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ORDERED MULTIPLICITY INVERSE EIGENVALUE PROBLEM FOR GRAPHS ON

SIX VERTICES∗
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AUDREY GOODNIGHT¶, HALEY KNOX‖, CASANDRA MONROE#, AND MICHAEL C. WIGAL††

Abstract. For a graph G, we associate a family of real symmetric matrices, S(G), where for any M ∈ S(G), the location of

the nonzero off-diagonal entries of M is governed by the adjacency structure of G. The ordered multiplicity Inverse Eigenvalue

Problem of a Graph (IEPG) is concerned with finding all attainable ordered lists of eigenvalue multiplicities for matrices in

S(G). For connected graphs of order six, we offer significant progress on the IEPG, as well as a complete solution to the ordered

multiplicity IEPG. We also show that while Km,n with min(m,n) ≥ 3 attains a particular ordered multiplicity list, it cannot

do so with arbitrary spectrum.
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1. Introduction. A graph G consists of a vertex set V (G) and an edge set E(G). Given G with vertices

v1, . . . , vn, a real symmetric matrix M is in S(G) if for all i 6= j, Mi,j = 0 if and only if vivj /∈ E(G); there

are no restrictions on the diagonal entries.

The spectrum of a matrix M is the set of eigenvalues of M . Let λ1 < · · · < λk be the distinct eigenvalues

of M in increasing order, and let γi be the multiplicity of λi as an eigenvalue of M . Then the ordered

multiplicity list of M is (γ1, . . . , γk). (With this convention, the spectrum of M is {λ(γ1)
1 , λ

(γ2)
2 , . . . , λ

(γk)
k }.)

The Inverse Eigenvalue Problem of a Graph (IEPG) is stated as follows: given G and a set of numbers

L = {ℓ1, . . . , ℓn}, does there exist a matrix M ∈ S(G) with spectrum L?

This problem has been completely resolved through graphs on five vertices (see [5]). More information

about the IEPG can be found in the survey of Hogben [12]. Because of the difficulty of the IEPG, many

relaxations have been considered; previous works have examined inverse inertia (see [7]), minimum rank and

maximum nullity (see [9]), and the minimum number of distinct eigenvalues (see [8]).

We consider the ordered multiplicity inverse eigenvalue problem for graphs, a slight relaxation of the

IEPG: given a graph G and an ordered list of integers Γ = (γ1, . . . , γk), does there exist a matrix M ∈ S(G)

that attains Γ as its ordered multiplicity list?
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317 Ordered multiplicity inverse eigenvalue problem for graphs on six vertices

We label graphs using the Atlas of Graphs [13]; these graphs are also reproduced in the appendix for

reference. In this paper, we solve the ordered multiplicity IEPG for all connected graphs of order six. The

result is summarized in Figure 1: the graphs are in 26 different equivalence classes based on what ordered

multiplicity lists are attainable. To determine what lists are attainable, locate the equivalence class it belongs

in and then read off all ordered multiplicity lists (and reversals) on the edges of a directed path from that

equivalence class to ∅. This diagram also gives all possible relationships between equivalence classes, namely

the equivalence class containing G attains all ordered multiplicity lists as the equivalence class containing H

if and only if there is a directed path from the equivalence class containing G to the one containing H.

A graph G is spectrally arbitrary for an ordered multiplicity list (γ1, . . . , γk) if for any λ1 < · · · < λk,

there is a matrix M ∈ S(G) with spectrum {λ(γ1)
1 , . . . , λ

(γk)
k }. Many of the techniques we use show that a

graph is spectrally arbitrary for an ordered multiplicity list. In the appendix, for each ordered multiplicity

list, we give all graphs which can attain that list, indicating those which are not known to be attainable with

arbitrary spectrum.

We proceed as follows. In Section 2, we will review what is known for the IEPG for graphs on five or

fewer vertices which we will build on for the case of six vertices. In Section 3, we will introduce a technique

we call cloning and how it connects with ordered multiplicity lists of eigenvalues. In Section 4, we justify

what ordered multiplicity lists are unattainable, while in Section 5, we justify what ordered multiplicity lists

are attainable for graphs on six vertices. In Section 6, we show that Km,n with min(m,n) ≥ 3 is a graph

for which the ordered multiplicity IEPG differs from the IEPG. Finally, in Section 7, we give concluding

remarks.

Because we are working on graphs with six or fewer vertices, it will be unambiguous to write the ordered

multiplicity list (γ1, . . . , γk) as γ1 . . . γk. We will say a graph G attains γ1 . . . γk if there is some M ∈ S(G)

with multiplicity list γ1 . . . γk; similarly, G does not attain γ1 . . . γk if there is no M ∈ S(G) with multiplicity

list γ1 . . . γk. We note that a graph attains γ1 . . . γk if and only if it attains γk . . . γ1, which follows by noting

if M ∈ S(G) then so also is −M .

2. IEPG for graphs on five or fewer vertices. The IEPG for all graphs of order at most five was

solved by Barrett et al. [5]. They showed that for graphs with five or fewer vertices, the IEPG is equivalent

to the ordered multiplicity IEPG. Thus, a graph on five or fewer vertices attains a given spectrum if and

only if the corresponding multiplicity list is attainable. Two of the main tools used to solve this problem

were the strong spectral property (SSP) and the strong multiplicity property (SMP), introduced in an earlier

paper (see [6]).

Definition 2.1. An n× n symmetric matrix A has the SSP if the only symmetric matrix X satisfying

A ◦ X = I ◦ X = AX − XA = O is X = O (where ‘◦’ indicates the Hadamard, or entry-wise, product of

matrices).

Definition 2.2. An n × n symmetric matrix A satisfies the SMP if the only symmetric matrix X

satisfying A ◦X = I ◦X = AX −XA = O and tr(AiX) = 0 for i = 2, . . . , n− 1 is X = O.

These properties are important for the IEPG because SSP (SMP) allows us to determine the attainability

of certain spectra (ordered multiplicity lists) for many graphs simultaneously. It should be noted that

testing if a matrix has SSP (SMP) reduces to showing if a large linear system has full rank. This has been

implemented and is available online (see [11]); any matrix which is claimed to have SSP follows either from

Barrett et al. [5] or by using the online implementation.
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Figure 1. There are 26 equivalence classes based on attainable ordered multiplicity lists; those in blue have one graph

while those in yellow have their full membership given in the side boxes. To determine attainable ordered multiplicity lists for

a graph, find its equivalence class in the diagram and take any path to ∅; the multiplicity lists (and reversals) that occur on the

edges of the path are the only ones attainable. The graph G attains all multiplicity lists that H attains if and only if there is

a directed path from the class containing G to the class containing H; the difference in what is attainable are the multiplicity

lists which occur on any directed path between them.
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Theorem 2.3 (Barrett et al. [6] Theorems 2.10 and 2.20). If A ∈ S(G) has SSP (SMP), then every

supergraph of G with the same vertex set has an SSP (SMP) realization with the same spectrum (ordered

multiplicity list).

Theorem 2.4 (Barrett et al. [6], Theorem 3.8). If A ∈ S(G) and B ∈ S(H) both have SSP (SMP) and

spec(A) ∩ spec(B) = ∅, then A⊕B ∈ S(G ∪H) has SSP (SMP).

Using the above theorems and several constructions, Barrett et al. [5] determined that the multiplicity

lists given in Table 1 are attainable with SSP, and those in Table 2 are attainable but without SMP or SSP.

Moreover, they established that the graphs can attain any spectrum compatible with the ordered multiplicity

lists it attains. Thus, the IEPG and the ordered multiplicity IEPG are equivalent for graphs on five or fewer

vertices.

Table 1

Realizable ordered multiplicity lists for connected graphs with five or fewer vertices and are attainable with SSP.

Graphs Attainable ordered multiplicity lists

G1 1

G3 11

G6 111

G7 111, 12, 21

G14 1111

G13 1111, 121

G15 1111, 121, 112, 211

G16, G17 1111, 121, 112, 211, 22

G18 1111, 121, 112, 211, 22, 13, 31

G31 11111

G29, G30 11111, 1121, 1211

G35, G36 11111, 1121, 1211, 1112, 2111

G34, G38 11111, 1121, 1211, 1112, 2111, 122, 221

G37, G40, G41 11111, 1121, 1211, 1112, 2111, 122, 221, 212

G42, G43, G47

G44, G46 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131

G45 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311

G48, G49 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32

G50, G51

G52 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32, 14, 41

Table 2

Realizable ordered multiplicity lists for connected graphs with five or fewer vertices which cannot have SMP or SSP.

Graphs Attainable ordered multiplicity lists

G29 131

G42 113, 131, 311
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3. Cloning vertices and ordered multiplicity lists. In this section, we introduce cloning, a graph

operation that, given G and v ∈ V (G), constructs a new graph H by adding a new vertex v′ which is a clone

(or twin) of v. This operation is sometimes referred to as duplicating or blow-ups.

Definition 3.1. Two vertices u and w are twins in H if NH(u) \ {w} = NH(w) \ {u}, where NH(v) is

the set of neighbors of v (i.e., vertices which share an edge with v).

Twins do not need to be adjacent. This leads to two variants of cloning: cloning v with an edge requires

that v ∼ v′ (i.e., v and v′ are adjacent), while cloning without an edge requires v 6∼ v′ (i.e., v and v′ are not

adjacent).

