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Abstract 

The paper presents constitutive theories for non-classical thermoviscoelastic 

fluids with dissipation and memory using a thermodynamic framework based 

on entirety of velocity gradient tensor. Thus, the conservation and the balance 

laws used in this work incorporate symmetric as well as antisymmetric part of 

the velocity gradient tensor. The constitutive theories derived here hold in co- 

and contra-variant bases as well as in Jaumann rates and are derived using 

convected time derivatives of Green’s and Almansi strain tensors as well as 

the Cauchy stress tensor and its convected time derivatives in appropriate 

bases. The constitutive theories are presented in the absence as well as in the 

presence of the balance of moment of moments as balance law. It is shown 

that the dissipation mechanism and the fading memory in such fluids are due 

to stress rates as well as moment rates and their conjugates. The material 

coefficients are derived for the general forms of the constitutive theories 

based on integrity. Simplified linear (or quasi-linear) forms of the constitutive 

theories are also presented. Maxwell, Oldroyd-B and Giesekus constitutive 

models for non-classical thermoviscoelastic fluids are derived and are com-

pared with those derived based on classical continuum mechanics. Both, 

compressible and incompressible thermoviscoelastic fluids are considered. 
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1. Introduction 

The conservation and the balance laws used in the derivation of the ordered rate 
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constitutive theories presented here for the thermoviscoelastic non-classical flu-

ids have been derived and presented by Surana et al. [1] [2] [3] [4] for solid and 

fluent continua in Lagrangian as well as Eulerian descriptions. For the benefit of 

the readers and for the sake of completeness we briefly describe the motivation 

behind non-classical continuum theory incorporating internal rotation rates as 

well as a brief description of the development of the theory. In complex flows the 

velocity gradient tensor varies between a location and its neighboring locations. 

Polar decomposition of the velocity gradient tensor or its decomposition into 

symmetric and skew symmetric tensors shows that varying velocity gradient 

tensor results in varying rotation rates between the neighboring locations. Since 

these varying rotation rates arise due to varying deformation of the continua, 

hence are completely defined by the deformation (antisymmetric part of the ve-

locity gradient tensor), thus do not require additional degrees of freedom at a 

material point. If the internally varying rotation rates are resisted by the de-

forming fluid, then there must exist corresponding conjugate moments. This 

physics is all internal to the deforming continua and is present in all flows but is 

completely neglected in the presently used classical continuum theories for flu-

ent continua. The continuum theory presented in references [3] [4] for fluent 

continua considers internal varying rotation rates in addition to the strain rate 

tensor between the neighboring material points (or locations) and the associated 

conjugate moments in the derivation of the conservation and the balance laws. 

This theory has been referred to as “internal polar theory” or non-classical con-

tinuum theory with internal rotation rates. 

There is much published work on non-classical continuum theories under the 

titles: micropolar theories, stress couple theories, rotation gradient theories, 

strain gradient theories with applications to beams, shells, plates, vibrations, etc. 

[5]-[37]. A comprehensive review of these works can be found in references [1] 

[2] [3] [4] and others [5]-[37]. This is not repeated here for the sake of brevity. 

In this paper we utilize the conservation and the balance laws presented in ref-

erences [4] [5] to derive constitutive theories for thermoviscoelastic fluids, both 

compressible and incompressible. The ordered rate constitutive theories for 

compressible and incompressible thermoelastic solids, thermoviscoelastic solids 

with and without memory, thermofluids and thermoviscoelastic fluids within the 

framework of conservation and balance laws of classical mechanics have been 

presented by Surana et al. [38]-[46]. The ordered rate constitutive theories for 

non-classical solid and fluent continua in which internal rotations due to Jaco-

bian of deformation and the internal rotation rates due to velocity gradient ten-

sor are considered also have been presented by Surana et al. [47]-[53]. The con-

cepts used in these works leading to ordered rate constitutive theories of various 

orders are utilized in the present work.  

The constitutive theories in this paper are derived in a basis independent 

manner, hence are valid for co- and contra-variant bases as well as for Jaumann 

rates. Entropy inequality and other conservation and balance laws are used to 

determine the constitutive variables. Their argument tensors are decided based 
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on the conjugate pairs appearing in the entropy inequality as well as the addi-

tional desired physics that is not obvious from the conjugate pairs in the entropy 

inequality. Argument tensors of the constitutive variables as well as the choice of 

the constitutive variables are generalized to include convected time derivatives of 

the stress and the strain tensors up to certain orders giving rise to the ordered 

rate constitutive theories. The constitutive theories are primarily derived using 

representation theorem [54]-[73], i.e., theory of generators and invariants. Ma-

terial coefficients for each constitutive theory are established using Taylor series 

expansion of the coefficients in a linear combination about a known configura-

tion. It is shown that Maxwell model, Oldroyd-B model and Giesekus constitu-

tive models based on classical mechanics are a subset of the constitutive theories 

derived here. Furthermore, it is shown that single constitutive theories for stress 

tensor, moment tensor, and heat vector derived based on integrity based on the 

non-classical mechanics also degenerates to the Maxwell, Oldroyd-B and Giese-

kus models derived in classical continuum mechanics. That is only a single con-

stitutive model derived here is sufficient to represent dilute and dense polymer 

physics for classical as well as non-classical cases. 

2. Notations 

In the following we give a brief explanation of the notations. This is necessary as 

some of the notations are new [38]. If ix  and ix  denote the position coordi-

nates of a material point in the reference and current configurations respectively 

in a fixed frame (x-frame), then 

( )1 2 3, , ,i ix x x x x t=                       (2.1) 

( )1 2 3or , , ,i ix x x x x t=                     (2.2) 

If { } [ ]T1 2 3, ,dx dx dx dx=  and { } [ ]T1 2 3, ,dx dx dx dx=  are the components of 

length ds  and ds  in the reference and current configurations, and if we neg-

lect the infinitesimals of orders two and higher in both configurations, then we 

obtain, 

{ } [ ]{ }dx J dx=                      (2.3) 

{ } { }dx J dx =                        (2.4) 

with 

[ ] [ ] [ ] [ ] [ ]1 1
; ;J J J J J J J J I

− −       = = = =               (2.5) 

and using Murnaghan’s notation [74] 

[ ] { }
{ }

{ }
{ }

1 2 3 1 2 3

1 2 3 1 2 3

, , , ,
;

, , , ,

x xx x x x x x
J J

x x x x x x x x

∂ ∂   
 = = = =    ∂ ∂   

       (2.6) 

in which the columns of [ ]J  are covariant base vectors ig , whereas the rows 

of J    are contravariant base vectors i
g  [38]. [ ]J  and J    are Jacobians 

of deformation tensors. The basis defined by J    is reciprocal to the basis de-

fined by [ ]J . The following relations are useful in the paper: 
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[ ] [ ]D
J L J

Dt
 =                         (2.7) 

D
J J L

Dt
     = −                           (2.8) 

where i
ij

j

v
L

x

∂
=
∂

                      (2.9) 

in which 
D

Dt
 stands for material derivative, L    is the spatial velocity  

gradient tensor, and iv  are the velocity components of a material point ix  in 

the current configuration in the x-frame. Over bar on all dependent quantities 

refers to their Eulerian descriptions, i.e., they are functions of ix  and t whereas 

the quantities without over bar are their Lagrangian description, i.e., they are 

functions of ix  and t. Thus, ( ),Q tx  and ( ),Q tx  are Eulerian and Lagran-

gian description of a quantity Q in the current configuration. 

