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Abstract

We construct the conditional version of k independent and identically distributed random
walks on R given that they stay in strict order at all times. This is a generalisation of
so-called non-colliding or non-intersecting random walks, the discrete variant of Dyson’s
Brownian motions, which have been considered yet only for nearest-neighbor walks on the
lattice. Our only assumptions are moment conditions on the steps and the validity of the local
central limit theorem. The conditional process is constructed as a Doob h-transform with
some positive regular function V that is strongly related with the Vandermonde determinant
and reduces to that function for simple random walk. Furthermore, we prove an invariance
principle, i.e., a functional limit theorem towards Dyson’s Brownian motions, the continuous
analogue.
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1 Introduction and main result

1.1 Dyson’s Brownian motions and non-colliding processes.

In 1962, F. Dyson [Dy62] made a beautiful observation. He looked at a process version of
the famous Gaussian Unitary Ensemble (GUE), a matrix-valued diffusion known as Hermitian
Brownian motion. He was interested in the process of the vectors of the eigenvalues of that
matrix process. It turned out that this process admits a concise description: it is in distribution
equal to a family of standard Brownian motions, conditional on having never any collision of the
particles. More explicitly, it is the conditional distribution of k independent standard Brownian
motions B1, . . . , Bk on R given that the k-dimensional Brownian motion B = (B1, . . . , Bk) never
leaves the Weyl chamber,

W =
{
x ∈ R

k : x1 < x2 < x3 < · · · < xk

}
. (1.1)

In other words, B is conditioned on the event {T = ∞}, where

T = inf{t ∈ [0,∞) : B(t) /∈ W} (1.2)

is the first time of a collision of the particles. The definition of the conditional process needs
some care, since the event {T = ∞} has zero probability. As usual in such cases, it is defined
via a Doob h-transform with some suitable harmonic function h : W → (0,∞). It turned out
that a suitable choice for h (in fact, the only one, up to constant multiples) is the Vandermonde
determinant ∆: R

k → R given by

∆(x) =
∏

1≤i<j≤k

(xj − xi) = det
[
(xi−1

j )i,j=1,...,k

]
, x = (x1, . . . , xk) ∈ R

k. (1.3)

More precisely, h = ∆: W → (0,∞) is a positive harmonic function for the generator 1
2

∑n
i=1 ∂2

i

of B = (B1, . . . , Bk) on W , and ∆(B(t)) is integrable for any t > 0 under any starting mea-
sure of the motions. Hence we may consider the Doob h-transform of B on W with h = ∆.
The transformed process is called Dyson’s Brownian motions. It is known since long that this
transformed process is identical to the limiting conditional process given {T > t} as t → ∞.
Therefore, the process is also called non-colliding Brownian motions.

For some decades after this discovery, it was quiet about non-colliding random processes, but the
interest renewed in the 1990ies, and it has become an active research area and is being studied
for a couple of reasons. M.-F. Bru [Br91] studied another interesting matrix-valued stochastic
process whose eigenvalue process admits a nice description in terms of non-colliding random pro-
cesses, the Wishart processes, which are based on squared Bessel processes in place of Brownian
motions. These processes and some few more were studied in [KO01]. Non-colliding Brownian
motions on the circle were investigated in [HW96], asymptotic questions about Brownian mo-
tions in a Weyl chamber in [Gr99], and a systematic study of a large class of physically relevant
matrix-valued processes and their eigenvalue processes is carried out in [KT04].

Certainly, also the time-discrete version has been studied, more precisely, families of k i.i.d. dis-
crete random walks, conditional on never leaving W . It is important for the present paper to
note that so far only random walks have been considered that have the following continuity
property: at the first time of a violation of the strict ordering, there are two components of
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the walk that are at the same site (and produce therefore a collision). In other words, leav-
ing W is only possible via a step into the boundary ∂W of W . This property is shared by
nearest-neighbor random walks on the lattice Z

k, started in (2Z)k ∩W (in which case the walk-
ers cannot jump over each other) and by walks that have only steps in {0, 1}k or by imposing
similar rules. Obviously, this continuity property makes the analysis much easier, but heavily
restricts the choice of the step distribution. For walks having this property, the event of never
leaving W (i.e., of being strictly ordered at any time) is identical to being non-colliding, hence
the term non-colliding random walks became popular, but also vicious walkers, non-intersecting
paths and non-intersecting walks. We consider the latter two terms misleading since it is the
graphs that are non-intersecting, more precisely the graph of the polygon line that interpolates
between discrete time units. Non-intersecting paths played an important role in the proof of
Johanssons’s beautiful analysis [Jo00], [Jo02] of the corner-growth model (which is equivalent
to directed first-passage percolation). These works naturally raise the interesting question how
far the connections between the corner-growth model and non-intersecting paths reach; they
are yet known only for rather restricted waiting-time distributions respectively step distribu-
tions. Further relationships to other models, like the Arctic circle, are investigated in [Jo02].
Recently [BS06], a random matrix central limit behavior was obtained for the rescaled versions
of many non-intersecting random walks with an essentially general step distribution. The non-
intersecting property was required only up to a fixed time. Furthermore, also applications in
the study of series of queues in tandem were found and analysed; see the survey article [OC03].

Especially in recent years, more and more connections have been found between non-colliding
random processes and various models, some of which have not yet been fully understood. A
number of explicit examples have been worked out, and the class of random processes whose non-
colliding version could be rigorously established and characterized, is growing. It is now known
how to construct and describe these conditional versions for a couple of examples of random
walks, among which the binomial random walk, the multinomial walk, and the (continuous-time)
Poisson random walk [KOR02], and birth and death processes and the Yule process [Do05, Ch. 6].
In all these explicit examples, it fortunately turned out that the Vandermonde determinant, ∆,
is a positive regular function for the generator of the family of the random walks, and the Doob
h-transform with h = ∆ could explicitly be calculated. A survey on non-colliding random walks
appears in [K05, Ch. 4].

However, to the best of our knowledge, the theory of non-colliding random processes still consists
of a list of explicit, instructive and important examples, but the general picture is still lacking. In
particular, the precise class of random walks for whose generator the Vandermonde determinant
is a positive regular function, is widely unknown yet, and it is also yet unknown what function
in general replaces ∆ in the construction, if it can be carried out.

The present paper reveals the general mechanism of constructing from a tuple of k i.i.d. random
walks on R the conditional version that never leaves W , i.e., whose components stay in strict
order at any time. Only the finiteness of some sufficiently high moments of the walker’s steps
and the validity of the local central limit theorem will be assumed. We will identify a positive
harmonic function in terms of which we will construct the version that never leaves W . Fur-
thermore, we will also consider the asymptotic behavior of the conditional walk and prove an
invariance principle, i.e., the convergence of the properly rescaled process towards the contin-
uous version, Dyson’s Brownian motions. We consider the results of this paper as a universal
approach to non-intersecting paths, which opens up a possibility to attack in future also related
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models like the corner-growth model in a universal manner.

Since a general random walk makes jumps of various sizes, the term non-colliding is misleading,
and the term non-intersecting refers to the graphs instead of the walks. We prefer to replace
these terms by ordered random walks, for obvious reasons. General non-colliding random walks
in the strict sense seem to represent an exciting and open research topic that may be inspired
from other topics than processes of random matrices and will presumably not have much to do
with Dyson’s Brownian motions.

1.2 Ordered random walks

For k ∈ N, let X1, . . . , Xk be k independent copies of a random walk, Xi = (Xi(n))n∈N0 , on R.
Then X = (X1, . . . , Xk) is a random walk on R

k with i.i.d. components. Our goal is to construct
a conditional version of X, given that the k components stay in a fixed order for all times. That
is, we want to condition X on never leaving the Weyl chamber W in (1.1). Another way to
formulate this is to condition on the event {τ = ∞}, where

τ = inf{n ∈ N0 : X(n) /∈ W} (1.4)

is the first time that some component reaches or overtakes another one. Some care is needed in
defining the conditional process, since the event {τ = ∞} has zero probability. We shall construct
this process as a Doob h-transform and show that it coincides with the limiting conditional
process given {τ > n} as n → ∞.

Let S ⊂ R denote the state space of the random walk X1 when started at 0. Let P denote the
underlying probability measure. For x ∈ R

k, we write Px when the process X = (X(n))n∈N0

starts at X(0) = x, and we denote by Ex the corresponding expectation. A function h : W∩Sk →
(0,∞) is called a positive regular function with respect to the restriction of the transition kernel
of X to W ∩ Sk if

Ex[h(X(1))1l{τ>1}] = h(x), x ∈ W ∩ Sk. (1.5)

In this case, we may define the Doob h-transform of the process X via the n-step transition
probabilities

P̂
(h)
x (X(n) ∈ dy) = Px(τ > n; X(n) ∈ dy)

h(y)

h(x)
, x, y ∈ W ∩ Sk, n ∈ N. (1.6)

The regularity and positivity of h guarantee that the right hand side of (1.6) is a probability
measure on W in dy. The state space of the Doob h-transform is equal to W ∩ (Sk − x) when
started at x. A priori, the existence and uniqueness of such positive regular function is far from
clear, and also the question if the corresponding Doob transform has anything to do with the
conditional version given {τ > n} in the limit as n → ∞.

In the present paper, we present a positive regular function V such that the Doob h-transform
with h = V turns out to be the conditional version of X given never exiting W . Under the latter
process, we understand (in the case of its existence) the limiting process X given {τ > n} as
n → ∞. Furthermore, we analyse the decay of the probability of the event {τ > n} and give a
limit theorem for the rescaled path’s endpoint, n−1/2X(n), conditioned on this event. Another
main goal is the analysis of the conditional process at large times. We show that the rescaled
conditional process (n−1/2X(⌊tn⌋))t≥0 converges towards Dyson’s Brownian motions.
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Now we state the precise assumptions on the walk. We want to work with a random walk that
lies in the normal domain of attraction of Brownian motion. Without loss of generality we
therefore put the

Centering Assumption. The walk’s steps have mean zero and variance one.

We distinguish the two cases of a lattice walk and a non-lattice walk. The following assumption
will enable us to apply a local central limit theorem, which will be an important tool in our
proofs.

Regularity Assumption. Either the support of the walk, {X1(n) : n ∈ N0}, under P0, is
contained in the lattice αZ for some maximal α ∈ (0,∞), or the distribution of X1(N) possesses
a bounded density for some N ∈ N.

The walk’s state space, S, is equal to αZ in the first case, the lattice case, and it is equal to R

in the second case, the non-lattice case.

Now we introduce the main object of the paper, the positive regular function h = V we will be
working with. Define V : W ∩ Sk → R by

V (x) = ∆(x) − Ex

[
∆(X(τ))

]
, x ∈ W ∩ Sk. (1.7)

Actually, it is a priori not clear at all under what assumptions V is well-defined, i.e., under
what assumptions ∆(X(τ)) is integrable under Px for any x ∈ W . This question is trivially
answered in the affirmative for walks that have the above mentioned continuity property, which
may be also formulated by saying that Px(X(τ) ∈ ∂W ) = 1. This property depends on the
initial site x ∈ W (e.g. simple random walk in Z

k starting in (2Z)k has this property, but not
when it starts in the site (1, 2, . . . , k), say). All examples of walks considered in the literature
so far (see Section 1.1) have this property. If the walk has this property, then X(τ) has some
equal components, Px-a.s., and therefore the Vandermonde determinant ∆(X(τ)) equals zero,
Px-a.s., which shows that V (x) = ∆(x).

