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ORDERED INVERSE SEMIGROUPS
BY

TÔRU SAITÔ

Abstract. In this paper, we consider two questions: one is to characterize the
structure of ordered inverse semigroups and the other is to give a condition in order
that an inverse semigroup is orderable.

The solution of the first question is carried out in terms of three types of mappings.
Two of these consist of mappings of an ^-class onto an ^-class, while one of these
consists of mappings of a principal ideal of the semilattice E constituted by idem-
potents onto a principal ideal of E.

As for the second question, we give a theorem which extends a well-known result
about groups that a group G with the identity e is orderable if and only if there exists
a subsemigroup P of G such that P u p~1 — G, P n P'1 — {e} and xPx 'sPfor every
xeG.

Introduction. This paper is in the line of our systematic study of ordered semi-
groups. The purpose of this paper is to solve two questions about ordered inverse
semigroups.

In [5], we characterized some kind of ordered inverse semigroups which we
called proper. In the first place, this paper is concerned with

Question 1. How can we characterize the structure of ordered inverse semigroups
in general?

In connection with this question, in the second place, this paper is concerned with
Question 2. What is a characteristic property in order that an inverse semigroup

is orderable ?
In order to solve Question 1, we make use of the following three mappings. Let S

be an inverse semigroup and let F be the set of all idempotents of 5. Firstly, for e,f e E
such that/^e in the semilattice F, a mapping ip(e,f) of Re into Rf is defined by

Xifi(e,f) = fx   for every x e Re.
Secondly, for xe S, a mapping cp(x) of the principal ideal P(e) of the semilattice F
generated by e onto some principal ideal of F is defined by

fip(x) = x~xfx    for every feP(e),

where e is an element of E such that x e Re. Thirdly, for x e S, a mapping X(x) of
Rf onto Re is defined by

yX(x) = xy   for every y e R¡,
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where e is an element of E such that x e Re and/=eç>(*).
§2 carries the purely algebraic character and we characterize inverse semigroups

in terms of these three mappings. In §3, we give a solution of the corresponding
question to Question 1 concerning left ordered inverse semigroups. In §5, we give
a solution of Question 1.

§6 is devoted to Question 2. In this section, a condition in order that an inverse
semigroup is left orderable and a condition in order that an inverse semigroup is
orderable are given.

1. Preliminaries. The terminologies and notations of Clifford and Preston
[1] are used throughout.

Let S be an inverse semigroup. By [1, Theorem 1.17], the set E of all idem-
potents of 5 forms a commutative idempotent subsemigroup of S.

In general, let Tí be a commutative idempotent semigroup. By [1, Theorem 1.12],
E is a semilattice with respect to the natural ordering of E. We denote the partial
order of the semilattice by ^.

Let E he a semilattice with respect to a partial order ^. For ee E, the set
{fe E;f-^e} is called the principal ideal of E generated by e.

A semigroup S with a simple order á is called a left (right) ordered semigroup
if it satisfies the condition that

a S b implies ca ^ cb (ac ^ be)   for every c e S.

S is called an ordered semigroup if it satisfies the condition that

a ^ b implies ca ^ cb and ac ^ be   for every ce S.

Let S be a one-sided ordered semigroup. An element c of S is said to lie between
two elements a and b of S if either a^c^b or b^c^a. An element a of S is called
positive (negative) if a < a2 (a2 < a) and is called nonnegative (nonpositive) if a t¿ a2
(a2úa).

Here we list some results from our previous paper.

Lemma 1.1 [3, Lemma 2], Let a and b be elements of an ordered idempotent
semigroup S. Then both ab and ba lie between a and b.

Lemma 1.2 [3, Lemma 4]. Let S be an ordered commutative idempotent semi-
group and let c be an element of S which lies between two elements a and b ofS. Then
ab-^c in the semilattice S.

A semilattice E is called a tree semilattice if the set {feE;f-^e} is a simply
ordered set for every e e E. Let e be an element of a tree semilattice E. The set
U(e) = {fe E; e</} is called the upper set of e. We define a binary relation ~ in
U(e) by

for fige U(e),f~ g if and only ife<fg.
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1971] ORDERED INVERSE SEMIGROUPS 101

Then, by [3, Lemma 5], ~ is an equivalence relation in (7(e). Each ~-equivalence
class is called a branch at e. The cardinal number of branches at e is called the
branch number at e.

Lemma 1.3 [3, Theorem 3 and Corollary of Theorem 14]. Let S be an ordered
commutative idempotent semigroup. Then the semilattice S is a tree semilattice, in
which the branch number at every element is at most two.

2. A characterization of inverse semigroups. In this section, we give two
theorems of purely algebraic character which characterize inverse semigroups.

Theorem 2.1. Let S be an inverse semigroup and let E be the set of all idempotents
of S. Then E is a commutative idempotent subsemigroup of S and so forms a semi-
lattice. For each ee E, let Re be the Si-class of S which contains e. Then S= Uees Re
and

(1) ifeje E ande+f, then Re n Rf=\J-
For each pair of elements e,feE such that f'^ e, we define a mapping <j>(e,f) of

Re into Rf by

xip(e,f) = fx  for every xe Re.

Then
(2) for every e e E, c/>(e, e) is the identity mapping of Re;
(3) ife,f,geEandg^f^e, then </>(e,f)<p(f,g) = <p(e,g).
Moreover, for each xe S, we define a one-to-one mapping <p(x) of the principal

ideal P(e) of E generated by e onto a principal ideal of E by

fip(x) = x-^fx  for every feP(e),

where e is the element of E such that x e Re. Then
(4) for each pair of elements / g in the domain of <p(x),f-^g if and only iffy(x)

ugyix);
(5) ife eE,xe Re, g^f^e andy = xrp(e,f), then gcp(x)=gcp(y).
Furthermore, for each x e S, we define a one-to-one mapping X(x) of R, onto Re by

yX(x) — xy  for every y e Rr,

where e is the element of Esuch that xe Re andf=e<p(x). Then
(6) if   eeE,   xeRe,   f=ecp(x),   y e Rf   and   g^e,   then   (yX(x))4>(e, g) =

(y<P(f,g<p(x)))Kx<r-(e,g));
(7) if eeE, xe Re,f=ecp(x), ye R, and g^e, then gcp(yX(x))=gcp(x)cp(y);
(8) if eeE, xeRe, f=ecp(x), y e Rf, g=fy(y) and z e Rg, then zX(yX(x)) =

(zX(y))X(x);
(9) for each eeE, there is one and only one element in Re such that xX(x) is

definable and xX(x) = x.
Finally we have
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(10) xy = (y</>(f, (ecp(x))f))X(xt/i(e, ((ecp(x))f)cp(x) 1)), where e and fare the elements
of E such that xe Re and y e Rf.

Proof. Since S is an inverse semigroup, E is a commutative idempotent sub-
semigroup of S and so forms a semilattice with respect to the natural ordering.
Since every ^-class of S has one and only one idempotent by [1, Theorem 1.17],
we have £= \JeeE Re and also the condition (1). For each element x e S, we denote
by e(x) the uniquely determined idempotent e of S such that xS&e. Thus, for e e E,
xeRe is equivalent to e(x) = e and also is equivalent to e = xx~1, since xâïxx'1
and xx'1 e E. Now we suppose that e,feE,f-^e and xe Re. Then

e(x4>(e,f)) = ifx)(fx) -1 = fxx-1/' = fef' = f

Hence </>(e,f) is really a mapping of Re into Rf. Since xcb(e, e) = ex = xx_1x = x, we
have the condition (2). We suppose that e,f g e E and gr^/^ e. Then, for x e Re,
we have xip(e,f) e Rr and so x</j(e,f)</i(fi g) is definable and xtp(e,f)i/i(f g)=g(fx)
= (gf)x=gx = xi/i(e,g). Hence we have the condition (3). Next we suppose that
xeRe and feP(e). Thenf-^e = xx~x and so

(x-ix)(Mx)) = (x-^xXx-yx) = x-yx =Mx).

Hence fcp(x)-¿x~xx. Therefore cp(x) is a mapping of P(e)=P(xx~x) into P(x~lx).
Similarly cp(x'1) is a mapping of T^*"1*) into P(xx~1). But, for feP(xx~x),
fcp(x)cp(x~1) = x(x~1fx)x~1 = (xx~1)f(xx~1)=f. Hence cp(x)cp(x~1) is the identity
mapping of P(xx'1). Similarly cp(x~1)cp(x) is the identity mapping of P(x~1x).
Hence cp(x) is a one-to-one mapping of P(e) = P(xx~1) onto P(x~xx) and cp(x)~1
= cp(x"1). We suppose that e e E, x e Re and/, geP(e). Iff^g, thenf-^g^xx'1
and so

(fip(x))(g<p(x)) = (x-yxXx-^gx) = x~1fxx~1gx = x'Ygx = x~xfx =fcp(x).

Hencefcp(x)^gcp(x). Conversely, iffp(x)-^gcp(x), thenf=fcp(x)cp(x~1)^gcp(x)cp(x~1)
=g. Thus we have the condition (4). We suppose that e e E, x e Re and g^f^ e.
Then y = x>p(e,f) is definable and e(y)=f Hence gcp(x) and gcp(y) are definable and
g(p(y)=y1gy = (fx)~1g(fx) = x~1fgfx = x'1gx=gcp(x). Thus we have the condition
(5). Next we suppose that e e E, xe Re, f=ecp(x) and y e Rf. Then f=x~lex
= x~1(xx~1)x=x~1x, and so

e(yX(x)) = e(xy) = (xy)(xy) '1 = xyy~1x~1 = xfx'1

= x(x~1x)x~1 = xx'1 = e.

Hence X(x) is a mapping of Rr into Re. Since x~1x=f, we have x'1 e Rf and also
fcp(x~1) = xfx~1=xx~1xx~1 = xx~1 = e. Hence, in a similar way, A(x_1) is a
mapping of Re into Rf. Moreover, for y e Rf,

yX(x)X(x'x) = x~\xy) = (x~xx)y = fy = yy'^y = y.
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Hence X(x)X(x~1) is the identity mapping of Rf. Similarly X(x~*)X(x) is the identity
mapping of Re. Hence X(x) is a one-to-one mapping of R¡ onto Re. We suppose
that e e E, x e Re, f=ecp(x), y e R{ and g-¿ e. Then, since yX(x) e Re, (yX(x))\fi(e, g)
is definable and (yX(x))<fi(e, g)=gxy. Since gcp(x)-^ecp(x) =/and y e Rf, ycb(f, gcp(x))
is definable and, since g^e, x>p(e,g) is definable. Moreover

e(xcb(e,g))cp(x4>(e,g)) = e(gx)cp(gx) = (gx)-\gx) = x-lgx,

y</>(fi g<p(x)) e Rg«(X) = Rx~1gx-

Hence (y<p(f, gcp(x)))X(xi/j(e, g)) is definable and

(yW,g<r<x)))KxKe,g)) = (x>P(e,g))(y<p(f,g<p(x)))
= (gxfa-igxy) = gegxy = gxy.

Thus we have the condition (6). We suppose that e e E,xe Re,f=ecp(x), y e Rf and
g^e. Then, since g^e = e(yX(x)), gcp(yX(x)) is definable. Also, since g^e = e(x)
and g<p(x) ̂  ecp(x) =f= e(y), gcp(x)cp(y) is definable. Moreover

gcp(yX(x)) = gcpixy) = (xy)-1g(xy) = y-1x-1gxy = gcp(x)cp(y).

Thus we have the condition (7). We suppose that eeE, xe Re, f= ecp(x), y e Rf,
g=fip(y) and z e Rg. Then yX(x) and zX(y) are definable and

e(yX(x))cp(yX(x)) = e(xy)<p(xy) = (xy)'\xy) = y-1x~1xy

= y~xfy = My) = g = «CO.
e(zX(y)) = e(j) = / = <?(x)<p(x).

Hence zX(yX(x)) and (zX(y))X(x) are definable and

zX(yX(x)) = zX(xy) = (xy)z = x(yz) = x(zX(y)) = (zX(y))X(x).

Thus we have the condition (8). Let eeE. Then e(e)cp(e) = e~1ee = e = e(e). Hence
eX(e) is definable and eX(e) = ee = e. Conversely let x be an element of Re such that
xX(x) is definable and xX(x) = x. Then x2=x and so x = e. Thus we have the con-
dition (9). Finally we suppose that e,feE,xeRe and y e Rf. Then

(e9(x))f^f=e(y),
((e<p(x))f)cp(x)^ = (WWVfr1) Ú «KxMx-1)

= ecp(x)cp(x)~1 = e = e(x).

Hence >"/<(/, (ecp(x))f) and x<A(e, ((eç^jc))/)^*) ~ *) are definable. Now

x>/,(e,((e<p(x))f)<p(x)-i) = (((^ix))/)^*"1))*
= (x(x-1xyy~1)x'1)x = xjj-1,

yp(f,(ecp(x))f) = (ie<p(x))f)y = (x"1^^-1^ = x~xxy,
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and so

eixKe, ((ecp(x))f)cp(x)-'))cp(x<P(e, ((ecp(x))f)cp(x)-'))

= (xyy'^'^xyy'1) = yy'1x'1xyy~1 = x~1xyy~1

= x-xxyy-xx-xx = (x~1xy)(x-1xy)-1 = e(y</>(f (ecp(x))f)).

Hence (y/>(f, (ecp(x))f))X(x>/>(e, ((ecp(x))f)cp(x) ~x)) is definable and

(y^(f,(ecP(x))f))X(xcb(e,((ecP(x))f)cP(x)-i)) = (xyy^)(x^xy) = xy.

Thus we have the condition (10). This completes the proof of Theorem 2.1.
Conversely we have

Theorem 2.2. Let E be a commutative idempotent semigroup. Suppose that, for
each ee E, there corresponds a nonempty set Re, which satisfies the condition (1) in
Theorem 2.1. We put S= \JeeE Re- Suppose that, for every pair of elements e,feE
such that f^e, a mapping </>(e,f) of Re into Rf, and, for every xe S, a one-to-one
mapping cp(x) of the principal ideal P(e) of E onto a principal ideal of E, where e is
the element of E such that x e Re, and moreover, for every xe S, a one-to-one
mapping X(x) ofR, onto Re, where e is the element ofE such that xe Re andf= ecp(x),
are given. Suppose that these mappings satisfy the conditions (2)-(9) in Theorem 2.1.
We define the product in S by (10) in Theorem 2.1. Then S is an inverse semigroup.