3. Choices of Stress Tensor, Moment Tensor, and Convected 

Time Derivatives of the Strain Tensor 

Stress, moment, and strain tensors and their convected time derivatives can 

be considered in contravariant basis, covariant basis, or Jaumann rates. Fol-

lowing reference [38] for example ( )
( )

( )( )0 0

0
, , Jσ σ σ , ( )

( )
( )( )0 0

0
, , J

m m m  can 

be considered as measures of Cauchy stress and moment tensors in contra-

variant and covariant basis and corresponding to Jaumann rates. Likewise we 

can consider ( )
( )

( )
, , ; 1, 2, ,

k k J

rk
k nγ γ γ      =       , the convected time deriva-

tives of the Almansi, Green’s strain tensor and Jaumann rates. Where,  
( )

( )
( )1 1

1

J Dγ γ γ       = = =        , symmetric part of the velocity gradient tensor.  

Let ( ) ( )0 0
, mσ , and ( )

; 1, 2, ,
k

rk nγ  =    define Cauchy stress tensor, Cauchy 

moment tensor and convected time derivatives of the strain tensor conju-

gate to the stress tensor in a chosen basis. Conjugate measure to ( )0
m  is 

yet to be decided. We present derivations of the constitutive theories using 

this notation so that the resulting derivations are basis independent. By replac-

i ng  ( ) ( ) ( )( )0 0
, , ; 1, 2, ,

k

rk nγ  = m σ  w i t h  ( ) ( )
( )( )0 0

, , ; 1, 2, , rk
k nγ  = m σ ,  

( ) ( )
( )( )0 0

, , ; 1, 2, ,
k

rk nγ  = m σ , and ( ) ( ) ( )( )0 0
, , ; 1, 2, ,

kJ J J

rk nγ  = m σ , the 

constitutive theories in contravariant basis, covariant basis, and in Jaumann 

rates can be obtained. Since in this paper we consider non-classical polymer-

ic fluids, we also need to consider convected time derivatives of the Cauchy 

stress tensor as well as Cauchy moment tensor. Let ( )
; 1, 2, ,

i
i nσ= σ  and 

( )
; 1, 2, ,

j

mj n=m   be the convected time derivatives of Cauchy stress and 

moment tensors up to orders nσ  and mn . Additionally, rotation rates and their 

gradients naturally appear in the balance laws through thermodynamic equili-

brium considerations. As shown subsequently, the heat vector can be chosen to 

be basis independent if its argument tensors are density, temperature gradient, 

and temperature. 
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4. Rotation Rates, Gradients of Rotation Rates and  

Decompositions 

Let L    be the velocity gradient tensor, then 

{ }
{ }
v

L D W
x

 ∂
     = = +      ∂  

                    (4.1) 

D    and W    are symmetric and antisymmetric tensors 

( ) ( )T T1 1
;

2 2
D L L W L L           = + = −                        (4.2) 

W    is internal rotation rate tensor containing rotation angle rates about 

1 2 3, ,x x x  axes in the x-frame. If we define rotation angle rates 1 2 3, ,t t t

i x i x i xΘ Θ Θ  

by 

32
1 1

3 2

3 1
2 2

1 3

1 2
3 3

2 1

1

2

1

2

1

2

t t

i x i

t t

i x i

t t

i x i

vv

x x

v v

x x

v v

x x

 ∂∂
Θ = Θ = − 

∂ ∂ 
 ∂ ∂

Θ = Θ = − 
∂ ∂ 

 ∂ ∂
Θ = Θ = − ∂ ∂ 

                   (4.3) 

then, 

3 2

3 1

2 1

0

0

0

t t

i x i x

t t

i x i x

t t

i x i x

W

 Θ − Θ
   = − Θ Θ  
 Θ − Θ 

                  (4.4) 

If we represent rotation angle rates as a vector { }t

iΘ  

{ }T

1 2 3, ,t t t t

i i x i x i x
 Θ = Θ Θ Θ                      (4.5) 

Alternatively, we could consider 

( )( ) ( )( ) ( )( )1 1 2 2 3 32 2 2t t t

i x i x i x∇× = − Θ + − Θ + − Θv e e e           (4.6) 

rotation angle rates in (4.3) are positive when clockwise and correspond to half 

the angles whereas the rotation angle rates (coefficients of ie ) are positive when 

considered counterclockwise and correspond to full angles. We note that t

iΘ  

are purely due to the velocity gradient tensor L  hence, are present in all de-

forming fluent continua. We refer to these t

iΘ  as internal rotation angle rates. 

The gradients of { }t

iΘ  in (4.5) can be defined as 

{ }
{ }

t t t
i i i

t

i

s aJ J J
x

Θ Θ Θ
 ∂ Θ

      = = +
     ∂  

                (4.7) 

In which 
t
i
s J
Θ 

 
 and 

t
i
a J
Θ 

 
 are symmetric and antisymmetric components 

of the gradients of rotation rate tensor 
t
i J
Θ 

 
 and are defined as 

T

T

1

2

1

2

t t t
i i i

t t t
i i i

s

a

J J J

J J J

Θ Θ Θ

Θ Θ Θ

      = +       
      = −       

                   (4.8) 
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5. Conservation and Balance Laws 

Consider a tetrahedron of volume V and boundary V∂  in the reference confi-

guration whose planes are parallel to the fixed x-frame and whose oblique plane 

is subjected to average stress P  and average moment M . Upon deformation 

it occupies volume V  with boundary surface V∂ . The faces (planes) of the 

deformed tetrahedron are defined by covariant base vectors. These tetrahedron 

faces are flat but not orthogonal to each other as well as not parallel to the planes 

of the x-frame. Equilibrium considerations for the deformed tetrahedron yield 

the conservation and the balance laws keeping in mind that these laws resulting 

from classical continuum theories may need to be modified to the existence of 

the new physics associated with internal rotation rates and conjugate Cauchy 

moment tensor ( )0
m  that balances with M  through Cauchy principle. Con-

servation of mass, balance of linear momenta, balance of angular momenta, first 

and second laws of thermodynamics yield the following [1] [2] [3] [4] in the 

current configuration. 