Theorem 3.2. Let G be a graph with M ∈ S(G) with multiplicity list (γ1, . . . , γk) where the eigenvalue

0 has multiplicity γi. Then the following two cases are possible:

1. If the diagonal entry of M corresponding to vj is zero, then the graph H attained from G by cloning

vj without an edge has a matrix N ∈ S(H) that attains the multiplicity list (γ1, . . . , γi + 1, . . . γk).

2. If the diagonal entry of M corresponding to vj is nonzero, then the graph H attained from G by

cloning vj with an edge has a matrix N ∈ S(H) that attains the multiplicity list (γ1, . . . , γi+1, . . . γk).

Proof. Let −λ1 ≤ · · · ≤ λn−γi
be the nonzero eigenvalues of M where a is the last index such that

−λa < 0. Let x1, . . . ,xn−γi
be the corresponding orthonormal eigenvectors. Then

M =

n−γi∑

k=1

λkxkx
T
k

=
(
x1 · · · xn−γi

)


−λ1 · · · 0
...

. . .
...

0 · · · λn−γi







xT
1
...

xT
n−γi




=
(√

λ1x1 · · ·
√

λn−γi
xn−γi

)(−Ia O

O In−γi−a

)

︸ ︷︷ ︸
=S




√
λ1x

T
1

...√
λn−γi

xT
n−γi


 .

The columns of

Y =




√
λ1x

T
1

...√
λn−γi

xT
n−γi


 ,

are an orthogonal representation of G with respect to the indefinite inner product S. That is, if yk denotes

the k-th column, then yT
k Syℓ = 0 if and only if vk 6∼ vℓ in G.

Let Z be a (n− γi)× (n+ 1) matrix with columns as follows:

• zk = yk for 1 ≤ k < j;

• zj = zj+1 = 1√
2
yj ;

• zk = yk−1 for j + 1 < k ≤ n+ 1.

Now consider the matrix N = ZTSZ. Since N is real symmetric, there exists some graph H such that

N ∈ S(H). The following two observations will now conclude the proof.
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First, use the columns of Z as an orthogonal representation for H with respect to S. This corresponds

to the graph G with the vertex vj cloned (i.e., columns still have the same orthogonality relationships as

given by Y ). This will have cloned with an edge if and only if yT
j Syj 6= 0. The latter holds if and only if

the diagonal entry of M corresponding to vj is nonzero.

Second, the inner product of any two rows of Z agrees with the inner product of the corresponding rows

of Y . So the nonzero eigenvalues of N are

SZZT =

(−Ia O

O In−γi−a

)


λ1 · · · 0
...

. . .
...

0 · · · λn−γi


 =



−λ1 · · · 0
...

. . .
...

0 · · · λn−γi


 ,

which are the same as those of M . Hence, N has the same spectrum of M with the addition of a single

eigenvalue of 0, giving us the desired ordered multiplicity list.

Corollary 3.3. Let G be a graph without isolated vertices, and let M ∈ S(G) with multiplicity list

(m1, . . . ,mk). If a graph H is attained by cloning v ∈ V (G) with an edge, then H attains the multiplicity

list (m1 + 1, . . . ,mk).

Proof. By translation, we can assume M is positive semidefinite with nullity m1. If any diagonal entry

were 0, then this would force a row (and column) of zeroes which follows by noting otherwise there is a 2×2

submatrix with negative determinant which is impossible. However, this implies that G contains an isolated

vertex, a contradiction. Thus, the entries of the diagonal are nonzero, and so we apply the previous theorem

by cloning with an edge.

4. Unattainable multiplicity lists for graphs. In this section, we will determine which ordered

multiplicity lists are unattainable for connected graphs on six vertices.

4.1. Using known graph parameters. Since we can assign any particular eigenvalue to 0 by trans-

lation, we have the following observations.

Observation 1. If M(G) denotes the maximum nullity of a matrix in S(G), then all entries of a

multiplicity list of a matrix in S(G) are bounded above by M(G).

Observation 2. If M+(G) denotes the maximum nullity of a positive semidefinite matrix in S(G), then

the first (and by reversal from negation, the last) entry of a multiplicity list of a matrix in S(G) is bounded

above by M+(G).

In general, the computation of M(G) and M+(G) is an open problem [9]. However, for graphs on

seven or fewer vertices, known techniques can find these values (in particular, the inertia tables—see [4]).

It suffices to provide an upper bound for these parameters, which can be done through the combinatorial

parameters Z(G) and Z+(G), respectively, known as the zero-forcing number and semidefinite zero-forcing

number of a graph. Because of their combinatorial nature, Z(G) and Z+(G) can be easily computed for

small graphs through exhaustive analysis. The definition of these parameters, as well as related extensions

and results, can be found in the survey of Fallat and Hogben [9]. For our purposes, we will use the following

result.

Lemma 4.1 (AIM [1], Prop. 2.4). For any graph G, we have M(G) ≤ Z(G).

Lemma 4.2 (Barioli et al. [2], Theorem 3.5). For any graph G, we have M+(G) ≤ Z+(G).
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Another useful parameter is q(G), the minimum number of distinct eigenvalues.

Observation 3. The length of any ordered multiplicity list for M ∈ S(G) is at least q(G).

This is a harder parameter to compute; for connected graphs of order at most six, q(G) was determined

(see [8]). For all connected graphs of order six, the parameters Z(G), Z+(G), and q(G) are given in Table 3

and rule out many ordered multiplicity lists.

4.2. Previous results to rule out ordered multiplicity lists. The following two results, both from

[5], rule out several cases.

Lemma 4.3 (Barrett et al. [5], Lemma 3.3). If G is a connected unicyclic graph with odd girth, then at

least one of the first or last eigenvalues has multiplicity one.

Table 3

The values for Z(G), Z+(G), and q(G) for connected graphs on six vertices.

G Z Z+ q

G77 4 1 3

G78 3 1 4

G79 2 1 4

G80 2 1 5

G81 2 1 5

G83 1 1 6

G92 3 2 3

G93 2 2 4

G94 2 2 4

G95 2 2 4

G96 2 2 3

G97 2 2 5

G98 2 2 4

G99 2 2 3

G100 3 2 4

G102 2 2 5

G103 2 2 4

G104 2 2 4

G105 2 2 3

G111 2 2 3

G112 2 2 4

G113 2 2 4

G114 3 2 3

G115 2 2 3

G117 3 3 3

G118 2 2 3

G119 3 3 4

G120 2 2 4

G Z Z+ q

G121 3 2 3

G122 2 2 4

G123 2 2 4

G124 2 2 4

G125 3 2 3

G126 3 3 3

G127 2 2 3

G128 2 2 3

G129 3 2 3

G130 3 3 4

G133 3 3 3

G134 3 3 4

G135 3 2 3

G136 2 2 3

G137 2 2 3

G138 3 2 3

G139 2 2 4

G140 3 3 3

G141 3 3 3

G142 3 3 4

G143 3 3 3

G144 3 3 3

G145 3 2 3

G146 4 2 3

G147 2 2 3

G148 2 2 3

G149 3 2 3

G150 3 3 3

G Z Z+ q

G151 3 3 3

G152 2 2 3

G153 3 3 3

G154 3 3 2

G156 3 3 3

G157 3 3 3

G158 3 3 3

G159 3 3 3

G160 3 3 3

G161 4 2 3

G162 3 2 3

G163 3 3 3

G164 2 2 3

G165 4 4 3

G166 3 3 3

G167 2 2 3

G168 3 3 2

G169 3 3 3

G170 3 3 3

G171 3 3 3

G172 3 3 3

G173 3 3 3

G174 3 3 2

G175 4 3 2

G177 3 3 3

G178 3 3 3

G179 3 3 3

G180 3 3 3

G Z Z+ q

G181 3 3 2

G182 3 3 3

G183 3 3 3

G184 3 3 3

G185 3 3 3

G186 3 3 2

G187 3 3 3

G188 3 3 2

G189 4 3 3

G190 4 4 2

G191 4 4 3

G192 3 3 2

G193 3 3 3

G194 4 4 2

G195 4 4 2

G196 3 3 2

G197 4 3 2

G198 3 3 2

G199 4 4 2

G200 4 4 2

G201 4 3 2

G202 3 3 2

G203 4 4 2

G204 4 4 2

G205 4 4 2

G206 4 4 2

G207 4 4 2

G208 5 5 2
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G117 G121 G125 G133 G138 G153

132, 231 132, 231 132, 231 312, 213 132, 231 312, 213

312, 213

Figure 2. The remaining unattainable ordered multiplicity lists.

This rules out 2112 and 222 for G92, G93, G94, G95, G100, and G104.

Lemma 4.4 (Barrett et al. [5], Lemmas 2.3 and 5.2). A generalized star or a generalized 3-sun does not

allow an ordered multiplicity list with consecutive multiple eigenvalues.

This rules out 1122, 1221, and 2211 for G77 and G78 (generalized stars) and G94 (3-sun).

The inverse eigenvalue problem for cycles has been determined by Fernandes and Fonseca [10], and in

particular it follows that 1212 and 2121 are not attainable for the graph C6 (G105).

4.3. Remaining cases. After applying the graph parameters, Lemma 4.3, and Lemma 4.4, the re-

maining unattainable cases are shown in Figure 2.