Moreover, ifyX(x) is definable, then yX(x) = xy. Also there exists a semigroup and
semilattice isomorphism of E onto the commutative idempotent subsemigroup E* of
S constituted by all idempotent s of S and when, for each g e E, we denote by g* the
element of E* corresponding to g by the isomorphism, Re is the Si-class of S which
contains the element e*, x<fi(e,f)=f*x if xip(e,f) is definable, and (ecp(x))* = x'1e*x
ifecp(x) is definable.

Proof. By (1) and the fact that S={JeeE Re, for each xe S there exists one and
only one e e E such that x e Re, which we denote by e(x). We divide the proof into
several steps.

1°. If e g E, x e Re, g^f^ e and y = x</j(e, f), then gcp(x) and gcp(y) are definable.
In fact, g^e = e(x) and g^f=e(y), and so gcp(x) and gcp(y) are definable.
2°. If e e E, x e Re, f=e<p(x), y e Rf and g^e, then (yX(x))ip(e, g) and

(y<P(fi g<p(x)))X(xi/j(e, g)) are definable.
In fact, since yX(x)eRe, (yX(x))i/>(e,g) is definable. We have e(x>p(e, g))=g^e

= e(x) and so, by Io and (5), e(x^(e,g))q>(xi/i(e,g))=gcp(xip(e,g)) is definable and

e(xjj(e, g))cp(x</j(e, g)) = gcp(x).

On the other hand, g<p(x)-¿ecp(x)=f=e(y) by (4). Hence y>/>(f,gcp(x)) is definable
and

e(y<p(f, g<p(x))) = gcp(x) = e(x>/j(e, g))cp(x</>(e, g)).

Therefore (y/>(f, gcp(x)))X(x>/i(e, g)) is definable.
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3°. If e e E, x e Re, /= ecp(x), y e R; and gr^e, then g<p{yX(x)) and gcp(x)cp(y) are
definable.

In fact, g^e = e(yX(x)) and so gcp(yX(x)) is definable. Also, by (4), gcp(x) ̂  ecp(x)
=f=e(y) and so gq>(x)cp(y) is definable.

4°. If eeE, x e Re, f=e<p(x), y e Rf, g=fy(y) and z e Rg, then zX(yX(x)) and
(zX(y))X(x) are definable.

In fact, by 3° and (7), both e(yX(x))cp(yX(x)) = ecp(yX(x)) and ecp(x)cp(y) are defin-
able and

e(yX(x))cp(yX(x)) = e9(x)<p(y) = fy(y) = g = e(z).

Hence zX(yX(x)) is definable. Also e(x)cp(x) = ecp(x) =/= e(zX(y)) and so (zX(y))X(x)
is definable.

5°. Ife, feE,xe Re and y e Rf, then (y<p(f, (ecp(x))f))X(x<p(e, (M*))/)?**)'1))
is definable.

In fact, (ecp(x))f-^f=e(y) and so yp(f, (ecp(x))f) is definable. By (4),

((ey(x))f)cp(x)-1^ecp(x)cp(x)-1 = e = e(x)

and so xi/i(e, ((ecp(x))f)cp(x)~1) is definable. Moreover, by Io and (5),

e(xcp(e, ((ecp(x))f)cp(x)-'))9(x</>(e, ((e<p(x))f)cp(x)^))

= (Wx))/)?W-M*, ((ecp(x))f)<p(x)-i))
= ((e<p(x))f)<p(x)-\(x) = (ecp(x))f= e(y</>(f,(ecp(x))f)).

Hence (y*p(f, (ecp(x))f))X(x>/>(e, ((ecp(x))f)cp(x) ~x)) is definable.
6°. If e, / g e E, x e Re, y e Rf and z e Rg, then, putting

Xi = xip(e,((((ecp(x))f)cp(y))g)cp(y)-1cp(x)-1),

yt = jWI^M))^)-1).
Zi=^,((M*))./>G>)>f),

ziKyiKxi)) is definable and (xy)z = ZiX(yiX(xi)).
In fact, by 5° and (10),

xy = 0*A(/, (e<p(x))f))Kx^(e, «MxVfMx)-1))

and the right-hand side is definable. Hence

e(xy) = e(xcKe,((e<p(x))f)cp(x)-i)) = ((ecp{x))f)cp{x) "1

and, by 3° and (7),

e(xy)<p(xy) = ((ecp(x))f)cp(x)" V((^(/, (ecp(x))f))X(xcb(e, ((ecp(x))f)<p(x)^)))

= ((ertxWMxyWxcKe, ((ecp(x))f)cp(x)^))cp(y^(f, (e<p{x))f)).
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But, in the proof of 5e, it was shown that

((e<p(x))f)cp(x)-\(xi(e, ((ecp(x))f)cP(x)-i)) = (e9(x))f.

Moreover, since (ecp(x))f-^f=e(y), we have, by Io and (5),

((ecP(x))f)cP(y^(f, (ecp(x))f)) = ((ecp(x))f)<p(y).

Hence we obtain

e(xy)cp(xy) = ((ecp(x))f)cp(y).

Therefore, by 5° and (10),

(xy)z = z1X(y'X(x')>p((ie<p(x))f)cp(xy\ ((((ecp(x))f)cp(y))g)cp(y'X(x'))^))

and the right-hand side is definable, where

x' = x>p(e, ((e<p(x))f)cp(x) ~ *),       y> = yftf, (ecp(x))f).

Now (((e9(x))f)cp(y))g^((ecp(x))f)cp(y). Hence ((((e<p(x))f)cp(y))g)cp(y)^ is definable
and, by (4),

idiecpixW^ij^gMy)-1 ¿ (^I^ ecp(x).

Therefore ((((ecp(x))f)cp(y))g)<p(y)~1cp(x)~1 is definable and, again by (4),

(((WxDMfeMj)"1*)-1 ¿ ((e<p(x))f)<p(x)^ = e(x') £ e = e(x).

Hence, by 3° and (7),

iii((e9(x))f)cp(y))g)9iy) - Mx) - WKx'))
= ii(iie<p(x))f)<p(y))g)<p(y) - VW - ̂  W)

and both sides are definable. Also, by (5),

i((((e<p(x))f)<p(y))gMy) - VW " W)
= iiiiiertx))fità))gMy)-1<Kx)-1Mx<Ke, ((ecp(x))f)cp(x)"*))
= (d(e'p(x))f)cP(y))g)cP(y) - V« " VW
- me^x))f)cpiy))g)cp(y)-K

Since ((((ecp(x))f)cp(y))g)cp(y)-1^(ecp(x))f^f, we have, again by (5),

(((((e<p(x))/)9>Cv))g)9(j) - W)
= (((((^»M))^)-1)^, (e<p(x))f))
= ((((ecp(x))f)cP(y))g)cP(y)^cP(y) = (((ecp(x))f)cp(y))g.

Hence
(((((e<p{x))f)cp(y))g)cp(y)-'cp(x)-')cp(y'X(x')) = (((ecp(x))f)cp(y))g

and so
((((e<p(x))f)cp(y))g)cp(y'X(x')) " » = («M*))/>GO)g)ç>00 " VW "l.
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Therefore, by 2° and (6),

y'X(x')4>(((e<p(x))f)9(x) "l, ((((e<P(x))f)cP(y))g)cP(y'X(x')) " *)

- /^Nx)^)-1, («M*))/>G0teM>0-V*)"1)
= (y'<p((ecp(x))f, ((((ecp(x))f)cP(y))g)cP(y)-Mx)-Mx')))

■ X(x'cp(((ecp(x))f)<p(x) - », ((((ecp(x))f)cp(y))g)<p(y) ' V« -l))

and all expressions are definable. But we have shown above that

(((((e<Kx))f)<p(y))g)<p(y) - VW - W) = ((((^W)/)^))^)^) -x

and so, by (3),

yWe<p(x))f, ((((ecp(x))f)cp(y))g)cp(y) - V(x) " V(x'))
= j^(/ (e^W^-A^cpíx))/, (((Wx))/)^)^)-1)

= >^C/, (((M^/Xy))?)^)-1) - *.

x'cK((e<p(x))f)<p(x) - \ ((((e<p(x))fMy))g)cp(y) ~ V(x) "l)
= x0(e, ((((XWMjO)sM>')-V*)"1) = *i-

Thus z1A(j1A(x1)) is definable and (xj')z = z1A(;;1A(x1)).
7°. If e, / ge E, xe Re, y e Rf and z e Rg, then (z1A(_v1))A(x1) is definable and

x(>'z) = (z1A(j1))A(x1), where xu yi and zx have the same meaning as in 6°.
In fact, by 5° and (10),

yz = (zKg,(fip(y))gm(yp(f((f9<y))g)9(yr1))

and the right-hand side is definable. Moreover e(yz) = ((fip(y))g)cp(y)~1. Again by
5° and (10), x(yz) = ((yz)x/,(e(yz), (ecp(x))e(yz)))X(x9(e, ((ecp(x))e(yz)yP(x)-i)) and the
right-hand side is definable. Now cp(y) is a one-to-one mapping of P(f) onto
P(fy(y)) and so, by (4), <p(y) is a semilattice isomorphism of P(f) onto P(fip(y))-
Moreover (e<p(x))f, ((fip(y))g)<p(y)~x e P(f)- Hence

((e<p(x))(((My))g)9(y) - ̂ VOO = ((e<p(x))f(((My))g)<p(y) ~ 1My)
= (((e<Áx))f)9(y))(((f9{y))g)9(y) ~ V(>0)
= (((e<áx))f)?(y))(f<p(y))g = (((e<p(x))f)cp(y))g,

since ((ecp(x))f)cp(y)-^fcp(y). Therefore

(e<p(x))e(yz) = (e<p(x))(((fcp(y))g)cp(y)^) = ((((e9(x))f)cp(y))g)cp(y)-\

Hence

x</<e, ((e^x))^))^)"1) = xip(e, ((((ecp(x))f)cp(y))g)cp(y) " V(x) "x) = %.
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By 2o, (6) and (3),

(yz)i/j(e(yz), (ecp(x))e(yz))

- iWig, (fip(y))gMy<r(f, iifipiyMrty)-1)))
■ Mfp(y))g)<p(y) - \ ((((e<p(x))f)<piy))gypiy) ~ ')

= (z4>(g, ((((e<p(x))/)^))g)9>(>')-VCv>A(/,((/9'Cv))g)9'(^)-1))))
• KyKf, (ídecpixyjMyygMy)-^

and all expressions are definable. But yp(f, ((((ecp(x))f)cp(y))g)cp(y)~x)=y1 and, by
(5),

*Kg, i(i(e<p(x))fMy))gMy)-19(y>P(f ((/VOODOO'1)))
= z</,(g, ((((ecp(x))f)cp(y))g)cp(y)' VCv))
= z</>(g, (((ecp(x))f)<p(y))g) = zu

Hence (ziA(ji))A(xi) is definable and x(yz) = (z1X(y1))X(x1).
8°. S is a semigroup.
In fact, we suppose that x, y and z are elements of S with e, f geE, xe Re,

yeRf and z g Rg. Then, by 6° and 7°, both ZiA(jiA(xx)) and (z^O^A^) are
definable and (^)z = ZiA(j1A(x1)), x(yz) = (z1X(y1))X(x1). The definability implies

e(x1)cp(x1) = e(y1),       etvOî'O'i) = ^i)-

Hence, by (8),
(xy)z = ZiA(>>iA(xi)) = (ziA(ji))A(^i) = x(yz).

9°. IfyX(x) is definable, then yX(x)=xy.
In fact, by the definability of yX(x), we have e(y) = e(x)cp(x). Hence, by 5°, (10)

and (2),

xy = (yX(e(y), (e(x)cP(x))e(y)))X(x4.(e(x), ((e(x)<p(X)M>0)<p(*) "'))
= y4>(e(y), e(y))X(x^(e(x), e(x))) = yX(x).

10°. For each e e E, let e* be the element in Re such that e*X(e*) is definable and
e*X(e*) = e*. Then e* is uniquely determined by e. Moreover E*={e*;ee E} is the
set of all idempotents of S.

In fact, by (9), e* is uniquely determined by e. We take an arbitrary element e*
of E*. Then e*X(e*) is definable. Hence, by 9°, e*2 = e*X(e*) = e*, and so e* is an
idempotent of S. Conversely let x be an idempotent of S. Then, by 5° and (10),

x2 = (x<Ke(x), (e(x)<p(x))e(x)))X(x<p(e(x), ((e(x)ç>(x))e(x))<p(x) " *))

and the right-hand side is definable. Thus ((e(x)cp(x))e(x))cp(x)~1 = e(x2) = e(x) and
so e(x)cp(x) = (e(x)cp(x))e(x). Therefore e(x)cp(x)-^e(x). Hence, by (2),

x = x2 = (xi/j(e(x), e(x)cp(x)))X(x>f)(e(x), e(x)))

= (xip(e(x), e(x)cp(x)))X(x).
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Hence, by 3°, (7), Io and (5),

e(x)<p(x) = e(x)cp((xi/j(e(x), e(x)cp(x)))X(x))

= e(x)cp(x)cp(x>p(e(x), e(x)cp(x))) = e(x)cp(x)cp(x).

Therefore e(x) = e(x)cp(x). Hence, by (2),

xifi(e(x), e(x)cp(x)) = xcu(e(x), e(x)) = x

and so xA(x) is definable and x=x2=xA(x). Therefore x = e(x)* e F*.
1 Io. cp(e*) is the identity mapping ofP(e).
In fact, e*A(e*) is definable and e* = e*X(e*). Hence, by 3° and (7), for feP(e),

Me*) =Me*X(e*)) = Me*)cp(e*)
and so f=Me*).

12°. Ife,geEandg^e, then e*c/>(e,g)=g*.
In fact, since g-¿e = e(e*), e*cp(e,g) is definable. Moreover, by 2°, (6) and 11°,

e*4>(e,g) = (e*X(e*M(e,g)
= (e*>/>(e,g<p(e*)))Ke*>Ke,g)) = (e*^(e, g))X(e*<p(e,g))

and all expressions are definable. Hence e*<\i(e, g) e E*. On the other hand,
e*>/>(e, g) e Rg and so e*>p(e, g)=g*.