However, in the general case considered in the present paper, the integrability of ∆(X(τ)) seems
subtle, and we succeeded in proving the integrability only under some moment condition on the
steps and the local central limit theorem.

Theorem 1.1. Assume that the random walk X satisfies the Centering Assumption and the
Regularity Assumption. Then, there is a µ = µk > 0, depending only on k, such that, if the µ-th
moment of the walk’s steps is finite, the following hold.

(i) For any x ∈ W , the random variable ∆(X(τ)) is integrable under Px.

(ii) The function V defined in (1.7) is a positive regular function with respect to the restriction
of the transition kernel to W ∩ Sk, and V (X(n)) is integrable with respect to Px for any
x ∈ W and any n ∈ N.

(iii) The Doob h-transform of X on W ∩ Sk with h = V is equal to the distributional limit of
the conditional process given {τ > n} as n → ∞.
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(iv) For any x ∈ W , the distribution of n− 1
2 X(n) under Px( · | τ > n) converges towards

the distribution on W with density y 7→ 1
Z1

e−
1
2
|y|2∆(y) (with Z1 the norming constant).

Moreover,

lim
n→∞

n
k
4
(k−1)

Px(τ > n) = KV (x), where K =

∫

W

e−
1
2
|y|2

(2π)k/2
∆(y) dy

k−1∏

l=0

1

l!
. (1.8)

(v) For any M > 0, uniformly in x ∈ W satisfying |x| ≤ M , limn→∞ n− k
4
(k−1)V (

√
n x) =

∆(x).

(vi) For any x ∈ W , the distribution of n− 1
2 X(n) under P̂

(V )
x converges towards the distribution

on W with density y 7→ 1
Z2

e−
1
2
|y|2∆(y)2, the Hermite ensemble (with Z2 the norming

constant). More generally, the distribution of the process (n− 1
2 X(⌊nt⌋)t∈[0,∞) under the

transformed probabilities, i.e., under P̂
(V )√

nx
for any x ∈ W , converges towards Dyson’s

Brownian motions started at x.

The proof of Theorem 1.1 is distributed over a couple of propositions and lemmas. More precisely,
(i) is contained in Proposition 3.7, (ii) in Lemma 4.4, (iii) in Lemma 4.6, (iv) in Corollary 3.8,
(v) in Lemma 4.3 and (vi) in Lemma 4.7. An explicit formula for the transition probabilities of
the transformed process appears in (4.81) below.

The only role of the Regularity Assumption is to establish the expansion in the local central
limit theorem in (3.29) below, under a sufficient moment condition. Hence, all conclusions of
Theorem 1.1 hold under (3.29) instead of the Regularity Assumption.

Our main tool in the proof of Theorem 1.1 is an extension of the well-known Karlin-McGregor
formula to arbitrary random walks on R

k with i.i.d. step distributions. Furthermore, we use
Hölder’s inequality (this is why we lose control on the minimal integrability assumption), the
local central limit theorem and Donsker’s invariance principle. Another helpful fact, proved in
[KOR02], is that the process (∆(X(n)))n∈N is a martingale, provided that ∆(X(n)) is integrable
for any n ∈ N.

The special case k = 2 includes the well-known and much-studied question of conditioning a
single path to be positive at all times (by consideration of the difference of the two walks). In
fluctuation theory, one studies the question of conditioning a walk S = (Sn)n∈N0 on R on not
leaving [0,∞), i.e., on the event {τ̃ = ∞}, where τ̃ = inf{n ∈ N : Sn < 0}. Here it is known that
there is a positive regular function for the restriction of the transition kernel to [0,∞). In case
that the first moment of the step distribution is finite, this function is given as

Ṽ (x) =
x − Ex[Seτ ]

E0[−Seτ ]
, x ∈ [0,∞).

This formula is analogous to (1.7), but note that V is defined in the interior of W only, and it
is actually not clear how to extend it to W in general. For x ∈ (0,∞), one has τ̃ = inf{n ∈
N0 : Sn < 0} under Px, and in the case that the steps have a density, τ̃ is identical to our τ if
S = X2−X1 in the case k = 2. In this case, we have E0[−Seτ ]Ṽ (x) = V (0, x) for x ∈ (0,∞). The
case k = 2 was considered in [BD94]. The standard proof of existence and representations for
Ṽ uses fluctuation theory and the Sparre-Andersen identity, see [F71, Chapter XII and XVIII],
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e.g. Instead, we use rough moment estimates and Hölder’s inequality in the present paper and
therefore lose control on minimal integrability assumptions.

The problem remains open under what minimal assumptions the assertions of Theorem 1.1
remain true and what a positive regular function for the restriction to W could look like in the
case of less integrability of the steps. Further future work will be devoted to the study of the
system of k ordered walks in the limit k → ∞, from which we hope to deduce interesting and
universal variants of Wigner’s semicircle law.

The remainder of this paper is devoted to the proof of Theorem 1.1. In Section 2, we present
our main tool, a generalisation of the well-known Karlin-McGregor formula, a determinantal
formula for the marginal distribution before the first time of a violation of the strict ordering. In
Section 3 we prove that ∆(X(τ)) is integrable under Px for any x ∈ W , a fact which establishes
that V (x) is well-defined. Finally, in Section 4 we prove a couple of properties of V , in particular
its positivity (a fact which is crucial to define the transformed process) and the functional limit
theorem towards Dyson’s Brownian motions.

2 A generalized Karlin-McGregor formula

An important tool for handling the distribution of the process X on the event {τ > n} is the
well-known Karlin-McGregor formula [KM59] for the transition probabilities before a violation
of the strict ordering of the components. This is an explicit formula for the distribution of X(n)
on {τ > n} for a variety of stochastic processes including nearest-neighbor random walks on Z

k

and Brownian motion. In the standard Brownian motion case, this formula reads

Px(T > t; B(t) ∈ dy) = det
[(

Pxi(B1(t) ∈ dyj)
)

i,j=1,...,k

]
, t > 0, x, y ∈ W, (2.9)

where the k motions start from x under Px (recall (1.1) and (1.2)). The proof is based on the
continuity of the paths and on the reflection principle: if the two motions Bi and Bj meet each
other at time T = s ∈ (0, t), then the paths (Bj(r))r∈[s,t] and (Bi(r))r∈[s,t] are interchanged,
and we obtain motions that arrive at yj and yi rather than at yi and yj . A clever enumeration
shows that (2.9) holds. For this method to work it is crucial that the two motions Bi and Bj

are located at the same site at time T . The same argument applies to many other processes
including discrete-time walks on the lattice Z

k that have the continuity property discussed prior
to Theorem 1.1, i.e., Px(X(τ) ∈ ∂W ) = 1. Since the proof of the Karlin-McGregor formula also
involves a reflection argument, it is valid only for walks on Z

k whose step distribution is i.i.d.

In the present paper, we overcome the continuity restriction, and we work with (k copies of) an
arbitrary walk on the real line. We succeed in finding an analogue of the formula in (2.9), which
we present now. Introduce the signed measure

Dn(x,dy) = det
[(

Pxi(X1(n) ∈ dyj)
)

i,j=1,...,k

]

=
∑

σ∈Sk

sign(σ)
k∏

i=1

Pxσ(i)
(X1(n) ∈ dyi), x = (x1, . . . , xk), y = (y1, . . . , yk),

(2.10)

where Sk denotes the set of permutations of 1, 2, . . . , k.
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The following is a generalization of (2.9) to general random walks on the real line. We use the
notation of Section 1.2, but no assumptions on drift or moments are made, nor on existence of
densities.

Proposition 2.1 (Generalized Karlin-McGregor formula). Let (X(n))n∈N0 be an arbitrary ran-
dom walk on R

k with i.i.d. components. Then the following hold.

(i) For any n ∈ N and any x, y ∈ W ,

Px(τ > n; X(n) ∈ dy) = Dn(x,dy) − Ex

[
1l{τ≤n}Dn−τ (X(τ), dy)

]
. (2.11)

(ii) Define ψ : R
k \ W → R

k by

ψ(y) = (yj−yi)(ej−ei), where (i, j) ∈ {1, . . . , k}2 minimal satisfying i < j and yi > yj .
(2.12)

Here ei is the i-th canonical unit vector in R
k, and ‘minimal’ refers to alphabetical ordering.

Then, for any l, n ∈ N satisfying l ≤ n and any x, y ∈ W ,

− Ex

[
1l{τ=l}Dn−l(X(l), dy)

]
= Ex

[
1l{τ=l}Dn−l

(
X(l), d(y + ψ(X(l)))

)]
. (2.13)

It is the assertion in (i) which we will be using in the present paper; no reflection argument is
involved. The assertion in (ii) uses the reflection argument and is stated for completeness only.

In the special case of walks on Z that enjoy the above mentioned continuity property, Px(X(τ) ∈
∂W ) = 1, the second term on the right of (2.11) vanishes identically since the vector X(τ) has
two identical components, and therefore the determinant vanishes.

An extension of Proposition 2.1 may be formulated for arbitrary Markov chains on R
k that

satisfy the strong Markov property; the assertion in (ii) additionally needs exchangeability of
the step distribution. However, the analogue of Dn does not in general admit a determinantal
representation.

Proof of Proposition 2.1. We write yσ = (yσ(1), . . . , yσ(k)). Using (2.10), we have

Px(τ > n;X(n) ∈ dy) −Dn(x,dy)

=
∑

σ∈Sk

sign(σ)
[
Px(τ > n; X(n) ∈ dyσ) − Px(X(n) ∈ dyσ)

]

= −
∑

σ∈Sk

sign(σ)Px(τ ≤ n; X(n) ∈ dyσ),

(2.14)

since all the summands Px(τ > n; X(n) ∈ dyσ) are equal to zero with the exception of the one
for σ = id. Apply the strong Markov property to the summands on the right hand side of (2.14)
at time τ , to obtain

Px(τ ≤ n; X(n) ∈ dyσ) =

n∑

m=1

∫

Rk\W
Px(τ = m; X(m) ∈ dz)Pz(X(n − m) ∈ dyσ). (2.15)
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Substitute this in (2.14), we obtain

right side of (2.14) = −
n∑

m=1

∫

Rk\W
Px(τ = m; X(m) ∈ dz)

∑

σ∈Sk

sign(σ)Pz(X(n − m) ∈ dyσ)

= −
n∑

m=1

∫

Rk\W
Px(τ = m; X(m) ∈ dz) det

[(
Pzi(X1(n − m) ∈ dyj)

)

i,j=1,...,k

]

= −
n∑

m=1

Ex

[
1l{τ=m}Dn−m(X(m), dy)

]
.

(2.16)
This shows that (i) holds. In order to show (ii), we use the reflection argument of [KM59]. Fix
l ∈ {0, 1, . . . , n} and a continuous bounded function f : R

k → R, then it is sufficient to show

−
∑

σ∈Sk

sign(σ)Ex

[
1l{τ=l}EX(l)

[
f(Xσ(n−l))

]]
=

∑

σ∈Sk

sign(σ)Ex

[
1l{τ=l}Ey

[
f(Xσ(n−l)+ψ(y))

]∣∣
y=X(l)

]
.