Proving that these cases are unattainable will be done by contradiction, namely by assuming the ex-

istence of a matrix that achieves the specified ordered multiplicity list on a graph. An examination of the

corresponding orthogonal representation allows us to argue that two of the vectors are scalar multiples. This

pair of vectors allows us to ‘declone’ the original graph to a smaller graph with a corresponding matrix that

has an impossible ordered multiplicity list.

Recall that cloning works by taking a single vertex and creating a pair of vertices where the vector

corresponding with each vertex is a (nonzero) scalar multiple of the original. Decloning does the opposite:

if we can show that the vectors corresponding to a pair of vertices must be (nonzero) scalar multiples, then

the two vertices must be twins. We can then delete one of the twins and decrease an entry in the ordered

multiplicity list.

Lemma 4.5 (Decloning). Let G be a graph with M = QTSQ ∈ S(G) having multiplicity list (γ1, . . . , γk)

where the eigenvalue 0 has multiplicity γi. Further assume that S is symmetric and has dimension n − γi,

where n is the order of G. If the columns of Q corresponding to vertices a and b are scalar multiples, then

there exists N ∈ S(H) where H is attained from G by deleting vertex a and N has ordered multiplicity list

(γ1, . . . , γi − 1, . . . , γk).

Proof. Let Q = (x1 x2 · · · xn), and without loss of generality assume that x1 and x2 are scalar multiples,

i.e., x2 = αx1. Let Q̂ = (
√
1 + α2x2 · · · xn); we claim N = Q̂TSQ̂.

Note that two vertices u and v in the graph are not adjacent if and only if xT
uSxv = 0. Since scaling by

a nonzero value does not change this, we have that the adjacencies are preserved and N ∈ S(H). It remains

to check the spectrum of N , but for this we note that QQT = Q̂Q̂T since the dot products of any pair of

corresponding rows are identical. Since the nonzero portion of the spectrum comes from SQQT = SQ̂Q̂T

(since the nonzero eigenvalues of AB and BA agree), the result follows.
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Proposition 4.6. If a symmetric matrix M has nullity three and ordered multiplicity 312, then we have

M = QT IQ where I is the 3× 3 identity matrix.

Proof. The matrix M has spectrum {0(3), λ(1), µ(2)}. Let x be a unit eigenvector for λ and y, z be

orthonormal eigenvectors for µ. We have that

M =
(
x y z

)


λ 0 0

0 µ 0

0 0 µ






xT

yT

zT


 =

(√
λx

√
µy

√
µz

)


1 0 0

0 1 0

0 0 1







√
λxT

√
µyT

√
µzT




︸ ︷︷ ︸
=Q

.

Theorem 4.7. The graphs G117 and G133 cannot attain ordered multiplicity lists 312 or 213.

Proof. Label the vertices of G117 as shown in Figure 3. Suppose M ∈ S(G117) attains ordered multi-

plicity list 312 with nullity three. Applying Proposition 4.6, we can write M = QT IQ, where Q is a matrix

which forms an orthogonal representation for G117. Let vi denote the ith column of Q.

Since v1 and v3 are not adjacent, the corresponding vectors v1 and v3 are orthogonal and thus form a

plane in R
3. Both v5 and v6 are not adjacent to v1 and v3, so v5 and v6 are orthogonal to this plane and

must be scalar multiples.

The decloning lemma implies that the graph with vertex v6 deleted has a matrix that attains 212.

However, this graph is odd unicyclic and thus cannot attain 212 by Lemma 4.3.

A similar argument establishes the result for G133.

Theorem 4.8. The graph G153 cannot attain ordered multiplicity lists 213 or 312.

Proof. Label the vertices of G153 as shown in Figure 4. Suppose that M ∈ S(G153) attains ordered

multiplicity list 312 with nullity three. Applying Proposition 4.6 we can write M = QT IQ, where Q forms

an orthogonal representation for G153. Let vi denote the ith column of Q.

If v1 and v2 are scalar multiples, the decloning lemma implies a matrix for C5 (the five-cycle) with

multiplicity list 212, which is impossible by Lemma 4.3.

v1

v4

v3

v2

v5

v6

Figure 3. The graph G117.

v1

v2

v3

v4v5

v6

Figure 4. The graph G153.
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If v1 and v2 are not scalar multiples, then v1 and v2 form a plane in R
3. Since vertices v4 and v5 are

not adjacent to v1 and v2, the vectors v4 and v5 are orthogonal to the aforementioned plane. Thus, v4 and

v5 are scalar multiples, an impossibility given that v4 and v5 have distinct neighbors.

In either case, we get a contradiction; thus, G153 cannot attain 312.

For the remaining cases, we first establish an analogous result to Proposition 4.6.

Proposition 4.9. If a symmetric matrix M has nullity three and ordered multiplicity 132, then we have

M = QTSQ where S = diag(−1, 1, 1).

Proof. The matrix M has spectrum {−λ(1), 0(3), µ(2)}. Let x be a unit eigenvector for −λ and y, z be

orthonormal eigenvectors for µ. We have

M =
(
x y z

)


−λ 0 0

0 µ 0

0 0 µ






xT

yT

zT


 =

(√
λx

√
µy

√
µz

)


−1 0 0

0 1 0

0 0 1







√
λxT

√
µyT

√
µzT




︸ ︷︷ ︸
=Q

.

Theorem 4.10. The graph G117 cannot attain ordered multiplicity lists 132 or 231.

Proof. Label the vertices of G117 as shown in Figure 3. Suppose that M ∈ S(G117) attains ordered

multiplicity list 132 with nullity three. Applying Proposition 4.9, M = QTSQ where S = diag(−1, 1, 1). Let

vi denote the ith column of Q.

Since v1, v3, and v5 have distinct sets of neighbors, no two of v1, v3, and v5 are scalar multiples of each

other. We will use N(v) to denote the set of neighbors of v.

Because S is invertible, R =
(
v
T

1 S

v
T

3 S

)
has rank two and nullity one. Since v1, v3 /∈ N(v5), we have

Rv5 =
(
0
0

)
; similarly, v1, v3 /∈ N(v6), so Rv6 =

(
0
0

)
. Thus, v5 and v6 are scalar multiples. A similar

argument allows us to conclude that v3 and v4 are scalar multiples.

Now we can apply the decloning lemma twice (i.e., once for each scalar multiple pair) to produce a

matrix for the graph K1,3 which attains 112. But Z+(K1,3) = 1, so the end terms of any multiplicity list of

K1,3 must be 1 (by Lemma 4.2 and Observation 2), a contradiction.

In the following proposition, we introduce a tool that shows two vectors are scalar multiples, a technique

similar to the one used in the previous results.

Proposition 4.11. If S is a 3×3 symmetric invertible matrix and x,y are vectors that satisfy the

relationships xTSx = yTSy = xTSy = 0, then x and y are scalar multiples of each other.

Proof. Assume x and y are not scalar multiples; then Sx and Sy are also not scalar multiples. This

implies the matrix

R =

(
xTS

yTS

)
,

has rank two and nullity one. On the other hand, by our hypothesis we have

Rx =

(
xTSx

yTSx

)
=

(
0

0

)
=

(
xTSy

yTSy

)
= Ry,

which shows that R has nullity at least two, a contradiction.
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v1

v2

v3

v4

v5 v6

(a) Labeled graph.

v1

v2

v3

v4

v5 v6 v′6

(b) A clone of the graph with an edge and

marked zero-forcing set.

Figure 5. The graph G121.

Theorem 4.12. The graph G121 cannot attain ordered multiplicity lists 132 or 231.

Proof. Label the vertices of G121 as shown in Figure 5(a). Suppose that M ∈ S(G121) has an ordered

multiplicity list 132 with nullity three.

We claim that M3,3 = M5,5 = M6,6 = 0. To see this, suppose that M6,6 6= 0; cloning v6 with an edge

produces the graph shown in Figure 5(b) which attains an ordered multiplicity list 142. The set marked in

Figure 5(b) is a zero-forcing set of order three. Thus, the cloned graph cannot attain 142 (by Lemma 4.1

and Observation 1), a contradiction. Hence, M6,6 = 0, and M3,3 = M5,5 = 0 by symmetry.

We apply Proposition 4.9 to write M = QTSQ where S = diag(−1, 1, 1). Let vi denote the ith column

of Q. Since v3, v5, and v6 form an independent set, we have vT
3 Sv6 = vT

3 Sv5 = vT
5 Sv6 = 0. Moreover,

because M3,3 = M5,5 = M6,6 = 0, we have vT
3 Sv3 = vT

5 Sv5 = vT
6 Sv6 = 0. From Proposition 4.11, it follows

that v3, v5, and v6 are pairwise scalar multiples.

Applying the decloning lemma twice produces a matrix for P4 which attains 112. However P4, the path

on four vertices, can only attain 1111 (see G14 in Table 1), a contradiction.

Theorem 4.13. The graphs G125 and G138 cannot attain ordered multiplicity lists 132 or 231.

Proof. Label the vertices of G125 as shown in Figure 6(a). Suppose M ∈ S(G125) has spectrum

{−λ, 0(3), 2(2)} with λ > 0 (by scale and shift, this holds without loss of generality).

We claim thatM5,5 = M6,6 = 0. To see this, suppose thatM5,5 6= 0; cloning v5 with an edge produces the

graph shown in Figure 6(b) which attains an ordered multiplicity list 142. The set marked in Figure 6(b) is a

v1

v2

v3 v4

v5 v6

(a) Labeled graph.

v1

v2

v3 v4

v5 v6v′5

(b) A clone of the graph with an edge and

marked zero-forcing set.