13°. The mapping which maps e into e* is a semigroup and semilattice isomorphism
of E onto E*.

In fact, evidently this mapping is a one-to-one mapping of F onto F*. Moreover,
by 5°, (10), 11° and 12°, for eje E,

e*f* = (ptff, (e<p(e*))f))X(e*>Ke, ((ecp(e*))f)<p(e*)^))
= (f*>p(f,ef))X(e*ch(e, ef)) = (ef)*X((ef)*) = (ef)*.

Hence the mapping is a semigroup isomorphism and so also a semilattice iso-
morphism of F onto F*.

14°. Let e, fe E, x e Re and f=e<p(x). We denote the element y e Rf such that
yX(x) = e* by x"1. Then x"1 is uniquely determined by x.

Evident from the definition of A(x).
15°. For every x e S, cp(x~1) = cp(x)~1.
In fact, by (4), <p(x) is a one-to-one mapping of P(e(x)) onto P(e(x)<p(x)). Hence

both <p(x_1) and cp(x)~1 have the same domain P(e(x)cp(x)). Let g eP(e(x)cp(x)).
Then

f=gcP(x)-1eP(e(x)).

Now, by 11°, 14°, 3° and (7),

g9(x)-> =f = fy(e(x)*) =/p(x-1A(x)) =/v(x)<p(x-1) = gcp(x-1).

Hence cp(x) ~x = <p(x ~1).
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16°. For every x e S, x xxx x=x  l.
In fact, by 14° and 15°, e(x'1)cP(x-l) = e(x)cp(x)cp(x)-x = e(x) = e(e(x)*y Hence

e(x)*X(x~1) is definable and, by 9°, 14° and 8°, e(x)*X(x~ l) = x'ie(x)* = X-1(x-1X(x))
= x~1xx~1. Therefore e(x~1xx'1) = e(e(x)*X(x~i)) = e(x~1) = e(x)cp(x). Hence both
(x-lxx~x)Hx) and x~l\(x) are definable and, by 9°, 8° and 14°,

ix~lxx-l)Mx) = xx-^x-1 = (x-1X(x))(x~1X(x))

= e(x)*e(x)* = e(x)* = x~1X(x).

Since X(x) is one-to-one, we have x~ixx~1 = x~1.
17°. For every xe S, x~ 1x = (e(x)cp(x))* and(x~1)~1 = x.
In fact, we have shown in the proof of 16° that e(x~1)cp(x~1) = e(x). Hence

xX(x~x) is definable and xX(x'i) = x'1x. Therefore e(x~1x) = e(xX(x'1)) = e(x~1)
= e(x)cp(x). Now, by 8° and 16°, (x-1x)(x-1x) = (x-1xx-1)x = x~1x. Hence, by 10°,
x~1xeE* and so x~1x = xX(x'1) = (e(x)cp(x))*. Therefore, by 14°, we have also
(x~1)-i = x.

18°. For every x e S, xx_1x = x.
In fact, by 17° and 16°, xx-1x = (x-1)-1x-1(x-1)-1 = (x-1y1 = x.
19°. 5 is an inverse semigroup and, for each xe S, x'1 is the inverse of x.
In fact, by 18°, S is a regular semigroup and, by 10° and 13°, two idempotents of

S commute with each other. Hence, by [1, Theorem 1.17], S is an inverse semi-
group. Moreover, by 16° and 18°, .x-1 is the inverse of x.

20°. For each e e E, Re is the ¿%-class of S which contains the element e*.
In fact, by 18°, xSPxx'1 and xx'1 e E*. By [1, Theorem 1.17], each ^-class has

one and only one idempotent. Hence x is an element in the ^-class which contains
e* if and only if xx~l=e*,if and only if e(x) = e by 14° and 9°, and so if and only if
xeRe.

21°. If xe S, e,fe E and xi/>(e,f) is definable, then x</>(e, f) =f*x.
In fact, since x^e,f) is definable, xeRe and/^e. By 5°, (10), 11°, (2), 9°, 14°

and 18°,
f*x = (x^(e,(fy(n)e))X(f*cp(f,((fcP(f*))e)cP(f*)^))

= (x<Ke,fe))X(f*cp(fife)) = (*^,/))A(/W,/))
= (xcu(e,f))X(f*)=f*(x4.(e,f))
= (x4>(e,f))(x<p(e,f))-\x4>(e,f)) = x^(e,f).

22°. IfxeS, e e E and ecp(x) is definable, then (ecp(x))* = x~1e*x.
In fact, since ecp(x) is definable, e-^e(x). By 19°, 17°, 21° and (5),

x~1e*x — (x~1e*)(e*x) = (e*x) ~ x(e*x) = (e(e*x)cp(e*x))*

= (e(x>/.(e(x), e))cp(xcp(e(x), e)))*

= (ecp(x>/j(e(x), e)))* = (ecp(x))*.

This completes the proof of Theorem 2.2.
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3. A characterization of left ordered inverse semigroups. In this section, we
characterize the structure of left ordered inverse semigroups. Theorems 3.4 and
3.6 give a characterization of left ordered inverse semigroups in terms of the
ordered commutative idempotent subsemigroup constituted by all idempotents
of the inverse semigroup S and the simply ordered ^-classes of S. Corollaries 3.5
and 3.7 give a characterization in terms of the three mappings <p, <p and A.

Lemma 3.1. A left ordered inverse semigroup S contains no elements of finite order
except idempotents.

Proof. By way of contradiction, we assume that x is a nonidempotent element of
finite order in S. Then we have either x<x2 or x>x2. If x<x2, then x<x2< • • •
<xn<xn + 1 = xn + 2= • • • for some natural number n. If x>x2, then x>x2> • • •
>xn>xn + 1 = xn + 2= ■ ■ ■ for some natural number n. In both cases, y = xn is an
element of order 2, i.e. y¥=y2=y3 = •••• We put y2 = a. Since y2 and yy'1 are idem-
potents, we have

ay'1 = y2y~x = y3y'1 = y^yy'1) = (yy'^y2 = y2 = a.

Moreover, since a=y2 is an idempotent, we have a = a~l. First we consider the case
when yy~1¿y~1y. Then

a = ay-1 = y2y~x = y(yy~x) â y(y'1y) = y.

But a=y2¥=y and so a<y. Now we have

(JJ-1)^"1^) = ya~xy = yay = y* = y2 = a < y = (yy'^y,

yy = a < y = y(y~1y).

From the first inequality we obtain y~xy<y and from the second we obtain
y<y_1y, which is a contradiction. In the case when y^-y^yy1, we obtain a
contradiction in a similar way.

Lemma 3.2. Let S be an inverse semigroup which contains no elements of finite
order except idempotents and let x, y e S. Then the following conditions are equiv-
alent to each other:

(a) j>y"1x = xx-1.y;
(b) y_1x is an idempotent;
(c) x_1y is an idempotent;
(d) x-1yy-1x=x~1y;
(e) y~1xx~1y=y~1x;
(f) y~1x = x~1xy~1y;
(g) x"1>'=x-1x>'-1>';

(h)   xy-1y=yx~1x;
(i) xy~x is an idempotent;
(j) yx'1 is an idempotent;
(k)   xy~1yx~l=yx~1;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



112 TÔRU SAITÔ [January

(1) yx~1xy~1=xy~1;
(m) xy~1 = xx~1yy~1;
(n)   yx~1 = xx~1yy~1.

Proof, (a) implies (b). In fact, y~1x=y~1(yy~1x)=y~íxx~1y = (y~1x)(y~1x)~1
is an idempotent.

(b) implies (c). In fact, since j_1x is an idempotent, x"1>' = (j"1x)"1=j"1xis an
idempotent.

(c) implies (d). In fact, x~1j>j~1x = (x~1j)(x~1j)~1 = (x~1_y)2 = x~1y.
(d) implies (e). In fact, since x"1>' = x"1j>'"1x = (x"1>')(x_1j)"1 is an idem-

potent, y~1xx~1y = (x~1y)~1(x~1y) = (x~1y)2 = x~1y = (x~1y)~1=y~1x.

(e) implies (m). In fact, y~1x=y~1xx~1y is an idempotent and so (xy-1)3
= x(j'"1x)2.}'_1 = xO>"1x).y"1 = (x.y"1)2. By assumption, x.y_1 is an idempotent.
Moreover, since y~1x is an idempotent, we have _y"1x = (j_1x)"-1 = x_1j. Hence
x>,_1 = (x_)'"1)2 = x(iy"1x)j_1 = x(x"1j)ij'"1 = xx_1j^"1.

(m) implies (n). In fact, yx~1 = (xy~x)~1 = (xx~1yy~1)~1 = xx~1yy~1.
(n) implies (h). In fact,yx~l = xx~ 1yy~x is an idempotent and soyx~1 = (yx-1)-1

=xy'1. Hence j>x"1 = (jx"1)2 = (yx"1)(xj>~1)=jx~1x)'"1. Therefore xy~1y =
(xy ~ 1)j = (yx ~ 1)j = (yx ~ xxy " x)y=yx~xx.

By a dual argument, we can prove that (h) implies (i), (i) implies (j), (j) implies
(k), (k) implies (1), (1) implies (f), (f) implies (g) and (g) implies (a).

Lemma 3.3. Let S be an inverse semigroup and let x, ye S such that xy'1y
=yx~1x and x~1x=y~1y. Then x=y.

Proof. By assumption, we have x = xx~1x = xy~1y=yx~1x=yy~1y=y.

Theorem 3.4. Let S be a left ordered inverse semigroup and let E be the set of all
idempotents of S. Then E is an ordered commutative idempotent semigroup and, for
each eeE, Re is a simply ordered set with respect to the induced orders of S on E
and on Re, respectively. Moreover, S satisfies the following conditions :

(11') 5 contains no elements of finite order except idempotents;
(12') if e,feE, x, yeRe, x^y in Re and/^e, thenfx^fy in Rf;
(13') if e,fe E, xe Re, x_1x=/ y, z e Rf and y^z in Rf, then xy^xz in Re;
(14') xi=j> if and only if either

(a) jj'~:Lx<xx"1y in Ref, or
(b) yy~1x = xx~1y andx~1xt¿y~1y in E,

where e and fare elements of E such that xe Re and y e Rf.

Proof. It is evident that F is an ordered commutative idempotent semigroup and
Re is a simply ordered set with respect to the respective induced orders. The con-
dition (11') is satisfied by Lemma 3.1. If e,fe E, x, y e Re, x^y in Re and/^e,
then

(fx)(fx) - *■ = fxx - y = fef = /
(fyXfy)-1 = fyy-V = fef = /
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Hence fx, fy e Rf and evidently fx^fy. Thus we have the condition (12'). If
e,fe E, xe Re, x~1x=f, y, ze Rf and y^z in Rf, then

(xy)(xy)_1 = xyy~1x~1 = xfx'1 = xx'^xx'1 = xx'1 = e,
(xzyxz)'1 = xzz~xx~x = xfx'1 = e.

Hence xy, xzeRe and evidently xy^xz. Thus we have the condition (13'). Now
we suppose that x^y with x e Re and y e Rf. Then

(yy~1x)(yy~1x)-1 = xx'^y'1 = efi

(xx~1y)(xx~1y)~1 = xx~1yy~1 = efi

Hence yy_1x, xx~ly e Ref. Moreover

yy~lx = xx~1yy~ix ^ xx~1yy~1y = xx~xy.

If yy~1x<xx~1y, then the condition (a) in (14') holds. Next we suppose that
yy~1x = xx~1y. Then, by Lemma 3.2, x~1y = x~1xy~1y=y~1x. Hence x~1x^x~1y
=y~1x^y~1y and evidently x_1x, y~1y e E. Therefore the condition (b) in (14')
holds. Conversely, if (a) holds, then xx~1yy~ix=yy~1x<xx~1y = xx~1yy~1y and
so x<y. Next we suppose that (b) holds. By way of contradiction, we assume that
x>y is true. Then, by the fact shown above, x~1x^y~1y and so x~1x =y~1y.
By Lemma 3.2, we have xy'1y=yx~1x and so, by Lemma 3.3, we have x=y,
which is a contradiction. Thus we have x^y.

Corollary 3.5. Let S be a left ordered inverse semigroup and let E be the set of
all idempotent s of S. Then, in addition to the fact that S satisfies the conclusion of
Theorem 2A, E is an ordered commutative idempotent semigroup and, for each e e E,
Re is a simply ordered set with respect to the induced orders of S on E and on Re,
respectively. Moreover, S satisfies the following conditions:

(11) S contains no elements of finite order except idempotents;
(12) ifeje E,x,ye Re, x^y in Re andf^e, then x</i(e,f)èy4>(e,f) in R,;
(13) ife,feE, xe Re, ecp(x)=fy, zeR¡ andy¿z in R¡, thenyX(x)^zX(x) in Re;
(14) x^y if and only if either

(a) x>fj(e, ef)<yip(f ef) in Ref, or
(h) xi/>(e, ef) =y>p(f, ef) and ecp(x) úfip(y) in E,

where e and fare elements of E such that xe Re and y e Rf.

Theorem 3.6. Let S be an inverse semigroup. Suppose that the set E of all idem-
potents of S is an ordered commutative idempotent semigroup and, for each ee E, Re
is a Simply ordered set. Moreover suppose that the conditions (11'), (12') and (13')
in Theorem 3.4 are satisfied. Then there exists one and only one left ordered inverse
semigroup S such that on the set E the order of S coincides with the original order of
E and, for each e e E, on the set Re the order of S coincides with the original order of
Re. This left ordered inverse semigroup S is obtained by defining the order in S by
(14') in Theorem 3.4.
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Proof. First we prove that, when we define the order á in S by (14'), S is a left
ordered inverse semigroup with the property mentioned in the theorem. We divide
the proof into several steps.

Io. Let x, y be elements of S such that yy~1x = xx~1y.
(a) Ifx~1x<x~1yy~1x in E, then x~1yy~1x¿y~1y in E;
(b) ifx~1yy~1x<x~1x in E, then y~ly¿x~1yy~1x in E.

