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We consider the set of ordered partitions of n into m parts acted upon by the 
cyclic permutation (i2 ... m). The resulting family of orbits t~(n, m) is shown to 
have cardinality pen, m) = (l/n) L..I",-I>(d) (::.'!~), where -I> is Euler's 4>-function. 
#(n, m) is shown to be set-isomorphic to the family of orbits <C(n, m) of the set of 
ali m-subsets of an II-set acted upon by the cyciic permutatiop. (12 ... /1). This iso
morphism yields an efficient method for determining the complete weight enum· 
erator of any code generated by a circulant matrix. 

1. INTRODUCTION 

An ordered partition (or composition, cf. [2] or m-composition, cf. [I]) 
of n into m parts is an ordered m-tupJe Cr; = (k1 , k2 ,"', k m ), where the k; 
are positive integers and kl + k~ + ... + km = n. In this paper we consider 
the set &(n, m) of all ordered partitions of n into m parts acted upon by the 
cyclic permutation 

e~(12···m). 

The action of group G generated by e is defined by 

erx = (k\&, k28 ,.,., k me) 
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and we write &(n, m) for the set of orbits orG under this action. The cardinali
ties of .9'(n, m) and ~(n, m) will be denoted by pen, m) and pen, m), respec
tively. Writing pin, m) for the number of orbits in iJl(n, m) having exactly 
d-e1ements, we derive in Section 3 the identities 

\ ( n/d) 
Pm(n, m) = Ii frm /ked) mid (1.\ ) 

and 

\ nid) 
p(n, m) ~ - L </(d) ( 'I'd' 

n dim m, 
( 1.2) 

where J1- is the Mobius function, <p is Euler's ,p-function. and (;:":"~) is defined 
to be zero unless d is a divisor of both nand m. 

The initial reason for our interest in the set 9(n, m) is due to the fundamen
tal relationship between Yen, m) and the set of all m-subsets of a given 
n-set. Write S for the set of integers {I, 2, ... , n} and li(n, m) for the set of all 
m-suhsets of S. Let H be the cyclic group generated by the permutation 

"~(\2·'·n), 

For I = {O:l ,0:2 "", am}, any element of(€(n, m), we define the action of H on 
'(n, m) by 

( 1.3) 

I.e., 

0:,1jJ = 0:, -". 1 (modulo n). 

The set <{fen, m) of orbits of H is shown in Section 2 to be set-isomorphic to 
~(n, m), and the properties of the isomorphism are studied in some detail. 

The isomorphism between 7,'(n, m) and pen, m) yields an efficient method 
for determining the complete weight enumerator of any code generated by 
the row vectors of a circulant matrix or a matrix of the form [HV], where 1 is 
the n x n identity matrix and W is an n X n circulant matrix. This application 
is discussed in Section 4. 

2. THE RELAT10l\"SHIP BETWEEN ORDERED PARTITIONS AND m-SETS 

The purpose of this section is to establish the fundamental relationship 
between the two sets 'Yen, m) and q(n, m). We will denote the cardinalities of 
't(n, m) and ~1,(n, m) by ern, m) and ern, m), respectively. The number of 
orbits In rZ(n, m) with d elements will be denoted by eden, m). 



ORDERED PARTITIONS AND CIRCULANT CODES 335 

Each m-subset of S has a natural ordering, Let I = {<Xl' a 2 ,"', [(m}, where 
a 1 < a 2 < .,. < [(m • Associated with I we have the ordered partition of n 

into m parts 

(2.1) 

defined by 

for i = 1,,,., m - I, 

Also, with each ordered partition a = (k1 , k2 ,''', km) we associate the 
m-set 

I(a) = {I, I -+ kl ,,,., I + kl + k2 --'- , .. + km _ 1}. (2.2) 

We prove next that (2.1) and (2.2) yield a bijection between the sets f1(n, m) 
and ~(n, m), 

LEMMA 2.1. The ordered partitions associated with a class in 0'(n, m) are 
contained in a class in ~(n, m). 

Proof Let 1= {aJ , a2 ,,,., am}, where a l < 0:2 < .. , < am ,,; n, and let 
a(l) = (dl , d~ ,''', dm ) be defined by (2,1). Then 

tjJk/ = {O:l + k, a2 + k"", a", + k}, 

where the elements are reduced modulo n. In natural order 

,pkf = {"'t T k, 0: 1+1 --'- k, ... , 0:", + k, [(I -;- k, .. " 0:1_1 + k}, 

for some integer t. Hence the ordered partition associated with tjJk/ is 

But 

(mod n) 

and 

n - "'t--l - k + at --'- k == dt _ 1 (mod n), 

and so 

(2.3) 

which proves the assertion of the lemma. 
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LEMMA 2.2. The m-sets associated with a class in &\n, m) are contained 
in a class in !j(n, m). In particular 

(2.4) 

fori = 0,1, .,' m - 1, wherebt = ki+l + ki+2 + ... + km . 