(2.17)
This is done as follows. Given a transposition λ = (i, j) satisfying i < j, let τλ = inf{n ∈
N : Xi(n) ≥ Xj(n)} be the first time at which the i-th and the j-th component of the walk are
not in strict order anymore. On the event {τ = l}, there is a minimal transposition λ∗ such
that τ = τλ∗ . On the event {τ = l, λ∗ = (i, j)}, abbreviating y = X(l), in the inner expectation
we reflect the path (y = Xσ(0), Xσ(1), . . . , Xσ(n− l)) in the i-j-plane around the main diagonal
(i.e., we interchange all the steps of the i-th component with the ones of the j-th component),
and we obtain a path that terminates after n − l steps at Xσ◦λ(n − l) + ψ(y). Obviously, the
reflection is measure-preserving, and therefore we have

Ey

[
f(Xσ(n− l))

]
= Ey

[
f(Xσ◦λ(n− l) + ψ(y))

]
, a.s. on {τ = l, λ∗ = (i, j)}, where y = X(l).

Hence, denoting the set of transpositions by Tk, we have

−
∑

σ∈Sk

sign(σ)Ex

[
1l{τ=l}EX(l)

[
f(Xσ(n − l))

]]

=
∑

λ∈Tk

∑

σ∈Sk

sign(σ ◦ λ)Ex

[
1l{τ=l,λ∗=(i,j)}Ey

[
f(Xσ◦λ(n − l) + ψ(y))

]∣∣
y=X(l)

]
.

Now substitute σ ◦ λ, interchange the two sums and carry out the sum on λ, to see that the
right hand side is equal to the right hand side of (2.17).

3 Existence of V (x)

In this section, we assume that (X(n))n∈N0 is a random walk satisfying the assumptions of
Theorem 1.1. Furthermore, we fix x ∈ W . We prove that V (x) in (1.7) is well-defined. This is
equivalent to showing the integrability of ∆(X(τ)) under Px. This turns out to be technically
nasty and to require a couple of careful estimates. The proof of the integrability of ∆(X(τ))
will be split into a number of lemmas. In Section 3.1 we explain the subtlety of the problem and
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reduce the proof of the integrability of ∆(X(τ)) to the control of the tails of τ . In Section 3.2 we
provide a version of a higher-order local central limit theorem for later use. Our main strategy is
explained in Section 3.3, where we also formulate and prove the main steps of the proof. Finally,
in Section 3.4 we finish the proof of the integrability of ∆(X(τ)).

3.1 Integrability of ∆(X(τ )) and the tails of τ .

The reason that the proof of integrability of ∆(X(τ)) is subtle comes from the following heuristic
observation. We want to show that the series

∑

n∈N

Ex[|∆(X(τ))|1l{τ=n}] (3.18)

converges. Since we shall prove that Px(τ > n) ≍ n− k
4
(k−1), one can conjecture (but we actually

do not prove that) that the event {τ = n} should have probability of order n− k
4
(k−1)−1. On this

event, |X(τ)| is of order |X(n)| ≈ √
n, according to the central limit theorem. Therefore also all

the differences |Xi(n) − Xj(n)| with 1 ≤ i < j ≤ k should be of that order, with one exception:
at time τ = n, there is a random pair of indices i∗, j∗ such that Xi∗(n) and Xj∗(n) are close
together, since the i∗-th and j∗-th walk just crossed each other. Hence, |∆(X(τ))| should be of

order n− 1
2
∏

1≤i<j≤k

√
n = n

k
4
(k−1)− 1

2 , where the first term accounts for that random pair i∗, j∗.
Hence, in the expectation in (3.18), there is a subtle extinction between two terms. However,

that term should be of order n− 3
2 and therefore summable.

The next lemma shows that, for proving the finiteness of the series in (3.18), it will be crucial
to control the tails of τ .

Lemma 3.1. Assume that the µ-th moment of the steps is finite, for some µ > (k − 1)(k
2 (k −

1) + 2). Then there are r ∈ (0, k
4 (k − 1) − 1) for the case k > 2 and r ∈ (0, 1

2) for k = 2 and
λ ∈ (0, 1) such that, for any set M ⊂ W that is bounded away from zero, there is C > 0 such
that

Ex

[
|∆(X(τ))|1l{τ≤n}

]
≤ C|x|(1+a) k

2
(k−1)+C

( n∑

l=⌈|x|2(1+a)⌉
lrPx(τ > l)

)λ
, n ∈ N, x ∈ M, a ≥ 0.

(3.19)

Using (3.19) for a = 0 and using some obvious estimates, we also have that for any compact set
M ⊂ W , there is C > 0 such that

Ex

[
|∆(X(τ))|1l{τ≤n}

]
≤ C + C

( n∑

l=1

lrPx(τ > l)
)λ

, n ∈ N, x ∈ M. (3.20)

We will use (3.20) later in the present section and (3.19) turns out to be crucial in the proof of
Lemma 4.3 below.

Proof. For l ∈ N, let Yi(l) be the l-th step of the i-th walk, hence, Xi(n) = xi +
∑n

l=1 Yi(l),
Px-almost surely, and all the random variables Yi(l) with i ∈ {1, . . . , k} and l ∈ N are i.i.d. with
E[|Yi(l)|µ] < ∞.
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We split the expectation on the left hand side of (3.19) into the events {τ ≤ |x|2(1+a)} and
{|x|2(1+a) < τ ≤ n}. On the first event, we basically use that |X(τ)| ≤ O(|x|1+a). Indeed,
abbreviating Si(l) = Yi(1) + · · · + Yi(l), we obtain

Ex

[
|∆(X(τ))|1l{τ≤|x|2(1+a)}

]
≤

∑

l≤|x|2(1+a)

Ex

[ ∏

i<j

∣∣xi − xj + Si(l) − Sj(l)
∣∣1l{τ=l}

]

≤ Ex

[ ∏

i<j

(
|xi − xj | + max

l≤|x|2(1+a)
|Si(l) − Sj(l)|

)]
.

(3.21)

Under our moment assumption, the expectation of
∏

(i,j)∈A maxl≤|x|2(1+a) |Si(l)−Sj(l)| is at most

of order |x||A|(1+a), for any A ⊂ {(i, j) ∈ {1, . . . , k}2 : i < j}, as is seen using Hölder’s inequality
and Doob’s Lp-inequality with p = |A|, since (Si(l) − Sj(l))l∈N0 is a martingale. This explains
the first term on the right hand side of (3.19), for any k ≥ 2.

Now we turn to the expectation on the event {|x|2(1+a) < τ ≤ n}. First we consider k > 2.
Define, for m = 1, . . . , k − 1,

τm = inf{n ∈ N0 : Xm(n) ≥ Xm+1(n)}, (3.22)

the first time at which the m-th and the (m+1)-st component violate the strict ordering. Hence,
τ = infm=1,...,k−1 τm. On {τ = τm = l}, we have

0 ≤ Xm(τm) − Xm+1(τm) ≤ Ym(l) − Ym+1(l). (3.23)

We use Hölder’s inequality twice as follows. Fix p, q > 1 satisfying 1
p + 1

q = 1. For any ξ > 0,

we have (abbreviating Y m,l = Ym(l) − Ym+1(l)),

Ex[|∆(X(τ))|1l{|x|2(1+a)<τ=τm≤n}]

≤ Ex

[ n∑

l=⌈|x|2(1+a)⌉

(
l(

k
2
(k−1)−1)( 1

2
+ξ)1l{τ=l}

)(
|Ym+1(l) − Ym(l)|

∏

(i,j) 6=(m,m+1)

|Xi(l) − Xj(l)|
l
1
2
+ξ

)]

≤ Ex

[( n∑

l=⌈|x|2(1+a)⌉

(
l(

k
2
(k−1)−1)( 1

2
+ξ)1l{τ=l}

)p
)1/p

×
( n∑

l=⌈|x|2(1+a)⌉
|Y m,l|q

∏

(i,j) 6=(m,m+1)

∣∣∣
Xi(l) − Xj(l)

l
1
2
+ξ

∣∣∣
q)1/q]

≤ Ex

[
τp( k

2
(k−1)−1)( 1

2
+ξ)1l{|x|2(1+a)<τ≤n}

]1/p

× Ex

[ n∑

l=⌈|x|2(1+a)⌉
l−qξ[ k

2
(k−1)−1]|Y m,l|q

∏

(i,j) 6=(m,m+1)

∣∣∣
Xi(l) − Xj(l)√

l

∣∣∣
q]1/q

.

(3.24)
We put r = p(k

2 (k − 1) − 1)(1
2 + ξ) − 1 and λ = 1/p and choose ξ so small and p so close to one

that r < k
4 (k−1)−1 and qξ[k

2 (k−1)−1] > 1. When we pick ξ = (k
2 (k−1)−1)−1(k

2 (k−1)+2)−1,

then this is achieved by any choice of q > (ξ[k
2 (k − 1) − 1])−1 = k

2 (k − 1) + 2. According to
our integrability assumption, we can pick q such that the (k − 1)q-th moment of the steps of
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the random walk is finite. Note that |Y m,l|
∏

(i,j) 6=(m,m+1) |Xi(l) − Xj(l)|l−
1
2 can be estimated

against a sum of products of the form

|Yγ(l)|
k∏

i=1

( |Xi(l)|√
l

)βi

, for some γ ∈ {1, . . . , k} and β1, . . . , βk ∈ N0,

with β1 + · · · + βk = k
2 (k − 1) − 1; moreover βi ≤ k − 1 for every i and βγ ≤ k − 2. We use C

to denote a generic positive constant, not depending on x, nor on l, possibly changing its value
from appearance to appearance. According to our moment assumption, for any i ∈ {1, . . . , k},
l ∈ N and any β ∈ (0, k − 1], we have

Ex

[( |Xi(l)|√
l

)βq]
≤ C+C

( |x|√
l

)βq
and Ex

[( |Xi(l)|√
l

)βq
|Yi(l)|q

]
≤ C+C

( |x|√
l

)βq
, (3.25)

where in the second relation we assumed that β ≤ k − 2. On our set of summation on l, both
upper bounds are bounded by (C + |x|−a)βq and may therefore be estimated against C, since
|x| is bounded away from zero for x ∈ M . Hence, the term on the last line of (3.24) is bounded,

since the sum over l−qξ[ k
2
(k−1)−1] converges.

The first term of the right hand side of (3.24) can be estimated as follows.

Ex

[
τp( k

2
(k−1)−1)( 1

2
+ξ)1l{|x|2(1+a)<τ≤n}

]1/p

=
( ∫ nr+1

|x|2(1+a)(r+1)

ds Px(τ r+1 > s) + |x|2(1+a)(r+1)
P(τ > |x|2(1+a)) − nr+1

P(τ > n)
)1/p

≤ C |x|(1+a) k
2
(k−1) + C

(∫ n

|x|2(1+a)

dt Px(τ > t)tr
)1/p

≤ C |x|(1+a) k
2
(k−1) + C

( n∑

l=⌈|x|2(1+a)⌉
lrPx(τ > l)

)1/p
.