In fact, we suppose that x~1x<x~1yy~1x in E. By way of contradiction, we
assume that y~iy<x~1yy~1x were true in F. By (11'), S contains no elements of
finite order except idempotents. Moreover, by assumption, we have yy~1x = xx~1y.
Hence, by Lemma 3.2, x~1_yj>~1x = x_1>> = x~:lxj>~1j. Therefore x"1x<x"1xj>"1>'
and y~1y<x~1xy~1y. But, by Lemma 1.1, x~1xy~1y lies between x_1x and y_1y
in F, which is a contradiction. Hence x~1yy~1x^y~1y in F and so we obtain (a).
We can prove (b) in a similar way.

2°. The relation ^ defined in S is really a simple order.
In fact, it is trivial that the relation ;£ in S is reflexive. Now we suppose that

x^y and y^x in S. Then, by (14'), yy~1x = xx~1y and x"1x=>'"1>'. Hence, by
Lemmas 3.2 and 3.3, we have x=y and so the relation á in 5 is antisymmetric.
Now we suppose that xiky and y^z in S with e,f, ge E, xe Re,y e Rf and z e Rg.
Then, by (14'), yy~1x^xx~1y in Ref and zz'1y¿yy~1z in Rfg. Hence, by (12'),

yy~xzz~lx = efgyy~xx 5= efgxx'1y = xx~1zz~1y   in Refg,

xx~1zz~1y = efgzz~xy ^ efgyy~1z = xx~lyy~1z   in Refg.

In the case when either yy ~ xzz " lx < xx " 1zz " 1y in Refg or xx ~ xzz ~ 1y < xx ~ 1yy ~ 1z
in Refg, we have efgzz~1x=yy~1zz'1x<xx~1yy~1z=efgxx~1z in Refg and so, by
(12'), zz~1x<xx~1z in Reg. Hence, by (14'), we have x^z. Thus, in what follows,
we suppose that yy~1zz~1x = xx~1zz~1y = xx~ 1yy~Lz.

(i) The case when yy~1x<xx~1y in Ref. We have

xx~1yy'1x = yy_1x # xx~1y = xx~1yy~1y,

xx~1yy~izz~1x = yy~1zz~xx = xx~xzz~xy = xx~1yy~1zz~1y.

Hence efg = xx~1yy~1zz~1yíxx~1yy~1 = ef. Now, in the semilattice (E, t£),
efr^f and fgráf and so, by Lemma 1.3, ef and fg are comparable in (F, r£). But,
if efráfg were true, then we would have efg = ef, which is a contradiction. Hence
fg rief and so efg=fg. Similarly we have efg = eg. By assumption, y^z in S and
zz-1y=fgy = efgy = xx-1zz-1y = xx-1yy-1z = efgz=fgz=yy-1z. Hence, by (14'),
y~1y^z~1z in F. Now, by way of contradiction, we assume that x^z were false in
S. Then, since zz~1x = egx = efgx=yy~1zz~1x = xx~^yy~1z = efgz = egz = xx~1z,
we have, by (14'), x'1x>z~1z in F. We put h=y~1yz~1zeE. We have zz~1y
=yy~xz and so, by Lemma 3.2, h=y~xyz~1z = z~1y. Moreover

n = z~1y = z"1/*); = z~1efgy = z^ixx^zz-1;/)

= z'Xj'j'^zz^x) = z~xefgx = z_1egx = z_1x.
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Since zz~1x = xx~1z, we have, by Lemma 3.2, h = z~1x = x~1xz~1z = x~1z. Hence

h = h2 = (y~1yz~1z)(x~1xz~1z) = x~1xy~1yz~1z.

Since y~1y¿z~1z<x~1x in E, we have, by Lemma 1,2, x~1xy~iy^z~1z and so
h = x~1xy~lyz~1z = x~1xy~1y. Hence x~izz~1y=(x~1z)(z~1y) = h2 = h = x~1xy~1y.
Therefore

xy'1 = x(x~1xy~1y)y~1 = x(x~1zz~1y)y~1 = xx~1zz~1yy~1 e E.

Hence, by Lemma 3.2, yy~1x = xx~1y, which contradicts the assumption that
yy~1x<xx~xy. Thus we have x^z in S.

(ii) The case when zz'^Kyy'^-z in Rfg. In a similar way to (i), we obtain x^z.
(iii) 77ze case when yy~ix^xx~1y in Ref and zz~1y'^yy~1z in Rfg. Since x^y

and y^z in S, we have, by (14'), yy~1x = xx~xy, zz~1y=yy~1z and x~1x^y~ly
gz~lz in E. By way of contradiction, we assume that xx~1z<zz~1x in Reg. Then,
in a similar way to (i), we obtain z^y in S, since x^y in S. On the other hand, by
assumption, y^z in 5 and so j = z, since we have proved that the relation ^ in S
is antisymmetric. Hence

xx~xz = xx'^y = yy~1x = zz~1x,

which is a contradiction. Thus we have zz~1xSxx~1z in Reg. If zz~1x<xx~1z in
Reg, then x ^ z in S by (14'). Alsoif zz""1*=;t;c~1z, then* ^z in S, since x_1jc^z_1z
in Tí. This completes the proof of the transitivity of the relation ^.

Now we take arbitrary elements x, ye S. By (14'), if yy~1x<xx~1y in Ref, then
we have x^y in S, while, if yy~1x>xx~xy in Ref, then x^y in 5. Next we suppose
that yy~1x = xx~1y. Again by (14'), if x~1x^y~1y in 7s, then we have x^y in S,
while, if x_1x^ j"1^ in E, then ;t^ j; in S. This completes the proof of 2°.

3°. With respect to the order ;£ in S, x^y implies zx^zy, where e, f ge E,
x e Re, yeRf and z e Rg.

In fact, we put x' = zx, y' = zy, e' = zez~1, f' = zfz'1, x*=zef y* = z~1zefx,
z* = z~1zefy, e* = zefz~1 and f* = z~1zef Then e',f, e*,f* eE and

e'f = zez~xzfz~x = zefz'1 = e*,
x'x'~l = (zx)(zx)_1 = zez'1 = e',
y'y'-1 = (zy)(zy)-i = zfz^=f.

Also we have x' e Re. and y' e Rr. Moreover

y'y'~1x' = zfz~xzx = (zef)(z'xzefx) = x*y*,

x'x'~1y' = zez~xzy = (zef)(z~xzefy) = x*z*.
Furthermore

x*x*-x = (zef)(zef)-x = zefz~x = e*,

y*y*-i = (z-1zefx)(z~1zefx)~1 = z~1zef = f*,
z*z*-i  = (z"1zefy)(z~1zefy)~1 = z~lzef' = /*,
x*-ix* m (zef)-\zef) = z~1zef = f*.

Also we have x* e Re. and y*, z* e Rf„

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



116 TÔRU SAITÔ [January

(i) The case when yy~1x<xx~1y in Ref. Sincef* = z~1zef rief, we have, by (12'),

y* = (z~1zef)(yy~1x) ^ (z~1zef)(xx~1y) = z*

in Rf.. Therefore, since x*eT?e. and x*_1x*=/*, we have, by (13'), y'y'~1x'
= x*y*¿¡x*z*=x'x'~1y' in Re.. ïf y'y'~1x' <x'x'~1y' in Re. = Re.r, then, by (14'),
zx = x'^y' = zy in S. Next we suppose that y'y'~1x' = x'x'~1y'. Then x*y*
=y'y'~1x' = x'x'~1y' = x*z*. Hence

(z_1Ze/)x = y* = y*y*_1y* = f*y* = x*_1x*_y* = x*_1x*z*

= f*z* = z*zii~xz* = z* = (z~lzef)y.

But, by assumption, efx—yy~1x^xx~1y = efy. Hence z_1ze/#e/ Now z~1zeráe
and efr£e and so, by Lemma 1.3, z'^ze and ef are comparable in the semilattice
(E, té). If efr^z~xze were true, then we would have z~xzef=ef, which is a contra-
diction. Hence z'^zer^ef and so z~1zef=z~1ze. Similarly we have z~1zef=z~1zf.
Hence

zx = z(z~1ze)x = z((z~lzef)x)

= z((z~1zef)y) = z(z~1zf)y = zy.

(ii) The case when yy~1x'^xx~1y in Ref. Since x^y in S, we have, by (14'),
yy~1x=xx~1y and x~1x^y~1y in F. Hence

j'j'_1x' = x*y* = x*z'lzefx = (x*z~1z)(yy~1x)

= (x*z'1z)(xx~1y) = x*z~xzefy = x*z* = x'x'~1y'.

Therefore, by Lemma 3.2,
x_1y = x_1xy-1}> = y~xx,

x'~1y' = x'~1x'y'~1y' = /_1x'.

By way of contradiction, we assume that x_1j>j>_1x<x_1x is true in E. Then,
by l°(b), y~1y^x~1yy~1x<x~1x in E, which is a contradiction. Hence x_1x
&x~tyy~1x in F. Similarly we have y~1xx~1y^y~1y in F. Hence, in F,

x'-V = (zx)"1(zx) = (zx)-1(zx)(x"1x) Ú (zx)-1(zx)(x"1^-1x)

= (zx)-1zyy~1x = (zx)-1(zy)(y-1x) = (x'-1/)^-1*)

= (y'-*x')(x-iy) - (zy)-\zx)(x-iy) = (z^)-1zxx"1j

= (z^-Xz^Xj-^x-» ^ (z^-HzjXj-^) = («y)-^)
= /-y.

Therefore, by (14'), we have zx=x''¿y'' = zy in S. This completes the proof of 3°.
4°. On the set E the order of S coincides with the original order of E.
In fact, for e, feE, ff~1e = ef= ee~ lf and e~xe = e, f~xf=f. Hence, by (14'),

e^/with respect to the order in S if and only if e 5=/with respect to the order in F.
5°. For each eeE, on the set Re the order of S coincides with the original order

ofRe.
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In fact, for x, ye Re, yy~1x=xx~1x = x and xx~1y=yy~1y=y. Hence, by (14'),
x<y with respect to the order of S if and only if x<y with respect to the order
ofRe.

This completes the proof of the fact that, when we define the order in S by (14'),
S is a left ordered inverse semigroup with the property mentioned in the theorem.
The uniqueness of such left ordered inverse semigroups is almost trivial by Theorem
3.4.

Corollary 3.7. 7n addition to the assumption of Theorem 2.2, we suppose that
E is an ordered commutative idempotent semigroup, that, for each e e E, Re is a
simply ordered set and that the conditions (11), (12) and (13) in Corollary 3.5 are
satisfied. We define the product in S by (10) in Theorem 2.1 and the order in S by (14)
in Corollary 3.5. 77zen S is a left ordered inverse semigroup such that the semigroup
and semilattice isomorphism of E onto E* in Theorem 2.2 which maps e into e* is an
order isomorphism of the ordered semigroup E onto the ordered semigroup E*
induced by the order of S and moreover, for each ee E, the order induced in Re by
the order of S coincides with the original order in Re.

4. Some properties of left ordered inverse semigroups. In this section, we give
some properties of left ordered inverse semigroups which we need in the following
sections.

Lemma 4.1. Let x, y be elements of a left ordered inverse semigroup S. Then
(a) yy~1x<xx~1y if and only ifxy~iy<yx~1x;
(b) yy~1x>xx~1y if and only if xy~1y>yx~1x;
(c) y y ~1 x=xx ~ 1y if and only ifxy~1y=yx~1x.

Proof. We put x'=xy~1y and y'=yx~1x. Then

y'y''1^ = yx~1xy~1xy~1y = yx~1x(y~1xx~1yy~1x)(y~1y)

= yx~1xy~1x(x~1yy~1x)(y~1y) = yx~1xy~1x(y~ly)(x~1yy~1x)

= (yx~1xy~1)(xy~1yx~1)(yy~1x)

and  similarly x'x'~1y' = (xy~1yx~1)(yx~1xy~1)(xx~1y).  First we  suppose  that
yy~1x<xx~1y. Then

y'y'~xx' = (yx-1xy-1)(xy-1yx~1)(yy-1x)

= (xy~1yx~1)(yx~1xy~1)(yy~1x)

= (xy~1yx~1)(yx~1xy~1)(xx~1y) = x'x'~1y'.

By way of contradiction, we assume that y'y'~xx'' = x'x'~1y' is true. Then, by
Lemma 3.2, x ' 1xy ~ 1xy " 1y=y' ~ 1x' = x' ' 1x'y' ~ 1j' = x' ~ 1y' = y ~ xyx ~ 1yx ~ 1x. Hence

xy~1xy~1 = x(x~1xy~1xy~1y)y~1 = x(y~1yx~1yx~1x)y~1

= (xy-1yx-1)(yx-1xy-1).
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Therefore (xy'1)2 is an idempotent and so xy1 is an element of finite order. By
Lemma 3.1, xy-1 is an idempotent and so, by Lemma 3.2, yy~1x = xx~1y, which is
a contradiction. Therefore x'x' ~ 1y'y' ' 1x' =y'y' ' xx' < x'x' ~ xy' = x'x' ~ 1y'y' ~ xy' and
so x.y"1>' = x'<y=}'x~1x. Thus we have proved thatyy~xx<xx~xy implies xyxy
<yx'1x. In asimilar way we can prove that yy~1x>xx~1y implies xy~1y>yx~1x.
The assertion (c) is contained in Lemma 3.2. Hence, conversely, xj>-1j><.yx~1x
implies yy~1x<xx~1y and xy~1y>yx~1x implies j>j~1x>xx~1>\ This completes
the proof of Lemma 4.1.

Lemma 4.2. Let x, y be elements of a left ordered inverse semigroup S which are
Si-equivalent or 3?-equivalent to one another. Then

(a) yy~1x<xx~1y if and only if x<y;
(b) yy1x>xx~1y if and only if x>y;
(c) yy1x = xx~ 1y if and only if x=y.

Proof. If x3$y, then we have xx~1=yy1. Hence x=xx"1x=jj'~1x, y=yy~xy
= xx_1j\ Therefore we obtain the conclusion trivially. If x3?y, then x~1x=y~1y
and so x = xx~1x = xy~1y, y=yy~1y=yx'1x. Hence we obtain the conclusion by
Lemma 4.1.

Lemma 4.3. The following conditions for an element x of a left ordered inverse
semigroup S are equivalent:

(a) x is positive;
(b) x_1x<x;
(c) xx-1 <x.