Figure 6. The graph G125.
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v1

v2

v3 v4

v5

Figure 7. The banner graph.

zero-forcing set of order three. Thus, the cloned graph cannot attain 142 (by Lemma 4.1 and Observation 1),

a contradiction. Hence, M5,5 = 0, and M6,6 = 0 by symmetry.

Applying Proposition 4.9 gives M = QTSQ, where S = diag(−1, 1, 1). Let vi denote the ith column

of Q. Note v5 6∼ v6, so vT
5 Sv6 = 0. Moreover, M5,5 = M6,6 = 0, so vT

5 Sv5 = vT
6 Sv6 = 0. From

Proposition 4.11, it follows that v5 and v6 are scalar multiples.

Applying the decloning lemma, we attain a matrix N for the banner graph as labeled in Figure 7, where

N has eigenvalues {−λ, 0(2), 2(1)} and N5,5 = 0; particularly, N has the following form, where ci are nonzero

and di are arbitrary:

N =




d1 c1 0 0 0

c1 d2 c2 c3 0

0 c2 d3 0 c4
0 c3 0 d4 c5
0 0 c4 c5 0




.

The matrix N has rank three; moreover, the first three rows are linearly independent. Therefore, the

fifth row is a linear combination of the first three rows, which implies that c4 = αc2 and c5 = αc3 for some

α 6= 0.

Let R = (N − I)2 which has spectrum {1(4), (1 + λ)2}. The only graphs that attain the ordered

multiplicity list 41 are unions of complete graphs with isolated vertices. Since R1,3 = c1c2 6= 0 and R1,5 = 0,

we must have that v1 is in the clique and v5 is isolated. In particular,

0 = R2,5 = c2c4 + c3c5 = α
(
c22 + c23) 6= 0,

which is impossible.

A similar argument establishes the result for G138.

5. Attainable multiplicity lists for graphs. In this section, we establish which ordered multiplicity

lists are attainable for connected graphs on six vertices. We first utilize techniques which will also achieve

arbitrary spectrum, and then describe those that fail to do so.

Before we begin, we note that a few special cases have already been done in the literature; we refer the

reader elsewhere for details on the following cases.
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• The inverse eigenvalue problem for cycles has been determined by Fernandes and Fonseca.

Theorem 5.1 (Fernandes and Fonseca [10], Theorem 3.3). The numbers λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn

are the spectrum for some matrix M ∈ S(Cn) if and only if

λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 < · · · ,

or

λ1 < λ2 ≤ λ3 < λ4 ≤ λ5 < λ6 < · · · .

(In particular, G105 attains 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1221, and 2112 spectrally

arbitrary.)

• All trees on six vertices are generalized stars or double stars for which the IEPG has been solved

(see [3]). (In particular, G77 attains 1131 and G79 attains 1221 with arbitrary spectra.)

• The graph G129 attains 222; a construction can be found in [8].

5.1. Using SSP for connected graphs of order at most five. Let G be a disconnected graph on six

vertices. From each of its connected components, select an attainable ordered multiplicity list (see Table 1).

Let γ1 . . . γk be the ordered multiplicity list built by interlacing in some way these lists (in particular, it is

assumed that no two components share a common eigenvalue). By Theorem 2.4, if each component attains

its multiplicity list with SSP, G attains γ1 . . . γk with SSP. By Theorem 2.3, any supergraph of G—namely,

any connected supergraph H of order six—attains γ1 . . . γk (with SSP as well).

Since the components are graphs on at most five vertices, all of the attainable multiplicity lists are more

generally spectrally arbitrary in choice of the corresponding eigenvalues [5]. Since SSP preserves spectrum,

any ordered multiplicity list constructed in this fashion must be spectrally arbitrary as well. Exhaustively

performing the process detailed above gives the results listed in Table 4.

5.2. Using cloning for connected graphs of order five. LetG be a connected graph on five vertices,

and let H be the graph constructed by cloning v ∈ v(G) with an edge. If G attains the ordered multiplicity

list (γ1, . . . , γk), by Corollary 3.3 it follows that H attains both (γ1 + 1, . . . , γk) and (γ1, . . . , γk + 1).

The method above produces the results listed in Table 5 (note we exclude information that follows from

previous results).

The full application of Theorem 3.2 generally requires a constructed matrix; then, confirming the value

of the appropriate diagonal entry allows for the manipulation of the interior entries of the corresponding

ordered multiplicity list. However, an explicit construction is not always necessary. Given a prescribed

multiplicity list, for some graphs G we can sometimes guarantee that a particular diagonal entry of any

M ∈ S(G) must be zero (or nonzero), as we now demonstrate.

Proposition 5.2. Let M ∈ S(G40) have nullity two, then the diagonal entry of M corresponding to the

leaf is nonzero. In particular, for any ordered multiplicity list of G40 with a 2 we can clone the leaf vertex

with an edge to get G144 and change the 2 to a 3.

Proof. In Figure 8, we have G40 and the two possible graphs that result from cloning without an edge

(G111) and with an edge (G144). In addition, we have marked minimal zero-forcing sets for the two clones.

The graph G111 has a zero-forcing number of two, which would imply that the maximum nullity (and

hence also maximum multiplicity of an eigenvalue) is at most two. Therefore, no matrix associated with



Electronic Journal of Linear Algebra, ISSN 1081-3810

A publication of the International Linear Algebra Society

Volume 37, pp. 316-358, April 2021.

329 Ordered multiplicity inverse eigenvalue problem for graphs on six vertices

Table 4

Using SSP properties for graphs of order at most five to attain (spectrally arbitrary) ordered multiplicity lists for graphs

of order six.

Graph(s) Supergraphs Multiplicity lists

G54 ∪ G1 G191, G200, G205, G207, G208 111111, 11112, 11121, 11211, 12111, 21111,

1122, 1212, 1221, 2112, 2121, 2211,

1113, 1131, 1311, 3111, 123, 132,

213, 231, 312, 321, 114, 141, 411

G48 ∪ G1 G140, G141, G143, G156, G157, 111111, 11112, 11121, 11211, 12111, 21111,

G158, G159, G160, G166, G168, 1122, 1212, 1221, 2112, 2121, 2211,

G170, G172, G173, G177, G178, 1113, 1131, 1311, 3111, 123, 132,

G179, G180, G181, G182, G183, 213, 231, 312, 321

G184, G185, G186, G188, G189,

G190, G192, G193, G194, G195,

G196, G197, G198, G199, G201,

G202, G203, G204, G206

G18 ∪ 2G1 G133, G134, G142, G165, G169 111111, 11112, 11121, 11211, 12111, 21111,

1122, 1212, 1221, 2112, 2121, 2211,

1113, 1131, 1311, 3111

G44 ∪ G1 G121, G125, G135, G138, G146, 111111, 11112, 11121, 11211, 12111, 21111,

G149, G154, G161, G162, G175 1122, 1212, 1221, 2112, 2121, 2211,

1131, 1311

G7 ∪ G7 G96, G98, G99, G103, G111, 111111, 11112, 11121, 11211, 12111, 21111,

G42 ∪ G1 G112, G113, G114, G115, G117, 1122, 1212, 1221, 2112, 2121, 2211

G16 ∪ 2G1 G118, G119, G120, G122, G123,

G124, G126, G128, G129, G130,

G136, G137, G139, G144, G145,

G147, G148, G150, G151, G152,

G153, G163, G164, G167, G171,

G174, G187

G34 ∪ G1 G92, G93, G95, G104, G127 111111, 11112, 11121, 11211, 12111, 21111,

G38 ∪ G1 1122, 1212, 1221, 2121, 2211

G7 ∪ 3G1 G94, G97, G100, G102 111111, 11112, 11121, 11211, 12111, 21111

G13 ∪ 2G1 G77, G78, G79, G80, G81 111111, 11121, 11211, 12111

6G1 G83, G105 111111

G111 can have an ordered multiplicity list with an entry which is ≥ 3. On the other hand that is possible

for G144.

We can run cloning with the matrix M which has nullity two and produce a matrix that has nullity

three. This can only be possible if we cloned to G144 and not G111 which means that the diagonal entry

corresponding to the leaf vertex is nonzero.

Finally, since we can always translate any particular eigenvalue to 0 then for any matrix in S(G40)
with an entry of two in the ordered multiplicity list, first we translate so that the entry corresponds to an

eigenvalue of 0, apply the preceding argument changing the two to a three, and then translate back.
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Table 5

Using cloning for graphs on five vertices to attain ordered multiplicity lists for graphs on six vertices.

Graph Cloned graph(s) Multiplicity lists

G29 G92, G161 132, 231

G30 G100 1122, 1212, 2121, 2211

G34 G117, G133, G179 1113, 123, 222, 3111, 321

G35 G119 1113, 3111

G36 G130, G150 1113, 3111

G37 G126, G141, G143, G168 1113, 123, 213, 222, 3111, 312, 321

G38 G153 1113, 123, 222, 3111, 321

G40 G144, G156, G177, G192 1113, 123, 213, 222, 3111, 312, 321

G41 G150, G160, G178, G181 1113, 123, 213, 222, 3111, 312, 321

G42 G165, G195 114, 123, 132, 213, 222, 231, 312, 321, 411

G43 G169, G172, G185 123, 213, 222, 312, 321

G44 G170, G189 222

G45 G165, G191, G200 114, 123, 132, 213, 222, 231, 312, 321, 411

G46 G179, G201 222

G47 G183, G193, G202 222

G48 G190, G194, G199 114, 222, 24, 33, 411, 42

G49 G195, G200, G205 114, 222, 24, 33, 411, 42

G50 G203, G206 114, 222, 24, 33, 411, 42

G51 G205, G207 222, 24, 33, 42

G52 G208 15, 222, 24, 33, 42, 51

(a) G40 (b) G111 (c) G144

Figure 8. G40 and its two clones via the leaf. Minimal zero-forcing sets have been marked for the clones.