Now put λ = 1/p. From this estimate, the assertion follows for any k > 2. When k = 2 things
are actually much simpler. Again using Hölder’s inequality twice, we have

Ex[|X2(τ) − X1(τ)|1l{|x|2(1+a)<τ≤n}]

≤ Ex

[
τp( 1

2
+ξ)1l{|x|2(1+a)<τ≤n}

]1/p
× Ex

[ n∑

l=⌈|x|2(1+a)⌉
l−qξ

∣∣∣
Y1(l) − Y2(l)√

l

∣∣∣
q]1/q

.
(3.26)

Now we put r = p(1
2 + ξ)− 1 and choose ξ so small and p so close to one that r < 1

2 and qξ > 1.
Now the estimate (3.19) is derived in a similar way as for k > 2.

We remark that upper estimates for Ex[|∆(X(τ))|1l{τ=n}] in terms of Px(τ = n) are relatively
easy to derive, but not sufficient for our purposes, since the techniques we develop in Section 3.3
below do not give sufficient control on the asymptotics of Px(τ = n). However, they are good
enough to control the ones of Px(τ > n).
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3.2 Local expansions.

In this section we state, for future reference, one of our main tools, the expansion in the local
central limit theorem, see [Pe75, Ch. VII, Par. 3]. We are under the Centering and the Regularity
Assumptions. Recall that, in the lattice case, the maximal span of the walk is α, and in the
non-lattice case that, for some N ∈ N, the density pN is bounded. We define, for n ≥ N ,

pn(x) =

{
P0(X1(n) = x), in the lattice case,
P0(X1(n)∈dx)

dx , in the non-lattice case.
(3.27)

In the lattice case, the numbers pn(x) sum up to one over the lattice S = αZ, and in the
non-lattice case, pn is a probability density on S = R. Then we have

Lemma 3.2 (Local CLT expansion). Assume that the Centering and the Regularity Assumptions
hold and that the µ-th moment of the step distribution is finite for some integer µ ≥ 2. Then

√
npn(x

√
n) =

1√
2π

e−
1
2
x2(

1 + o(1)
)

+
o
(
n1−µ

2

)

1 + |x|µ , uniformly for x ∈ 1√
n
S. (3.28)

Proof. [Pe75, Thms. VII.16 resp. VII.17] state that

√
npn(x

√
n) =

1√
2π

e−
1
2
x2

(
1 +

µ−2∑

ν=1

q̃ν(x)

nν/2

)
+

o
(
n1−µ

2

)

1 + |x|µ , uniformly for x ∈ 1√
n
S, (3.29)

where q̃ν are polynomials of order ≤ 3ν whose coefficients depend on the first cumulants of the
step distribution only. The term e−

1
2
x2 ∑µ−2

ν=1
eqν(x)

nν/2 is either equal to e−
1
2
x2

o(1) (if |x| ≤ o(n
1
6 ))

or it is o(n1−µ
2 ) (if |x| ≥ n

1
7 , say). Hence, (3.28) follows.

We are going to rephrase an integrated version of the Karlin-McGregor formula of Proposition 2.1
in terms of pn. This will be the starting point of our proofs. For notational convenience,
we will put N = 1 in the non-lattice case (it is easy, but notationally nasty, to adapt the
proofs to other values of N). We introduce a rescaled version of the measure Dl(x,dy). For
x = (x1, . . . , xk) ∈ W ∩ Sk and l ∈ N, introduce

D(n)

l (x, y) = det
[(√

npl

(
yi

√
n − xj

))

i,j=1,...,k

]

=
∑

σ∈Sk

sign(σ)
k∏

i=1

(√
npl

(
yi

√
n − xσ(i)

))
, y = (y1, . . . , yk) ∈ W.

(3.30)

In the non-lattice case, the map y 7→ D(n)

l (x, y) is a density of the measure that is obtained from
Dl(x,dy) as the image measure under the map y 7→ y/

√
n. In the lattice case, it is equal to that

measure; note that it is zero outside the lattice 1√
n
Sk.

Then we may rephrase Proposition 2.1 as follows.

Lemma 3.3. For any continuous and bounded function f : R
k ∩ W → R,

Ex

[
f
(
n− 1

2 X(n)
)
1l{τ>n}

]

=





∫
W

[
D(n)

n (x, y) − Ex

[
1l{τ≤n}D

(n)

n−τ (X(τ), y)
]]

f(y) dy in the non-lattice case,
∑

y∈W∩ 1√
n

S

[
D(n)

n (x, y) − Ex

[
1l{τ≤n}D

(n)

n−τ (X(τ), y)
]]

f(y) in the lattice case.

(3.31)
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Proof. This is a reformulation of (2.11) using (3.30).

3.3 Our main strategy.

We are going to explain how we will prove the integrability of ∆(X(τ)) under Px. As is seen
from Lemma 3.1, our main task is to give good bounds for Px(τ > n), more precisely, to show

that this quantity decays on the scale n− k
4
(k−1) (where some error of some small positive power

of n would not spoil the proof). In order to do that, we use the Karlin-McGregor formula of
Proposition 2.1, more precisely, the formula in (3.31).

We shall need a cutting argument for large values of y in (3.31). To do this, we fix a slowly
divergent scale function nη (with some small η > 0) and cut the integral in (3.31) into the area
where |y| ≤ nη and the remainder. The remainder is small, according to some moment estimate.
On the set where |y| ≤ nη, we derive uniform convergence of the integrand, using appropriate
expansions in the local central limit theorem and an expansion in the determinant. The second
term in the integrand in (3.31), which is Ex

[
1l{τ≤n}D

(n)

n−τ (X(τ), y)
]
, will have to be split into the

three parts where
τ ≤ tn, tn < τ ≤ n − sn, n − sn < τ ≤ n,

where tn, sn → ∞ are auxiliary sequences such that n/tn and sn/
√

n are small positive powers
of n, say. The necessity for such a split is the application of the local central limit theorem inside
the expectation: it is possible only for values τ ≤ n − sn, and it gives asymptotically correct
values only for τ ≤ tn. We will eventually show that the first part gives the main contribution,
and the two other parts are small remainder terms.

The reason that we have to work with a local central theorem (in fact, even with an expansion
to sufficient deepness) is the following. After application of the approximation, there will be an
extinction of terms in the determinant. As a result, the main term will turn out to be of order

n− k
4
(k−1). Hence, we need an error term of the size o(n− k

4
(k−1)) in the central limit regime,

and this precision can be achieved only via an expansion of a local theorem. Sufficient moment
conditions will imply that the contribution from outside the central limit region is also of the

size o(n− k
4
(k−1)).

Let us now turn to the details. We first turn to the analysis of the main term of the integrand
on the right of (3.31), where {τ ≤ n} is replaced by {τ ≤ tn}. We need the function

Vn(x) = ∆(x) − Ex[∆(X(τ))1l{τ≤n}], n ∈ N, x ∈ R
k. (3.32)

Under the assumption that the steps have finite (k − 1)-st moment (which we will in particular
impose), it is clear that Vn(x) is well-defined. It is also relatively easy to show that Vn is positive:

Lemma 3.4. For any n ∈ N and x ∈ W , Vn(x) > 0.

Proof. We recall the fact that (∆(X(n)))n is a martingale under Px for any x ∈ W , see [KOR02,
Th. 2.1]. Hence, by the Optional Sampling Theorem we obtain

Vn(x) = ∆(x) − Ex

[
∆(X(τ))1l{τ≤n}

]

= Ex[∆(X(n))] − Ex[∆(X(n))1l{τ≤n}]

= Ex[∆(X(n))1l{τ>n}],

and this is obviously positive.
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Lemma 3.5. Assume that the µ-th moment of the steps is finite for some µ ≥ k − 1. Fix small
parameters η, ξ1 > 0 satisfying 8η < ξ1. We put tn = n1−ξ1. Then, for any x, y ∈ W ∩ 1√

n
Sk,

uniformly for |x| = o(
√

tn) and |y| = o(nη), as n → ∞,

D(n)
n (x, y) − Ex

[
1l{τ≤tn}D

(n)

n−τ (X(τ), y)
]

=
k−1∏

l=0

1

l!
n− k

4
(k−1)Vtn(x)

e−
1
2
|y|2

(2π)k/2
∆(y) (1 + o(1)) + O(n1−µ(η+ξ1/4)).

(3.33)

Proof. According to (3.28), we have, uniformly in x, y ∈ R
k ∩ 1√

n
Sk,

D(n)
n (x, y) = (2π)−

k
2 det

[(
e−

1
2
(yj−xi/

√
n)2

)
i,j=1,...,k

] (
1 + o(1)

)
+ o

(
n1−µ

2
)

=
e−

1
2
|y|2

(2π)k/2
e−

1
2n

|x|2 det
[(

exiyjn−1/2)
i,j=1,...,k

] (
1 + o(1)

)
+ o

(
n1−µ

2
)
.

(3.34)

In order to evaluate the last determinant, we write, for |x| |y| = o(
√

n),

exiyjn−1/2
=

k∑

l=1

xl−1
i

(l − 1)!

yl−1
j√
n

l−1

[
1 + O

( |x| |y|√
n

)k]
, (3.35)

and use the determinant multiplication theorem. This gives, with K ′ =
∏k−1

l=0 (l)!−1, if |x| |y| =
o(
√

n),

det
[
(exiyjn−1/2

)i,j=1,...,k

]
= det

[( xl−1
i

(l − 1)!

)

i,l=1,...,k

]
det

[( yl−1
j√
n

l−1

)

l,j=1,...,k

]
(1 + o(1))

= K ′∆(x)n− k
4
(k−1)∆(y)(1 + o(1)).

(3.36)

Substituting (3.36) in (3.34), we obtain

D(n)
n (x, y) = K ′n− k

4
(k−1)∆(x)

e−
1
2
|y|2

(2π)k/2
∆(y) (1 + o(1)) + o

(
n1−µ

2
)
, for |x| |y| = o(

√
n). (3.37)

In order to handle the second term on the left of (3.33) we have to distinguish if |X(τ)| is large
or not. For this purpose, fix mn = n1−ξ1/2, and split

Ex

[
1l{τ≤tn}D

(n)

n−τ (X(τ), y)
]

= Ex

[
1l{τ≤tn}1l{|X(τ)|≤nη√mn}D

(n)

n−τ (X(τ), y)
]

+ Ex

[
1l{τ≤tn}1l{|X(τ)|>nη√mn}D

(n)

n−τ (X(τ), y)
]
.

(3.38)
Let us estimate the second term. From now we use C to denote a generic positive constant,
depending only on k or the step distribution. Observe from (3.29) and (3.30) that

∣∣D(n)

l (x, y)
∣∣ ≤ C

(n

l

) k
2
, n, l ∈ N, x, y ∈ W ∩ 1√

n
Sk. (3.39)
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Hence, on {τ ≤ tn}, D(n)

n−τ (X(τ), y) is uniformly bounded in n and y, since tn = o(n) and
therefore n

n−τ is bounded. Using the boundedness of D(n)

n−τ (X(τ), y), the Markov inequality and

(3.25), we obtain, for all x, y ∈ W ∩ 1√
n
Sk satisfying |x| = o(

√
tn), as n → ∞,

∣∣∣Ex

[
1l{τ≤tn}1l{|X(τ)|>nη√mn}D

(n)

n−τ (X(τ), y)
]∣∣∣

≤ C

tn∑

l=1

Px

(
τ = l, |X(l)| > nη√mn

)
≤ Ctn

tn
sup
l=1

Px(|X(l)| > nη√mn)

≤ Ctn
tn

sup
l=1

Ex[|X(l)|µ]n−ηµm−µ/2
n ≤ O

(
tn(tn/mn)µ/2n−ηµ

)

≤ O
(
n1−µ(η+ξ1/4)

)
.