Proof, (a) implies (b). In fact, xx_1x = x<x2 and so x_1x<x.
(b) implies (c). In fact, (x"1x)x~1x=x""1x<x=xx_1xx_1x=x(x~1x)_l(x"1x).

Hence, by Lemma 4.1, (x"1x)xx"1 = xx-1(x_1x)<(x"1x)(x"1x)_1x = (x-1x)x.
Therefore xx~1 < x.

(c) implies (a). In fact, xx~1(x"1x) = (x_1x)xx_1^(x"1x)x = (x~1x)(x"1x)"1x.
Hence, by Lemma 4.1, x_1x=(x"1x)x"1xSx(x_1x)"1(x"1x)=xx"1xx~1x=x.
Therefore x = xx_1x^x2. But, if x=x2, then x is an idempotent and so xx_1=x2
=x, contradicting the assumption. Hence x is positive.

Lemma 4.3'. The following conditions for an element x of a left ordered inverse
semigroup S are equivalent:

(a) x is nonpositive;
(b) xúx^x;
(c) x^xx-1.

As the order dual of Lemma 4.3, we have

Lemma 4.4. The following conditions for an element x of a left ordered inverse
semigroup S are equivalent:

(a) x is negative;
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(b) x<x-xx;
(c) x<xx1.

Lemma 4.4'. 77ze following conditions for an element x of a left ordered inverse
semigroup S are equivalent:

(a) x is nonnegative;
(b) x~1x^x;
(c) xx'1 Sx.

Lemma 4.5. Let x be an element of a left ordered inverse semigroup S. Then x is
positive if and only if x~x is negative.

Proof. By Lemma 4.3, x is positive if and only if xx_1<x. If xx~1<x, then
xx~1<xx~1x and sojc_1<x_1x Conversely, if x~1<x~1x, then x~1xx~1<x~1x
and so xx~*<x. Thus xx~x<x if and only if x~1<x~1x and so, by Lemma 4.4,
if and only if x~x is negative.

Lemma 4.6. Let x, y be nonnegative elements of a left ordered inverse semigroup
S. Then xy is nonnegative.

.
Proof. Since x is nonnegative, x'1 is nonpositive by Lemma 4.5. Hence, by

Lemma 4.3', x"1^*-1*. Therefore (xy)(xy)~l = xyy~1x~1^xyy~1x~1x = xyy~1.
Since y is nonnegative, we have yy~y^y by Lemma 4.4'. Hence (xyyxy)'1
= xyy~11¿xy. Hence, by Lemma 4.4', xy is nonnegative.

As the order dual of Lemma 4.6, we have

Lemma 4.7. Let x, y be nonpositive elements of a left ordered inverse semigroup
S. Then xy is nonpositive.

By Lemma 4.6, the set P of all nonnegative elements of a left ordered inverse
semigroup S forms a subsemigroup of S, which is called the nonnegative part of S.
Also, by Lemma 4.7, the set Q of all nonpositive elements of 5 forms a subsemi-
group of S, which is called the nonpositive part of S.

Lemma 4.8. Let x, y be elements of a left ordered inverse semigroup S. Then the
following conditions are equivalent :

(a) yy'1x<xx~1y;
(b) y ~ 1yx ~ xyx ~lx is positive ;
(c) x~xy is positive.

Proof, (a) implies (b). In fact, we put x' = xy~1y and y'=yx~1x. Then, by
Lemma 4.1, x' = xy'ly<yx~1x=y' and also x'~xx' = x~1xy~1y=y'~1y'. Hence
x'~1y' = x'~:Ly'y'~1y' = x'~1y'x'~1x'¿x'~1y'x'~1y' = (x'~1y')2. By way of contra-
diction, we assume that x'~1y' = (x'~1y')2 is true. Then x'~1y' is an idempotent
and so, by Lemma 3.2, y'y'~1x' = x'x'~1y'. Now x'f£x'~xx' =y''1y'áCy' and so x'
and y' are .SP-equivalent. Hence, by Lemma 4.2, x'=y', which contradicts the fact
that x' <y'. Hence x'~1y' <(x'~1y')2 and so y~1yx~1yx~1x = x'~1y' is positive.
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(b) implies (c). In fact, by way of contradiction, we assume that x_1>> is non-
positive. Then, by Lemma 4.7, yxyx~xyx~xx is also nonpositive, which contra-
dicts the assumption. Thus x~xy is positive.

(c) implies (a). In fact, by Lemma 4.3, (x~xyyx)(yyxx) = (x~xy)(x~xy)~x
<x~xy = (x~xyyx)(xx~xy) and so yyxx<xx~xy.

Lemma 4.9. Let x, y be elements of a left ordered inverse semigroup S which are
^-equivalent or £É'-equivalent to one another. Then x<y if and only ifx ~ xy is positive.

Proof. This lemma follows immediately from Lemmas 4.2 and 4.8.

Lemma 4.10. Let x, y, z be elements of a left ordered inverse semigroup S. If
xy~1yjiyx~1x andxy~xyz=yx~xxz, then xz=yz.

Proof. By assumption,

x(x~xxyxy) = xyxy ^ yx~xx = y(x~xxyxy),

x(x~1xy~1yzz~1) = (xy'1yz)z'1 = (yx~xxz)z~x = y(x~1xy~1yzz~1).

Hence x~xxyxy^x~xxyxyzz~x. Now (x~xx)(yxy)r£x~xx, (x~xx)(zz~x)ráx~xx
and so, by Lemma 1.3, (x~1x)(y1y) and (x~xx)(zz~x) are comparable in the
semilattice (F, r¿). Since x~xxy~xy^x~xxyxyzz~x, we have (x~xx)(zz~x)
7£(x~xx)(y~xy) and so x~xxzz~x = x~xxyxyzz~x. Similarly we have yxyzz~x
=x~xxyxyzz~x. Hence

xz = x(x~xxzz~x)z = x(x~xxyxyzz~x)z = xy~xyz = yx~xxz

= y(x~xxy~xyzz~x)z = y(yxyzz~x)z = yz.

5. A characterization of ordered inverse semigroups. In this section, we
characterize the structure of ordered inverse semigroups. Theorem 5.4 gives a
condition in order that a left ordered inverse semigroup is an ordered inverse
semigroup. Corollary 5.5 gives a characterization of ordered inverse semigroups
in terms of the three mappings ¡/>, <p and A.

Lemma 5.1. Let S be a left ordered inverse semigroup and let E be the set of all
idempotents of S. Then S satisfies the condition

(12R) if e,fe E, x, ye Le, x^y in Le andfrá e, then xfSyfin Lf.

Proof. We put x' = x/and y'=yf. Since x£?y and x^y,,we have, by Lemma 4.2,
yy~xx^xx~xy. Hence

y'y'-'x' = (yf)(yf)-x(xf) = yfy-xxf = yfy-xx(x-xyyxx)f
= yfy'1xfx-xyyxx ^ yfyxxfx-xxx~xy = (xfx-x)(yfy-x)xx~xy

- xfx-xy(y-xxx-xy)f= xfx~xyf = (xf)(xf)-x(yf)

= x'x'-y.
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Since x££y, we have x' =xfS£yf=y'. Hence, by Lemma 4.2, xf=x'^y'=yf

Lemma 5.2. Let (S, ¿¡) be a left ordered inverse semigroup and let E be the set of
all idempotents of S. Suppose that (S, á ) satisfies the condition

(13R) if e,feE, xeLe, xx~x=fi y, zeLf andy^z in Lf, then yx^zx in Le.
Then there exists one and only one right ordered inverse semigroup (S, ^ i) such that
the order ¿ i coincides with the order ^ on the set E and also on the set Le for each
ee E.

Proof. This lemma follows immediately from Theorem 3.4, Lemma 5.1 and the
left-right dual of Theorem 3.6.

The right ordered inverse semigroup (S, ái) in Lemma 5.2 is called the asso-
ciated right ordered semigroup of the left ordered inverse semigroup (S, S).

Lemma 5.3. Let S be a left ordered inverse semigroup and let E be the set of all
idempotents of S. Then the condition

(14R) xSy if and only if either
(a) xy~xy<yx~xx in Lef, or
(h) xy~1y=yx~1x and xx~1Syy~1 in E,

where e and f are elements of E such that xeLe and y eL¡, is equivalent to the
condition

(16') ife,f g e E, x e Re, f-^e, g^e andfúg, then x~xfxSx~xgx.

Proof. (14R) implies (16'). In fact, we suppose that e, f, geE, x e Re, f^e,
g-^e and fSg- Then x~xf-¿x~xg. Now (x'1f)(x~1g)~x(x~xg)=x~1fg
= (x-ig)(x-yyx(x-xf).Hence,by(UR),x-xfx = (x-V)(x-xf)-^(x-1g)(x-xg)-x
= x~xgx.

(16') implies (14R). In fact, by Theorem 3.4, x^y if and only if either
(a*) yy~1x<xx~xy or
(b*) yy~xx=xx~1y and x~1x^y~1y.

By Lemma 4.1, (a) is equivalent to (a*) and also the first condition of (b) is
equivalent to the first condition of (b*). Hence, in what follows, we consider the
case when xy~xy=yx~xx and yy~xx = xx~xy. First we suppose that xx~1<yy~x.
By Lemma 1.1, xx'1 fkxx~1yy~1 èyy'1■ Hence, by (16'),

x~xx = x~x(xx~x)x á x~x(xx~xyy~x)x = x~xyy~xx,

y~xxx~xy = y~xixx~xyy~x)y ^ y'Kyy'^y = y~xy-

Since xy~xy=yx~xx, we have, by Lemma 3.2, x~xyy~xx = x~1y = x~xxy~xy
=y~1x=y~xxx~xy, and so x~1xSx~1yy~1x=y~1xx~xySy'xy. But, if x~1x
=y~1y, then, by Lemma 3.3, we have x=y, which contradicts the fact that xx~x
<yy~x. Thus we have proved that xx~x<yy~x implies x~xx<y~xy. Similarly we
can prove that yy'x<xx~x implies y~xy<x~xx. Finally, if xx~x=yy'x, then, by
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Lemma 4.2, we have x=y and so x"1x=y"1y. Hence

xx-1 < yyx   if and only if   x_1x < yxy;

xx~x > yyx   if and only if   x_1x > y~xy;

xx-1 = yyx   if and only if   x_1x = y~xy.

Therefore (b) is equivalent to (b*). Hence (14R) holds.

Theorem 5.4. Let S be a left ordered inverse semigroup and let E be the set of all
idempotents of S. In order that S is an ordered inverse semigroup, it is necessary and
sufficient that it satisfies the following conditions:

(15') i/xx~1=y"1y = z"1z amTygz, then yx^zx;
(16') ife,f, geE, xeRe,fráe, gráe andfSg, then x~xfx¿¡x~xgx.

Proof. The necessity of these conditions are trivial. We prove the sufficiency and
suppose that S satisfies the conditions (15') and (16'). The condition (15') is nothing
but the condition (13R) and so, by Lemma 5.2, there exists the associated right
ordered semigroup (S, ¿¡ i) of the original left ordered inverse semigroup (S, g )•
By the left-right dual of Theorem 3.6 and Lemma 5.3, the condition (16') means
that the order ¿¡ i coincides with the original order S . Thus S is an ordered inverse
semigroup.

Corollary 5.5. Let S be an ordered inverse semigroup and let E be the set of all
idempotents of S. Then, in addition to the fact that S satisfies the conclusion of Corol-
lary 3.5, S satisfies the following conditions:

(15) ife,f, geE,xeRe,yeR„ze Rg, e=My)=g<p(z) andy</>(f,fg)^zi/>(g,fg)
in Rfg, then yxi/>(f,fg)^zx</>(g,fg) in Rfg;

(16) if e, / g e E, x e Re, fr£e, gr£e andf^g in E, then fip(x)^gcp(x) in E.
Conversely, in addition to the assumption of Corollary 3.7, we suppose that the
conditions (15) and (16) are satisfied. We define the product in S by (10) in Theorem
2.1 and the order in S by (14) in Corollary 3.5. Then S is an ordered inverse semigroup.

Theorem 5.6. Let S be a left ordered inverse semigroup. Then each one of the
following conditions is equivalent to the condition (15') in Theorem 5.4:

(15a) if xy~xy<yx~xx, then yx~x is positive;
(15b) ifxJify and x<y, then yx^1 is positive;
(15c) if xMy and x<y, then yx"1 is positive;
(15d) ifx^Cy and yx~x is positive, then x<y;
(15e) if x&ty andyx~x is positive, then x<y;
(15f) i/jy"1x<xx"1y, then x"1xy"1<y"1yx"1;
(15g) if x3?y and x<y,theny~x<x~x;
(15h) if x&y andx<y, then yx<x~x;
(15i)  if xy is positive, then yx is positive;
(15j)  if xy~xy is positive, then yxy~x is positive;
(15k) ifyy~xx is positive, then yxxy is positive;
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(151)  if y is positive, then x~xyx is nonnegative for every xe S;
(15m)if x~xy is not idempotent and x<y, then xzSyz for every zeS.

Proof. (15') implies (15a). In fact, we suppose that xy~xy<yx~xx. We have
(y ~ xyx ~ x)(y ~ xyx ~x)~x=x~ xxy ~xy=(xy ' xy) ~ x(xy " xy)=iyx " xx) ~ x(yx ~ xx). Hence,

by (15'),
(yx~x)~1(yx~x) = xy~xyx~x = (xy~xy)(y~xyx'x)

^ (yx~xx)(y~xyx~x) = yx'x.

But, if (yx~1)~x(yx~x)=yx~1 were true, then yx~l is an idempotent and so, by
Lemma 3.2, we have xy~xy=yx~xx, which is a contradiction. Hence (yx~x)~x(yx~x)
<yx~x and so, by Lemma 4.3, yx'x is positive.

(15a) implies (15c). In fact, we suppose that x0ty and x<y. Then, by Lemma 4.2,
we have yy~xx<xx~xy. Hence, by Lemma 4.1, xy~xy<yx~xx and so, by (15a),
yx~x is positive.

(15c) implies (15e). In fact, we suppose that x@y and yx~x is positive. By way of
contradiction, we assume that >>^x. \f y<x, then, by (15c), xy'1 is positive and so,
by Lemma 4.5, yx~1 = (xy~1)~x is negative, which is a contradiction. If y = x, then
yx~1=xx~1 is an idempotent, which is also a contradiction. Thus we have x<y.