Proof By definition 

Since 

1 + hi -+- k} + ... + k; -= 1 (mod n) 

we have in natural order 

if/"l(rx) = {J, 1 + kH "." 1 + ki+l + ... + k m_1 , 1+ ki+! + ... + km , 

1 --i- ki+l + ... + km + k} , ... ,1 + ki+l + ... + km + kl + ". 
+ kl+I} 

~ 1(,",). 

THEOREM 2.1. Define/: !J(n, m)..--.. 'len, m) by 

j[,] ~ [1(,)] (2.5) 

and define 

g: 'len, m) -+ q(n, m) 

by 

g[,] ~ [,(I)], (2.6) 

where the representative I contains 1. 
Thenfandgare welldefinedandfog = 1,goj= 1. 

Proof fis well defined by Lemma 2.2 and g is well defined by Lemma 2.1; 
hence it suffices to prove that f and g are mutual inverses. 

Let 1= {exl , ct2 , ••• , ()1m} and write [I] for the corresponding class in 'l(n, m). 
Then for r);(l) = (d1 , d2 " •• , rim) defined by (2.1) we have that 

hence [/(0:(1»] = [I] and so fog = 1. 
On the other hand, let 0: = (k1 , k t ,,,., km ). Then by (2.2) 

I(a) = {I, 1 - kl , ... , 1 + kl + ... + km_l} 
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and by (2.1) 

where 

and 

Hence 

0:(1(0:» = 0:, 

and so [0:(1(0:))] = [0:], which proves that g of = 1. This completes the proof 
of the theorem. 

An immediate consequence of Theorem 2.1 is 

pen, m) = c(n, m). (2.7) 

The next theorem shows that the bijection f preserves, in a sense, the class 
size. 

THEOREM 2.2. Let f be the mapping defined by Eq. (2.5) and suppose k 
is a divisor of m. If [0:1 E 9(n, m) is a class containing mJk elements then the 
class f[o:J contains n/k elements. 

Proof Suppose [o:J contains m/k elements. Then 

where d = m/k and each d-tuple (k1 , .•• , kif.) is an ordered partition of n/k 
into mJk parts whose class in PJ(n/k, mJk) contains exactly m/k elements. 
Write h = n/k. Then 

1(0:) = {I, I + kl , ... , 1 + kl + ... + klf._l, 1 + h, I --l... h + kl , ... , 

1 + (k - l)h + kl + ... + k li _ 1}. 

Hence .plll(o:) = /(0:), from which it follows that 

f[0:1 = [/(0:)] contains h = n/k distinct elements. 

COROLLARY. Thefollowing identity holdsfor k I (m, n), 
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To each m·suhset I of S there corresponds the (n - m)·subset S - /. This 
correspondence defines a natllral bijection between 'C(n, m) and 'if(n, n - m). 
Moreover since 

S - "I ~ "S - ",I ~ O/(S - I) 

the mapping 

t: ~(n, m) --+ 'i'(n, n - m}, (2.8) 

defined by 

t[11 ~ [5 - II, 

is well defined and is a bijection. 
Incorporating the results of Theorem 2.1 we have the commutative 

diagram 

'Z(n, m) __ I --+ 'ii'(n, n - m) 

'i l' (2.9) 

.Y(n, m) ~ G'(n, n - m) 

where get 0 f: [Ct:] --+ [a(S -/(a))]. 
Since f, t, and g are bijections we can conclude that got 0 fis also. Suppose 

next that [I] is a class in '€(n, m) with nJk elements; then if h = njk we have 

ifJ'1 ~ I 

and consequently 

5 - I ~ 5 - ",'I ~ ""(5 - I). 

This shows that classes with n/k elements in ~(n, m) are in one--one corre
spondence with classes having njk elements in <C(n, n - m). 

Hence we have the following theorem. 

THEOREM 2.3. The mapping got 0 f defined in (2.9) is a bijection between 
g(n, m) and [i)(n, n ~ m) which maps classes containing mjk elements to 
classes containing (n ~ m)/k elements. 

COROLLARY. (1) c(n, m) = c(n, n ~ m), 

(2) pen, m) = pen, n - m), 

(3) Pm/ken, m) = P(n-m),in, n - m). 



