab = b and ba = a. 

   Thus we can define, in S* _ {D a; a A}, an operation o in a natural man-

ner, i. e. Da Da is the set Dr determined from Da and Dp by (i) in the above 

Lemma. Then S* becomes a semilattice, and so we can define moreover, in 

s*, a partial order, i. e. D, ` D p if and only if Da ° Dp = Da. 

   Each Da of S* is called a D-class in S. If two elements a and b of S be-

long to the same D-class, then they are called D-equivalent to each other, and 

are denoted by aDb. For an element a of S, we denote by D(a) the D-class 

which contains a. Then it is clear that 

             D(a) D(b) = D(b) D(a) = D(ab) = D(ba). 

If two elements a and b in the same D-class belong to the same row (column) 

in the arrangement of (ii) in the above Lemma, then they are called L-equiva-

lent (R-equivalent) to each other, and are denoted by aLb (aRb). Each quo-

tient set of S by the L-equivalence (R-equivalence) relation is called an L-class 

(R-class). Evidently the decomposition of S into L-classes (R-classes) is a sub-

division of the decomposition into D-classes. These notions are only the spec-

ifications of those in the ideal theory of general semigroups (cf. for example, 

Miller and Clifford [9], Green [7]). Now we give a remark. Let a and b be 

elements of S such that ab = a and ba = b. Then D(a) = D(ab) = D(ba) = D(b), 

and so aDb. Hence 

                aLb if and only if ab = a and ba = b . 

Similarly 

                aRb if and only if ab = b and ba = a. 

   In an ordered idempotent semigroup S, we use the following conventions. If 

a < c <- b or b < c < a, then we say that c lies between a and b. On the other 

hand, if a < c < b or b < c < a, then we say that c lies between a and b in the 

strict sense. 

   Now we refer to two lemmas which are needed in this note. The proofs 

of these lemmas are derived easily, and they are omitted here. 

   LEMMA 2. For two elements a and b of S, both ab and ba lie between a 

and b. 

   LEMMA 3. In S, if an element c lies between a and b, then ab = acb. 

   As an immediate consequence of Lemma 3, we have 

   LEMMA 4. If c lies between a and b, then D(c) } D(a) o D(b). 

   THEOREM 1. In an ordered idempotent semigroup, each D-class consists of 

either only one L-class or only one R-class. 

   PROOF. Let L1 and L2 be two L-classes in a D-class D, and let R1 and R22 

be two R-classes in D. We denote the intersection element of L1 and R1, of
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L1 and R2, of L2 and R1 and of L2 and R2 by a, b, c and d, respectively. With-

out loss of generality, we assume that a >_ d. Then we have 

                     a=ab>_ db=b=ba>_ bd=d. 

If c >_ b, then we have, in a similar way, 

                           c>_d>_b, 

and so b = d, from which it follows that L1= L2. On the other hand, if b > c, 

then we obtain R1= R2 similarly. This completes the proof of the theorem. 

   A D-class which consists of only one L-class (R-class) is called an L-typed 

(R-typed) D-class. Theorem 1 shows that every D-class is either L-typed or 

R-typed. Of course, a D-class is L-typed and at the same time R-typed, if 

and only if it consists of only one element. 

   THEOREM 2. Let a and b be elements of an ordered idempotent semigroup 

such that a <_ b. If the D-class D(a) ° D(b) is L-typed, then 

               ab = min {y ; y E D(a) D(b) and y >_ a } , 

                ba = max {y ; y E D(a) ° D(b) and y <_ b } . 

If D(a) ° D(b) is R-typed, then 

               ab = max {y ; y D(a) ° D(b) and y <_ b } , 

                ba = min {y ; y E D(a) a D(b) and y >_ a } . 

   PROOF. Suppose that D(a) o D(b) is L-typed. By Lemma 2, it is clear that 

ab belongs to the set {y; y D(a) o D(b) and y>_ a}. Now we take any element 

y such that y D(a) o D(b) and y >_ a. Then abLy and so we have y(ab) = y. 

Therefore we have ab _< yb = y(ab)b = y. Hence ab = min {y ; y D(a) D(b) and 

y >_ a}. The rest of assertions of this theorem can be proved similarly. 

   COROLLARY 1. Let a and b be elements such that a <_ b. If D(a) ° D(b) is 

L-typed, then ab < ba. If D(a) ° D(b) is R-typed, then ba <_ ab. Moreover, in both 

cases, any element of D(a) ° D(b), which lies between a and b, lies between ab 

and ba. 

   COROLLARY 2. -Suppose that D(a) D(b) in S*. If D(a) is L-typed, then 

ab = a. If D(a) is R-typed, then ba = a. 

    COROLLARY 3. For an element a, if there exists an element b such that 

D(a) -< D(b) and a < b, then there exists max {y ; y E D(a) and y < b}. If 

there exists an element c such that D(a) -< D(c) and c < a, then there exists 

min{y;yED(a) and y>c}. 

    3. In § 2, we have seen that the set of all the D-classes of an ordered 

idempotent semigroup S forms a semilattice. This semilattice S* is called the 

associated semilattice of S. In this section, we discuss the structure of the 

semilattice 5               *.
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    We give a definition. A semilattice T is called a tree semilattice if it 

satisfies the following condition: 

(T) If a, a', ,Q, i9' are elements of T such that a a', j9 ,Q' and a and j9 

   are non-comparable, then a' and Q' are non-comparable. 

Evidently a semilattice T is not a tree semilattice, if and only if there exist 

three elements a, a and r of T such that a r, i r and a and 9 are non-

comparable. A simply ordered semilattice is a tree semilattice. If a lattice 

has a pair of non-comparable elements, then it is not a tree semilattice. In 
-the following

, the semilattice operation is denoted by in accordance with 

the consideration in § 2. 

   THEOREM 3. The associated semilattice S* of an ordered idempotent semi-

group S is a tree semilattice. 