(3.40)

The first term in (3.38) can be handled in the same way as in (3.37). Indeed, for x, y ∈ W ∩ 1√
n
Sk

satisfying |x| = o(
√

tn) and |y| = o(nη),

Ex

[
1l{τ≤tn}1l{|X(τ)|≤nη√mn}D

(n)

n−τ (X(τ), y)
]

=
k−1∏

l=0

1

l!
n− k

4
(k−1)

Ex

[
1l{τ≤tn}e

− 1
2n

|X(τ)|21l{|X(τ)|≤nη√mn}}∆(X(τ))
] e−

1
2
|y|2

(2π)k/2
∆(y) (1 + o(1))

+ o
(
n1−µ

2
)

=
k−1∏

l=0

1

l!
n− k

4
(k−1)

Ex

[
1l{τ≤tn}∆(X(τ))

] e−
1
2
|y|2

(2π)k/2
∆(y) (1 + o(1)) + o

(
n1−µ

2
)
.

(3.41)

The first step uses that (3.37) is applicable for x = X(τ) because (n−τ)
n → 1, since |X(τ)| |y| =

o(n2η√mn) = o(n
1
2
− ξ1

4
+2η) = o(

√
n); recall that we assumed that 8η < ξ1. The second step in

(3.41) is derived in a similar way as in (3.40), using also that, on the event {|X(τ)| ≤ nη√mn},
we have |X(τ)|2/n ≤ n2ηmn/n → 0, according to the choice of mn and 8η < ξ1.

Now substitute (3.41) and (3.40) in (3.38) and this and (3.37) on the left side of (3.33) to finish
the proof.

Now we examine the part where tn ≤ τ ≤ n − sn. We restrict to the non-lattice case; the
formulation for the lattice case and its proof are analogous, and are left to the reader.

Lemma 3.6. Consider the non-lattice case. Assume that the µ-th moment of the steps is finite
for some µ ≥ k−1. Fix small parameters η, ε, ξ1, ξ2 > 0 such that ξ2 > ε+η. We put tn = n1−ξ1

and sn = n
1
2
+ξ2. Then, for any x ∈ W , uniformly for |x| = o(

√
n), as n → ∞,

∫

W
1l{|y|≤nη}

∣∣∣Ex

[
1l{tn≤τ≤n−sn}D

(n)

n−τ (X(τ), y)
]∣∣∣ dy

≤ O
(
nε+η−ξ2

)
Px(τ ≥ tn) + o

(
n

1
2
−µ

4
+ηk+ξ2

)
+ O

(
n1−µ(η+ξ1/4)

)
+ O

(
n1−εµ

)
.

(3.42)

Proof. For notational convenience, we assume that tn and sn are integers. We will use C > 0 as
a generic positive constant, depending only on the step distribution or on k, possibly changing
its value from appearance to appearance.
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Similarly to (3.38), in the expectation on the left of (3.42), we distinguish if |X(τ)| is larger
than nη√mn or not, where this time we pick mn = n1+ξ1/2. Furthermore, we recall the stopping
time τm from (3.22) and sum on all values of m and distinguish if |Xm(τ)−Xm+1(τ)| is smaller
than nε or not. Furthermore, we sum on all values of τ . Recalling also (3.39), we estimate the
integrand on the left side of (3.42) as

∣∣∣Ex

[
1l{tn≤τ≤n−sn}D

(n)

n−τ (X(τ), y)
]∣∣∣ ≤ Z(1)

n (y) + Z(2)
n (y) + Z(3)

n (y), (3.43)

where

Z(1)
n (y) =

n−sn∑

l=tn

Ex

[
1l{τ=l}1l{|X(l)|>nη√mn}

∣∣D(n)

n−l(X(l), y)
∣∣
]
, (3.44)

Z(2)
n (y) =

n−sn∑

l=tn

k−1∑

m=1

Ex

[
1l{τ=τm=l}1l{|Xm(l)−Xm+1(l)|>nε}

∣∣D(n)

n−l(X(l), y)
∣∣
]

(3.45)

Z(3)
n (y) =

n−sn∑

l=tn

k−1∑

m=1

Ex

[
1l{τ=τm=l}1l{|X(l)|≤nη√mn}1l{|Xm(l)−Xm+1(l)|≤nε}

∣∣D(n)

n−l(X(l), y)
∣∣
]
.(3.46)

Let us estimate the integral over Z(1)
n . Observe that the measure with density y 7→ |D(n)

n−l(x, y)|
has bounded total mass:

∫

W
dy

∣∣D(n)

n−l(x, y)
∣∣ ≤ k!

( ∫

R

dz
√

npn−l

(
z
√

n
))k

≤ k!, 0 ≤ l ≤ n, x ∈ W. (3.47)

Using this and the Markov inequality, we obtain, for |x| = o(
√

n) = o(
√

n − sn), as n → ∞,

∫

W
dy Z(1)

n (y) ≤ C

n−sn∑

l=tn

Px

(
|X(l)| > nη√mn

)
≤ C

n−sn∑

l=tn

Ex

[
|X(l)|µ

]
n−ηµm−µ/2

n

≤ Cn(n/mn)µ/2n−ηµ ≤ O
(
n1−µ(η+ξ1/4)

)
.

(3.48)

In a similar way, we estimate the integral over Z(2)
n . Recall that, on the event {τ = l = τm}, we

may use (3.23), (3.47) and then the Markov inequality, to obtain

∫

W
dy Z(2)

n (y) ≤ C

n−sn∑

l=tn

k−1∑

m=1

Px

(
|Ym+1(l) − Ym(l)| > nε

)
≤ Cnn−µε ≤ O

(
n1−µε

)
. (3.49)

Hence, (3.48) and (3.49) yield the two latter error terms on the right hand side of (3.42).

We turn to an estimate of Z(3)
n (y). For tn ≤ l ≤ n−sn, on the event {τ = l}∩{|X(l)| ≤ nη√mn},

we use the local central limit theorem in (3.28) to obtain

D(n)

n−l(X(l), y)

= det
[(√

npn−l

(
yj

√
n − Xi(l)

))

i,j=1,...,k

]

=
( n

n − l

) k
2 e−

1
2
|y|2 n

n−l

(2π)k/2
e−

1
2

1
n−l

|X(l)|2 det
[(

eyjXi(l)
√

n
n−l

)

i,j=1,...,k

]
(1 + o(1)) + o

(
(n − l)1−µ/2

)
.

(3.50)

1323



Abbreviate a = X(l)
√

n/(n − l), then the determinant may be written

det
[(

eaiyj

)

i,j=1,...,k

]
=

∑

1≤i<j≤k

(
1 − e−(am−am+1)(yi−yj)

) ∑

σ∈Sk
σ(i)=m,σ(j)=m+1

sign(σ)
k∏

p=1

eaσ(p)yp .

(3.51)
Observe that the exponent (am −am+1)(yi −yj) asymptotically vanishes on the event {|Xm(l)−
Xm+1(l)| ≤ nε}, since on {|y| ≤ nη} we obtain

|am − am+1| |yi − yj | ≤ nε+η

√
n

n − l
≤ nε+η+ 1

2
1

sn
= nε+η−ξ2 = o(1), (3.52)

since ξ2 > ε + η. Hence, we may use that |1 − ex| ≤ O(|x|) as x → 0, and obtain from (3.51)
that

∣∣∣ det
[(

eyjXi(l)
√

n
n−l

)

i,j=1,...,k

]∣∣∣ ≤ O
(
nη+ε−ξ2

) ∑

σ∈Sk

k∏

i=1

eXσ(i)(l)
√

n
n−l

yi .

Using this in (3.50) and this in (3.46), we arrive at

Z(3)
n (y) ≤ O

(
nη+ε−ξ2

) n−sn∑

l=tn

( n

n − l

) k
2

∑

σ∈Sk

Ex

[
1l{τ=l}e

− 1
2
|Xσ(l)/

√
n−y|2 n

n−l

]
+ o

(
s1−µ/2
n

)
.

Now we integrate over y and use Fubini’s theorem:
∫

W
1l{|y|≤nη}Z

(3)
n (y) dy

≤ O
(
nη+ε−ξ2

) n−sn∑

l=tn

∑

σ∈Sk

Ex

[
1l{τ=l}

∫

Rk

e−
1
2
|Xσ(l)/

√
n−y|2 n

n−l

( n

n − l

) k
2

dy
]

+ o
(
nηks1−µ/2

n

)

≤ O
(
nε+η−ξ2

) n−sn∑

l=tn

Px(τ = l) + o
(
n

1
2
−µ

4
+ηk+ξ2

)

≤ O
(
nε+η−ξ2

)
Px(τ ≥ tn) + o

(
n

1
2
−µ

4
+ηk+ξ2

)
.

(3.53)
Substituting this in (3.43) and combining with (3.48) and (3.49), we arrive at (3.42).

3.4 Proof of integrability of ∆(X(τ )).

Now we collect the preceding and prove the integrability of ∆(X(τ)) under Px for any x:

Proposition 3.7 (Integrability of ∆(X(τ))). There is µk, depending only on k, such that, if
the µk-th moment of the steps is finite, for any x ∈ W , the variable ∆(X(τ)) is integrable under
Px. Moreover, uniformly in x ∈ W on compacts,

lim
n→∞

n
k
4
(k−1)

Px

(
τ > n;

1√
n

X(n) ∈ dy
)

=

k−1∏

l=1

1

l!
V (x)

e−
1
2
|y|2

(2π)k/2
∆(y) dy, (3.54)

in the sense of weak convergence of distributions on W .
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Before we give the proof, we state some conclusions:

Corollary 3.8 (Tails of τ and limit theorem before violation of ordering). Assume that the
µk-th moment of the steps is finite, with µk as in Proposition 3.7. Then

lim
n→∞

n
k
4
(k−1)

Px(τ > n) = KV (x), where K =
k−1∏

l=1

1

l!

∫

W

e−
1
2
|y|2

(2π)k/2
∆(y) dy. (3.55)

Furthermore, the distribution of n− 1
2 X(n) under Px( · | τ > n) converges towards the distribution

on W with density y 7→ 1
Z1

e−
1
2
|y|2∆(y), where Z1 is the normalisation.

Note that we a priori do not know yet whether or not V is positive. However, its nonnegativity
is now clear, which we want to state explicitly:

Corollary 3.9 (Nonnegativity of V ). For any x ∈ W , the number V (x) defined in (1.7) is
well-defined and nonnegative.

This follows either from the asymptotics in Proposition 3.7 or from the fact that Vn is positive
(see Lemma 3.4), in combination with V (x) = limn→∞ Vn(x) via Lebesgue’s theorem.

Proof of Proposition 3.7. Fix some continuous and bounded function f : W → R. We
abbreviate

an(f) = n
k
4
(k−1)

Ex

[
f
(
n− 1

2 X(n)
)
1l{τ>n}

]
and an = an(1l) and An = max{a1, . . . , an}.