A similar argument works for several other cases which are listed in Table 6.

Because we know that graphs on five vertices attain their ordered multiplicity lists spectrally arbitrarily

and cloning preserves the eigenvalues, we can conclude that these lists found by cloning are also spectrally

arbitrary.

5.3. Constructions of graphs which are spectrally arbitrary. Several cases were handled by

finding matrices, usually through the aid of orthogonal representations. Constructions with SSP allowed

multiple cases to be handled simultaneously.

Proposition 5.3. For G96, we can attain 222 spectrally arbitrary using SSP matrices.
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Table 6

Using cloning for graphs on five vertices to attain ordered multiplicity lists for graphs on six vertices where a middle entry

is increased.

Graph Cloned graph Multiplicity lists

G29 G77 141

G30 G78 1131, 1311

G30 G100 1131, 1311

G30 G114 1131, 1311

G34 G133 132, 231

G35 G119 1131, 1311

G37 G126 1131, 1311, 132, 231

G40 G144 1131, 1311, 132, 231

G42 G165 141

G44 G146 141

G46 G161 141

G48 G190 141

G48 G194 141

G49 G195 141

Proof. For b > 0, the following matrix for G96 attains {0(2), 1(2), (1 + 4b2)(2)} with SSP.



4b2
√
2b −

√
2b 0 0 0√

2b 1 0 b 0 0

−
√
2b 0 1 b 0 0

0 b b 4b2 b b

0 0 0 b 1 0

0 0 0 b 0 1




By choosing b, we can make the ratio of the two gaps between the eigenvalues arbitrarily large. By scaling

and shifting, this establishes attainability with arbitrary spectrum.

By Theorem 2.3, we have that all supergraphs which contain G96 can attain the ordered multiplicity

list 222 with arbitrary spectrum. Thus, the graphs G111, G114, G118, G121, G135, G136, G137, G140, G145,

G146, G147, G148, G149, G157, G158, G159, G161, G162, G163, G164, G166, G167, G171, G173, G180, G182,

G184, G186, G187, G188, G196, G197, G198, and G204 are spectrally arbitrary for 222.

Proposition 5.4. For G105, we can attain 222 spectrally arbitrary using SSP matrices.

Proof. The matrix 


−1 −1 0 0 0 a

−1 0 a 0 0 0

0 a a2 a 0 0

0 0 a −1 1 0

0 0 0 1 0 a

a 0 0 0 a a2




∈ S(G105),

has SSP and has spectrum
{
( 12a

2 − 1
2

√
a4 + 10a2 + 5− 1

2 )
(2), 0(2), ( 12a

2 + 1
2

√
a4 + 10a2 + 5− 1

2 )
(2)

}
.
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Since we can scale the spectrum, it suffices to show that the following ratio of the absolute value of the two

nonzero eigenvalues contains the interval [1,∞):

a2 +
√
a4 + 10a2 + 5− 1

−a2 +
√
a4 + 10a2 + 5 + 1

.

This is continuous for a ≥ 1 and if a = 1 we get 1. Furthermore, the numerator has growth a2 and the

denominator approaches 6 so the ratio is unbounded.

By Theorem 2.3, we have that all supergraphs which contain G105 can attain the ordered multiplicity list

222 with arbitrary spectrum. Thus, the graphs G127, G128, G151, G152, G154, G174, and G175 are spectrally

arbitrary for 222.

Proposition 5.5. For G99, we can attain 222 spectrally arbitrary using non-SSP matrices.

Proof. For a > 0, the following matrix for G99 attains {0(2), 1(2), (1 + 3a2)(2)}.



1 a 0 0 0 0

a 3 a2 a a 0 0

0 a 1 0 −a 0

0 a 0 1 a 0

0 0 −a a 3 a2 a

0 0 0 0 a 1




.

By choosing a, we can make the ratios of the two gaps arbitrarily big. By scaling and shifting, this establishes

attainability with arbitrary spectrum.

It is impossible for any matrix to have 222 and SSP for this graph as G112 is a supergraph which cannot

attain 222 because q(G112) = 4.

Proposition 5.6. For G189, we can attain 141 spectrally arbitrary using SSP matrices.

Proof. The matrix 


0 0 0 1 1 a

0 0 0 1 1 a

0 0 0 1 1 a

1 1 1 −1 −1 0

1 1 1 −1 −1 0

a a a 0 0 a2




∈ S(G189),

has SSP and has characteristic polynomial p(x) = x4(x2 − (a2 − 2)x− (5a2 + 6)). The spectrum is

{
1
2

(
(a2 − 2)−

√
a4 + 16a2 + 28

)
, 0(4), 1

2

(
(a2 − 2) +

√
a4 + 16a2 + 28

)}
.

Since we can scale the spectrum, it suffices to show that the following ratio of the absolute value of the two

nonzero eigenvalues contains the interval [1,∞):

(a2 − 2) +
√
a4 + 16a2 + 28

−(a2 − 2) +
√
a4 + 16a2 + 28

.

This is continuous for a ≥
√
2 and if a =

√
2 we get 1. Furthermore, the numerator has growth a2 and the

denominator approaches 10 so the ratio is unbounded.
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By Theorem 2.3, all supergraphs which contain G189 can attain the ordered multiplicity list 141 with

arbitrary spectrum. Thus, the graphs G197, G199, G201, G203, and G206 are spectrally arbitrary for 141.

The remaining case for 141 is G204. Consider




a2 0 a a a a

0 −1 −1 −1 1 1

a −1 0 0 2 2

a −1 0 0 2 2

a 1 2 2 0 0

a 1 2 2 0 0




∈ S(G204),

which has eigenvalues {−5, 0(4), 4 + a2}. Arbitrary spectrums are attained through appropriate choices of

a ≥ 1, scaling, and shifting.

Proposition 5.7. For G151, we can attain 213, 312, 1113, and 3111 spectrally arbitrary using SSP

matrices.

Proof. For a, b > 0, the following matrix for G151 has spectrum {0(3), 2a2, 2a2 + 2, a2 + b2 + 2} and

satisfies SSP: 


a2 a 0 0 a2 0

a a2 + 2 a 0 0 ab

0 a a2 a2 0 0

0 0 a2 a2 + 1 1 −b

a2 0 0 1 a2 + 1 −b

0 ab 0 −b −b b2




.

Setting a = b gives 312 with a fixed gap between the last two eigenvalues and an arbitrary gap between the

first two; the attainability of an arbitrary spectrum follows.

For 3111, by scale and shift we can assume a non-negative spectrum such that 0 is the eigenvalue of

multiplicity 3, and the gap between the first and second positive eigenvalues is 2. Set 2a2 and a2 + b2 +2 to

the first and third positive eigenvalues, respectively, and solve for a and b. Thus, an arbitrary spectrum is

attainable.

By Theorem 2.3, we have that all supergraphs of G151 can attain the ordered multiplicity lists 213, 312,

1113, and 3111 with arbitrary spectrum. Thus, the graphs G171 and G187 are spectrally arbitrary for 213,

312, 1113, and 3111.

Proposition 5.8. For G163, we can attain 213, 312, 1113, and 3111 spectrally arbitrary using SSP

matrices.

Proof. For a, b > 0, the following matrix for G163 has spectrum {0(3), 1, 1+3a2, 1+a2+2b2} and satisfies

SSP: 


a2 + b2 b2 b 0 a2 a

b2 a2 + b2 b a −a2 0

b b 1 0 0 0

0 a 0 1 −a 0

a2 −a2 0 −a 2 a2 a

a 0 0 0 a 1




.
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By appropriate choices of a, b, scaling, and translating, this attains 312, 213, 3111, and 1113 spectrally

arbitrary.

5.4. Two distinct eigenvalues. For the graphs G154, G168, G174, G175, G181, G186, G188, G192,

G196, G197, G198, G201, and G202, q(G) = 2 and Z+(G) = 3 (see Table 3), which implies that all these

graphs attain 33. (For more on matrix realizations for these graphs, see [8].) For the graph G204, this attains

33 by the matrix below on the left, and 42 (24) by the matrix below on the right.




0 0 1 1 1 1

0 0 1 1 −1 −1

1 1 0 0 1 −1

1 1 0 0 −1 1

1 −1 1 −1 0 0

1 −1 −1 1 0 0







1 0 1 −1 2 −1

0 1 1 1 1 2

1 1 2 0 3 1

−1 1 0 2 −1 3

2 1 3 −1 5 0

−1 2 1 3 0 5




,

When a matrix for a graph has two distinct eigenvalues, we can modify the matrix to get additional

attainable ordered multiplicity lists. The following will suffice for our purposes (generalizations are possible

for graphs with larger order).

Lemma 5.9. Let G 6= K6 be a connected graph on six vertices. If G attains ordered multiplicity list 33,

then with arbitrary spectrum it attains multiplicity lists 1113, 123, 213, 312, 321, and 3111. Similarly, if G

attains 42 or 24, then with arbitrary spectrum it attains 411 and 114.