   PROOF. If S* were not a tree semilattice, then there would exist three 

elements D1, D2 and D3 of S* such that D1 D3i D2 D3 and D1 and D2 are 

non-comparable. Therefore we would have D1 ° D2-<D1 and D1 ° D2-<D2. In 

S, we take arbitrarily elements a, b and c of D1, D2 and D3, respectively. With-

out loss of generality, we assume that a <_ b. Then, by Lemma 2, we would 

have a < ab <_ b. If c < ab, then ab would lie between c and b, and so 

               D(b) o D(c)=D2 ° D3 = D2 } D1 ° D2 = D(ab) , 

which contradicts Lemma 4. Also, in the case when c >_ ab we can deduce a 

contradiction in a similar way. This completes the proof of the theorem. 

   Let T be a tree semilattice. An element a of T is called a maximal ele-

ment of T, if there is no element such that a-<. An element a of T is 

called a branching element of T, if there exist elements ,Q and r such that 

a -< p, a -< r and a = j9 ° r. An element a of T which is neither a maximal 

element nor a branching element is called an intermediate element. For 

an element a of T which is not a maximal element, we associate a subset 

T = {5; T, c>-a}, which is called the upper-set of T determined by a. 

Now we introduce a relation in Ta as follows : 

                  p N -(a) if and only if ,Q o r >- a. 

    LEMMA 5. The relation -' mod a is an equivalence relation in Ta. 

   PROOF. Evidently it is reflexive and symmetric. Suppose that a ti r(a) 

and r N8(a). Then 

                  a-<Q o r~r and a<r ° 8r, 

and so, since T is a tree semilattice, the elements ,Q o r and r o 8 are com-

parable. Therefore 

            (fl°r)o(r°S)=aor or (Qor)°(ros)=rab. 

,Hence a-<(/9 o r) o (r ° 5) /9 ° b, and so we obtain QN5(a).
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   For an element a of T which is not a maximal element, each equivalence 

class of Ta by the above relation is called a branch at a. The cardinal number 

of branches at a is called the branch order at a. The branch order at a maxi-

mal element is defined to be 0. If a is an intermediate element, then all 

elements of Ta belong to one branch at a, and hence the branch order at a 

is 1. If a is a branching element, then, by definition, there is a pair of ele-

ments j9 and r of Ta such that a = Q o r. Since j9 and r belong to different 

branches at a, and so, in this case, the branch order at a is at least 2. 

   4. Now we return to the study of an ordered idempotent semigroup S. 

A subset K of S is called S-convex, if K contains with two of its elements all 

the elements of S between them. For an element d of a D-class D, we con-

sider the set-union K(d) of all those S-convex subsets of D which contain d. 

Then K(d) is easily seen to be S-convex, and hence a maximal S-convex subset 

of D. Here the term ` maximal' is used with respect to the inclusion relation. 

A maximal S-convex subset of D is called a component of D-class D. If K 

and K are two components of D, then it is easy to see that K= K' or K and 

K' are mutually disjoint. Thus D can be decomposed into mutually disjoint 

components of D. For a D-class D of S, we denote the set of all the com-

ponents of D byD. 

   Let K and K' be two mutually disjoint S-convex subsets of S. We write 

K < K' if and only if k < k' in S for some k K and k' K'. As is easily 

seen, K < K' if and only if k < k' for all k E K and k' E K'. It is also easy to 

see that the relation < defined for S-convex subsets of S is transitive. In the 

case when K or K' consists of only one element, we write k < K' or K< k' in 

place of { k } <K' or K < {k'}, respectively. 

   The set of all components in an ordered idempotent semigroup S i. e. the 

set-union of SD when D goes through all the D-classes of S is denoted by . 

For two distinct components, whether they belong to the same D-class or not, 

they are mutually disjoint, and so can be simply ordered by the relation < 

defined for S-convex subsets of S. 

   Let Do be a D-class of S and let 8 be a branch at Do in the associated 

semilattice S*. The set-union of SD when D goes through all the D-classes 

which belong to 3 in S*, is called the component-branch at Do associated with 

  

. Each component-branch is a subset of S. 

    LEMMA 6. Every component-branch is a-convex, i. e. every component-branch 

contains with two of its elements all the elements of between them. 

   PROOF. Let I(3) be the component-branch associated with a branch 8 

at D in S*, let H and J be elements of Q(3) and let K be an element of 

which lies between Hand J. We choose in S arbitrarily h E H, j E J and k E K. 

Since D(h) and D(j) belong to the same branch at D, we have D(h) o D(j)>-D.
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Therefore, by Lemma 4, we have 

         D(h) ° D(k) ? D(h) ° (D(h) ° D(j)) = D(h) ° D(j) }-D . 

Hence, in S'~, D(k) and D(h) belong to the same branch at D, i. e. D(k) belongs 

to a Hence K 

   Let D be a D-class. By Lemma 6, every component-branch at D is a-con-

vex, and it is clear that two distinct component-branches at D are mutually 

disjoint. Thus the set of all component-branches at D can be simply ordered 

naturally. For two distinct component-branches 8) and S(!') at D, if K< K' 

for some K (8) and K' W), then () < ~(8'), and conversely if () 

< ('), then K< K for all KE(G) and K (3'). The least component-

branch and the greatest component-branch at D with respect to this order are 

simply called the least component-branch and the greatest component-branch at 

D, respectively. 

   LEMMA 7. Let (s) and ~(W) be two component-branches at D such that 

~( 3) < S8'). Then there exists a component K of D such that O < K < S(8'). 

   PROOF. We choose in arbitrarily HE(M) and H' E g(3'). Moreover, we 

choose in S arbitrarily h E Hand h' E H'. Then we have h <h' and, by Lemma 2, 

                           h<hh'<h'. 

Furthermore, D(h) and D(h'), in the associated semilattice S*, belong to differ-

ent branches at D, and so 

                   D(hh') = D(h) ° D(h') = D. 

Now let K be the component of D which contains hh'. Then clearly H < K < H'. 

Since both() and(') are a-convex and do not contain K, we obtain 

 ( 3) < K < c'). 

   COROLLARY. If 8) is not the least component-branch at D, then there ex-

ists a component K of D such that K < (3). If ( ) is not the greatest compo-

nent-branch at D, then there exists a component K' of D such that ~() < K'. 