(15e) implies (15f). In fact, we suppose thatyy~xx<xx~xy. Then, by Lemma 4.8,
y~1yx~1yx~1x is positive. Now x~xxy~x3/tx~xxy~xy3fcy~xyx~x and moreover
(y~xyx~x)(x~1xy~1)~1=y~xyx~1yx~xx is positive. Hence, by (15e), x~xxy~x
<y~xyx~x.

(15f) implies (15h). In fact, we suppose that x0ty and x<y. Then, by Lemma
4.2, yy~xx<xx~xy and so, by (15f), x~x(x~x)~xy~1 = x~1xy~x<y~1yx~x
=y~x(y~x)'xx~x. Since xSiïy, we have xx"1=jj~1 and so x~1£fy~x. Hence, by
Lemma 4.2, we have y ~x < x ~1.

(15h) implies (15i). In fact, we suppose that xy is positive. Then, by Lemma 4.8,
yy'1x'1<x~1xy. Now yy~xx~x&x~xxyy~x&x~xxy and so, by (15h), y~1x~1x
= (x~1xy)~x<(yy~1x~1)~x = xyy~x. Therefore, by Lemma 4.1, xx~xy~x<y~xyx
and so, by Lemma 4.8, yx = (y~x)~xx is positive.

(15i) implies (15j). In fact, we suppose that xy~xy is positive. Then, by (15i),
yxy~1=y(xy~1) is positive.

(15j) implies (151). In fact, we suppose that y is positive. Then, by Lemma 4.6,
yxx~x is nonnegative. If yxx'1 is positive, then, by (15j), x~xyx is positive. If
yxx'1 is idempotent, then

(x-1^)2 = x~xyxx~xyxx~xx = x~1(yxx~x)2x = jc-1^^"1)^ = x~xyx

and so x_1yx is idempotent.
(151) implies (15m). In fact, we suppose that x_1y is not idempotent and x<y.

Then, by Lemma 3.2, yy~xx^xx~1y. By way of contradiction, we assume that
xx~~1y<yy~1x were true. Then xx~1yy~1y = xx~xy<yy~1x = xx~xyy~1x, and so
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y<x, which is a contradiction. Thus we have yy~xx<xx~xy. Hence, by Lemma
4.8, x_1j is positive. Therefore, by (151), (xz)~x(yz) = z~xx~xyz is nonnegative. If
(xz)~x(yz) is positive, then, by Lemma 4.8,

(xz)(xz)~x(yz)(yz)-x(xz) = (yz)(yz)-x(xz) < (xz)(xz)"1(>z)

= (xz)(xz)-x(yz)(yz)-x(yz)

and so xz<yz. If (xz)~x(yz) is idempotent, then, by Lemma 3.2,

xyxyz = xzz~xy~xyz = (xz)(yz)~x(yz)

= (yz)(xz)~x(xz) = yzz~xx~xxz = yx~xxz

and also, by Lemma 4.1, xy~xy<yx~xx. Hence, by Lemma 4.10, xz=yz.
(15m) implies (15k). In fact, we suppose that yy~xx is positive. Then, by Lemma

4.3, x~xyyxx=(yyxx)~x(yyxx)<yyxx and also (yyxx)(x~xyyxx)~x=yyxx
is not idempotent. Hence, by Lemma 3.2, (x~xyyxx)~x(yy'xx) is not idempotent.
Therefore by (15m),(y~xxy)~x(yxxy)—yx((x~xyyxx)y)^y~x((yy~xx)y)=yxxy.
Hence, by Lemma 4.4', yxxy is nonnegative. By way of contradiction, we assume
that y~xxy is idempotent. Then

(yy~xx)3 = y(yxxy)2yxx = y(yxxy)yxx = (yyxx)2

and so, by Lemma 3.1, yy~xx is an idempotent, which is a contradiction. Hence
y~xxy is positive.

(15k) implies (15g). In fact, we suppose that x£Cy and x<y. Then, by Lemma 4.9,
(x~xyy~x)(x~xyyx)~x(x~xy) = x~xy is positive. Therefore, by (15k),

(x'xyyx)~x(x~xy)(x~xyy~x) = xx~xyx~xyy~x

is positive. Hence, by Lemma 4.8, (yx)~xx~x=yx~x is positive. Since x&y, we
have x~x0tyx. Hence, by Lemma 4.9, _y_1<x_1.

(15g) implies (15d). In fact, we suppose that xSCy and yx'1 is positive. By way of
contradiction, we assume that x<y is false. If y<x, then, by (15g), x~x<yx.
Moreover, since x3?y, we have x " x&y ~1. Hence, by Lemma 4.9, xyx = (x~x)'xyx
is positive and so, by Lemma 4.5, yx~x = (xyx)~x is negative, which is a contra-
diction. If y = x, then >»x_1 = xx~1 is an idempotent, which is also a contradiction.
Thus we have x<y.

(15d) implies (15b). In fact, we suppose that xä'y and x<y. By way of contra-
diction, we assume that yx~x is not positive. If yx"1 is negative, then, by Lemma
4.5, xyx = (yx~x)~x is positive, and so, by (15d), y<x, which is a contradiction.
If yx"1 is an idempotent, then, by Lemma 3.2, yyxx = xx'xy. Hence, by Lemma
4.2, x=y, which is a contradiction. Thus yx"1 is positive.

(15b) implies (15'). In fact, we suppose that xx~x=yxy = z~xz and y^z. First
we suppose y <z. Now y£'yxy = z~xz£'z and so, by (15b), (zx)(yx)"1 = zxx"1y"1
= zyxyyx = zy~x is positive. Hence, by Lemma 4.5, (yx)(zx)"1 = ((zx)(yx)"1)"1
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is negative. Moreover, since y3?z, we have yxJtfzx. Hence, by (15b), zx<yx does
not hold and so yx^zx. In the case when y = z, we have yx — zx.

This completes the proof of Theorem 5.6.

Theorem 5.7. ¿e! S be a left ordered inverse semigroup in which, for every pair
of positive elements x, y of S, there exists a natural number n such that xá/. Then
S satisfies the condition (15').

Proof. We prove 5 satisfies the condition (151). To do this, suppose that v is
positive. Then, by Lemma 4.6, vuu~x is nonnegative.

(i) The case when both u and vuu~x are positive. By assumption, there exists a
natural number n such that wá (vuux)n. Without loss of generality, we assume that
n is the least natural number such that u^(vuu~x)n. By way of contradiction, we
assume that u'xvu is negative. Then, by Lemma 4.5, u~xv'xu=(u~xvu)'x is
positive. Hence, by Lemma 4.3, u~xv~xuu~xvu = (u~xv~xu)(u~1v~xu)~x<u~xv~xu
— u'xv~xuu~xu. Therefore (vuu~x)u = vu<uü(vuu~x)n. If n>l, then we have
u<(vuu~x)n~x, which contradicts the minimality of n. Next we suppose that n—i.
Then vu < vuu "1 and so u< uu 'x. Hence, by Lemma 4.4, m is negative, which contra-
dicts the assumption. Thus u~xvu is nonnegative.

(ii) The case when vuu~x is idempotent. We have (u~xvu)3 = u~x(vuu~x)2vu
= u~x(vuu~x)vu = (u~xvu)2. Hence, by Lemma 3.1, u~xvu is idempotent.

(iii) The case when u is idempotent. By Lemma 4.6, u'xvu = uvu is nonnegative.
(iv) The case when u is negative. By way of contradiction, we assume that u~xvu

were negative. Then, by Lemma 4.5, u~ xv" xu=(u~ xvu) ~x is positive. By assumption,
u is negative and so, by Lemma 4.5, u~x is positive. Hence, by (i) and (ii) proved
above, (uu~x)v~x(uu~x) = (u~xYx(u~xv~xu)u~x is nonnegative. On the other hand,
by Lemma 4.5, v~x is negative and so, by Lemma 4.7, (uu~x)v'x(uu~x) is non-
positive. Hence uu'xv'xuu~x is an idempotent. Therefore

u~*vu = u~x(uu~xv~xuu~x)~xu = u~x(uu~xv~xuu~x)u

is an idempotent, which contradicts the assumption. Hence u~xvu is nonnegative.
Thus we have proved that S satisfies (151). Hence, by Theorem 5.6, 5 satisfies

(15').

Theorem 5.8. Let S be a left ordered inverse semigroup and let E be the set of all
idempotents of S. Then each one of the following conditions is equivalent to the
condition (16') in Theorem 5.4:

(16a) if x~xy e E andx^y, then xx"1Syy"1;
(16b) if x~xy e E and x^y, then x'x^yx;
(16c) iff, g e E andff¿g, then fz^gz for every z e S;
(16d) i/x_1y £ F and x¿y, then xz^yz for every z e S.

Proof. (16') implies (16a). In fact, we suppose that x~xyeE and x^y. Then,
by Lemma 3.2, yyxx = xx~xy and so, by the condition (14') in Theorem 3.4, we
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have x 1x^y xy. Hence, by Lemma 1.1, x xx^(x xx)(y xy)úy xy- Therefore,
by (16'),

xx'1 = x(x~1x)x~1 ^ x(x~1xy~xy)x~x = xy~1yx~1,

yx^xy-1 = y(x~1xy-1y)y-1 S y(y~1y)y'1 = yy~x-

By assumption, x~xyeE and so, by Lemma 3.2, xy~xyx~x=yx~x = xx~xyy~x
= xy~x=yx'1xy'1. Hence xx~1^xy~1yx~1=yx~1xy~1Syy~x.

(16a) implies (16b). In fact, we suppose that x~1yeE and xf¿y. Then, by (16a),
x~1 = x~1xx~1-¿x~1yy~1, y~1xx~1úy~1yy~1=y~1. Since x~xye E, we have, by
Lemma 3.2, x~1yy~1 = (yy~1x)~1 = (xx~1y)~1=y~xxx~1. Hence x~1Sx~xyy~x
=y~1xx~1Sy~1.

(16b) implies (16d). In fact, we suppose that x_1y g Tí and xfky. Then, by (16b),
we have x~1Sy~1 and so z~1x~1Sz~1y~1. Now, by assumption, x~1yeE and
so, by Lemma 3.2, xy1 e E. Hence

(z-1^-1)-^-^-1) = xzz~xy~x = (xzz'^-^xy-^eE.

Therefore, by (16b), xz = (z~1x~1)~1S(z~1y~1)~x=yz.
(16d) implies (16c). In fact, replacing x and y in (16d) by/and g respectively,

we obtain (16c).
(16c) implies (16'). In fact we suppose that e, f, g e E, xeRe,/^e, g-¿e and

fug- Then, by (\6c),fxúgx and so x~xfxúx~xgx.
Remark. The equivalences of (15') and (15m) in Theorem 5.6 and of (16') and

(16d) in Theorem 5.8 give an alternative proof of Theorem 5.4.

6. The left orderability and the orderability of inverse semigroups. A semigroup
S is called left orderable if S admits an order to make S a left ordered semigroup.
S is called orderable if S admits an order to make S an ordered semigroup. In
Theorem 6.3 we give a condition in order that an inverse semigroup S is left
orderable and in Theorem 6.8 we give a condition in order that S is orderable.

Theorem 6.1. A commutative idempotent semigroup S is orderable if and only
if the semilattice S induced by the natural partial ordering is a tree semilattice, in
which the branch number at every element is at most two.

Proof. The 'only if part is given by Lemma 1.3.
We prove the 'if part. Suppose that S is a commutative idempotent semigroup

such that the semilattice (S, ^) is a tree semilattice in which the branch number at
every element is at most two. When a is a branching element, then, by assumption,
there are exactly two branches at a. In this case, we denominate an arbitrary one
of the branches as the former branch and the other as the latter branch. When a is
an intermediate element, then there is exactly one branch at a. In this case, we
denominate the branch as either one of the former branch or the latter branch.
When a is a maximal element, there is no branch at a to denominate it. Now we
define an order á in S by: e^f if and only if either

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] ORDERED INVERSE SEMIGROUPS 127

(a) ef<e, ef<f, e lies in the former branch at ef and/ lies in the latter branch
at ef, or

(b) ef=e~<f and /lies in the latter branch at ef, or
(c) ef=f<e and e lies in the former branch at ef, or
(d) e=f.
First we show that the relation ^ is really an order in S. It is almost trivial that

the relation is reflexive and antisymmetric. Now we suppose that e £f and /^ g.
We have efr^fand fgr£/and, since (S, rá) is a tree semilattice, ef and fg are com-
parable in (S, rá).

(i) The case when ef<.fg. We have e/= efg <fg. Since eg r£ g and /g r£ g, eg and
/g are comparable in (S, r^). But, since efg^fg, we have eg^fg and so eg = efg
= ef<fg^fi By assumption, eá/and so/lies in the latter branch at ef=eg and
also either e = ef—eg or e lies in the former branch at ef=eg. Moreover, since
eg <fg,fand g lie in the same branch at eg and so g lies in the latter branch at eg.
Hence we have e^g.

(ii) The case whenfg-<ef. We can prove e^g in a similar way to (i).
(iii) The case when ef—fg. We have ef=fg = efg. By way of contradiction, we

assume that efg # eg. Then, since erfand ef=efg~^egr£e, e lies in the former
branch at efg. Since /:£ g and fg = efg ^, eg té g, g lies in the latter branch at efg.
But, since efg<.eg, e and g lie in the same branch at efg, which is a contradiction.
Hence we have ef=fg = efg = eg. Since e^f, either e = ef=eg or e lies in the former
branch at ef=eg. Also, since fúg, either g=fg = eg or g lies in the latter branch at
fg = eg. Hence, in all cases, we have e^g.

This proves the relation ^ is transitive. Now we take arbitrary elements e,fofS.
If ef<e and ef-<f, e and/lie in different branches at ef. When e lies in the former
and/lies in the latter branch at ef, then e^f, while when e lies in the latter and/ lies
in the former branch at ef, then/áe. Next we suppose that at least one of e and/
say e, is equal to ef. When /lies in the former branch at ef, then/^e, while when
/lies in the latter branch at ef, then e^f, and finally when/=e/ then e=/ Hence
the relation ^ is a simple order.