Our first step, see (3.65), is to derive an expansion for an(f) in terms of K(f)Vtn(x) with some
suitable K(f) ∈ (0,∞) and error terms depending on An and Px(n − sn ≤ τ ≤ n). Specialising
to f = 1l and using an upper bound for Vtn(x) derived from Lemma 3.1, we obtain a recursive
upper bound for an in terms of An and an−sn−an. This estimate directly implies that (An)n∈N is
bounded, hence also (an)n∈N is bounded. Via Lemma 3.1, this directly implies the integrability
of ∆(X(τ)), i.e., we know that V (x) is well-defined, and V (x) = limn→∞ Vtn(x). Using this
again in (3.65) for f = 1l, we further obtain that an converges towards KV (x), where K is
defined in (3.55). Using this in (3.65) for arbitrary f , we derive the assertions in (3.54) and
finish the proof.

As in Lemmas 3.5 and 3.6, we pick small parameters ε, η, ξ1, ξ2 > 0, and we put tn = n1−ξ1 and
sn = n

1
2
+ξ2 . Now we require that

8η < ξ1 and ξ2 > ε + η + ξ1
k

4
(k − 1), (3.56)

and we pick µ so large that

µ > (k−1)
(k

2
(k−1)+2

)
and

k

4
(k−1)+max

{
−µη,

1

2
− µ

4
+ηk+ξ2, 1−µ(η+ξ1/4), 1−εµ

}
< 0.

(3.57)
In the following, we will restrict ourselves to the non-lattice case. The necessary changes for the
lattice cases are only notational. We use C to denote a generic positive constant that is uniform
in n and uniform in x on compacts and may change its value from appearance to appearance. All

1325



following limiting assertions hold for x ∈ W uniformly on compacts. We begin with multiplying

(3.31) with n
k
4
(k−1) and distinguishing the events {|Xn| ≥ n

1
2
+η} and its complement. This gives

an(f) = n
k
4
(k−1)

Ex

[
f
(
n− 1

2 X(n)
)
1l{τ>n}1l{n−1/2|X(n)|≥nη}

]

+ n
k
4
(k−1)

∫

W
1l{|y|≤nη}

[
In(y) + IIn(y) + IIIn(y)

]
f(y) dy,

(3.58)

where

In(y) = D(n)
n (x, y) − Ex

[
1l{τ≤tn}D

(n)

n−τ (X(τ), y)
]
, (3.59)

IIn(y) = −Ex

[
1l{tn<τ≤n−sn}D

(n)

n−τ (X(τ), y)
]
, (3.60)

IIIn(y) = −Ex

[
1l{n−sn<τ≤n}D

(n)

n−τ (X(τ), y)
]
. (3.61)

We use the Markov inequality for the first term on the right hand side of (3.58), which gives

n
k
4
(k−1)

∣∣∣Ex

[
f
(
n− 1

2 X(n)
)
1l{τ>n}1l{n−1/2|X(n)|≥nη}

]∣∣∣

≤ n
k
4
(k−1)‖f‖∞Px(n−1/2|X(n)| ≥ nη) ≤ Cn

k
4
(k−1)n−ηµ

≤ O
(
n

k
4
(k−1)−µη

)
= o(1),

(3.62)

since k
4 (k − 1) − µη < 0 by (3.57). Hence,

an(f) = o(1) +

∫

W
1l{|y|≤nη}n

k
4
(k−1)

[
In(y) + IIn(y) + IIIn(y)

]
f(y) dy. (3.63)

Now we use (3.33) for In(y), (3.42) for IIn(y) and (3.47) for IIIn(y). This gives

an(f) = o(1) +
k−1∏

l=0

1

l!

∫

W
1l{|y|≤nη}

e−
1
2
|y|2

(2π)k/2
∆(y)f(y) dy Vtn(x)(1 + o(1))

+ n
k
4
(k−1)O

(
nε+η−ξ2

)
Px(τ ≥ tn) + n

k
4
(k−1)O

(
Px(n − sn ≤ τ ≤ n)

)

+ n
k
4
(k−1)

(
o
(
n

1
2
−µ

4
+ηk+ξ2

)
+ O(n1−µ(η+ξ1/4)) + O

(
n1−εµ

))
.

(3.64)

Use that limn→∞(n/tn)
k
4
(k−1)nε+η−ξ2 = 0 (see (3.56)) to write the first term in the second line

of (3.64) as o(1)atn . Using our assumptions on µ in (3.57), the third line of (3.64) is o(1).
Therefore, we have from (3.64)

an(f) = K(f)Vtn(x)(1 + o(1)) + o(1) + o(1)atn + n
k
4
(k−1)O

(
Px(n − sn ≤ τ ≤ n)

)
, (3.65)

where

K(f) =
k−1∏

l=1

1

l!

∫

W
dy

e−
1
2
|y|2

(2π)k/2
∆(y)f(y).

In order to estimate Vtn(x), we use Lemma 3.1 (more precisely, (3.20)) and obtain, for some
λ ∈ (0, 1) and r ∈ (0, k

4 (k − 1) − 1),

|Vtn(x)| ≤ |∆(x)| + C + C
( tn∑

l=1

lrPx(τ > l)
)λ

≤ C + C
( tn∑

l=1

lr−
k
4
(k−1)al

)λ
≤ C + CAλ

n, (3.66)
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since the sum over lr−
k
4
(k−1) converges. Remark, that µ is chosen so large that (3.57) holds,

therefore Lemma 3.1 can be applied. We therefore obtain from (3.65), specialised to f = 1l,

an ≤ C + CAλ
n + o(1)An + C

(
an−sn(1 + o(1)) − an

)
, (3.67)

where we used nk/4(k−1)
Px(n − sn ≤ τ ≤ n) = an−sn(n/(n − sn))

k
4
(k−1) − an and where we

recalled that sn = o(n) and therefore n
k
4
(k−1) = (n − sn)

k
4
(k−1)(1 + o(1)).

Solving this recursive bound for an, we obtain the estimate

an ≤ C +
C

C + 1
Aλ

n +
o(1)

C + 1
An +

C + o(1)

C + 1
an−sn ≤ C +

C

C + 1
Aλ

n +
C + o(1)

C + 1
An. (3.68)

Since the right hand side is increasing in n, we also have this upper bound for An instead

of an. Now it is clear that (An)n∈N is a bounded sequence, i.e., lim supn→∞ n
k
4
(k−1)

Px(τ >
n) < ∞. From Lemma 3.1 (more precisely, from (3.20)) we see that V (x) is well-defined, and
limn→∞ Vn(x) = V (x) by Lebesgue’s theorem.

Now, we prove that limn→∞ an = KV (x), where K = K(1l) is defined in (3.55). We start from
(3.65) with f = 1l, which now reads

an = KV (x) (1 + o(1)) + o(1) + O
(
an−sn(1 + o(1)) − an

)
, n → ∞, (3.69)

where we recall that an−sn(1 + o(1)) − an ≥ 0. Hence,

an ≤ KV (x)

1 + C
(1 + o(1)) +

C + o(1)

1 + C
an−sn .

Consider a = lim supn→∞ an and note that lim supn→∞ an−sn ≤ a. Hence, we obtain that
a ≤ KV (x). In the same way, we derive from (3.69) that a = lim infn→∞ an satisfies a ≥ KV (x).
This shows that limn→∞ an exists and is equal to KV (x).

Now we go back to (3.65) with an arbitrary continuous and bounded function f , which now
reads

an(f) = K(f)V (x)(1 + o(1)) + o(1) + n
k
4
(k−1)O

(
Px(n − sn ≤ τ ≤ n)

)

= K(f)V (x)(1 + o(1)) + o(1) + O
(
|an−sn − an|

)

= K(f)V (x)(1 + o(1)) + o(1).

This implies that (3.54) holds and finishes the proof of Proposition 3.7.

4 Properties of V , and convergence towards Dyson’s Brownian
motions

In this section we prove a couple of properties of the function V established in Proposition 3.7, like
integrability properties, regularity, positivity and behavior at infinity. Furthermore, we introduce
the Doob h-transform with h = V and show that it is equal to a family of k independent random
walks, conditioned to be ordered at any time, and we prove an invariance principle towards
Dyson’s Brownian motions.
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In Section 3 we saw that establishing the existence of V (x) requires a detailed analysis of the

asymptotics of Px(τ > n; n− 1
2 X(n) ∈ dy) on the scale n− k

4
(k−1). In the present section, we

will see that the proof of many properties of V , in particular its asymptotics at infinity and
its positivity, requires a good control of the asymptotics of Px

√
n(τ > l; l−

1
2 X(l) ∈ dy) for l/n

bounded away from zero.

Recall the notation of Section 1.1, in particular that a tuple of k Brownian motions starts in
x ∈ R

k under Px, and their collision time, T , in (1.2).

Lemma 4.1. For any t > 0 and any x ∈ W ,

lim
n→∞

Px
√

n(τ > tn; n− 1
2 X(⌊tn⌋) ∈ dy) = Px(T > t; B(t) ∈ dy) weakly. (4.70)

Proof. This follows from Donsker’s invariance principle. Indeed, the vector B(n) =
(B(n)

1 , . . . , B(n)

k ) of the processes B(n)

i (s) = n− 1
2 Xi(⌊sn⌋) converges towards a Brownian mo-

tion B on R
k starting at x. Consider the set A = {f : [0, t] → W : f is continuous}, then

Px(B ∈ ∂A) = 0 for any x ∈ W . Hence, Px
√

n(τ > tn) = Px
√

n(B(n) ∈ A) converges towards
Px(B ∈ A) = Px(T > t). The extension of this statement to (4.70) is straightforward.

The following estimate is analogous to Lemma 3.1.

Lemma 4.2. Assume that the µ-th moment of the steps is finite, for some µ > (k − 1)(k
2 (k −

1) + 2). Then there are ε > 0, r ∈ (0, k
4 (k − 1) − 1) for k > 2 and r ∈ (0, 1

2) for k = 2 and
λ ∈ (0, 1) such that, for any M > 0, there is CM > 0 such that, for any x ∈ W satisfying
|x| ≤ M ,

E√
n x[|∆(X(τ))|1l{τ>Rn}] ≤ CM (Rn)−ε

( ∑

l∈N

lrP√
n x(τ > l)

)λ
, R > 1, n ∈ N.

Proof. Recall the notation of τm in (3.22) and the estimate in (3.23). In the same way as in the
proof of Lemma 3.1 (see in particular (3.24)), we obtain the estimate, for any m ∈ {1, . . . , k−1},

E√
n x

[
|∆(X(τ))|1l{τ=τm>Rn}

]
≤ E√

n x

[
τp[ k

2
(k−1)−1]( 1

2
+ξ)1l{τ≥Rn}

]1/p

×
( ∑

l≥Rn

l−qξ[ k
2
(k−1)−1]

E√
n x

[
|Y m,l|q

∏

(i,j) 6=(m,m+1)

∣∣∣
Xi(l) − Xj(l)√

l

∣∣∣
q])1/q

,
(4.71)

where we pick for k > 2 again ξ = (k
2 (k−1)−1)−1(k

2 (k−1)+2)−1 and any q > (ξ[k
2 (k−1)−1])−1 =

k
2 (k − 1) + 2; and p is determined by 1 = 1

p + 1
q .