   5. Let (l) be the least component-branch at D. ~(z) may or may not 

have a component K of D such that K< For a D-class D, if there ex-

ists the least component-branch c81) at D and if ( 8) has no component K 

of D such that K< Q(81), then we adjoin to the set of components of D an 

ideal component G1(D), which is called the lower void component of D. Also 

if there exists the greatest component-branch (u) at D and if S(8) has no 

component K of D such that @8) < K, then we adjoin to the set of components 

of D an ideal component Gu(D), which is called the upper void component of D. 

Of course, in the case when both of the situations occur, we adjoin both the 

lower void component and the upper void component. Components of D pre-

viously defined and void components of D which may be adjoined are called
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generalized components of D. The set of all generalized components of a fixed 

D-class D is denoted by cD. The set of all generalized components of all D-

classes is denoted by ( . Each D-class D is non-void in S, and so there exists Y 

in 3D, at least one non-void component of D, and it is evident that D = D n ~ 

   Let Do be a D-class in S, and let be a branch at Do in the associated 

semilattice S*. The set-union of JD when D goes through all the D-classes, 

which belong to 8 in S*, is called the generalized component-branch at Do as-

sociated with the branch 8, and is denoted by ( (3). It is clear that the 

number of generalized component-branches at D in ( is equal to the number 

of component-branches at D in and also to branch order at D in S*. The 

generalized component-branch at D associated with the branch at D in S* 

which determines the least component-branch at D in , is called the least 

generalized component-branch at D, and is denoted by (( 81(D)). The greatest 

generalized component-branch CS3(8u(D)) at D is defined similarly. 

   THEOREM 4. In an ordered idempotent semigroup S, the set of all general-

ized components can be simply ordered to satisfy the following conditions: 

   (i) for non-void components, the order coincides with the order defined in ; 

   (ii) if there exists the lower void component GA(D) of D, then GA(D) < G for 

every generalized component G which belongs to the least generalized component-

branch { 31(D)) at D ; 

   (iii) if there exists the upper void component G(D) of D, then G < G(D) for 

every generalized component G which belongs to the greatest generalized compo-

nent-branch 3(B (D)) at D ; 

   (iv) every generalized component-branch ( () is (3-convex. 

   PROOF. We well-order all void components. We adjoin to S each void com-

ponent one by one according to the well-ordering. We shall show that, in 

each step, the extended set SC can be simply ordered to satisfy the following 

conditions: 

   (iE) for non-void components of E the order coincides with the order in ~; 

   (iiE) if GA(D) (, then GA(D) < G for every G of which belongs to 

   (E) if G(D) E (s, then G < G(D) for every G of (fig which belongs to 

   (ivg) for every branch in S*, (J(3) ~~ ; is 3-convex. 

We prove this by transfinite induction. First, we suppose that (a has been 

constructed and that the adjoined element to (a is the lower void component 

G1(D0) of Do. We order C a+, = C a U {G1(D0)} as follows : 

   (a) for elements in (a, we preserve the order in (a; 

   (b) for G (a, we define G1(D0) < G if there exists an element G' 

E a n 1(1(D0)) such that G' <_ G in (~ ;
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   (c) for G E (L, we define G < G1(D0) if G < G' in Ca for every G' 

 (a n (C 31(D0)). 

It is not hard to verify that in this order vahl is simply ordered and moreover 

satisfies the conditions (ia~1), (iia~1) and (iiia_1). We omit these verifications. 

and only show that the ordered ~a hl satisfies (iva~1). Let G1, G2 and G3 be 

elements of va~1 such that G1 < G2 < G3 and G1, G3 ((). We suppose that 

G1, G2 and G3 are generalized components of D1, D2 and D3, respectively, and 

suppose that 3 is a branch at D in S*. If G1, G2i G3 C a, then G2 E ((8), by 

(iv). If G1= G1(D0), then Do 8 in S*, since G1 (( ). Moreover, since 

G1(D0) < G2, there exists an element G4 ~a n C3(81(D0)) such that G4 < G2. We 

suppose that G4 is a generalized component of D4. Then D4>-Do>-D and so 

D4 and Do belong to the same branch at D. Hence D4 E 8 and so G4 E (( ). 

Then, since G4 <_ G2 < G3i we have G2 E C (3), by (iv). If G3 = G1(D0), then 

we choose arbitrarily non-void component G4 of ((81(D0)). Clearly G4 

E CL n (1(D0)). Hence, as above, we can prove G4 E (( 8). Since G1 < G2 < G4, 

we have G2 E,(). Finally, if G2 = G1(D0), then there exists an element G¢ 

E (a n (B1(D0)) such that G4 < G3. We suppose that G4 is a generalized com-

ponent of D4. Now G1 <G4 < G3, and, by (iv), we have G4 W8). Hence D1, 

D4 E , and so D1 ° (D1 o D4) = D1 o D4>-D, from which it follows that D1 ° D4 

  3. On the other hand, D, o D4 D4, Do D4, and hence, since S* is a tree: 

semilattice, Do and D1 D4 are comparable. But it is impossible that Do, 

-<Dl o D4. For, if Do-<D1 o D4 were true, then D1 and D4 would lie, in S*, in 

the same branch at Do. Therefore D1 would lie in the branch 81(D0), and sa 

G1 (3(B1(Do)), which contradicts that G1 <G2 = G1(D0). Thus Do ? Dl ° D4, and 

so, since D1 o D4 E 8, we have DoE 3. Hence G2 = G1(D0) (B). This com-

pletes the proof of (iva.1). Next we suppose that G a is obtained from a by 

adjoining the upper void component G(D0) of Do. We order va F1 as follows : 

   (d) for elements in (a, we preserve the order in (a ; 

   (e) for G E (a, we define G < Gu(D0) if there exists an element Gr 

E a n ((B (Do)) such that G < G' in C a ; 

   (f) for G E (a, we define G(D0) < G if G' < G in t for every Gr 

E C a n (8u(Do)). 

We can prove in a similar way that, with respect to this order, ~a hl is simply 

ordered to satisfy the conditions (ia ~1)-(iva~1). For a limit ordinal a, we order 

Ca = U<a as follows : 

   (g) for G, G' E Ga, we define G < G' if G < G' in ( , where 5 is an ordinal 

number such that 5 < a and G, G' E (~. 

As is easily seen, there exists such a 5 and the definition of the order in (~ 

is irrespective of the choice of 5. Moreover, it is not hard to verify that 

with respect to this order, (a is simply ordered to satisfy the conditions
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(ia)-(iv). We omit these verifications. This completes the proof of the 

theorem. 