Finally we prove that the order S is compatible with the semigroup operation.
Suppose that e^f. Since eg rag and fgrág, eg and fg are comparable in (S, rá).
First we consider the case when eg<fg. We have eg = efg<fg. Also, since efráf,

fgráf, ef and fg are comparable in (S, ^). But, since efg^fg, we have ef<fg and
so ef=efg-<,fg. Since ef^fgráf and e^//lies in the latter branch at ef. Since
ef~<fg=f(fg),fg and/lie in the same branch at e/and so fg lies in the latter branch
at ef=efg = (eg)(fg). Also we have eg = efg = (eg)(fg) and so eg^fg. In the case
when/* ■< eg, we can prove eg Sfg in a similar way. Finally in the case when eg =fg,
there is nothing to prove.

This completes the proof of Theorem 6.1.
For a subset X of an inverse semigroup S we denote the set {x"1; xe X}

byZ"1.
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Theorem 6.2. Let S be an inverse semigroup which contains no elements of finite
order except idempotents. If the set E of all idempotents of S is an ordered com-
mutative idempotent semigroup and if S contains a subsemigroup P such that P O P~x
= E and P u P~1 = S, then we can define such an order in S in one and only one way
that S is a left ordered inverse semigroup, P is the nonnegative part of the left ordered
inverse semigroup S and, on the set E, the order in S coincides with the given order in E.

Proof. First we prove the 'in one way' part. For each e e E, we define an order
^ in Re by for x, ye Re, xfky if and only if x~xyeP.

First we prove that the relation ^ in Re is really a simple order. Since x ~ xx e E^P,
the relation < is reflexive. Next we suppose that x^y and y¿.x. Then x~xy eP
and (x~1y)~x=y~xx eP. Hence x~xyeP n P~X = E. By assumption, S contains
no elements of finite order except idempotents and so, by Lemma 3.2, yy~xx
= xx~xy. Moreover x, y e Re and so, by Lemma 4.2, we have x=y. Hence the
relation ^ is antisymmetric. Now we suppose that x^y and ySz. Then x~xy eP
and y~xz eP and so

x~xz = x~xxx~1z = x~xez = x'xyy~xz = (x~xy)(y~xz)eP.

Hence the relation á is transitive. Finally we take x, y e Re arbitrarily. Since
p <u P~1 = S, we have either x~xyePorx~1yeP~1. If x'xy eP, then x^y. If
x ~ xy e P ~x, then y ~ xx = (x ~ 1y) ~x e P and so y ^ x. Hence the relation ^ is a simple
order.

Next we prove that S satisfies the conditions (11'), (12') and (13') in Theorem
3.4. By assumption, (11') is satisfied. Now we suppose that e,fe E, x, y e Re, xSy
in Reandfr^e. Then fix, fy e 7?/and (fx)~x(fy)=x~xfy = x~xfxx~xy. But x~xfxe E
eP and, since x,yeRe and x^y, we have x'^yeP. Hence (fx)~x(fy)
= x~1fxx~1y eP and so fxSfy in Rf. Thus (12') is satisfied. Finally we suppose
that e,fe E, xe Re, x~xx=f, y, z e Rf and ySz in R,. Then xy, xz e Re and

(xy)~x(xz) = y~xx~1xz = y~xfz = y~1yy~1z = y~1zeP.

Hence xy^xz in Re and so (13') is satisfied.
Therefore, by Theorem 3.6, when we define an order in S by (14') in Theorem

3.4, Sisa left ordered inverse semigroup and, on the set E, the order of S coincides
with the given order in E and also, for each e e E, on the set Re, the order of S
coincides with the order in Re constructed above. Now we prove that P is the
nonnegative part of the left ordered inverse semigroup S. Evidently xeP if and
only if (xx'x)'xx eP. Since x3&xx~x, xeP if and only if xx~xSx with respect to
the order in Rxx-^, and so, if and only if xx_1^x with respect to the order in S.
Hence, by Lemma 4.4', xeP if and only if x is nonnegative. Therefore P is the
nonnegative part of the left ordered inverse semigroup S. This completes the proof
of the 'in one way' part.
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Next we prove the 'in only one way' part. We denote by (S, ¿) the left ordered
inverse semigroup constructed above. Moreover we suppose that (S, Si) is an
arbitrary left ordered inverse semigroup such that P is the nonnegative part of
(S, ^ i) and, on the set E, the order ^ i coincides with the given order in F. Then,
on the set F, the orders ^ and :£i coincide with each other. Let eeE and let
x, y eRe. Then,by Lemma 4.9, x <iy if and only if x~xy is positive in (S, ^i).
Also, by Lemma 4.2, x=y if and only if yyxx = xx~xy and so, by Lemma 3.2,
if and only if x-1y is idempotent. Hence x^iy if and only if x'xy is nonnegative
in (5, S i) and so if and only if x~xy e P. Thus the orders ^ and ^ y coincide with
each other on Re for each eeE. By Theorem 3.4, (S, ^ i) satisfies the conditions
(11'), (12') and (13'). Hence, by Theorem 3.6, the orders ^ and Si coincide with
each other on the set S. This completes the proof of the 'in only one way' part.

Theorem 6.3. Let S be an inverse semigroup and let E be the set of all idempotents
of S. Then S is left orderable if and only if it satisfies the following three conditions:

(A) S contains no elements affinité order except idempotents;
(B) S contains a subsemigroup P such that P O P~X = E and P U P~1 = S;
(C) the semilattice E is a tree semilattice, in which the branch number at every

element is at most two.

Proof. First we prove the 'only if' part and suppose that S is a left ordered
inverse semigroup. By Lemma 3.1, S satisfies (A). By Lemma 4.6, the nonnegative
part F of 5 is a subsemigroup. By Lemma 4.5, P'x is the nonpositive part of S and
so S satisfies (B). By Theorem 6.1, S satisfies (C).

Next we prove the ' if part and suppose that S is an inverse semigroup satisfying
the conditions (A), (B) and (C). By Theorem 6.1, F can be considered as an ordered
commutative idempotent semigroup and so, by Theorem 6.2, S can be considered
as a left ordered inverse semigroup.

Let S be an inverse semigroup in which there is no element of finite order except
idempotents and let the semilattice F constituted by all idempotents of 5 form a
tree semilattice. We denote the set of all branches in F by 33. Let 5, T?' e 33 and we
suppose that B is a branch at e and B' is a branch at/ Then B is said to be trans-

ferred to B' by a translation, if there exist x, y e S such that xx_1 = e, x_1x=/
yy~x e B, y~xy e B', x~xy e E.

Lemma 6.4. The relation that a branch B is transferred to a branch B' by a trans-
lation is an equivalence relation on 33.

Proof, (i) Reflexivity. We suppose that Be33 is a branch at e. We take ge B
arbitrarily. Then ee~x = e = e~xe, gg~x=g=g~xg e B, e~xg = eg e E. Hence, by
definition, B is transferred to B by a translation.

(ii) Symmetry. We suppose that a branch B at e is transferred to a branch B' at
/by a translation. Then there exist x, y e S such that xx"1 = e, x'xx=f, yyx e B,
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y~xyeß', x~xyeE. By Lemma 3.2, (x~1)~xy~x=xy~1 e E and so B' is trans-
ferred to B by a translation.

(iii) Transitivity. We suppose that a branch B at e is transferred to a branch B'
at/by a translation and B' is transferred to a branch 7?" at g by a translation. Then
there exist x, y, u, v e S such that

xx~x = e,   x~xx=fi   yy'1 e B,    y~xyeB',    x~1yeE;

uu~x = f    u~xu = g,   vv~1eB',   v'xveB",   u'lv e E.

Now we have

(xu)(xu)~l = xuu~xx~x = xfx~x = xx~xxx~x = xx'1 = e,

(xu)'x(xu) = u~1x~1xu = u~xfu = u~xuu~xu = u~xu = g.

Since xx~1 = e-<yy~1 and yvv~1y~1-^yy~1, xx'1 and yvv~1y~1 are comparable
in the semilattice (E, r^). By way of contradiction, we assume thatyvv~1y~1-^xx~1
is true. Then yvv~1y~1xx~1 =yvv~1y~1 and so vv~xy~xxx~xy =
y~1(yvv~1y~1xx~1)y=y~1(yvv~1y~1)y=y~xyvv~l. Now x~xy s E and so, by
Lemma 3.2, xx~1y=yy~1x=yy~1xx~1x = xx~1x = x. Hence y~xyvv~x
= vv~xy~xxx~xy = vv~1(xx~1y)~1(xx~xy) = vv~1x~1x = vv~1f=f. On the other
hand, y~1y and vv'1 lie in the same branch B' at/and so f-<y~xyvv~x, which is a
contradiction. Hence

e = xx~x <yw~1y~x = (yy~x)(yvv~xy~x).

Therefore yy~x and yvv~xy~x lie in the same branch at e and so (yv)(yv)~x
=yvv~1y~1 e B. Similarly we can prove that (yv)~1(yv)e B". Moreover, since
x~xy, u_1v e E, we have

(xu)~1(yv) = u~1x~1yv = (u~1(x~1y)u)(u~1v) e E.

Hence, by definition, B is transferred to B" by a translation.
Let B, B' e 93 and we suppose that B is a branch at e and B' is a branch at /

Then B is said to be transferred to B' by a conversion if e=/and B and B' are differ-
ent branches at e. A branch B is said to be connected with a branch B' if there exist
a finite number of branches B = BU B2, ..., Bn = B' (n^2) such that 7?¡ is trans-
ferred to 7?i + i by either a translation or a conversion for every 1 ̂ i<n— 1.

Lemma 6.5. 77ze relation that a branch B is connected with a branch B' is an
equivalence relation on 93.

Proof, (i) Reflexivity. By Lemma 6.4, a branch B is transferred to B by a
translation and so B is connected with B.

(ii) Symmetry. We suppose that a branch B is connected with a branch B'. Then
there exist a finite number of branches B = BU B2, ..., Bn = B' such that B¡ is
transferred to 7?i + i by either a translation or a conversion for every 1 ̂ z'^n—1.
If 7?j is transferred to Bi + 1 by a translation, then, by Lemma 6.4, 7ii + i is transferred
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to Bt by a translation. If T?¡ is transferred to Äi + 1 by a conversion, it is evident from
the definition, that i?i + 1 is transferred to B¡ by a conversion. Hence, in both cases,
B' is connected with B.

(iii) The transitivity of the relation of connectedness is almost trivial.

Theorem 6.6. Let S be an inverse semigroup which contains no elements of finite
order except idempotents and let E be the set of all idempotents of S. Then we can
define an order in E to make E an ordered commutative idempotent semigroup
satisfying the condition (16') in Theorem 5.4 if and only if S satisfies the condition:

(C*) The semilattice E is a tree semilattice and, when a branch B is connected with
a branch B' and we choose branches B = BU B2 ..., Bn = B' such that T?¡ is transferred
to Bi + i by either a translation or a conversion for every l^i^n—1, whether the
number of conversions included in the transfers is even or odd is determined by B and
B', irrespective of the choice of branches Bt (l^i^n).

Proof. First we prove the ' only if part and suppose that F is an ordered com-
mutative idempotent semigroup satisfying the condition (16'). By Theorem 6.1,
F is a tree semilattice.

1 °. Let B be a branch at e and let g e B.
(a) If g<e, then f<e for every fe B;
(b) if g>e, then f> e for every fe B.

In fact, we suppose that g<e. By way of contradiction, we assume that/äe for
some/e B. Then, by Lemma 1.2, gfr£ e. On the other hand,/and g lie in the same
branch B at e. Hence e <gf, which is a contradiction. Thus we have (a), (b) can be
proved in a similar way.

2°. Let B and B' be different branches at e and letfe B and g e B'.
(a) Iff<e, theng>e;
(b) iff>e, then g<e.

In fact, by way of contradiction, we assume that/<e and gúe. Since g lies in a
branch B' at e, we have g^e. Hence f<e and g<e, and so, by Lemma l.l,fg<e.
On the other hand,/and g lie in different branches at e and so fg = e, which is a
contradiction. Thus we have (a), (b) can be proved in a similar way.

Let B be a branch at e such that/<e for some fe B. By 2°, B is the only
branch at e carrying this property, which is called the former branch at e. Let B'
be a branch at e such that/>e for some/e B'. Then B' is the only branch at e
carrying this property, which is called the latter branch at e. By 1°, a branch at e
cannot be the former branch and the latter branch at e at the same time.

3°. Suppose that a branch B at e is transferred to a branch B' atfby a translation.
(a) If B is the former branch at e, then B' is the former branch at f;
(b) if B is the latter branch at e, then B' is the latter branch at f.

In fact, by assumption, there exist x, y e S such that

xx"1 = e,   x"1x=/   yy~x e B,   yxyeB',   x~xyeE.
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First we suppose that Äis the former branch at e. Then yy'x <e = xx~x. Moreover,
since yy1 e B and B is a branch at e, we have xx~x = e<.yyx. Hence, by (16'),
y~xy=y~1(yy~1)y = y~1xx~xy. But, if yxy=yxxx~xy were true, then yyx
=y(y"1y)y"1=y(y"1xx"1y)y~1 = (yy"1)(xx"1)(yy"1) = xx"1, which is a contra-
diction. Hence y1y<y~1xx~xy. Since x~xyeE, we have, by Lemma 3.2,
yxy<yxxx~xy=yxx = x~xxy~xy. By way of contradiction, we assume that
x~xx^yxy. Then, by Lemma 1.1, x"1xáx"1xy"1y^y"1y, which is a contra-
diction. Hence y"1j<x"1x=/and so B' is the former branch at/ This proves (a).
The assertion (b) can be proved in a similar way.

4°. Suppose that a branch B at e is transferred to a branch B' at e by a conversion.
(a) If B is the former branch at e, then B' is the latter branch at e;
(b) if B is the latter branch at e, then B' is the former branch at e.

In fact, both (a) and (b) are immediate consequences of 2°.
5°. 5 satisfies the condition (C*).
In fact, we suppose that T?¡ (1 fíi^m) and B'¡ (1 fkjún) are branches such that

B=Bi = B'i, B' = Bm = B'n, B¡ is transferred to Bi + i by either a translation or a con-
version for every l^i^m—l and B'f is transferred to B'j + i by either a translation
or a conversion for every 1 ¿¡jS=n — 1. By way of contradiction, we assume that the
transfers of B to B' by B¡ (1 ^ i ̂  m) contain an even number of conversions and the
transfers of B to B' by B'¡ (1 ^j¿¡n) contain an odd number of conversions. Then, by
3° and 4°, B' is the former branch and the latter branch at the same time, which is
a contradiction. Hence S satisfies the condition (C*).