( ) 0
t

ρ
ρ

∂
+∇ ⋅ =

∂
v                      (5.1) 

( )( )0

0
jibi i

j i

j j

v v
v F

t x x

σ
ρ ρ ρ

∂∂ ∂
+ − − =

∂ ∂ ∂
             (5.2) 

( ) ( )0 0

, 0pk p ijk ijm σ− =                    (5.3) 

( )( ) ( )( ) ( )( )0 0 0
tr tr : 0

t
i t

i

De
L m J

Dt
ρ σ Θ     + ⋅ − − − ⋅ =      

q σ∇ Θ     (5.4) 

( )( ) ( )( ) ( )( )0 0 0
tr tr : 0

t
i t

i

D D
L m J

Dt Dt

θ
ρ η σ

θ
Θ Φ ⋅      + + − − − ⋅ ≤         

q g
σΘ 

(5.5) 

in which 

( )( ) ( ) ( )( ) ( ) ( )0 0 0 0
tr ; tr

t
i

t

i ki
ij kj

j j

v
L m J m

x x
σ σ Θ

∂ Θ∂       = =      ∂ ∂
 

The Cauchy stress tensor ( )0 σ  is nonsymmetric and so is the Cauchy mo-

ment tensor ( )0
m . Antisymmetric components of ( )0 σ  are balanced with the 

gradients of ( )0
m  (Equation (5.3)). ( ), tρ ρ= x  is density, 

b

iF  are body 

forces per unit mass, e  is specific internal energy, q  is heat vector, Φ  is 

Helmholtz free energy density, η  is entropy density, g  is temperature gra-

dients tensor, and θ  is temperature. 

Balance of Moment of Moments Balance Law 

Yang et al. [75] showed that when the additional physics of internal rotations is 

accounted for in a deforming volume of solid matter the conservation and the 

balance laws used in classical continuum mechanics are not sufficient to ensure 
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equilibrium of the deforming matter. Yang et al. [75] presented equilibrium of the 

moment of moments as an additional equilibrium law necessary in non-classical 

continuum mechanics. The derivation originates from geometric consideration 

and requires static balance of the moment of moments due to Cauchy moment 

tensor and the moment of moments due to antisymmetric part of the Cauchy 

stress tensor. This derivation in the strict sense cannot be called a balance law, 

i.e., we cannot refer to this as “balance of moment of moments balance law” as a 

balance law must be derived from rate considerations (as rate of linear and an-

gular momenta in the balance laws of linear and angular momenta). Surana et al. 

[76] [77] have shown that in case of non-classical continuum mechanics consi-

dering internal rotations and rotation rates, rate of change of angular momenta 

due to rotation rates must balance with the moment of moments and the mo-

ment of moments due to antisymmetric Cauchy stress tensor. Since the rate of 

change of moment of angular momenta due to rotation rates is zero in conti-

nuum mechanics (as the material points have no inertia). Thus, the complete 

balance of moment of moments derivation in [76] [77] reduces to the same equ-

ation as derived by Yang et al. [75] using static equilibrium considerations. 

Based on this balance law 

( )0
0ijk ijm =                            (23) 

must hold. Equation (5.6) implies that 
( ) ( )0 0

ij jim m= , i.e., the Cauchy moment 

tensor is symmetric. On the other hand in the absence of this balance law, sym-

metry of the Cauchy moment tensor is not established, hence Cauchy moment 

tensor ( )0
m  will be nonsymmetric. In the derivation of the constitutive theory 

for ( )0
m  we assume ( )0

m  to be nonsymmetric implying that the balance of 

moment of moments is not considered as a balance law. This is the more general 

case. The constitutive theories when ( )0
m  is symmetric are a subset of the more 

general case in which ( )0
m  is not symmetric, keeping in mind that nonsymme-

tric part of ( )0
m , i.e., absence of this balance law leads to spurious behavior as 

shown in [76] [77]. 

6. Conjugate Pairs in Entropy Inequality, Constitutive  

Variables and Their Argument Tensors 

From the entropy inequality we note that in each of the two trace terms both 

tensors are nonsymmetric, thus based on the works of Spencer, Wang and Zhang 

and others [61]-[73] these pairs of tensors in each trace term do not constitute 

conjugate pairs. That is either of the tensors in each pair cannot be expressed in 

terms of the other due to lack of existence of integrity or basis for nonsymmetric 

tensors. We consider the following 

( ) ( )0 0
:⋅ =m σ∇                           (6.1) 

L D W     = +                              (6.2) 

Stress tensor, and moment tensor, and rotation rate gradient tensor decompo-
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sitions yield 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0
= ; and

t t t
i i i

s a s a s am m m J J Jσ σ σ Θ Θ Θ                + = + = +                 
 

(6.3) 

in which subscripts s and a stand for symmetric and antisymmetric. Substituting 

from (6.1)-(6.3) in (5.5) and noting that 

( )( ) ( )( )
( )( ) ( )( )
0 0

0 0

tr 0; tr 0

tr 0; tr 0
t t
i i

s a

s a a s

W D

m J m J

σ σ

Θ Θ

      = =      

      = =      

          (6.4) 

and 

( )( ) ( )( )0 0
tr :t

a iWσ    = − ⋅   σΘ                  (6.5) 

We obtain the following from (5.5) 

( )( )
( )( ) ( )( )

0

0 0

tr

tr tr 0
t t
i i

s

s s a a

D D
D

Dt Dt

m J m J

θ
ρ η σ

θ

Θ Θ

 Φ ⋅    + + −     

      − − ≤      

q g

            (6.6) 

The energy equation can accordingly be written as 

( )( ) ( )( ) ( )( )0 0 0
tr tr tr 0

t t
i i

s s s a a

De
D m J m J

Dt
ρ σ Θ Θ         + ⋅ − − − =         

q∇  (6.7) 

We note that in (6.6), in the trace terms either both tensors are symmetric or 

antisymmetric, hence all three trace terms in (6.6) can be considered as conju-

gate pairs in the constitutive theories. First, from (6.6) we can easily infer that 
( ) ( )0 0

, , , ,s sηΦ q mσ  and 
( )0

a m  are a possible choice of constitutive variables. The 

argument tensors of these constitutive variables are decided using the conjugate 

pairs as well as the desired physics these are to represent that perhaps may not 

be obvious from the entropy inequality. 

For compressible matter, density varies during evolution. Based on continuity 

equation in Lagrangian description, this is defined by changing J  

( )0 ,J tρ ρ= x                            (6.8) 

Hence J  or 
( )

0

, t

ρ
ρ x

 or 
( )
1

, tρ x
, hence 

( )
1

, tρ x
 in Eulerian description  

must be an argument tensor of the constitutive variables. Choice of θ  as an 

argument tensor is straight forward. 
( )0

s σ  as a constitutive variable and D  as 

its argument tensor is obvious from the conjugate pair in the entropy inequality. 