   In what follows, we always suppose that ( is ordered as is shown in 

Theorem 4. 

   6. In this section, we discuss the structure of the set ( of all generalized 

components. 

   LEMMA 8. Let (() be a generalized component-branch at D and let Go be 

a generalized component of D. If there exists G E (( ) such that G < G0, then 

_() < Go. If there exists G' E (( 8) such that Go < G', then Go < (( ). 

   PROOF. Suppose that G < Go for some G ((8). Since ( (3) is ( -convex 

and does not contain Go, we have ( () < Go. The second assertion can be 

proved similarly. 

   COROLLABY. If there exists the lower void component G1(D) of D, then there 

exists the least generalized component-branch ( (31(D)) at D and (SJ(31(D)) < K(D) 

for every non-void component K(D) of D. If there exists the upper void compo-

nent G(D) of D, then there exists the greatest generalized component-branch 

3(8(D)) at D and K(D) < (Y8 (D)) for every non-void component K(D) of D. 

   THEOREM 5. Let D be a D-class of an ordered idempotent semigroup S. If 

the lower void component G1(D) of D exists, then 

                G1(D) <_ G(D) for every G(D) E (D . 

If the upper void component G(D) exists, then 

                G(D) <_ G(D) for every G(D) (D. 

   PROOF. We choose arbitrarily non-void component K(D) of D. If GA(D) 

exists, then, by Corollary of Lemma 8 and Theorem 4, there exists the least 

generalized component-branch (( 1(D)) at D and G1(D) < C ( 81(D)) < K(D). Hence 

we have G1(D) < K(D). If G(D) exists, then by a similar way we can prove 

that K(D) < Gu(D). This completes the proof of the theorem. 

    LEMMA 9. Let G1, G2 and G3 be generalized components of D1, D2 and D3, 

respectively. If G1 < G2 <_ G3, then D2 } D1 o D3. 

    PROOF. We set D = D1 ° D2 ° D3. If either D1= D or D3 = D, then it is 

clear that D2 } D1 o D3. Hence we assume that D1 }- D and D3 >- D. Thus G1 

and G3 lie in generalized component-branches (1) and (^U3) at D, respec-

tively. Now it is clear that D2 } D1 o D2 and D2 } D2 o D3. Therefore, since 

the associated semilattice S* is a tree semilattice, D1 o D2 and D2 o D3 are com-

parable in S* and so 

                      D = D1 D2 or D = D2 D3. 

This shows that either G1 and G2 or G2 and G3 lie in different generalized 

component-branches at D. Then, since every generalized component-branch is 

 3-convex, W81) and ( 8) are distinct. Hence D1 D3 = D, from which it
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follows that D2 } D1 ° D3. 

   LEMMA 10. Let G1(D) and G2(D) be two generalized components of D such 

that G1(D) < G2(D). Then there exists a generalized component-branch ( (3) at D 

such that G1(D) < (() < G2(D). 

   PROOF. If G1(D) is the lower void component of D, then it is evident that 

G1(D) < J(8l(D)) < G2(D). If G2(D) is the upper void component of D, then 

G1(D) < (J(8u(D)) < G2(D). If both G1(D) and G2(D) are non-void, then, since 

both G1(D) and G2(D) are maximal S-convex subsets of D, there exists in S 

an element a such that G1(D) < a < G2(D) and D(a) ~ D. Let K be the com-

ponent of D(a) which contains a. Then we have G1(D) < K< G2(D) and more-

over, by Lemma 9, we have D(a)>-D. Now let ((8) be the generalized com-

ponent-branch at D which contains K Then, by Lemma 8, we obtain G1(D) 

< C( ) < G2(D). 

   LEMMA 11. Let ( () and G3(&) be generalized component-branches at D such 

that (;( ) < 3(W). Then there exists a non-void component K(D) of D such that 

° ( ) < K(D) < C ( 3'). 

   PROOF. By Lemma 7, there exists a non-void component K(D) of D such 

that (( ) n < K(D) < (( ') n in ~. Then, by Lemma 8, we have (( 3) 

< K(D) < t$3('). 

   Two distinct generalized components G1(D) and G2(D) in D are said to be 

consecutive, if there exists no element of D which lies between G1(D) and G2(D) 

in the strict sense. 

   THEOREM 6. Let D be a D-class of an ordered idempotent semigroup S and 

let G1(D) and G2(D) be consecutive generalized components of D such that G1(D) 

< G2(D). Then 
               = {G; G E ( and G1(D) < G < G2(D)} 

His a generalized component-branch at D. 

   PROOF. By Lemma 10, there exists a generalized component-branch W8) 

at D such that (( ) C ~I. Now we take any element G' of ~I. Then, by 

Lemma 9 and the consecutivity of G1(D) and G2(D), G' is a generalized com-

ponent of D' such that D'>-D. Thus G' lies in a generalized component-

branch (S3(W) at D. If ( (W) were different from 3(3), then, by Lemma 11, 

there would exist a component K(D) of D which lies between ((8) and ((8') 

in the strict sense. This contradicts the fact that G1(D) and G2(D) are con-

secutive. Hence ( (3) = 5('), and so G' belongs to (( 8). This completes the 

proof of the theorem. 

   LEMMA 12. Let l(8) be a component-branch at D. If there exists, in ~, a 

non-void component K(D) of D such that K(D) <O, then there exists, in S, 

            a= max { y; y E D and y< K .for every K E S )} . 

The component K1(D) of D which contains the element a satisfies the following



160 T. SAITO 

conditions : 

  (i) K1(D) < S() ; 

   (ii) if K(D) is a component of D such that K(D) < ( 8), then K(D) <_ K1(D). 

Also if there exists, in , a component K'(D) of D such that S(3) < K'(D), then 

there exists, in S, 

           b = min { y ; y D and K < y for every K E () } . 

The component K2(D) of D which contains b satisfies the following conditions : 

  (iii) tO < K2(D) ; 

   (iv) if K(D) is a component of D such that() < K(D), then K2(D) <_ K(D). 