Proof. Since G is not the complete graph, there are two nonadjacent vertices, which we assume to be v1
and v2.

LetM ∈ S(G) attain the ordered multiplicity list 33 with spectrum {0(3), 1(3)}. We can writeM = QTQ,

where Q is a 3× 6 matrix whose rows are any orthonormal basis of the eigenspace of 1 (in particular, M is

the projection matrix onto the eigenspace associated with eigenvalue 1).

We claim we can choose our orthonormal basis so that for some x, y 6= 0,

Q =




x

0

0

0

y

0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 .

To see this, first consider the vectors a,b, c, which form a basis for our eigenspace.

• Note that no fixed entry can be 0 for all three of a,b, c; otherwise this would imply that the

corresponding vertex is isolated, a contradiction given that our graph is connected. Thus, at least

one vector has a nonzero first entry. By taking linear combinations, we can assume that the first

entry is 0 for a and b and nonzero for c.

• Run Gram-Schmidt on a,b, c (in this order) to get an orthonormal set a′, b′, c′, where the first

entries of a′, b′ are 0 and the first entry of c′ is nonzero. Note the second entry of c′ must be zero;

otherwise, using this set as an orthonormal basis for Q would force M1,2 6= 0, a contradiction given

that v1 6∼ v2.

• Now repeat the argument for a′,b′ by taking a linear combination so that the second entry of a′ is

zero. Run Gram-Schmidt again to produce a′′,b′′.

• Thus, the rows of Q are (from top to bottom) c′,b′′,a′′.
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Note we can now introduce parameters λ, µ > 0 to give

Q̂ =




λx

0

0

0

µy

0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 .

Since the orthogonality of the columns of Q̂ agrees with the orthogonality of the columns of Q, the

matrix M̂ = Q̂T Q̂ ∈ S(G). Because the nonzero eigenvalues of M̂ are the norms of the rows, M̂ has

spectrum {0(3), 1, 1+(λ2− 1)x2, 1+(µ2− 1)y2}. Appropriate choices of λ and µ, combined with scaling and

translation, arbitrarily attain any spectrum that starts or ends with an eigenvalue of multiplicity 3.

A similar argument handles the 42 case.

This lemma establishes that 1113, 123, 213, 312, 321, and 3111 are all attainable with arbitrary spec-

trum for graphs G154, G174, and G175; similarly, 411 and 114 are attainable with arbitrary spectrum for

G204.

5.5. Graph minor results. We now turn to results for graphs which attain certain ordered multiplicity

lists, but which are not enough to prove we do so arbitrarily. We start with the following result which connects

SSP and graph minors. This result follows immediately from Theorem 6.12 in [5].

Theorem 5.10. Let G be attained from H by contraction of a single edge, and let M ∈ S(G) have SSP

and ordered multiplicity list (γ1, . . . , γk). Then there is N ∈ S(H) with ordered multiplicity list (γ1, . . . , γk, 1).

Applying Theorem 5.10 by looking for minors on graphs of order six gives the results listed in Table 7

(we exclude information that follows from previous results).

Note Theorem 5.10 does not guarantee spectrally arbitrary results; the newly appended one on the

ordered multiplicity list might need to be large (see [5] for more information).

5.6. Graphs with SSP/SMP. Table 8 lists matrices that attain the corresponding ordered multi-

plicity list for that graph. All these matrices have either SSP or SMP, which gives the results listed in

Table 7.

• Because G127 is a supergraph of G105, G127 attains 2112.

• Because G138 is a supergraph of G125, G138 attains 222.

• Because G145, G149, and G162 are supergraphs of G129, they attain 132 and 231.

Table 7

Using graph minors to attain ordered multiplicity lists for graphs of order six.

Graph(s) Minor Multiplicity lists

G100 G34 1221

G129, G145, G151, G153, G44 1311, 1131

G171, G174, G187

G151, G153, G154, G169, G48 321, 123, 231, 132

G171, G174, G175, G187
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Table 8

Matrices with SSP or SMP.

Graph Multiplicity list(s) Matrix

G105 2112



















0 1 0 0 0 −2

1 0 2 0 0 0

0 2 0 1 0 0

0 0 1 0 2 0

0 0 0 2 0 1

−2 0 0 0 1 0



















G125 222



















−1 0 1 1 1 0

0 −1 1 1 −1 0

1 1 0 0 0 0

1 1 0 0 0 0

1 −1 0 0 −1 1

0 0 0 0 1 1



















G129 132, 231



















2 2 1 1 0 0

2 1 0 0 0 −1

1 0 0 0 1 0

1 0 0 0 1 0

0 0 1 1 2 2

0 −1 0 0 2 1



















5.7. Remaining cases. Table 9 gives the remaining attainable cases. The construction of these matri-

ces included exhaustive searches for matrices with simple entries (i.e., 0, ±1), as well as the use of orthogonal

representations with respect to some (possibly indefinite) inner product.

6. Ordered multiplicity IEPG differs from IEPG. Through five vertices, the ordered multiplicity

IEPG and the IEPG are equivalent: a graph attains an ordered multiplicity list if and only if it attains

that multiplicity list with arbitrary spectrum. However, for graphs of order at least six, this relationship no

longer holds.

Theorem 6.1. The complete bipartite graph Km,n where min(m,n) ≥ 3 attains the ordered multiplicity

list (1,m+ n− 2, 1), but not spectrally arbitrary.

Proof. The spectrum of the adjacency matrix of Km,n is {−√
mn, 0(m+n−2),

√
mn}. Thus, Km,n attains

(1,m+n−2, 1). Note the gaps between consecutive eigenvalues are equal. We claim that any M ∈ S(Km,n)

that attains (1,m + n − 2, 1) preserves this relationship. Thus, Km,n cannot attain (1,m + n − 2, 1) with

arbitrary spectrum.

Let M ∈ S(Km,n) attain multiplicity list (1,m+n−2, 1), where after translation we may assume 0 is the

eigenvalue of multiplicity m+ n− 2. Let −λ1 < λ2 be the nonzero eigenvalues of M with the corresponding

orthogonal eigenvectors x1 and x2. Note,

M = −λ1x1x
T
1 + λ2x2x

T
2 =

(
x1 x2

)(−λ1 0

0 λ2

)(
xT
1

xT
2

)
=

(√
λ1x1

√
λ2x2

)(−1 0

0 1

)

︸ ︷︷ ︸
=S

(√
λ1x

T
1√

λ2x
T
2

)

︸ ︷︷ ︸
=Y

.
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Table 9

Remaining cases.



















1 1 1 0 0 0

1 1 1 0 0 0

1 1 3 2 2 2

0 0 2 2 0 0

0 0 2 0 2 0

0 0 2 0 0 2



















∈ S(G92)

1131

1311



















1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



















∈ S(G94)

2121

1212



















0 0
√
2 0 0 0

0 0
√
2 0 0 0√

2
√
2 −1 0 1 1

0 0 0 −1 1 −1

0 0 1 1 −1 1

0 0 1 −1 1 −1



















∈ S(G114)

132

231



















0 1 0 0 0 0

1 −1 0 0 1 1

0 0 0 1 −1 1

0 0 1 1 0 0

0 1 −1 0 0 1

0 1 1 0 1 0



















∈ S(G115)

222



















1 1 1 1 1 1

1 −1 0 0 0 0

1 0 1 1 0 0

1 0 1 1 0 0

1 0 0 0 1 1

1 0 0 0 1 1



















∈ S(G117)

1131

1311



















0 1 1 1 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 0 0 0 1 1

0 0 0 1 1 1

0 0 0 1 1 1



















∈ S(G130)

1131

1311



















0 0 0
√
3

√
3 0

0 0 0
√
3

√
3 0

0 0 0
√
3

√
3 0√

3
√
3

√
3 0 3 0√

3
√
3

√
3 3 2 2

0 0 0 0 2 −1



















∈ S(G135)

132

231



















0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 −2 1 −1

1 1 1 1 −1 0

1 1 1 −1 0 −1



















∈ S(G146)

132

231



















1 0 0 0 1 1

0 1 1 1 1 0

0 1 1 1 1 0

0 1 1 0 0 0

1 1 1 0 1 1

1 0 0 0 1 1



















∈ S(G150)

1131

1311



















γ
2

γ γ 0 0 0

γ 0 2 −1 0 0

γ 2 0 1 0 0

0 −1 1 0 γ γ

0 0 0 γ γ
2

γ
2

0 0 0 γ γ
2

γ
2



















γ
2 =

√
10− 2

∈ S(G150)

132

231


















1 3 1 0 1 2

3 5 2 1 0 3

1 2 7 4 −1 0

0 1 4 2 0 0

1 0 −1 0 −1 0

2 3 0 0 0 2



















∈ S(G163)

1131

1311



















0 1 1 0 1 1

1 0 −1 −1 −1 0

1 −1 1 0 0 0

0 −1 0 1 −1 0

1 −1 0 −1 0 −1

1 0 0 0 −1 1



















∈ S(G163)

123

321



















5
√
5 5 0 0 0√

5 2
√
5

√
5

√
5 0

5
√
5 0 0 −5 −5

0
√
5 0 5 5 0

0
√
5 −5 5 0 −5

0 0 −5 0 −5 −5



















∈ S(G163)

132

231

Let yi be the ith column of Y ; thus, yi ∈ R
2. Note the association between yi and vi of Km,n: two

vertices vi 6∼ vj if and only if yT
i Syj = 0. Moreover, Km,n is connected, so yi 6= 0.
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Let a, b ∈ Km,n be nonadjacent. Since min(m,n) ≥ 3, there exists c such that a, b, and c are pairwise

nonadjacent. If the corresponding vectors a and b are not scalar multiples, then the matrix
(−a1 a2
−b1 b2

)
,

has rank two. However, the adjacency structure of Km,n requires that
(−a1 a2
−b1 b2

)(
c1
c2

)
=

(
0

0

)
,

which shows the matrix lacks full rank, a contradiction. Thus, a and b are scalar multiples. By symmetry,

the vectors associated with pairwise nonadjacent vertices must be scalar multiples. These vectors must also

satisfy aTSb = 0 (since a and b are nonadjacent) implying aTSa = 0 (which differs from the previous

expression by a nonzero scaling factor), and thus must have the form
(

x
±x

)
. Hence, Y is of the form

(
α1 α2 · · · αm β1 β2 · · · βn

α1 α2 · · · αm −β1 −β2 · · · −βn

)
,

for appropriate choice of αi and βj , so M has spectrum

{
0(m+n−2),±2

√
(
∑

α2
i )(

∑
β2
j )
}
.