Likewise 
( )0

s m  and 
( )0

a m  are constitutive variables and 
t
i
s

Θ
J  and 

t
i
a

Θ
J  are 

their argument tensors is straight forward as well. Similarly, q  as dependent 

variable and g  as its argument tensor is also quite obvious from (6.6). Φ  and 

η  at this stage must contain totality of all argument tensors based on principle 

of equipresence some of which may be ruled out later due to some other consid-

erations at a later stage in the derivation. Thus, at this stage we have 
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( ) ( )

( ) ( )

( ) ( )

0 0

0 0

0 0

1
, , , , ,

1
, , , , ,

1
, ,

1
, ,

1
, ,

1
, ,

t t
i i

t t
i i

t
i

t
i

s a

s a

s s

s s s

a a a

θ
ρ

η η θ
ρ

θ
ρ

θ
ρ

θ
ρ

θ
ρ

Θ Θ

Θ Θ

Θ

Θ

 
Φ = Φ 

 
 

=  
 

 
=  

 
 

=  
 
 

=  
 

 
=  

 

D J J g

D J J g

D

m m J

m m J

q q g

σ σ
                 (6.9) 

These argument tensors need to be modified based on the following remarks. 

1) Recall that first convected time derivative of the Green’s strain tensor in 

covariant basis is D   , i.e., 

( )1
D γ   =                          (6.10) 

Tensor ( )1
γ  is a fundamental kinematic tensor in covariant basis based on 

Green’s strain tensor, a covariant measure. 

2) Likewise if we consider convected time derivative of Almansi strain tensor 

in contravariant basis, then D    is also the convected time derivative of the 

Almansi strain tensor in contravariant basis, i.e., 

( )1
D γ   =                           (6.11) 

Tensor ( )1γ 
   is also a fundamental kinematic tensor in contravariant basis. 

3) We also know that [38] 

( ) ( )
( )

1 1

1

J Dγ γ γ       = = =                         (6.12) 

in which ( )1 Jγ 
   is Jaumann rate. 

4) Convected time derivatives of Green’s and Almansi strain tensors of orders 

higher than one (hence Jaumann rates as well) can be derived [38]. These are all 

fundamental kinematic tensors as well. 

( )

( )

( )

; 1, 2, ,

; 1, 2, ,

; 1, 2, ,

j

j

j J

j n

j n

j n

γ

γ

γ

  = 
  = 
  = 







                  (6.13) 

Thus, D    in (6.9) can be replaced by ( )
; 1, 2, ,

j
j nγ  =    in which ( )j γ  

(for basis independence considerations of the derivation) can be a desired choice 

from (6.13). 

5) By examining the Maxwell, Oldroyd-B, and Giesekus constitutive models 

for polymeric fluids (based on classical mechanics), we note that these contain 

convected time derivatives of orders one and zero (same as stress tensor) of the 
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stress tensor. In the work presented here we generalize this choice, hence consider 

convected time derivatives of Cauchy stress tensor up to orders m in co- and con-

tra-variant bases as well as Jaumann rates, i.e., we choose 
( )

; 0,1, ,
j

s j m= σ  (due 

to basis independence of the derivation). Thus, now we can update the choice of 

constitutive variables and their argument tensors in (6.9). We replace D    with 
( )

; 1, 2, ,
j

j nγ  =    and 
( )0

s σ  by 
( )m
s σ . Additionally, 

( )
; 0,1, , 1

j

s j m= −σ  

become argument tensors of 
( )m
s σ . 

6) Parallel to the Cauchy stress tensor, we must also consider 

( ) 1; 1, 2, ,
i

s m i m  =   , ( ) 2; 1, 2, ,
j

a m j m  =    and replace 
( )0

s m  and 
( )0

a m  in 

(6.9) by 
( )1m

s m
 
  

 and 
( )2m

a m
 
  

.  Additionally, we must also include 

( ) ( )1; 0,1, , 1
i

s m i m  = −    and ( ) ( )2; 0,1, , 1
j

a m j m  = −    as argument tensors  

of 
( )1m

s m
 
  

 and 
( )2m

a m
 
  

. 

Based on remarks (1)-(6) we can modify the choice of constitutive variables 

and their argument tensors in (6.9). Keeping in mind that at this stage Φ  and 

η  must include totality of all argument tensors. 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1
, ; 1, 2, , , ; 0,1, , 1 , ;

0,1, , 1 , ; 0,1, , 1 , , , ,

1
, ; 1, 2, , , ; 0,1, , 1 , ;

0,1, , 1 , ; 0,1, , 1 , , , ,

t t
i i

t t
i i

i j k

s s

l

a s a

i j k

s s

l

a s a

i n j m

k m l m

i n j m

k m l m

ρ

θ

η η
ρ

θ

Θ Θ

Θ Θ


Φ = Φ = = −




= − = − 



= = = −




= − = − 


m

m J J g

m

m J J g

 

 

 

 

γ σ

γ σ
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

2 2

1

2

1
, ; 1, 2, , , ; 0,1, , 1 ,

1
, , ; 0,1, , 1 ,

1
, , ; 0,1, , 1 ,

1
, ,

t
i

t
i

m m i j

s s s

m m k

s s s s

m m l

a a a a

i n j m

k m

l m

θ
ρ

θ
ρ

θ
ρ

θ
ρ

Θ

Θ

 
= = = − 

 
 

= = − 
 
 

= = − 
 

 
=  

 

m m J m

m m J m

q q g

 





σ σ γ σ

      (6.14) 

using ( )Φ ⋅  in (6.14) we can determine Φ   

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2

1

2 ( )
1 0

1 1

0 0

1

1

mn
j j

ik s ikj j
j jik s ik

m m

j j

s ik a ik ij j
j j is ik a ik

D

Dt

m m g
gm m

ρ γ σ
ρ γ σ

ρ

θ
θ

−

= =

− −

= =

 ∂Φ ∂Φ ∂Φ
Φ = Φ = − + +  ∂  ∂ ∂  

 

∂Φ ∂Φ ∂Φ ∂Φ
+ + + +

∂ ∂∂ ∂

∑ ∑

∑ ∑

  

  

    (6.15) 

From continuity equation 
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kk ik ikD Dρ ρ ρ ρ δ= − ⋅ = − = −v ∇                 (6.16) 

2and
1

ρ
ρ

ρ

∂Φ ∂Φ
= −

∂ 
∂  
 

                  (6.17) 

Using (6.16) and (6.17) in (6.15) we can write 

( ) ( )
( )

( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2

1

1 0

1 1

0 0

mn
j j

ik ik ik s ikj j
j jik s ik

m m

j j

s ik a ik ij j
j j is ik a ik

D

m m g
gm m

ρ δ γ σ
ρ γ σ

θ
θ

−

= =

− −

= =

∂Φ ∂Φ ∂Φ
Φ = − + +

∂ ∂ ∂

∂Φ ∂Φ ∂Φ ∂Φ
+ + + +

∂ ∂∂ ∂

∑ ∑

∑ ∑

 

  
    (6.18) 

Substituting Φ  from (6.18) in the entropy inequality (6.6) (using Einstein’s 

notation for the trace terms) and regrouping the terms. 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