   PROOF. Suppose that K(D) < () for some component K(D) of D. We 

choose arbitrarily K'(). Moreover we choose in S arbitrarily k E K(D> 

and k' E K'. Then, by Corollary 3 of Theorem 2, there exists 

                    a* =max { y ; y E D and y < k' } . 

Let K* be the component of D which contains a*. Then, we have K* < Kt 

and hence K* < Therefore in S 

     a* = max { y ; y D and y < K f or every Ks()}. 

Hence the element a of the lemma exists and a = a*. Therefore K1(D) = 

K* <O, which proves (i). Moreover, for an element k of a component K(D> 

of D such that K(D) < ~(8), we have clearly k D and k < k'. Hence k <_ a* 

= a, and so K(D) <_ K1(D), which proves (ii). The rest of the assertions cann 

be proved similarly. 

   THEOREM 7. Let D be a D-class of an ordered idempotent semigroup S. If 

the lower void component G1(D) of D exists, then there exists a non-void component 

G1(D) of D, with which G1(D) forms a consecutive pair. If the upper void com-

ponent G(D) of D exists, then there exists a non-void component G2(D) of D, with 

which G(D) forms a consecutive pair. 

   PROOF. We choose arbitrarily non-void component K0(D) of D. If G1(D) 

exists, then, by Corollary of Lemma 8, there exists the least generalized com-

ponent-branch (( 1(D)) at D, and (3(B1(D)) < Ko(D). Hence, by Lemma 12, there 

exists a non-void component G1(D) of D satisfying the condition that if K(D) 

is a non-void component of D such that K(D) > K for every non-void K 

E W 1(D)), then G1(D) < K(D). But every non-void component of D satisfies the 

condition given for K(D). Hence G1(D) < K(D) for every non-void component 

K(D) of D. Even if G(D) exists, it is clear that G1(D) < GA(D). Hence G1(D) 

and G1(D) are consecutive generalized components of D. The second assertionn 

can be proved similarly. 

   THEOREM 8. Let D be a D-class of an ordered idempotent semigroup S, and 

let G1(D) and G2(D) be consecutive generalized components of D such that G1(D)
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< G2(D). If G1(D) is a non-void component, then there exists, in S, max G1(D). 

Also if G2(D) is a non-void component, then there exists, in S, min G2(D). 

   PROOF. By Theorem 6, 

             (( 3) = {G ; G ( and G1(D) < G < G2(D)} 

is a generalized component-branch at D. If G1(D) is non-void, then, by Lemma 

12, there exists in S 

        a = max {y ; y D and y < K for every non-void K C() } . 

We take the component K1(D) of D which contains the element a. Then, by 

(i) in Lemma 12, we have K1(D) < K< G2(D) for every non-void KE ((8). But 

G1(D) and G2(D) are consecutive, and hence K1(D) <_ G1(D). On the other hand, 

by (ii) in Lemma 12, we have G1(D) < K1(D). Hence G1(D) = K1(D), and so the 

element a belongs to G1(D). Moreover, since 

        G1(D) C {y ; y D and y < K for every non-void K E C ( 3)}, 

we have a = max G1(D). The second assertion of this theorem can be proved 

similarly. 

   THEOREM 9. Let D be a D-class of an ordered idempotent semigroup S, and 

let (() be a generalized component-branch at D. Then there exist consecutive 

generalized components G1(D) and G2(D) of D such that 

             (() = {G; G E ( and G1(D) < G < G2(D)}. 

   PROOF. We first show that, for ( (8), there exist consecutive generalized 

components G1(D) and G2(D) of D such that G1(D) < (3(8) < G2(D). In the case 

when there exists no non-void component K(D) of D such that K(D) < C (8), 

we have, by Lemma 11, (3(8) = ( (81(D)). Moreover there exists the lower void 

component GI(D). Therefore, by Theorem 7, there exists a non-void component 

G2(D) of D such that GI(D) and G2(D) are consecutive generalized components 

of D. Then it is clear that GI(D) < (J(81(D)) = ( (8) < G2(D). In the case when 

there exists no non-void component K(D) of D such that W8) < K(D), we can 

prove in a similar way that there exist consecutive generalized components 

G1(D) and G(D) of D such that G1(D) < CS3(8) = 3(8(D)) < G, (D). In the case 

when there exist non-void components K1(D) and K2(D) of D such that K1(D) 

< C() < K2(D), then, by Lemma 12, there exist non-void components G1(D) and 

G2(D) of D satisfying the following conditions : 

   (i) G1(D) < K < G2(D) for every non-void K E (( 8) ; 

   (ii) if K(D) is a component of D such that K(D) < K for every non-void 

K E &8), then K(D) < G1(D) ; 

   (iii) if K'(D) is a component of D such that K< K'(D) for every non-void 

K E 3@8), then G2(D) <_ K'(D). 

By Lemma 8, (i) implies that G1(D) < C (8) < G2(D). Now we take any gener-
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alized component G(D) of D which lies between G1(D) and G2(D). Then clearly 

G(D) is a non-void component. We choose arbitrarily non-void K (( 8). If 

G(D) < K, then G(D) < (( 8), and so, by (ii), we have G(D) = G1(D). If K < G(D), 

then we have G(D) = G2(D) similarly. Hence G1(D) and G2(D) are consecutive 

components of D. Thus, in all cases, we have shown that there exist con-

secutive generalized components G1(D) and G2(D) such that G1(D) <() < G2(D). 

Now the set 

             3(') = {G ; G (S and G1(D) < G < G2(D)} 

is, by Theorem 6, a generalized component-branch at D. (( ) and ((W) are 

generalized component-branches at the same D-class D and have common ele-

ment. Hence (( 3) = $3(&. This completes the proof of this theorem. 

   COROLLARY 1. There exists one-to-one correspondence between branches at D 

in S~` and consecutive pairs of generalized components of D. 

   COROLLARY 2. The number of consecutive pairs of generalized componets of 

D is equal to the branch order at D in S*. 

   THEOREM 10. Let D be a D-class of an ordered idempotent semigroup S, and 

let G1(D) and G2(D) be generalized components of D such that G1(D) < G2(D). 

Then there exist consecutive generalized components G3(D) and G4(D) of D such 

that G1(D) <- G3(D) < G4(D) < G2(D). 