In a similar way as in the proof of Lemma 3.1, one sees that the expectation in the second line
of (4.71) is bounded in n and x ∈ W satisfying |x| ≤ M , since l/n is bounded away from zero
in the sum. Hence, the second line is not larger than

CM

( ∑

l≥Rn

l−qξ[ k
2
(k−1)−1]

)1/q
≤ CM (Rn)

1
q
−ξ[ k

2
(k−1)−1]

,

for some CM > 0, not depending on n nor on R nor on x, as long as x ∈ W and |x| ≤ M . Note
that the exponent −ε = 1

q − ξ[k
2 (k − 1) − 1] is negative.
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Let us turn to the other term on the right side of (4.71). We abbreviate r = p[k
2 (k− 1)− 1](1

2 +

ξ) − 1 and know that r + 1 < k
4 (k − 1). Then we have

E√
n x

[
τp[ k

2
(k−1)−1]( 1

2
+ξ)1l{τ≥Rn}

]1/p ≤ E√
n x

[
τ r+1

]1/p ≤ C
( ∑

l∈N

lrP√
n x(τ > l)

)1/p
, (4.72)

for some C > 0 that does not depend on n, nor on x or R. Now put λ = 1/p.

From now on we assume that a sufficiently high moment of the walk’s steps is finite, in accordance
with Proposition 3.7, see (3.57).

Lemma 4.3 (Asymptotic relation between V and ∆). Assume that the µk-th moment of the
steps is finite, with µk as in Proposition 3.7. For any M > 0, uniformly for x ∈ W satisfying
|x| ≤ M ,

lim
n→∞

n− k
4
(k−1)V (

√
n x) = ∆(x). (4.73)

Proof. For notational reasons, we write m instead of n. As is seen from (1.7), it suffices

to show that limm→∞ m− k
4
(k−1)

E√
m x[|∆(X(τ))|] = 0, uniformly for x ∈ W satisfying |x| ≤

M . With some large R > 0, we split this expectation into {τ ≤ Rm} and {τ > Rm}. For
the first term, we are going to use Donsker’s invariance principle. Indeed, under P√

m x, the

vector B(m) = (B(m)

1 , . . . , B(m)

k ) of the processes B(m)

i (t) = m− 1
2 Xi(⌊tm⌋) converges towards a

Brownian motion B on R
k starting at x. Hence, for any R > 0, the random variable Zm =

m− k
4
(k−1)∆(X(τ))1l{τ≤Rm} converges weakly towards ∆(B(T ))1l{T≤R}, which is equal to zero

by continuity. We now show that (Zm)m∈N is uniformly integrable, from which it follows that
limm→∞ E√

m x[Zm] = 0. (It is not difficult to see that this convergence is uniform for x ∈ W
satisfying |x| ≤ M .) To show the uniform integrability, pick some p > 1 sufficiently close to one
and estimate (using the notation introduced at the beginning of the proof of Lemma 3.1)

E√
m x[|Zm|p] ≤ Cm−p k

4
(k−1)

⌈Rm⌉∑

l=1

E√
m x

[ ∏

1≤i<j≤k

(∣∣xi

√
m − xj

√
m

∣∣p + |Si(l) − Sj(l)|p
)
1l{τ=l}

]

≤ C + Cm−p k
4
(k−1)

E

[ ∏

1≤i<j≤k

max
1≤l≤Rm

|Si(l) − Sj(l)|p
]
,

where C > 0 denotes a generic positive constant, not depending on m. Now the same argument
as the one below (3.21) applies (if p is sufficiently close to one) to show that the right hand side
is bounded. Hence, (Zm)m∈N is uniformly integrable.

The main difficulty is to show that lim supm→∞ m− k
4
(k−1)

E√
m x[|∆(X(τ))|1l{τ>Rm}] vanishes as

R → ∞, uniformly for x ∈ W satisfying |x| ≤ M . According to Lemma 4.2, we only have to
show that, for r ∈ (0, k

4 (k − 1) − 1) and λ ∈ (0, 1) as in Lemma 4.2,

lim sup
m→∞

m− k
4
(k−1)

( ∑

n∈N

nr
P√

m x(τ > n)
)λ

< ∞, (4.74)

uniformly for x ∈ W satisfying |x| ≤ M . For this, it suffices to find, for any sufficiently small
γ > 0 (only depending on r and k), some C > 0 such that

P√
m x(τ > n) ≤ C

(m1/λ

n

) k
4
(k−1)

, if m = o(n1−γ), (4.75)
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uniformly for x ∈ W satisfying |x| ≤ M .

The proof of (4.75) uses parts of the proof of Proposition 3.7. We again restrict ourselves to the
non-lattice case. We use C as a generic positive constant that is uniform in m, n and x in the
ranges considered. As in the proof of Proposition 3.7, we pick small parameters η, ε, ξ1, ξ2 > 0
satisfying 8η < ξ1 and ξ2 > ε + η + ξ1

k
4 (k − 1). We assume that the µ-th steps of the walk are

finite, where µ is so large that (3.57) holds. Abbreviate am,n = P√
m x(τ > n)(n/m1/λ)

k
4
(k−1)

for n, m ∈ N. For any n ∈ N, we pick mn ≤ o(n1−γ) maximal for m 7→ am,n, and we put
An = max{am1,1, . . . , amn,n}. Then our goal is to prove that (An)n∈N is bounded. The index
mn, and hence also An, depends on x, but our estimates will be uniform in x ∈ W satisfying
|x| ≤ M .

We split into the event {|X(n)| ≤ n
1
2
+η} and the remainder. For the first term, we also use

Lemma 3.3 with f = 1l. This gives

P√
mn x(τ > n) ≤ P√

mn x

(
|X(n)| > n

1
2
+η

)

+

∫

W
dy 1l{|y|≤nη}

[
D(n)

n (
√

mn x, y) − E√
mn x

[
1l{τ≤n}D

(n)

n−τ (X(τ), y)
]]

.
(4.76)

Since in particular mn = o(n), the first term, P√
mn x(|X(n)| > n

1
2
+η), can be estimated via

Markov inequality against Cn−µη using (3.25). If we choose µ such that −µη + k
4 (k − 1) < 0

(which is fulfilled under the moment condition in Proposition 3.7, see (3.57)), we obtain the

bound P√
mn x(|X(n)| > n

1
2
+η) ≤ Cn− k

4
(k−1) ≤ C(m

1/λ
n /n)

k
4
(k−1). Let us turn to the second line

of (4.76).

As in the proof of Proposition 3.7, we split the expectation in the second line of (4.76) into the

parts where τ ≤ tn, tn ≤ τ ≤ n − sn, and n − sn ≤ τ ≤ n, where tn = n1−ξ1 and sn = n
1
2
+ξ2 .

We want to apply Lemma 3.5 to the first part (together with the term D(n)
n (

√
mn x, y)) and

Lemma 3.6 to the second, i.e., we replace x by
√

mnx in that lemmas. Lemma 3.6 immediately
applies since

√
mn x = o(

√
n), and Lemma 3.5 applies if we assume that γ > ξ1 to ensure that√

mn |x| = o(
√

tn), which we do henceforth. Furthermore, for the last term we use (3.47) and
obtain, as in (3.64):

P√
mn x(τ > n) ≤ Cn− k

4
(k−1)

∫

W
1l{|y|≤nη}

e−
1
2
|y|2

(2π)k/2
∆(y) dy Vtn

(√
mnx

)

+ O
(
nε+η−ξ2

)
P√

mn x(τ ≥ tn) + CP√
mn x(n − sn ≤ τ ≤ n)

+ o
(
n

1
2
−µ

4
+ηk+ξ2

)
+ O(n1−µ(η+ξ1/4)) + O

(
n1−εµ

)
+ C

(m
1/λ
n

n

) k
4
(k−1)

.

(4.77)

Since µ satisfies (3.57), the last line is not larger than C(m
1/λ
n /n)

k
4
(k−1). Hence, we obtain

amn,n ≤ Cm
− 1

λ
k
4
(k−1)

n Vtn

(√
mnx

)
+ Cnε+η−ξ2

( n

tn

) k
4
(k−1)

amn,tn

+ C
(
amn,n−sn

( n

n − sn

) k
4
(k−1)

− amn,n

)
+ C.

(4.78)

Note that the factor nε+η−ξ2(n/tn)
k
4
(k−1) = nε+η−ξ2+ξ1

k
4
(k−1) is o(1) by our requirement that

the exponent is negative. We use Lemma 3.1 to estimate, for r ∈ (0, k
4 (k − 1) − 1), λ ∈ (0, 1)
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and a ≥ γ as in that lemma,

Vtn

(√
mnx

)
≤ ∆

(√
mnx

)
+ Cm

(1+a) k
4
(k−1)

n + C
( tn∑

l=⌈m1+a
n ⌉

lrP√
mn x(τ > l)

)λ

≤ Cm
(1+a) k

4
(k−1)

n + Cm
(1+a) k

4
(k−1)

n

( tn∑

l=⌈m1+a
n ⌉

lr−
k
4
(k−1)amn,l

)λ

≤ Cm
(1+a) k

4
(k−1)

n + Cm
(1+a) k

4
(k−1)

n Aλ
n.

Remark that to bound amn,l by An one needs to know that mn ≤ o(l1−γ) i.e. mn ≤
o(m

(1+a)(1−γ)
n ); therefore one must choose a > γ. Substituting this in (4.78) and solving for

amn,n, we obtain

amn,n ≤ C + Cm
(1+a− 1

λ
) k
4
(k−1)

n + Cm
(1+a− 1

λ
) k
4
(k−1)

n Aλ
n + o(1)amn,tn +

C + o(1)

C + 1
amn,n−sn .

(4.79)
Now pick a > 0 small enough such that the second term on the right hand side is ≤ C and such
that the third is ≤ Aλ

n. Recall that mn satisfies amn,n = maxm≤o(n1−γ) am,n. Picking ξ1 > 0

even smaller, we can assume that mn = o(t1−γ
n ), hence amn,tn ≤ amtn ,tn ≤ Atn ≤ An. Similarly,

amn,n−sn ≤ An. Hence, we obtain

amn,n ≤ C + Aλ
n +

C + o(1)

C + 1
An.

Since the right hand side is increasing in n, we also obtain this estimate for An instead of amn,n.
From this, it follows that (An)n∈N is bounded. This finishes the proof.

In the following lemma, we see in particular that V does not increase much faster than ∆ on W
at infinity. In particular, we can prove some integrability property of V , its regularity and its
positivity. Recall that the µ-th moment of the steps is assumed finite for some sufficiently large
µ, properly chosen in accordance with Proposition 3.7.

Lemma 4.4 (Bounds on V , integrability, regularity and positivity). Assume that the µk-th
moment of the steps is finite, with µk as in Proposition 3.7.

(i) There is a constant C > 0 such that V (x) ≤ ∆(x) + |x| k
2
(k−1) + C for any x ∈ W .

(ii) Fix 0 < ν ≤ µ
k
2
(k−1)

, then Ex[V (X(n))ν1l{τ>n}] is finite for any n ∈ N and x ∈ W .

(iii) V is regular for the restriction of the transition kernel to W .

(iv) V is positive on W .

Proof. (i) According to Lemma 4.3, there is N0 ∈ N such that, for any n ∈ N satisfying n ≥ N0

and for any x ∈ W satisfying |x| ≤ 1,

V
(
x
√

n
)
≤ n

k
4
(k−1)

[
∆(x) + 1

]
.
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Now let x ∈ W be arbitrary. If |x| ≥ N0 + 1, then the above implies that

V (x) = V
( x√

⌈|x|2⌉
√
⌈|x|2⌉

)
≤ ⌈|x|2⌉ k

4
(k−1)

[
∆

( x√
⌈|x|2⌉

)
+ 1

]
≤ ∆(x) + (|x| + 1)

k
2
(k−1).