1 2

1
02

=1 0

1 1

=0 0

0 0
0

t t
i i

mn
j j

ik s ik ik ik s ikj j
j jik s ik

m m

j j

s ik a ik ij j
j j is ik a ik

s jk s jk a jk a jk

D

m m g
gm m

m J m J

ρ δ σ ρ γ ρ σ
ρ γ σ

ρ ρ ρ

ρ η θ
θ θ

−

=

− −

=

Θ Θ

 ∂Φ ∂Φ ∂Φ
− − + + ∂ ∂ ∂ 

∂Φ ∂Φ ∂Φ
+ + +

∂∂ ∂

 ∂Φ ⋅
+ + + − − ≤ ∂ 

∑ ∑

∑ ∑

q g



  



   (6.19) 

For (6.19) to hold for arbitrary but admissible ( )
; 1, 2, ,

j
j n= γ , 

( ) ( ); 0,1, , 1
j

s j m= − σ , ( ) ( )1; 0,1, , 1
j

s j m= −m  , ( ) ( )2; 0,1, , 1
j

a j m= −m  , 

θ , and g , the following must hold. 

( ) ( )0 0; 1,2, ,
j j

ik ik

j nρ
γ γ

∂Φ ∂Φ
= ⇒ = =

∂ ∂
             (6.20) 

( ) ( ) ( )0 0 ; 0,1, , 1
j j

s ik s ik

j mρ
σ σ

∂Φ ∂Φ
= ⇒ = = −

∂ ∂
           (6.21) 

( ) ( ) ( )10 0 ; 0,1, , 1
j j

s ik s ik

j m
m m

ρ
∂Φ ∂Φ

= ⇒ = = −
∂ ∂

          (6.22) 

( ) ( ) ( )20 0 ; 0,1, , 1
j j

a ik a ik

j m
m m

ρ
∂Φ ∂Φ

= ⇒ = = −
∂ ∂

          (6.23) 

0 0ρ η η
θ θ

 ∂Φ ∂Φ
+ = ⇒ + = ∂ ∂ 

                 (6.24) 

0 0
i ig g

ρ
∂Φ ∂Φ

= ⇒ =
∂ ∂

                      (6.25) 

and the resulting entropy inequality (6.6) can be written as 

( ) ( ) ( ) ( ) ( )0 0 02 0
t t
i i

ik s ik ik s jk s jk a jk a jkD m J m Jρ δ σ
ρ θ

Θ Θ ∂Φ ⋅
− − + − − ≤ ∂ 

q g
  (6.26) 

Conditions (6.20)-(6.25) and entropy inequality (6.26) are fundamental rela-

tions. 

Remarks  
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1) From (6.20) we note that Φ  is not a function of ( )
; 1, 2, ,

j
j n= γ . 

2) From (6.21) we can conclude that Φ  is not a function of  
( ) ( ); 0,1, , 1
j

s j m= −σ . 

3) Equations (6.22) imply that Φ  is not a function of  
( ) ( )1; 0,1, , 1
j

s j m= −m  .  

4) From (6.23) we note that Φ  is not a function of  
( ) ( )2; 0,1, , 1
j

a j m= −m  .  

5) From (6.24), η
θ
∂Φ

= −
∂

, hence η  is deterministic from Φ . Thus, η  

cannot be a constitutive variable.  

6) Equations (6.25) imply that Φ  is not a function of g . 

7) Lastly, in the entropy inequality (6.26), the following are admissible 

0
θ
⋅

≤
q g

                         (6.27) 

( ) ( )0
0

t
i

s jk s jkm J
Θ ≥                      (6.28) 

( ) ( )0
0

t
i

a jk a jkm J
Θ ≥                      (6.29) 

Condition (6.27) must be satisfied by the constitutive theory for q . Condi-

tions (6.28) and (6.29) imply that the rate of work due to symmetric and anti-

symmetric parts of the Cauchy moment tensor must be positive. 

8) The argument tensors of Φ  (based on (6.20)-(6.25)) are given by (using 

ρ  in place of 
1

ρ
) 

( ),ρ θΦ = Φ                     (6.30) 

Based on (6.30), the coefficient of ikD  in the entropy inequality (6.26) can-

not be set to zero because this would imply that 
( )0

s σ  is deterministic from Φ  

which is only a function of ρ  and θ . This is obviously not true based on the 

argument tensors of 
( )0

s σ  in (6.14). Thus, at this stage the entropy inequality 

(49) must remain in this form. 

7. Constitutive Theories 

We consider entropy inequality (6.26) and introduce decomposition of 
( )0

s σ  into 

equilibrium stress ( )( )0

s
e

σ  and deviatoric stress ( )( )0

s
d

σ . In which ( )( )0

s
e

σ  

causes only change in volume while ( )( )0

s
d

σ  introduces pure distortion of the 

volume of matter [38]. 
( ) ( )( ) ( )( )0 0 0

s s s
e d

= +σ σ σ                   (7.1) 

( )( )0

s
e

σ  can only be a function of ρ  and θ  [38]. Thus, we have the follow-

ing, noting that ( )( )0

s
d

σ  cannot be a function of ( )( )0

s
e

σ . 

( )( ) ( )( )( )
( )( ) ( )( ) ( ) ( )( ) ( )( )

( )

0 0
,

, ; 1, 2, , , ; 0,1, , 1 ,

,

s s
e e

m m j i

s s s
d d d

j n i m

ρ θ

ρ θ

ρ θ

=



= = = − 

Φ = Φ


 

σ σ

σ σ γ σ  (7.2) 
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all the other constitutive variables and their argument tensors remain the same  

as defined by (6.14), except that 
1

ρ
 has been replaced by ρ  [38]. Substituting  

(7.1) in the entropy inequality (6.26) and grouping terms. 

( )( ) ( )( )
( ) ( ) ( ) ( )

0 02

0 0
0

t t
i i

ik s ik ik s ik ik
e d

s jk s jk a jk a jk

D D

m J m J

ρ δ σ σ
ρ θ

Θ Θ

 ∂Φ ⋅
− − − + ∂ 

− − ≤

q g

          (7.3) 

7.1. Constitutive Theory for ( )( )s
e

σ0 : Compressible Matter 

Based on (7.2), we can set the coefficient of ikD  in the first term in (7.3) to zero 

giving 

( )( ) ( ) ( )0 2
,

,s ik ik ik
e

p
ρ θ

σ ρ δ ρ θ δ
ρ

∂Φ
= − =

∂
            (7.4) 

( ),p ρ θ  is called thermodynamic pressure (defined by equation of state) and 

can be derived using Φ . If we assume compressive pressure to be positive, then 

( ),p ρ θ  in (7.4) can be replaced by ( ),p ρ θ− . Equation (7.4) is the constitu-

tive theory for the equilibrium part of the symmetric Cauchy stress tensor. 