   PROOF. By Lemma 10, there exists a generalized component-branch ((8) 

at D such that G1(D) < ( () < G2(D). Then, by Theorem 9, there exist con-

secutive generalized components G3(D) and G4(D) of D such that G3(D) < C() 

< G4(D). Therefore, since G3(D) and G4(D) are consecutive, we have G1(D) _< G3(D) 

< G4(D) <_ G2(D). 

   7. In this section, we consider conversely, and show that some of the 

theorems previously given characterize ordered idempotent semigroups. More 

precisely 

   THEOREM 11. Let S* be a tree semilattice. Suppose that, for each element 

D of S*, there associates a collection of sets 

                    3D = { GA(D) ; a I(D) } 

such that every pair of sets, whether it belongs to the same CAD or not, is mutually 

disjoint. Moreover suppose that each collection ~D is simply ordered to satisfy 

the following conditions ; 

   (i) every G(D) in 3D, if it is neither the least nor the greatest member ofD, 

is non-void; 

   (ii) there exists one-to-one correspondence between consecutive pairs of mem-

bers in D and branches at D in S*, 

   Furthermore, suppose that each set Ga(D), if it is non-void, is simply ordered 

to satisfy the following conditions :
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   (iii) if G(D) is non-void and has the immediate successor in $JD, then there 

exists max G(D) in G(D); 

   (iv) if GA(D) is non-void and has the immediate predecessor in 3D, then there 

exists mm G(D) in G(D). 

For an element D of S~`, we denote the set-union U aE1(D) G(D) of all the sets in 

UD by S(D). Moreover we denote U DESK S(D) by S. Besides, for two elements D 

and D' in S* such that D'-<D, there exists, by the above condition (ii), a con-

secutive pair of members which corresponds to the branch at D' which contains 

D. We denote the lesser and the greater of these members by LD(D') and MD(D'), 

respectively. We introduce an order in S. For a E G(D) and b G'(D'), let us 

define a < b in S if one of the following conditions is satisfied : 

   (a) G(D) = G'(D') and a < b in G(D) ; 

   (b) D=D' and G(D) < G'(D') in D ; 

   (c) D-< D' and G(D) < LD,(D) ; 

   (d) D'-<D and MD(D')_<G'(D 

   (e) D o D' -< D, D 0 D' -< D' and MD(D O D') <_ LD,(D O D'). 

Moreover, for each element D of S*, we assign arbitrarily one of two types which 

we call L-type and R-type. We introduce a multiplication in S. For a E G(D) 

and b e G'(D'), let us define the product ab as follows: 

   (f) if D D' is L-typed and a <_ b, then 

             ab = min {y ; y S(D D') and a < y} ; 

   (g) if D D' is L-typed and b _< a, then 

              ab = max { y ; y S(D o D') and y <_ a}; 

   (h) if D p D' is R-typed and a <_ b, then 

             ab = max {y ; y S(D ° D') and y <_ b} ; 

   (i) if D ° D' is R-typed and b <_ a, then 

             ab=min{y;yS(DoD') and by}. 

Then, with respect to the order and the product given above, S is an ordered idem-

potent semigroup. 

   PROOF. We prove this theorem by dividing in several steps. 

    F. For a, b E S, one and only one of the relations a < b, a = b and a > b 

holds. 

   In fact, suppose that a E G(D), b E G'(D') and a b. Then it is easy to 

show that a > b in the case when D and D' are comparable. In this paper, we 

show it only in the case when D and D' are non-comparable. In this case, 

since a b, we have 

        MD(D D') > LD,(D D'), and so MD(D D') >_ MD (D D'). 

But, since D and D' belong to different branches at D o D', we have 

                     MD(D ° D')>MD(D ° D').
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Hence 

             LD(D ° D') >_ MD,(D ° D'), and so a > b in S. 

This proves the `one' part of the assertion. It is easy to prove the `only one' 

part of the assertion and we omit it. 
   2 ° . Suppose that a E G(D), b G'(D'), D" -< D, D" -< D' and MD(D") < LD,(D") 

in (3D" . Then D ° D' = D" and a < b in S. 

   In fact, under these assumptions, D and D' belong to different branches at 

p", for otherwise we would have 

                    LD,(D") = LD(D") < MD(D"). 

Therefore D ° D' = D". Hence we have MD(D ° D') < LD,(D ° D'), and so a < b 

in S. 

   3 ° . S is simply ordered. 

   In fact, by 1°, it suffices to prove the transitivity. Suppose that a E G(D), 

b E G'(D') and c E G"(D"), and that a < b and b <c. Now we remark that D ° D' 

and D' ° D" are always comparable, since D ° D' -~ D', D' ° D" D' and S* is a 

tree semilattice. First we suppose that D ° D' D' ° D". In this paper, we 

prove that a < c only in the case when D and D' are non-comparable. If D and 

J' are non-comparable and D ° D' D' ° D", then D ° D' -< D' ° D", and so, in 

S'~, D' and D" belong to the same branch at D ° D'. Therefore 

                 MD(D ° D') < LD,(D ° D') = LD„(D ° D'). 

Hence, by 2°, we have a < c in S. If D and D' are non-comparable and D ° D' = 

', then 

              MD(D") = MD(D ° D') LD,(D ° U) 

and so a < c in S. Finally if D and D' are non-comparable, D ° D' = D' ° D" 

and D ° D' ~ D", then D' and D" belong to different branches at D ° D'. Hence 

           MD(D ° D') LD-(D ° D') < MD (D ° D') < LD-/(D ° D'), 

and so, by 2 °, we have a < c in S. In the case when D ° D'>-D' o U', we can 

prove the assertion in a similar way. 
   4 ° . For every a, b S, the product ab is well-defined. 

   In fact, suppose that a E G(D) and b E G'(D'). First we suppose that D ° D' 

is L-typed and a <_ b. If D ° D' = D, then it is clear that min {y ; y E S(D ° D') 

and a <_ y} exists and is equal to a. If D ° D'-<D, then a < b and there exist 

both LD(D ° D') and MD(D ° D'). Clearly LD(D ° D') < MD(D ° D'), and so, in 

 D D' ' MD(D ° D') is not the least member. Now MD(D ° D') is non-void. For, 

if b MD(D ° D'), then MD(D D') is evidently non-void. If D' = D ° D' and 

b E MD(D ° D'), then 

                  MD(D ° D') < G'(D ° D') = G'(D'),
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and so MD(D ° D') is not the greatest member in JD *D,. Hence, by (i), MD(D ° D') 

is non-void. Finally, if D ° D' <D', then, since a < b, we have 

                  MD(D°D')<_LD,(D°D')<MD,(D°D'). 