It suffices to show that V is bounded on bounded subsets of W . It is clear that the map
x 7→ Ex[|∆(X(τ))|1l{τ≤2}] is bounded on bounded subsets of W . Use Lemma 4.2 with R = 2
and n = 1 to estimate, for x in some bounded subset of W ,

Ex

[
|∆(X(τ))|1l{τ>2}

]
≤ CEx[τ r+1]λ,

see (4.72). It is clear that the map t 7→ Etx[τ r+1] is increasing, since, for t1 < t2, the random
variable τ is stochastically smaller under Pt1x than under Pt2x. In the proof of Lemma 4.3 (see
(4.74)) it is in particular shown that x 7→ Etx[τ r+1] is bounded on bounded subsets of W if t is
sufficiently large. This ends the proof of (i).

(ii) By (i), we have, for any ν > 0,

Ex[V (X(n))ν1l{τ>n}] ≤ Ex

[
|∆(X(n))|ν

]
+ Ex

[
|X(n)|ν k

2
(k−1)

]
+ C.

Since ∆ is a polynomial of degree k − 1 in any xi and by independence of the components, the
right hand side is finite as soon as both ν(k − 1) and ν k

2 (k − 1) do not exceed µ. Since we
assumed that k ≥ 2, this is true as soon as ν ≤ µ

k
2
(k−1)

.

(iii) We recall from [KOR02, Th. 2.1] that the process (∆(X(n)))n∈N0 is a martingale under
Px for any x ∈ R

k. In particular, Ex[∆(X(n))] = ∆(x) for any n ∈ N and any x ∈ R
k. The

regularity of V is shown as follows. For any x ∈ W ,

Ex

[
1l{τ>1}V (X(1))

]
= Ex

[
1l{τ>1}∆(X(1))

]
− Ex

[
1l{τ>1}EX(1)[∆(X(τ))]

]

= Ex

[
1l{τ>1}∆(X(1))

]
− Ex

[
1l{τ>1}∆(X(τ))

]

= Ex

[
1l{τ>1}∆(X(1))

]
− Ex[∆(X(τ))] + Ex

[
∆(X(τ))1l{τ≤1}

]

= Ex

[
∆(X(1))

]
− Ex

[
∆(X(τ))

]
+ Ex

[
∆(X(τ))1l{τ≤1} − ∆(X(1))1l{τ≤1}

]

= V (x),
(4.80)

where the second equality follows from the strong Markov property at time 1.

(iv) Recall that Y (n) = X(n)−X(n− 1) ∈ R
k is the step vector of the random walk at time n.

Certainly, Y (1) lies in W with positive probability. From the Centering Assumption it follows
that Y1(1) is not constant almost surely. Therefore, the vector v = E[Y (1) | Y (1) ∈ W ] lies in
W , since, for any i = 2, . . . , k, we have vi − vi−1 = E[Yi(1) − Yi−1(1) | Yi(1) − Yi−1(1) ≥ 0], and
Yi(1) − Yi−1(1) is positive with positive probability on {Yi(1) − Yi−1(1) ≥ 0}.
Let A be a closed neighborhood of v that is contained in W . Hence, for any sufficiently large
m ∈ N, we have that

Px(τ > m, X(m) ∈ mA) ≥ Px

(
Y (1), . . . , Y (m) ∈ W

)
Px

( 1

m
X(m) ∈ A

∣∣∣ Y (1), . . . , Y (m) ∈ W
)

> 0,

since the first term is positive for any m, and the last one converges to one, according to the
weak law of large numbers. According to Lemma 4.3, for any sufficiently large n ∈ N and for
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any y ∈ A, V (
√

ny) ≥ 1
2n− k

4
(k−1) infA ∆. In particular, infy∈mA V (y) > 0 for any sufficiently

large m.

Now recall from Corollary 3.9 that V ≥ 0 and iterate the regularity equation for V to the effect
that

V (x) = Ex[V (X(m))1l{τ>m}] ≥ Ex[V (X(m))1l{X(m)∈mA}1l{τ>m}]

≥ inf
mA

V Px(X(m) ∈ mA, τ > m)

> 0.

Hence, V (x) is positive.

Remark 4.5 ((Vn)n∈N0 as an iterating sequence). A modification of the calculation in (4.80)
shows that Ex

[
1l{τ>1}Vn(X(1))

]
= Vn+1(x) for any x ∈ W and n ∈ N. Furthermore, it is clear

that V0 = ∆. In other words, we can see the sequence (Vn)n∈N0 as the iterating sequence for the
iterated application of the expectation before the first violation of the ordering, starting with
initial function ∆. 3

Now that we know that V : W → (0,∞) is a positive regular function for the restriction of the
transition kernel to W , we can finally define the Doob h-transform of X on W ∩Sk with h = V .
Recalling (2.10), its transition probabilities are given by

P̂
(V )
x (X(n) ∈ dy) = Px(τ > n; X(n) ∈ dy)

V (y)

V (x)

=
[
Dn(x,dy) − Ex

[
1l{τ≤n}Dn−τ (X(τ), dy)

]]V (y)

V (x)
, n ∈ N, x, y ∈ W.

(4.81)

The measure on the right hand side is indeed a probability measure in dy on W , since, by
Lemma 4.4(ii) it has finite mass on W , and by Lemma 4.4(iii) its mass is even equal to one.

Now we can show that the transformed process deserves the name ‘k random walks conditioned
on being strictly ordered for ever’.

Lemma 4.6 (Conditional interpretation). Assume that the µk-th moment of the steps is finite,
with µk as in Proposition 3.7. The conditional distribution of the process (X(n))n∈N0 given
{τ > m} converges, as m → ∞, to the Doob h-transform of (X(n))n∈N0 with h = V , i.e., for
any x ∈ W and n ∈ N,

lim
m→∞

Px(X(n) ∈ dy | τ > m) = P̂
(V )
x (X(n) ∈ dy), weakly. (4.82)

Proof. Using the definition of the conditional probability and the Markov property at time n,
we see that, for any n, m ∈ N satisfying n < m,

Px(X(n) ∈ dy | τ > m) =
Px(τ > n; X(n) ∈ dy)m

k
4
(k−1)

Py(τ > m − n)

m
k
4
(k−1)

Px(τ > m)
.

According to (3.55), the last term in the numerator converges towards KV (y), and the denom-
inator converges towards KV (x) as m → ∞. Compare to the first line of (4.81) to see that this
finishes the proof.
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Recall that Dyson’s Brownian motions is the Doob h-transform of a standard Brownian motion
on W with h equal to the restriction of the Vandermonde determinant ∆ to W . Recall that
P̂

(V )
x is the Doob h-transform with h = V of the random walk X on W ∩ Sk. The Brownian

motion B = (B1, . . . , Bk) on R
k starts from x ∈ W under Px, and Ex denotes the corresponding

expectation. Denote by P
(∆)
x (B(t) ∈ dy) the Doob h-transform with h = ∆ of the Brownian

motion B on R
k, e.g.

P(∆)
x (B(t) ∈ dy) = Px(T > t; B(t) ∈ dy)

∆(y)

∆(x)
, x ∈ W, t > 0.

Lemma 4.7 (Convergence towards Dyson’s Brownian motions). Assume that the µk-th moment
of the steps is finite, for µk as in Proposition 3.7. Then, under P̂

(V )

x
√

n
, the process B(n) =

(n− 1
2 X(⌊tn⌋))t∈[0,∞) weakly converges, as n → ∞, towards Dyson’s Brownian motions started

at x. More precisely, the sequence (B(n))n∈N is tight, and, for any x ∈ W , and any t > 0,

lim
n→∞

P̂
(V )

x
√

n

( 1√
n

X(⌊tn⌋) ∈ dy
)

= P(∆)
x (B(t) ∈ dy), weakly. (4.83)

Proof. Using (4.81) and Lemmas 4.1 and 4.3, we see that, for any t > 0, as n → ∞,

P̂
(V )

x
√

n

( 1√
n

X(⌊tn⌋) ∈ dy
)

= Px
√

n

(
τ > ⌊tn⌋; 1√

n
X(⌊tn⌋) ∈ dy

)V (
√

n y)

V (
√

nx)

→ Px(T > t; B(t) ∈ dy)
∆(y)

∆(x)
= P(∆)

x (B(t) ∈ dy).

(4.84)

This shows that (4.83) holds.

Now we show the tightness. According to the Kolmogorov-Chentsov criterion, it suffices to find,
for any S > 0, constants α, β, C > 0 such that

E
(V )

x
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣α]

≤ C|t − s|1+β , s, t ∈ [0, S], n ∈ N. (4.85)

This is done as follows. We pick some α ∈ (2, 4). Fix 0 ≤ s < t ≤ S. First note that using the
Markov property we obtain

E
(V )

x
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣α]

=

∫

W

∫

W
|z1 − z2|α Px

√
n

(
τ > ⌊sn⌋, X(⌊sn⌋)√

n
∈ dz1

)

× Pz1
√

n

(
τ > ⌊tn⌋ − ⌊sn⌋, X(⌊tn⌋ − ⌊sn⌋)√

n
∈ dz2

)V (z2
√

n)

V (x
√

n)

≤
∫

W

∫

W
|z1 − z2|α Px

√
n

(X(⌊sn⌋)√
n

∈ dz1

)
Pz1

√
n

(X(⌊tn⌋ − ⌊sn⌋)√
n

∈ dz2

)V (z2
√

n)

V (x
√

n)
.

(4.86)
We use C as a generic positive constant, not depending on s, t (as long as 0 ≤ s < t ≤ S) nor on

n, nor on z1 or z2. By Lemma 4.3, 1/V (x
√

n) ≤ Cn− k
4
(k−1), uniformly in x on compact subsets
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of W . From Lemma 4.4(i), we know that there is a polynomial P : R
k → R of degree ≤ k

2 (k− 1)

such that V (z2
√

n) ≤ |P (z2)|n
k
4
(k−1) for any n ∈ N and z2 ∈ W . Hence,

E
(V )

x
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣α]

≤ CEx
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣α|P (B(n)(t))|

]
.

Now we use Hölder’s inequality with p = 4/α and q = 4/(4 − α), to obtain

E
(V )

x
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣α]

≤ CEx
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣4]α/4

Ex
√

n

[
|P (B(n)(t))|4/(4−α)

]1−α/4
.

It is known that the first expectation Ex
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣4] on the right hand side can

be estimated against C|t − s|2. Furthermore, the second expectation is bounded in n ∈ N

and t ∈ [0, 1] as soon as the (k
2 (k − 1) 4

4−α)-th moment of the steps is finite, i.e., as soon as
k
2 (k − 1) 4

4−α ≤ µk. Choosing α sufficiently close to 2, this is satisfied, by our assumption that
µk > k(k − 1). For this choice of α we obtain

E
(V )

x
√

n

[∣∣B(n)(t) − B(n)(s)
∣∣α]

≤ C|t − s|α/2,

which shows that (4.85) holds with β = α/2 − 1 > 0.
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