Therefore, Km,n cannot attain (1,m+ n− 2, 1) with arbitrary spectrum.

Corollary 6.2. The graph K3,3 ( G175) attains 141, but not spectrally arbitrary.

7. Conclusion. We have given a complete solution for the ordered multiplicity IEPG for connected

graphs on six vertices. Moreover, many of the techniques used for attainability also allow for an arbitrary

spectrum, allowing for significant progress on the IEPG for connected graphs on six vertices. In particular,

there are 1326 cases of attainability. Among these, 1285 are known to be done with arbitrary spectrum, one

does so without, and 40 remain undetermined (see Table 10). Finishing these cases, and thus solving the

IEPG for graphs on six vertices, is an open problem.

We also showed that Km,n with min(m,n) ≥ 3 has at least one attainable multiplicity list which cannot

be attained spectrally arbitrary. This shows that the ordered multiplicity IEPG and the IEPG differ for

graphs on six or more vertices.

Table 10

The remaining cases for the IEPG for connected graphs on six vertices.

Multiplicity list(s) Remaining cases

1212, 2121 G94

1221 G100

2112 G127

222 G115, G125, G129, G138

1131, 1311 G92, G117, G129, G130, G145, G150, G151, G153, G163, G171,

G174, G187

123, 321 G151, G163, G171, G187

132, 231 G114, G129, G135, G145, G146, G149, G150, G151, G153, G154,

G162, G163, G169, G171, G174, G175, G187
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A natural next problem to consider is the ordered multiplicity IEPG for connected graphs on seven

or more vertices. While many of the techniques implemented in this work can be utilized in that setting

(and indeed solves ‘most’ of the cases), the IEPG becomes dramatically harder. Thus, new tools and more

automation will likely be needed to continue to make progress.1

The difficulty lies in part with the number of cases involved, both in terms of the number of graphs and

the number of potential ordered multiplicity lists. In addition, one of the most useful tools we had was SMP

and SSP which allowed for simultaneous handling of many cases by establishing a result for a graph and all

its supergraphs. This does have some limitations.

Observation 4. If M ∈ S(G) attains γ1 . . . γk and H is a supergraph which does not attain γ1 . . . γk,

then M does not have SSP or SMP.

This can be used to explain why the cases given in Table 2 do not have SSP, and for graphs on six vertices

can be used to show that there are over 40 occurrences where a graph attains an ordered multiplicity list but

does so without SSP or SMP. These cases required either cloning or finding some appropriate orthogonal

constructions. As the number of vertices increases, the number of cases needing individual attention (and

hence difficulty) will rise as well.

Acknowledgments. The research was conducted at the 2017 REU program held at Iowa State Uni-

versity, which was supported by NSF DMS 1457443. Steve Butler was partially supported by a grant from

the Simons Foundation (#427264).

Appendix A. Connected graphs on six vertices realizing given ordered multiplicities. For

the following ordered multiplicities, we list all connected graphs which can achieve a given multiplicity list.

Any graph which is underlined is a graph which has not yet been determined to be spectrally arbitrary

for that ordered multiplicity list. Any graph which is boxed is a graph which has been shown to not be

spectrally arbitrary for that multiplicity list.

111111

G77 G78 G79 G80 G81 G83 G92 G93 G94 G95 G96 G97

G98 G99 G100 G102 G103 G104 G105 G111 G112 G113 G114 G115

G117 G118 G119 G120 G121 G122 G123 G124 G125 G126 G127 G128

G129 G130 G133 G134 G135 G136 G137 G138 G139 G140 G141 G142

G143 G144 G145 G146 G147 G148 G149 G150 G151 G152 G153 G154

G156 G157 G158 G159 G160 G161 G162 G163 G164 G165 G166 G167

G168 G169 G170 G171 G172 G173 G174 G175 G177 G178 G179 G180

G181 G182 G183 G184 G185 G186 G187 G188 G189 G190 G191 G192

G193 G194 G195 G196 G197 G198 G199 G200 G201 G202 G203 G204

G205 G206 G207 G208

1Even for graphs on six vertices it is not immediately clear that our claim of all cases being established holds. A SAGE

worksheet which implements and runs through all cases is available online and can be used for simplifying the verification:

https://sage.math.iastate.edu/home/pub/120/

https://sage.math.iastate.edu/home/pub/120/
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11112 and 21111

G92 G93 G94 G95 G96 G97 G98 G99 G100 G102 G103 G104

G105 G111 G112 G113 G114 G115 G117 G118 G119 G120 G121 G122

G123 G124 G125 G126 G127 G128 G129 G130 G133 G134 G135 G136

G137 G138 G139 G140 G141 G142 G143 G144 G145 G146 G147 G148

G149 G150 G151 G152 G153 G154 G156 G157 G158 G159 G160 G161

G162 G163 G164 G165 G166 G167 G168 G169 G170 G171 G172 G173

G174 G175 G177 G178 G179 G180 G181 G182 G183 G184 G185 G186

G187 G188 G189 G190 G191 G192 G193 G194 G195 G196 G197 G198

G199 G200 G201 G202 G203 G204 G205 G206 G207 G208

11121 and 12111

G77 G78 G79 G80 G81 G92 G93 G94 G95 G96 G97 G98

G99 G100 G102 G103 G104 G105 G111 G112 G113 G114 G115 G117

G118 G119 G120 G121 G122 G123 G124 G125 G126 G127 G128 G129

G130 G133 G134 G135 G136 G137 G138 G139 G140 G141 G142 G143

G144 G145 G146 G147 G148 G149 G150 G151 G152 G153 G154 G156

G157 G158 G159 G160 G161 G162 G163 G164 G165 G166 G167 G168

G169 G170 G171 G172 G173 G174 G175 G177 G178 G179 G180 G181

G182 G183 G184 G185 G186 G187 G188 G189 G190 G191 G192 G193

G194 G195 G196 G197 G198 G199 G200 G201 G202 G203 G204 G205

G206 G207 G208

11211

G77 G78 G79 G80 G81 G92 G93 G94 G95 G96 G97 G98

G99 G100 G102 G103 G104 G105 G111 G112 G113 G114 G115 G117

G118 G119 G120 G121 G122 G123 G124 G125 G126 G127 G128 G129

G130 G133 G134 G135 G136 G137 G138 G139 G140 G141 G142 G143

G144 G145 G146 G147 G148 G149 G150 G151 G152 G153 G154 G156

G157 G158 G159 G160 G161 G162 G163 G164 G165 G166 G167 G168

G169 G170 G171 G172 G173 G174 G175 G177 G178 G179 G180 G181

G182 G183 G184 G185 G186 G187 G188 G189 G190 G191 G192 G193

G194 G195 G196 G197 G198 G199 G200 G201 G202 G203 G204 G205

G206 G207 G208

1122 and 2211
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G92 G93 G95 G96 G98 G99 G100 G103 G104 G105 G111 G112