Hence, also in this case, MD(D ° D') is not the greatest member in ~DD' and 

so is non-void. Clearly MD(D ° D') has the immediate predecessor LD(D ° D') 

in 3D D', and so, by (iv), there exists 

                        p=min MD(D ° D'). 
It is clear that 

                 p E {y ; y S(D ° D') and a < y } . 

Now we take any y E S(D ° D') such that a <_ y. We suppose that y E G"(D ° D'). 

Since D ° D'-<D, we have a < y and MD(D ° D') <G"(D ° D'), and therefore 

p=min MD(D ° D') <_ y. Hence 

                p=min{y;yES(DoD') and ay}. 

in all other cases, we can prove the assertion in a similar way. 

    5 ° . For every a, b E S, the element ab lies between a and b. In particular, 

we have a2 = a. 

   In fact, suppose that a E G(D) and b E G'(D'). First we suppose that D ° D' 

is L-typed and a <_ b. If D = D, then, by the proof of 4°, we have ab = a. 

:Hence, in this case, ab evidently lies between a and b. If D o D'-<D and 

D = D', then, by the proof of 4 °, ab E MD(D ° D') and MD(D ° D') <_ G'(D ° D') 

  G'(D'). Hence a < ab < b. If D ° D' -< D and D ° D' -< D', then, by the proof 

of 4 °, ab E MD(D ° D') and MD(D ° D') <_ LD,(D ° D'). Hence a < ab <b. In all 

other cases we can prove the assertion in a similar way. 

   6 ° . If a E G(D) and b E G'(D'), then both ab and ba belong to S(D ° D') and 

every element of S(D ° D') which lies between a and b, lies between ab and ba. 

    In fact, if a <_ b and D ° D' is L-typed, then, by 5°, we have a _< ab <_ b 

and a < ba <- b, and so 

              ab = min {y ; y E S(D ° D') and a <_ y<_ b} 

                <_max{y;yES(D°D') and a<y<b}=ba, 

from which the assertion is clear. In the other cases, we can prove the asser-

tion in a similar way. 

   7°. If a E G(D), b E G'(D'), c c G"(D") and a <_ b <c, then D° D" D'. 

    In fact, by 5° and 6°, we have a <_ ac <_ c and ac E S(D ° D"). If D ° D" 

  D' were false, then we would have D ° D' ° D"<D ° D". Now (ac)b 

E S(D ° D' ° D"), and so (ac)b * ac. Moreover (ac)b would lie between ac and 

b, and so lie between a and c. If (ac)b < ac, then (ac)b would lie between a 

and ac. On the other hand, we have D ° D' ° D" -< D = D ° (D o D'9, and 

so D and D ° D" would lie in the same branch at D ° D' ° D". Hence (ac)b
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<ac would imply that (ac)b < a, which is a contradiction. Also in the case 

when ac <(ac)b, we can deduce a contradiction in a similar way. 

   8°. If a <_ b, then ac <_ be and ca < cb. 

   In fact, suppose that a E G(D), b E G'(D') and c G"(D"). If a <_ c <_ b, then, 

by 5 °, we have 

               a<_ac<_c<bc<_b and a<_ca<c<_cb<_b. 

If c <_ a <_ b, then, by 7©, we have D' ° D" D, and so D' ° D" D ° D". Now 

we suppose that be <- ac. Then clearly c < be <ac, and so, by 7°, we have 

D ° D" = (D ° D") o D". Hence we have D o D" = D' ° D". Therefore, 

if D o D"=D' o D" is L-typed, then 

              ac = max {y ; y S(D ° D") and c _< y <_ a } 

                _< max {y ; y e S(D' a D") and c -_< y < b} = be , 

and so ac = bc. If D o D" = D' o D" is R-typed, then we can deduce ac = be in 

a similar way. This evidently proves that ac <_ bc. We can prove that ca <_ cb 

similarly. In all the remaining cases, we can prove the assertion in a similar 

way. 

   9'. For every, a, b S, we have a(ab) = (ab)b = ab. 

   In fact, suppose that a E G(D) and b E G'(D'). If D ° D' is L-typed and 

a < b, then a < ab <_ b and so a < a(ab) < ab. On the other hand, a(ab) 

E S(D ° D ° D') = S(D ° D'). Therefore 

              ab = min {y ; y S(D ° D') and a <_ y} <_ a(ab). 

Hence we have ab = a(ab). Moreover, since ab _< (ab)b < b and (ab)b E S(D ° D'), 

it is clear that 

             (ab)b = min {y ; y S(D ° D') and ab <_ y} = ab. 

In all other cases, we can prove the assertion in a similar way. 

    10'. If b lies between a and c, then ac = ab or ac = bc. 

    In fact, first we suppose that a < b <_ c. Then a < ac <_ c. If ac _< b, then, 

by 9° and 8°, we have ac = a(ac) <_ ab. On the other hand, since b <- c, we have 

ab ac. Therefore we have ac = ab. If b <_ ac, then we can prove similarly 

that ac = bc. In the case when c <_ b < a, we can prove the assertion in a 

similar way. 

    11'. S is an ordered idempotent semigroup. 

    In fact, by 3', 5 ° and 8', it suffices to prove that, for every a, b, c E S, 

we have (ab)c = a(bc). Let a, b and c be elements of S(D), S(D') and S(D"), 

respectively. First we suppose that a <_ b < c. Then, by 10°, we have ac = abi 

or ac = bc. If ac = ab, then 

                    (ab)c = (ac)c = ac by 9° 

and ac = ab <_ a(bc) < ac since b<_ be < c.