7.2. Constitutive Theory for ( )( )s
e

σ0 : Incompressible Case 

For incompressible fluent continua, 0 constantρ ρ= = , hence 0
ρ

∂Φ
=

∂
, thus for 

this case (7.4) cannot be used to derive constitutive theory for ( )( )0

s
e

σ . For  

incompressible matter 1J = , also 

tr 0ik ikD D δ ⋅ = = = v∇                   (7.5) 

This incompressibility condition must be enforced. Based on (7.5) we can 

write 

( ) 0ik ikp Dθ δ =                       (7.6) 

In (7.6), ( )p θ  is an arbitrary Lagrange multiplier. Adding (7.6) to entropy 

inequality (7.6) and setting 0
ρ

∂Φ
=

∂
, we obtain 

( ) ( )( )( ) ( )( ) ( ) ( ) ( ) ( )0 0 0 0
0

t t
i i

ik s ik ik s ik ik s jk s jk a jk a jk
e d

p D D m J m Jθ δ σ σ
θ

Θ Θ⋅
− − + − − ≤

q g

(7.7) 

Setting the coefficient of ikD  in the first term to zero, we obtain the follow-

ing constitutive theory for ( )( )0

s
e

σ  for the incompressible case. 

( )( ) ( )0

s ik ik
e

pσ θ δ=                    (7.8) 

( )p θ  is called mechanical pressure. If we assume compressive pressure to be 

positive, then ( )p θ  in (7.8) can be replaced by ( )p θ− . The entropy inequa-
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lity now reduces to 

( )( ) ( ) ( ) ( ) ( )0 0 0
0

t t
i i

s ik ik s jk s jk a jk a jk
d

D m J m Jσ
θ

Θ Θ⋅
− − − ≤

q g
       (7.9) 

The constitutive variables and their argument tensors now are as follows. 

( ),ρ θΦ = Φ                        (7.10) 

( )( ) ( )( ) ( ) ( )( ) ( )( ), ; 1, 2, , , ; 1, 2, , 1 ,
m m j k

s s s
d d d

j n k mρ θ= = = − σ σ γ σ  (7.11) 

( ) ( ) ( ) ( )( )1 1
1, , ; 0,1, , 1 ,

t
i

m m k

s s s s k mρ θΘ= = −m m J m          (7.12) 

( ) ( ) ( ) ( )( )2 2
2, , ; 0,1, , 1 ,

t
i

m m k

a a a a k mρ θΘ= = −m m J m          (7.13) 

( ), ,ρ θ=q q g                       (7.14) 

7.3. Constitutive Theory for ( )( )s
d

σ0  

We consider (7.11) defining the argument tensors of ( )( )m

s
d

σ . This constitutive 

theory has to be a rate theory in time in stress and strain rate tensors in order to 

incorporate dissipation mechanism as well as memory (rheology). We use re-

presentation theorem (or theory of generators and invariants) [29] [38] [61]-[73] 

to derive the constitutive theory for the deviatoric part of the symmetric Cauchy 

stress tensor. Let ; 1, 2, ,s

s

i i N
σ

σ=G 


 be the combined generators of the ar-

gument tensors of ( )( )m

s
d

σ  that are symmetric tensors of rank two and let 

; 1, 2, ,s

s

jI j M
σ

σ= 


 be the combined invariants of the same argument tensors, 

then using the representation theorem we can express ( )( )m

s
d

σ  as a linear com-

bination of ; 1, 2, ,s

s

i i N
σ

σ=G 


 and I  in the current configuration. 

( )( ) ( ) ( )0

1

s

s s s

N
m i i

s
d

i

σ
σ σ σα α

=

= + ∑I G
  

σ             (7.15) 

in which 

( ), ; 1, 2, , , ; 0,1, ,s s s

s s

i i jI j M i N
σ σ σ

σ σα α ρ θ= = = 
 

    (7.16) 

To determine the material coefficients in (7.15), we expand each  

; 0,1, ,s

s

i i N
σ

σα = 


 in Taylor series in ; 1, 2, ,s

s

jI j M
σ

σ= 


 and θ  about a 

known configuration Ω , retaining only up to linear terms in  

; 1, 2, ,s

s

jI j M
σ

σ= 


 and θ  (for simplicity) and then we substitute these 

; 0,1, ,s

s

i i N
σ

σα = 


 in (7.15). After collecting coefficients of those terms that 

are defined in the current configuration, we obtain the following  

( )( ) ( ) ( ) ( )

( )( ) ( )( )

0

=1 1

1 1 =1

s s

s s s s s

s

s s s

s s s s s

M N
m j i

s tmj i
d

j i

N M N

j i i

ij i
i j i

a I b

c I d

σ σ

σ σ σ

σ σ σ σ σ
σ

σ σ σ σ σ

σ α θ θ

θ θ

ΩΩ
=

Ω
= =

= + − − +

+ + −

∑ ∑

∑ ∑ ∑

I I I G

G G

  

   

σ
 (7.17) 

in which 
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( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )

( )

0

0 0

1

0

1

0

; 1, 2, ,

; 1, 2, ,

1, 2, ,
;

1, 2, ,

; 1, 2

s
s

s s

s s

s

s

ss

s
s

s s s

ss

s

ss

s
s

s

s

s

s

M

j

j
j

j j

iM

i j

i j
j

i

ij j

tm

i

i

I
I

a j M
I

b I i N
I

i N
c

j MI

d i

σ

σ

σ
σ σ

σ σ

σ
σ

σσ

σ
σ σ σ

σσ

σ
σσ

σ
σ

σ
σ

σ
σ

α
σ α

α

α
α

α

α
α

θ

α

θ

Ω Ω Ω
=

Ω

Ω

Ω Ω
=

Ω

Ω

Ω

Ω

∂
= −

∂

∂
= =
∂

∂
= − =

∂

∂ =
=

=∂

∂
= −

∂

∂
= =

∂

∑

∑






 



 
















, ,
s
N σ





























        (7.18) 

in which , , ,s s s s
ij ij i

a b c d
σ σ σ σ

 
 and s

tm

σα


 are material coefficients defined in a 

known configuration Ω . This constitutive theory requires  

( )2 1
s s s s

M N M Nσ σ σ σ+ + +  material coefficients. The material coefficients de-

fined in (7.18) can be functions of ( ), s jI
σρ

Ω Ω
 and θΩ . This constitutive 

theory is based on integrity, the only approximation being truncation of the 

Taylor series expressions of ; 0,1, ,s

s

i i N
σ

σα = 


. We consider simplified forms 

of this theory in later sections. 