ORDERED PARTITIONS AND CIRCULANT CODES 339 

3. THE CARDlNALlTY OF ~(n, m) 

In this section we derive (Ll) and (1.2). Since pen, m) can be interpreted 
as the number of ways of inserting m - i commas into n - i places [2] we 
have 

(n-1) m(n) pen, m) = m _ i = n m . (3. t) 

Also, the cardinality of each orbit is a divisor of m. Hence we immediately 
have the equations 

mn (mn) = pen, m) = I dpin, m) (3.2) 

and 

pen, m) = I pin, m). (3.3) 
~I'" 

Perhaps the most elegant way to obtain (1.l) is to observe thatp{{n/m)k, k) 
is defined for all positive integers k, if we let p«nlm)k, k) = 0 whenever 
(nJm)k is not an integer; i.e., we define (nVm) = 0 if nk/m is not an integer. 
Moreover, pin, m) is defined for all positive integers d, being equal to 0 
whenever d is not a divisor of (n, m), the greatest common divisor of nand m. 
With these observations, we may invert (3.2) to obtain 

(3.4) 

Equation (i.i) is a trivial consequence of (3.1) and (3.4). 
To obtain (I .2) we recall that G, the cyclic group of order m, acts on the set 

&(n, m) of all ordered partitions of n into m parts. Let,\( g) denote the number 
of elements of &(n, m) fixed by the permutation g E G. If g = e, the identity 
element, then 

( 
n - 1 ) 

'\(g) = m - I 

since e fixes every ordered partition. If g consists of d-cycles then g fixes only 
those ordered partitions which are repeated copies of ordered partitions of 
n/d into mid parts. For example, (I, 3, 2, i, 3, 2, i, 3, 2) is fixed by (147) 
(258)(369) = (123456789)3. But the number of pennutations of G consisting 
of d-cycles is .f(d). Hence by Burnside's lemma 

pin, m) ~ -"- L ~(d) (n/d - ') ~ ~ L ~(d) (n/d). 
m dim mid - 1 n dim mid 
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As an example suppose that n = 24 and m = 4. Then 

p(24, 4) ~ ;4 [1(1) (~4) + 1(2) G) + 1(4) (~)l 

~ ;4 W:) + (~2) + 2 (~)l ~ 446. 

The following corollaries may serve as further illustrations. l 

COROLLARY 1. If n and m are relatively prime then 

pen, m) = Pm(n, m) = ~ (;). 

COROLLARY 2. If (n, m) = q is a prime then 

-in, rn) ~ 1 ( n ) + q - 1 (nlq). 
P n m n m!q 

COROLLARY 3. 

j5(n, 3) = ~ (;) if (n, 3) ~ 1 

~~(")+2 
n 3 3 

if (n, 3) ~ 3, 

pin, 4) ~ ~ (~) if (n, 4) ~ 1 

=~G)-"-~~k if (n, 4) ~ 2 

~1(")+~+~ 
n 4 8 4 

if (n,4) = 4. 

4. AN ApPLICATION 

Let '{( be a linear code generated by the row vectors of a matrix [IWJ, 
where I is n X n identity matrix and W is an n X n circulant matrix with 
entries in a finite field GF(q). Such codes have the property that they have 
the same weight enumerators as their duals [4] and hence share many of the 

1 Added in proof. The total number of ordered partition classes of n is pen) = 

L;;...,p(n,m) = (lIn) L4/ .. ¢>(d)2njd - 1. We are grateful to Professor G. Baron of the 
Technical University, Vienna, for this observation. 
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properties of self-dual codes. The design properties of linear codes and their 
subcodes of constant weight are closely related to their weight enumerators 
[3]. In general the problem of determining the weight enumerator (WE) of a 
code, or better still the complete weight enumerator (eWE), involves the 
determination of the WE or eWE of each of the q" codewords. If W is 
circulant and Wi denotes the ith row of W then the linear combination 

has the same eWE as 

for any integer k, where the subscripts are reduced modulo n. Hence the 
codewords of rc can be grouped into classes in which elements are "linear 
shifts" of one another. For given m the family of classes is in obvious corre
spondence with 'i?(n, m). Hence the problem of determining the eWE of 
rc reduces to two problems: 

(1) Finding a complete system of coset representatives of 'i?(n, m) for 
m = 1, ... , n. 

(2) Determining the eWEs of the linear combinations corresponding 
to the coset representatives. 

The problem of finding a complete system of coset representatives is very 
easy for .o¥(n, m), where such a system occurs in lexicographical order among 
the set of all ordered partitions of n into m parts with the first entry at most 
the integer part of n/m. An ordered partition in this class is a suitable repre
sentative provided that it is lexicographically less than any ordered partition 
in its orbit. An efficient computer algorithm exists to determine the com
plete system of representatives for .o¥(n, m). 

We may note that in the case of binary codes Theorem 2.3 allows us to 
reduce the calculation time by a further factor of 2. 
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