G113 G114 G115 G117 G118 G119 G120 G121 G122 G123 G124 G125

G126 G127 G128 G129 G130 G133 G134 G135 G136 G137 G138 G139

G140 G141 G142 G143 G144 G145 G146 G147 G148 G149 G150 G151

G152 G153 G154 G156 G157 G158 G159 G160 G161 G162 G163 G164

G165 G166 G167 G168 G169 G170 G171 G172 G173 G174 G175 G177

G178 G179 G180 G181 G182 G183 G184 G185 G186 G187 G188 G189

G190 G191 G192 G193 G194 G195 G196 G197 G198 G199 G200 G201

G202 G203 G204 G205 G206 G207 G208

1221

G79 G92 G93 G95 G96 G98 G99 G100 G103 G104 G105 G111

G112 G113 G114 G115 G117 G118 G119 G120 G121 G122 G123 G124

G125 G126 G127 G128 G129 G130 G133 G134 G135 G136 G137 G138

G139 G140 G141 G142 G143 G144 G145 G146 G147 G148 G149 G150

G151 G152 G153 G154 G156 G157 G158 G159 G160 G161 G162 G163

G164 G165 G166 G167 G168 G169 G170 G171 G172 G173 G174 G175

G177 G178 G179 G180 G181 G182 G183 G184 G185 G186 G187 G188

G189 G190 G191 G192 G193 G194 G195 G196 G197 G198 G199 G200

G201 G202 G203 G204 G205 G206 G207 G208

1212 and 2121

G92 G93 G94 G95 G96 G98 G99 G100 G103 G104 G111 G112

G113 G114 G115 G117 G118 G119 G120 G121 G122 G123 G124 G125

G126 G127 G128 G129 G130 G133 G134 G135 G136 G137 G138 G139

G140 G141 G142 G143 G144 G145 G146 G147 G148 G149 G150 G151

G152 G153 G154 G156 G157 G158 G159 G160 G161 G162 G163 G164

G165 G166 G167 G168 G169 G170 G171 G172 G173 G174 G175 G177

G178 G179 G180 G181 G182 G183 G184 G185 G186 G187 G188 G189

G190 G191 G192 G193 G194 G195 G196 G197 G198 G199 G200 G201

G202 G203 G204 G205 G206 G207 G208

2112

G96 G98 G99 G103 G105 G111 G112 G113 G114 G115 G117 G118

G119 G120 G121 G122 G123 G124 G125 G126 G127 G128 G129 G130

G133 G134 G135 G136 G137 G138 G139 G140 G141 G142 G143 G144

G145 G146 G147 G148 G149 G150 G151 G152 G153 G154 G156 G157

G158 G159 G160 G161 G162 G163 G164 G165 G166 G167 G168 G169

G170 G171 G172 G173 G174 G175 G177 G178 G179 G180 G181 G182

G183 G184 G185 G186 G187 G188 G189 G190 G191 G192 G193 G194

G195 G196 G197 G198 G199 G200 G201 G202 G203 G204 G205 G206

G207 G208
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222

G96 G99 G105 G111 G114 G115 G117 G118 G121 G125 G126 G127

G128 G129 G133 G135 G136 G137 G138 G140 G141 G143 G144 G145

G146 G147 G148 G149 G150 G151 G152 G153 G154 G156 G157 G158

G159 G160 G161 G162 G163 G164 G165 G166 G167 G168 G169 G170

G171 G172 G173 G174 G175 G177 G178 G179 G180 G181 G182 G183

G184 G185 G186 G187 G188 G189 G190 G191 G192 G193 G194 G195

G196 G197 G198 G199 G200 G201 G202 G203 G204 G205 G206 G207

G208

1113 and 3111

G117 G119 G126 G130 G133 G134 G140 G141 G142 G143 G144 G150

G151 G153 G154 G156 G157 G158 G159 G160 G163 G165 G166 G168

G169 G170 G171 G172 G173 G174 G175 G177 G178 G179 G180 G181

G182 G183 G184 G185 G186 G187 G188 G189 G190 G191 G192 G193

G194 G195 G196 G197 G198 G199 G200 G201 G202 G203 G204 G205

G206 G207 G208

1131 and 1311

G77 G78 G92 G100 G114 G117 G119 G121 G125 G126 G129 G130

G133 G134 G135 G138 G140 G141 G142 G143 G144 G145 G146 G149

G150 G151 G153 G154 G156 G157 G158 G159 G160 G161 G162 G163

G165 G166 G168 G169 G170 G171 G172 G173 G174 G175 G177 G178

G179 G180 G181 G182 G183 G184 G185 G186 G187 G188 G189 G190

G191 G192 G193 G194 G195 G196 G197 G198 G199 G200 G201 G202

G203 G204 G205 G206 G207 G208

123 and 321

G117 G126 G133 G140 G141 G143 G144 G150 G151 G153 G154 G156

G157 G158 G159 G160 G163 G165 G166 G168 G169 G170 G171 G172

G173 G174 G175 G177 G178 G179 G180 G181 G182 G183 G184 G185

G186 G187 G188 G189 G190 G191 G192 G193 G194 G195 G196 G197

G198 G199 G200 G201 G202 G203 G204 G205 G206 G207 G208

132 and 231

G92 G114 G126 G129 G133 G135 G140 G141 G143 G144 G145 G146

G149 G150 G151 G153 G154 G156 G157 G158 G159 G160 G161 G162

G163 G165 G166 G168 G169 G170 G171 G172 G173 G174 G175 G177

G178 G179 G180 G181 G182 G183 G184 G185 G186 G187 G188 G189

G190 G191 G192 G193 G194 G195 G196 G197 G198 G199 G200 G201

G202 G203 G204 G205 G206 G207 G208
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213 and 312

G126 G140 G141 G143 G144 G150 G151 G154 G156 G157 G158 G159

G160 G163 G165 G166 G168 G169 G170 G171 G172 G173 G174 G175

G177 G178 G179 G180 G181 G182 G183 G184 G185 G186 G187 G188

G189 G190 G191 G192 G193 G194 G195 G196 G197 G198 G199 G200

G201 G202 G203 G204 G205 G206 G207 G208

33

G154 G168 G174 G175 G181 G186 G188 G190 G192 G194 G195 G196

G197 G198 G199 G200 G201 G202 G203 G204 G205 G206 G207 G208

114 and 411

G165 G190 G191 G194 G195 G199 G200 G203 G204 G205 G206 G207

G208

141

G77 G146 G161 G165 G175 G189 G190 G191 G194 G195 G197 G199

G200 G201 G203 G204 G205 G206 G207 G208

24 and 42

G190 G194 G195 G199 G200 G203 G204 G205 G206 G207 G208

15 and 51

G208

Appendix B. Attainable ordered multiplicity lists. For each connected graph on six or fewer

vertices, we give the Atlas of Graph numbering, draw the graph, and list all attainable ordered multiplicity

lists.

G1 1

G3 11
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G6 111

G7 111, 12, 21

G13 1111, 121

G14 1111

G15 1111, 121, 112, 211

G16 1111, 121, 112, 211, 22

G17 1111, 121, 112, 211, 22

G18 1111, 121, 112, 211, 22, 13, 31

G29 11111, 1121, 1211, 131

G30 11111, 1121, 1211
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G31 11111

G34 11111, 1121, 1211, 1112, 2111, 122, 221

G35 11111, 1121, 1211, 1112, 2111

G36 11111, 1121, 1211, 1112, 2111

G37 11111, 1121, 1211, 1112, 2111, 122, 221, 212

G38 11111, 1121, 1211, 1112, 2111, 122, 221

G40 11111, 1121, 1211, 1112, 2111, 122, 221, 212

G41 11111, 1121, 1211, 1112, 2111, 122, 221, 212

G42 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 113, 131, 311

G43 11111, 1121, 1211, 1112, 2111, 122, 221, 212
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G44 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131

G45 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311

G46 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131

G47 11111, 1121, 1211, 1112, 2111, 122, 221, 212

G48 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32

G49 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32

G50 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32

G51 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32

G52 11111, 1121, 1211, 1112, 2111, 122, 221, 212, 131, 113, 311, 23, 32, 14, 41

G77 111111, 11121, 12111, 11211, 1131, 1311, 141
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G78 111111, 11121, 12111, 11211, 1131, 1311

G79 111111, 11121, 12111, 11211, 1221

G80 111111, 11121, 12111, 11211

G81 111111, 11121, 12111, 11211

G83 111111

G92
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

1131, 1311, 132, 231

G93 111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221

G94 111111, 11112, 21111, 11121, 12111, 11211, 1212, 2121

G95 111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221

G96
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222
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G97 111111, 11112, 21111, 11121, 12111, 11211

G98
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G99
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G100
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

1131, 1311

G102 111111, 11112, 21111, 11121, 12111, 11211

G103
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G104 111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221

G105 111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1221, 2112, 222

G111
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G112
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112
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G113
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G114
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231

G115
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G117
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321

G118
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G119
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 1113, 3111, 1131, 1311

G120
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G121
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311

G122
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G123
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112
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G124
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G125
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311

G126
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G127
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G128
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G129
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231

G130
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 1113, 3111, 1131, 1311

G133
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231

G134
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 1113, 3111, 1131, 1311

G135
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231



Electronic Journal of Linear Algebra, ISSN 1081-3810

A publication of the International Linear Algebra Society

Volume 37, pp. 316-358, April 2021.

351 Ordered multiplicity inverse eigenvalue problem for graphs on six vertices

G136
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G137
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G138
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311

G139
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112

G140
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G141
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G142
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 1113, 3111, 1131, 1311

G143
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G144
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G145
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231
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G146
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231, 141

G147
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G148
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G149
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231

G150
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G151
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G152
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G153
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231

G154
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G156
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312
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G157
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G158
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G159
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G160
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G161
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231, 141

G162
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1131, 1311, 132, 231

G163
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G164
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G165

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 114, 411,

141

G166
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312
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G167
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222

G168
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G169
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G170
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G171
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G172
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G173
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G174
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G175

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 141

G177
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312
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G178
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G179
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G180
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G181
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G182
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G183
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G184
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G185
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G186
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G187
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312
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G188
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G189
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 141

G190

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G191

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 114, 411,

141

G192
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G193
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312

G194

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G195

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G196
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G197
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 141
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G198
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G199

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G200

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G201
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 141

G202
111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33

G203

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G204

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G205

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G206

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42

G207

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42
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G208

111111, 11112, 21111, 11121, 12111, 11211, 1122, 2211, 1212, 2121, 1221,

2112, 222, 1113, 3111, 1131, 1311, 123, 321, 132, 231, 213, 312, 33, 114,

411, 141, 24, 42, 15, 51
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