7.4. Constitutive Theory for ( )
s m
0

 

We consider 
( )1m

s m  as constitutive variables. Its argument tensors are defined 

by (7.12). Similar to the derivation of the constitutive theory for the deviatoric 

part of the symmetric Cauchy stress, here also the constitutive theory should be 

a rate theory in time in the rates of symmetric moment tensor and symmetric 

part of the gradient tensor of the rotation rates. This is necessitated in order to 

incorporate physics of dissipation as well as memory due to the symmetric 

Cauchy moment tensor, its rates and the symmetric part of the gradient of rota-

tion rate tensor. Let ; 1, 2, ,s

s

m i

mi N=G 


 be the combined generators of the 

argument tensors of 
( )1m

s m  in (7.12) that are symmetric tensors of rank two and 

let ; 1, 2, ,s

s

m j

mI j M= 


 be the combined invariants of the same argument 

tensors, then using the representation theorem we can express 
( )1m

s m  as a linear 

combination of ; 1, 2, ,s

s

m i

mi N=G 


 and I  in the current configuration. 

( ) ( )
1

0

1

ms

s s s

N
m m m mi i

s
i

α α
=

= +∑m I G
  

                 (7.19) 

in which 

( ), ; 1, 2, , , ; 0,1, ,s s s

s s

m m mi i j

m mI j M i Nα α ρ θ= = = 
 

     (7.20) 
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To determine material coefficients in (7.19), we expand each  

; 0,1, ,s

s

m i

mi Nα = 


 in Taylor series in ; 1, 2, ,s

s

m j

mI j M= 


 and θ  about a 

known configuration Ω , retaining only up to linear terms in  

; 1, 2, ,s

s

m j

mI j M= 


 and θ  (for simplicity) and then we substitute these 

; 0,1, ,s

s

m i

mi Nα = 


 in (7.19). After collecting coefficients of those terms that 

are defined in the current configuration, we obtain the following 

( ) ( ) ( ) ( )

( )( ) ( )( )

1
0

=1 1

=1 1 =1

m ms s

s s s s s

s

m m ms s s

s s s s s

M N
m m m m m mj i

s tmm j i
j i

N M N

m m m m mj i i

ij i
i j i

m a I b

c I d

α θ θ

θ θ

ΩΩ
=

Ω
=

= + − − +

+ + −

∑ ∑

∑∑ ∑
 

   

m I I I G

G G

 (7.21) 

In which , , ,s s s sm m m m

ij ij i
a b c d

 
 and sm

tmα


 are material coefficients defined 

in the known configuration Ω . Explicit expressions for these can be obtained 

from (7.18) by replacing subscript and superscript sσ  with sm , hence the de-

tails are not repeated for the sake of brevity. This constitutive theory requires 

( )2 1
s s s sm m m mM N M N+ + +  material coefficients. This constitutive theory is 

based on integrity. The only approximation being truncation of the Taylor series 

expansion of ; 0,1, ,s

s

m i

mi Nα = 


. Simplified forms of this constitutive theory 

are considered in later sections. 

7.5. Constitutive Theory for ( )
a m
0

 

Consider 
( )2m

a m  and its argument tensors defined by (7.13). 
( )2m

a m  is an anti-

symmetric tensor of rank two and so are its argument tensors except ρ  and θ , 

these being tensors of rank zero. Let ; 1, 2, ,a

a

m i

mi N=G 


 be the combined ge-

nerators of the argument tensors of 
( )2m

a m  that are antisymmetric tensors of 

rank two and let ; 1, 2, ,a

a

m j

mI j M= 


 be the combined invariants of the same 

argument tensors. Similar to Sections 7.3 and 7.4, in this case also we express 
( )2m

a m  as a linear combination of ; 1, 2, ,a

a

m i

mi N=G 


 in the current configu-

ration 

( ) ( )
2

1

ma

a a

N
m m mi i

a
i

α
=

= ∑m G
 

                    (7.22) 

in which 

( ), ; 1, 2, , , ; 1, 2, ,a a a

a a

m m mi i j

m mI j M i Nα α ρ θ= = = 
 

        (7.23) 

To determine material coefficients in (7.22), we expand each  

; 1, 2, ,a

a

m i

mi Nα = 


 in Taylor series in ; 1, 2, ,a

a

m j

mI j M= 


 and θ  about a 

known configuration Ω , retaining only up to linear terms (for simplicity) in 

; 1, 2, ,a

a

m j

mI j M= 


 and θ  and then we substitute these  

; 1, 2, ,a

a

m i

mi Nα = 


 in (7.22). After collecting coefficients of those terms that 

are defined in the current configuration, we obtain the following  

( ) ( ) ( )( ) ( )( )
2

1 =1 =1 =1

m m m ma a a a

a a a a a a a

N N M N
m m m m m m m mi j i i

a ij ii
i i j i

b c I d θ θΩ
=

= + + −∑ ∑∑ ∑m G G G
    

(7.24) 
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In which ,a am m

iji
b c


 and am

id
 are material coefficients defined in the known 

configuration Ω . Explicit expressions for these can be obtained from (7.18) by 

replacing subscript and superscript sσ  by am . This constitutive theory re-

quires ( )2
a a am m mN M N+  material coefficients. This constitutive theory is also 

based on integrity and has the same approximation as those in Sections 7.3 and 

7.4. Simplified form of this constitutive theory will also be considered in later 

sections. 

7.6. Constitutive Theory for q   

Recall inequality (50) resulting from the entropy inequality 

( )0 as 0θ⋅ ≤ ≥q g                       (7.25) 

In (7.25), q  and g  are conjugate. The simplest possible constitutive theory 

for q  can be derived by assuming that q  is proportional to −g  which leads 

to the following q  [38]. 

( )k θ= −q g                          (7.26) 

This is standard Fourier heat conduction law with temperature dependent 

thermal conductivity. Alternatively, if we assume (as in (6.9) after replacing 1 ρ  

by ρ ) 

( ), ,ρ θ=q q g                          (7.27) 

then based on the representation theorem, we can begin with (as g  is the only 

combined generator of g  and θ  that is a tensor of rank one) the following in 

the current configuration 

qα= −q g


                          (7.28) 

in which 

( ), , ;q q q qI Iα α ρ θ= = ⋅g g
  

                     (7.29) 

q I


 is the only invariant of the argument tensors of g  and θ . Expand qα


 in 

Taylor series in q I


 and θ  about a known configuration Ω  and retaining 

only up to linear terms (for simplicity) in q I


 and θ , we obtain the following 

[38] after collecting coefficients of the terms defined in the current configura-

tion. 

( ) ( )1 2k k k θ θΩΩ Ω Ω
= − − ⋅ − −q g g g g g                (7.30) 

where 

( ) { } { }( )

( )

T

1

2

q
q

q

q

q

q

k g g
I

k
I

k

α
α

α

α
θ

Ω Ω Ω
Ω

Ω

Ω

Ω
Ω

∂
= +

∂

∂
=
∂

∂
=
∂









                 (7.31) 
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The constitutive theory (7.30) is the simplest possible constitutive theory 

based on representation theorem. 1,k k
Ω Ω

 and 2k Ω
 can be functions of 

, q Iρ
Ω Ω

 and θ
Ω

. Clearly the constitutive theory (7.26) is a subset of (7.30). 