                        Ordered idempotent semigroups 167 

Hence (ab)c = ac = a(bc). If ac = bc, then we can prove that (ab)c = a(bc) in a 

similar way. Next, we suppose that a <_ c <_ b. Then, by 10°, we have ab=ac 

or ab = cb. If ab = ac, then we can prove that (ab)c = a(bc) in the same argu-

ment as above. If ab = cb, then D D' = D' ° D", and so D ° D' ° D" = D ° D' 

= D' ° D". The element (ab)c = (cb)c lies between c and b and is an element of 

S(D ° D' ° D") = S(D' o D"). Therefore, by 6 °, min (bc, cb) < (ab)c. On the other 

hand, 

              (ab)c <_ (bb)c = be and (ab)c (cb)b = cb. 

Hence we have (ab)c = min (bc, cb). Now, if D o D' o D" is L-typed, then 

             a(bc) = min { y ; y S(D o D' ° D") and a <_ y} 

                 =min {y ; y S(D o D') and a < y} = ab = cb . 

But, by the proof of 6°, we have cb <_ bc, and so 

                    a(bc) = min (bc, cb) = (ab)c. 

If D ° D' ° D" is R-typed, then 

             a(bc) = max {y ; y S(D ° D' ° D") and y <_ bc} 

                 = max {y ; y c S(D' o D") and y < bc} = be . 

Since, in this case, be <_ cb, we have the same result as above. Thus we obtain 

the associativity in the case when a < c _<_ b. In the remaining cases, we can 
similarly prove that (ab)c = a(bc). This completes the proof of Theorem 11. 

   THEOREM 12. In addition to the assumptions of Theorem 11, we set the fol-

lowing assumptions : 

   (v) for each D of S*, there exists a non-void set G(D) which belongs to D; 

   (vi) for two members G(D) and G(D) of ~D such that G(D) < Gp(D), there 

exist consecutive members Gr(D) and Gs(D) of JD such that G(D) <_ Gr(D) 

< GS(D) < G(D) in D; 

   (vii) if GA(D) is the least member ofD which is a void set, then G1(D) has 

the immediate successor in uD ; 

   (viii) if G(D) is the greatest member of D which is a void set, then G(D) 

has the immediate predecessor in VD. 

 Under these assumptions, for each D of S*, S(D) is a D-class in the ordered 

idempotent semigroup S constructed in Theorem 11. Moreover, the semilattice as-

sociated with S is isomorphic to S* and uD is the set of all the generalized com-

ponents of D-class S(D) in S. 
    PROOF. By (v), S(D) is non-void. It a, b S(D), then it is clear that 

                ab = a and ba = b if D is L-typed, 

                ab = b and ba = a if D is R-typed. 

Hence a and b belong to the same D-class in S. Conversely suppose that a
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and c belong to the same D-class in S and that a S(D) and c E S(D'). Then, 

by Theorem 1, we have 

                           ac = a and ca = c , 

or ac=c and ca=a. 

In both cases, we have S(D') = S(D o D') = S(D), and so c E S(D). Therefore 

S(D) is a D-class in S. For two D-classes S(D) and S(D') of S, we take arbi-

trarily a E S(D) and b E S(D'). Then ab E S(D ° D'), and so 

                    S(D) ° S(D') = S(D ° D'). 

Here, in the left hand side, ° represents the operation defined in § 2 for the 

associated semilattice of S. Hence the associated semilattice of S is isomorphic 

to S*. In particular, the associated semilattice of S can be considered to coin-

cide with S*, by identifying S(D) with D. Now we show that each member 

G(D) of uD is a generalized component of D-class S(D) in S. First we suppose 

that G(D) is non-void. Let a and b be elements of G(D) such that a <- b and 

let c be an element of S between them. We suppose that c E G'(D'). Then, 

by Lemma 4, we have D D'. If D-<D' were true, then a <_ c would imply 

that a < c and G(D) < LD,(D), and so we would have b < c which is a contra-

diction. Therefore D = D', and so, since a _< c <_ b, we have G(D) = G'(D'). 

Hence C E G(D). Thus G(D) is S-convex. Now let A be a subset of S(D) which 

properly contains G(D). Let a be an element of A which does not belong to 

G(D) and let G"(D) be a member of D which contains a. Then, since G(D) 

~ G"(D), there exists, by (vi), a consecutive pair of members in $3D which lies 

between G(D) and G"(D), and moreover, by (ii), there exists a branch at D 

which corresponds to this consecutive pair. We take arbitrarily D' E 8, and 

moreover take arbitrarily b S(D'). Then it is easy to see that b lies between 

G(D) and a in the strict sense. Therefore A is not S-convex. Hence G(D) is 

a component of D-class S(D) in S. Since the set-union of all non-void members 

of ~D is the D-class S(D), it is clear that conversely every non-void component 

of S(D) is a non-void member ofD. Now we suppose that there exists the 

least member G1(D) of vD which is a void set. Then, by (vii), G SD). has the 

immediate successor G1(D), and moreover, by (ii), we can consider the branch 

 

I at D which corresponds to the consecutive members G1(D) and G1(D). Then 

it is easy to see that the component-branch (8) at S(D) associated with t 

is the least component-branch at S(D), and moreover(z) < K(D) for every 

non-void component K(D) of S(D). Hence there exists the lower void compo-

nent of S(D). Conversely, it can easily be proved that if the lower void com-

ponent of S(D) exists, then there exists the least member of ~D which is a 

void set. Thus we can identify the least member G1(D) of JD which is a void 

set with the lower void component of D-class S(D). Similarly we can prove
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that we are able to identify the greatest member G(D) of 3D which is a void 

set with the upper void component of S(D). This completes the proof of 

Theorem 12. 

   8. In this final section, we mention criteria of two special sorts of ordered 

idempotent semigroups. The proofs of these theorems are easy and we omit 

them here. 

   THEOREM 13. In order that an ordered idempotent semigroup S satisfies the 

strict monotone condition III' in § 1, it is necessary and sufficient that S consists 

of only one element. 

   COROLLARY. If an ordered semigroup S satisfies the strict monotone condi-

tion III', then it has at most one idempotent. 

   THEOREM 14. In order that an ordered idempotent semigroup S is commuta-

tive, it is necessary and sufficient that every D-class of S consists of only one 

element. 

   COROLLARY. In the associated semilattice S'~ of an ordered idempotent com-

mutative semigroup S, the branch order at every D-class is at most 2. 
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