Next we prove the 'if part and suppose that S satisfies (C*). Then, by Lemma
6.5, the relation of connectedness is an equivalence relation on the set 33 of all
branches in the semilattice F. We denote the set of all equivalence classes by
{33*; A e A}. From each equivalence class S3*, we choose one representative element
5* e 33* and we denominate B * arbitrarily as either one of the former branch or the
latter branch. Now we take an arbitrary branch B e 33 and we suppose that the
equivalence class which contains B is 33*. Then the representative element T?* of
33* is connected with B and so there exist branches BX = BU B2, ..., Bn = B such
that B¡ is transferred to 2?i + 1 by either a translation or a conversion. If the number
of conversions contained in the transfers is even, we denominate B as the former or
the latter branch according as BK is the former or the latter branch. If the number
of conversions contained in the transfers is odd, we denominate B as the latter or
the former branch according as T?* is the former or the latter branch. By the con-
dition (C*), whether B is the former or the latter branch is determined by B,
irrespective of the choice of branches Bt (1 á rS»). Let B and B' be different branches
at the same element. Then B and B' belong to the same equivalence class, say 33*.
We suppose that the representative element Tí* of 33* is transferred to B by BK
= Bi, B2, ..., Bn = B. Then Bx is transferred to B' by Bh = Bu B2, ..., Bn = B, Bn + 1
= B' and the number of conversions contained in the transfers of 5* to B' is even or
odd, according as the number of conversions contained in the transfers of BÄ to B
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is odd or even. Hence B' is the former branch or the latter branch according as B
is the latter branch or the former branch. Now we define an order in Eby: e^fif
and only if either

(a) ef<e, ef<f e lies in the former branch at ef and /lies in the latter branch
at ef, or

(b) ef=e<f and /lies in the latter branch at ef, or
(c) ef=f< e and e lies in the former branch at ef, or
(d) e=f.
In the same way as in the proof of Theorem 6.1, we can prove that the relation

^ is really a simple order in E and with respect to this order E is an ordered com-
mutative idempotent semigroup.

6°. If e,fge E, f<g^ e and x e Re, then x~ xfx <x" 1gx.
In fact, since f<g, we have fg=f and so x'1fx = x~1fgx = (x~1fx)(x~1gx).

Hence x~xfx-^x~1gx. But, if x~xfx = x~xgx were true, then f=efe = xx~1fxx~x
— xx~1gxx'1 = ege=g, which is a contradiction. Hence x~1fx<x~1gx.

Now we prove that the ordered semigroup E satisfies the condition (16') and
suppose that e,f g e E, x e Re,f-^e, g-^e andf^g.

(i) The case whenf=g. Clearly x~xfx = x~xgx.
(ii) 77ze case when fg=J<g- Since fSg and f g j^g, g lies in the latter branch B

at fg=f. By 6°, we have x~1fx-<x~1gx and so x~xgx lies in some branch B' at
x~xfx. Now we have

(fxyjx)-1 = fxx-y = fef = f   (fx)-\fx) = x~xfx,
(gxXgx)-1 = gxx~1g = geg = g e B,   (gx)-\gx) = x~xgx e B',

(fx)-1(gx) = x-1fgxeE.

Hence the branch B is transferred to the branch B' by a translation. Therefore B
and B' lie in the same equivalence class and, since 7? is the latter branch at/, B' is
the latter branch at x_1fx. Moreover (x~xfx)(x~xgx) = x~1fgx = x~xfx<x~xgx.
Hence x ~ xfx S x ~ ̂ -gx.

(hi) The case when fg=g<f In a similar way to (ii), we can prove that x~xfx
Sx~xgx.

(iv) 77ze case when fg<f andfg-<g. We have fg<f^e and, by Lemma 1.1,
f-áfgúg- Since f(fg)=fg<f, we have, by (iii), x-xfxSx~xfgx. Also since (fg)g
=fg<g, we have, by (ii), x~xfgx^x~xgx. Hence x~1fx^x~xgx. This completes
the proof of Theorem 6.6.

Theorem 6.7. Let S be an inverse semigroup which contains no elements of finite
order except idempotents. If the set E of all idempotents of S is an ordered com-
mutative idempotent semigroup satisfying the condition (16') in Theorem 5.4 and if
S contains a subsemigroup P such that PrtP~1 = E,PuP~x = S and x ~ xPx £ P for
every x e S, then we can define such an order in S in one and only one way that S is
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an ordered inverse semigroup, P is the nonnegative part of the ordered inverse semi-
group S and, on the set E, the order in S coincides with the given order in E.

Proof. First we prove the 'in one way' part. By Theorem 6.2, we can define
an order in S such that S is a left ordered inverse semigroup, P is the nonnegative
part of the left ordered inverse semigroup 5 and, on the set F, the order in S co-
incides with the given order in F. It remains to prove that S is an ordered inverse
semigroup. Let y be a positive element and let x be an arbitrary element of 5.
Then yeP and so x~xyxex~xPxcgP. Hence 5 satisfies the condition (151) in
Theorem 5.6 and so, by Theorem 5.6, S satisfies the condition (15') in Theorem 5.4.
Moreover, by assumption, S satisfies the condition (16') in Theorem 5.4. Hence, by
Theorem 5.4, 5 is an ordered inverse semigroup. The 'in only one way' part of
this theorem is included in the assertion of Theorem 6.2.

Theorem 6.8. Let S be an inverse semigroup and let E be the set of all idem-
potents of S. Then S is orderable if and only if S satisfies the following three con-
ditions:

(A) S contains no elements of finite order except idempotents;
(B*) S contains a subsemigroup P such that P n P~X = E, P u P~x =S and

x_1FxsFfor every xe S;
(C*) the semilattice E is a tree semilattice and, when a branch B is connected with

a branch B' and we choose branches B = BU B2, ..., Bn = B' such that Bt is trans-
ferred to Bi + i by either a translation or a conversion for every 1 á i" g n — 1, whether
the number of conversions included in the transfers is even or odd is determined by
B and B', irrespective of the choice of branches T?¡ (1 ^¡^n).

Proof. First we prove the ' only if part. We suppose that S is an ordered in-
verse semigroup. Then, by Theorem 6.3, S satisfies the condition (A). We denote
the nonnegative part of S by P. As is shown in the proof of Theorem 6.3, F is a
subsemigroup of 5, P n P~X = E and P u P~X = S. Now we take xe S and y eP
arbitrarily. If y is idempotent, then x_1_yx is idempotent and so x~xyxeP. By
Theorem 5.4, S satisfies the condition (15') and so, by Theorem 5.6, S satisfies the
condition (151). Hence, if y is positive, then x~\yxis nonnegative and so x~xyxeP.
Therefore x^FxeF and so 5 satisfies the condition (B*). We showed that S con-
tains no elements of finite order except idempotents and, by Theorem 5.4, S satis-
fies the condition (16'). Hence, by Theorem 6.6, S satisfies the condition (C*).

Next we prove the 'if part. Suppose that S is an inverse semigroup satisfying
the conditions (A), (B*) and (C*). Then, by Theorem 6.6, F can be considered as
an ordered commutative idempotent semigroup satisfying the condition (16') and
so, by Theorem 6.7, S can be considered as an ordered inverse semigroup.

Theorem 6.9. Let S be an inverse semigroup and let E be the set of all idempotents
ofS. If S satisfies the condition (C*) in Theorem 6.8, then S satisfies the condition (C)
in Theorem 6.3.
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Proof. Let S be an inverse semigroup satisfying the condition (C*). By way of
contradiction, we assume that, in the tree semilattice E, there exist at least three
different branches B, B' and B" at the same element e e E. Then the transfers of B
to B' by B = BX, B' = B2 contain one conversion, while the transfers of B to B' by
B = B[, B" = B2, B' = B'3 contain two conversions, contradicting the condition (C*).

7. Examples. The condition (B*) in Theorem 6.8 clearly implies the condition
(B) in Theorem 6.3. Also, by Theorem 6.9, the condition (C*) in Theorem 6.8
implies the condition (C) in Theorem 6.3. Examples in this section show that there
are no other relations of implication among conditions (A), (B), (C), (B*) and (C*).

Example 7.1. Let S be a cyclic group of order three generated by an element a.
We put P = {1, a}, where 1 is the identity of the group S. Then P~1 = {1, a2} and so
P n P~X={1} and Pkj P~X = S. Since S is a commutative group, we have x_1Px
=P. Hence S satisfies the condition (B*) and also the condition (B). Moreover,
since S is a group, S satisfies the conditions (C) and (C*) trivially. But clearly S
does not satisfy the condition (A).

Example 7.2 ([6] and [7]). Let S be the group generated by {b, u, v} subject to
the generating relations

[[u, v], u] = [[u, v], v] = 1,       b_1ub = u'1,

b~xvb = v~x,       [u, v] = b~ie,

where, for x, y e S, [x, y] = x~1y~1xy and 1 is the identity of the group S. It was
shown in [6] and [7] that S satisfies the condition (A) but does not satisfy the
condition (B). Since S is a group, 5 satisfies the conditions (C) and (C*) trivially.

Example 7.3. Let S1 be the semigroup consisting of four elements {0, a, b, c}
with the operation defined by

for x, y e S,   xy = x   if x = y,

xy = 0    if x ^ y.
Then S is a commutative idempotent semigroup and, in particular, is an inverse
semigroup. Trivially S satisfies the conditions (A), (B) and (B*). But the set of all
idempotents of S coincides with S and, in the semilattice S, the branch number at 0
is three. Hence S does not satisfy the condition (C).

Example 7.4 [2]. Let S be a system consisting of all pairs of integers with the
operation

(a,b)(c,d) = (a + c,b + (-\yd).
It was shown in [2] that S is a group, (0, 0) is the identity of S and the group
inverse of (a, b) is ( — a, —(— l)ab). It is easily checked that S satisfies the condition
(A). Also S satisfies (C) and (C*) trivially. Moreover S satisfies the condition (B).
In fact, it is easily shown that the set

{(a, b); either a>0 or a = 0, b^O}
satisfies the requirements for P in the condition (B). But S does not satisfy the
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condition (B*). In fact, by way of contradiction, we assume that there is a
subsemigroup F of 5 such that P n F"1 = {(0, 0)}, P u P~x = S and (a, b)~xP(a, b)
SF for every (a,b)eS. Since (0, l)e5=FuF"1, either (0, l)eF or (0, -1)
= (0, l)~xeP. But

(1, O-KO, 1X1, 1) = (-1, 1)(0, 1X1, 1) = (0, -1),
(1, l)-*(0, -1X1, 1) = (-1, 1)(0, -1)(1, 1) = (0, 1),

and so, in both cases, we have (0, 1 ), (0, - 1 ) e P. Hence (0, 1 ) e F n F "1 = {(0, 0)},
which is a contradiction.

Example 7.5. Let M={a, b, c, d, e,ft, gt; i— 1, 2, 3, ...}. We put

( f\ _  (' ' 'f2n + ! ' ' "75/3/1/2/4 ' " 'fin " • •      \
\ ' ' "/2n - 1 ' ' 'f3jlJ2Jije ' ' 7 2n + 2 ' ' 7

Clearly ir(f) generates an infinite cyclic group with respect to the operation of
composition of transformations on the set {/; i'= 1, 2, 3,...}. We denote (tr(f))m
by TTm(f) for every integer m. Simliarly

,,       /" ■ "San + i" " -gsgagigzgi- ■ -gin   ■ ■     \

V " -g2n-l- ■ -g3glg2g*g6- ■ "c?2n + 2" " 7

generates an infinite cyclic group and it consists of elements -nm(g) = (->T(g))m (m, an
integer). Let S be the set consisting of the following partial one-to-one transforma-
tions on the set M :

*1 = (flrf;   'r0(/);   ^T1' X6 = (ce;   "1(/);   7r°(g))'

*» = (¿¿:  --V);  ^(g)},     *t=(^  *%/);  --1te))'

X3=(ce;   ""^    7rl(g))' X8={Cbd'   W~1(f);   7T°(8))'

idyr - wc-C
-C

id
\e

y3m)

¡eyf» \e

■*m(f); Tr'm(g)) (m, an integer),

nm(f); ir-m + x(g)\ (m, an integer),

nm(f); tt-"*-^)! (m, an integer),

7rm(/); 77"m(g)j (m, an integer),

z(m,n) _ (nmtp.   „"-(g))   (W) W) integers).
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It can be shown that S forms an inverse semigroup with respect to the operation of
composition of partial transformations. Also we can show that xï1 = x1, x21 = xi,
X3    =X-t,    X$    =X2,    X5    =X5,    Xg    = X3,    X-j    =X3,    X&    =Xg,    Xg    = Xg,    (^i   )
=y[-m\(y2^)-1=y3-m\(y3mY1=y2-m\(y^)-1=y[-m\(z{m'n))-1 = z^-m--n\Theset

E of idempotents of 5 consists of xlt x5, xg, y^\ yf, z<0,0) and the semilattice E has
the following scheme:

Xi X¡ Xg

\ /    /

\ /
2(0.0)

Thus 5 satisfies the condition (C). Since rrm(f) and rrm(g) have infinite order for
m^O, it can be seen that S satisfies the condition (A). Now we show that S satisfies
the condition (B*) and so also the condition (B). In fact, when we denote by P the
set consisting of all elements of S, which have the 7rm(/)-component and the rrn(g)-
component with either w>0 or m = 0, n^O, it is easily verified that P satisfies all
the requirements for P in the condition (B*). Finally we show that S does not
satisfy the condition (C*). In fact, we put x=y2°\ y = x3, u=y(2\ v = xB. Then we
have

xx'1

yy'1

x~xy

uu'1

vv'1

u'xv

Hence the branch 7?i at j40) which contains xx is transferred to the branch B3 at yf
which contains xd by a translation. Moreover the branch 7?2 at yf which contains
x5 is transferred to the branch B3 by a translation. Thus, in one way, Bx is trans-
ferred to B3 directly by one translation and, in another way, by one conversion and
one translation. This contradicts the condition (C*).
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