This constitutive theory (7.30) is cubic in g . 

8. Simplified Constitutive Theories: Non-Classical and  

Classical Maxwell, Oldroyd-B, and Giesekus  

Constitutive Models 

In polymer science the Maxwell and the Oldroyd-B constitutive models derived 

using classical continuum mechanics (Surana et al. [40] and Surana [38]) are 

advocated [46] for dilute polymeric liquids that are dominantly viscous fluids 

with some elasticity whereas Giesekus constitutive model based in classical con-

tinuum mechanics (Surana et al. [41]) is advocated for dense polymeric fluids 

[46] in which the fluid behavior is elasticity dominated. The original derivations 

of these constitutive theories (see [46]) date back to the original papers by Max-

well, Oldroyd and Giesekus [46]. The derivations are explained using kinetic 

theory of gases, Brownian motion of polymer molecules, dumbbell models etc. 

Surana et al. [40] [41] and Surana [38] showed that these models in fact can be 

derived using principles of continuum mechanics, entropy inequality, the condi-

tions resulting from the entropy inequality in conjunction with the representa-

tion theorem [38]. 

In references [38] [40] [41] authors derived ordered rate constitutive theories 

for polymeric fluids using convected time derivatives of the strain tensor up to 

order n and the convected time derivatives of the Cauchy stress tensor of up to 

order m based on classical continuum mechanics. They showed that 1) Maxwell 

model is a simplified linear constitutive model corresponding to n = 1 and m = 1; 

2) Oldroyd-B model is a simplified quasilinear constitutive model corresponding 

to n = 2 and m = 1 that only contains Cauchy stress, its first convected time de-

rivative and the first and second convected time derivatives of the strain tensor; 

3) Giesekus model is same as Maxwell model but additionally contains quadratic 

term of the Cauchy stress tensor, thus this constitutive model is nonlinear. We 

make some remarks regarding the constitutive theories presented in Section 7 

for non-classical compressible polymeric fluids. 

Remarks 

1) The ordered rate constitutive theories presented here for non-classical po-

lymeric fluids naturally contains the ordered rate constitutive theories for the 

classical polymeric fluids as subset. These are easily obtained by removing the 

internal rotation rate physics that requires 
( ) ( )0 0

0s a= =m m  and the Cauchy 

stress tensor to be symmetric due to balance of angular momenta. The resulting 

constitutive theory is same as in references [38] [40] [41] for classical polymeric 

fluids. 

2) Since the constitutive theories presented here are based on integrity, all 

specific simplified forms of the constitutive models are all subset of these. Hence, 

it should be possible to present a single non-classical constitutive model for di-
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lute as well as dense polymeric fluids which would also contain commonly used 

current constitutive models (based on classical mechanics) within a single con-

stitutive theory. In order for the non-classical constitutive theories to contain 

currently used classical constitutive theories we need to choose the following for 

the ordered rates. 1 22, 1, 1, 1n m m m= = = = . For this choice the constitutive va-

riables and their argument tensors are 

( )( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1 2 0

1 1 0

1 1 0

, , , ,

, , ,

, , ,

t
i

t
i

s s s
d d d

s s s s

a a a a

ρ θ

ρ θ

ρ θ

Θ

Θ

=

=

=

m m J m

m m J m

σ σ γ γ σ

             (8.1) 

Constitutive theories derived using (8.1) when based on integrity will require 

too many material coefficients for deviatoric part of the symmetric Cauchy stress 

tensor as well as for each of the moment tensors. Constitutive theory for q  

remains unaffected. We consider the following simplifications 

1) Consider the constitutive theories to be linear in ( ) ( )1 2
, ,

t
i
s

Θ
Jγ γ  and 

t
i
a

Θ
J . 

2) Neglect the product terms of ( ) ( ) ( )( ) ( )1 2 0 0
, , , , ,

t t
i i
s a s s

d

Θ Θ
J J mγ γ σ , and 

( )0

a m . 

3) Neglect all ( )θ θ
Ω

−  terms (to conform to the currently used constitutive 

models). 

4) Also neglect the first term in each constitutive theory containing influence 

of initial stress and initial moments. 

5) We consider generators ( )( )( ) ( )( )
2 2

0 0
,s s

d
mσ , and ( )( )2

0

a m  but neglect 

quadratic and cubic trace terms in the invariants as well as products of these ge-

nerators with others. 

Based on these assumptions we obtain the following constitutive theories for 

stress and moment tensors. 

8.1. Constitutive Theory for Deviatoric Part of the Symmetric 

Cauchy Stress Tensor 

If we consider 

( ) ( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

2
1 2 0 01 2 3 4

1 2 01 2 3

, , , ,

tr , tr , tr

s s s s

s s s

s s
d d

s
d

I I I

σ σ σ σ

σ σ σ

= = = =

= = =

G G G G
   

  

γ γ σ σ

γ γ σ
   (8.2) 

then we obtain the following from (7.17) (using m = 1, n = 2) based on restric-

tions 1) - 5). 

( )( ) ( )( )( ) ( )( )( ) ( )( )( )( )
( )( ) ( )( ) ( )( )( ) ( )( )( )

1 1 2 0

1 2 3

2
1 2 0 0

1 2 3 4

tr tr trs s s

s s s s

s s
d d

s s
d d

a a a

b b b b

σ σ σ

σ σ σ σ

= + +

+ + + +

I I Iσ γ γ σ

γ γ σ σ
  (8.3) 

In order to rewrite (8.3) in standard easily recognizable form, we transfer 
( )( )( )0

3
s

s
d

b
σ σ  term to the left side of (8.3) and divide the entire equation by 

3
s b
σ−  and define new coefficients as follows. 
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1 1

3 3 3

1 23 2 2 4
2

3 3 3 3

1
, 2 ,

, , 2 ,

s s

s s s

s s s s

s s s s

b a

b b b

a a b b

b b b b

σ σ

σ σ σ

σ σ σ σ

σ σ σ σ

λ η κ

λ
κ κ ηλ α

η

     
= − = − = −          
     
       

= − = − = − = −              
       

  (8.4) 

then (8.3) can be written as 

( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( )( )( ) ( )( )( )

2
0 1 1 2 0

2

1 0 21 2

2 2

tr tr tr

s s s
d d d

s
d

λ
λ η ηλ α

η

κ κ κ

+ = + +

+ + +I I I

σ σ γ γ σ

γ σ γ
(8.5) 

In which η  is viscosity, λ  is relaxation time, 2λ  is retardation time, κ  

and 2κ  are second viscosity and the viscosity associated with ( )2 γ , and α  is 

mobility factor. This constitutive model holds for compressible polymeric fluids. 

In case of incompressible fluids, ( )1
tr tr 0Dγ   = =    can be used to simplify 

(8.5). 

Maxwell model: Compressible 

To obtain Maxwell model from (8.5) we set ( )2 10, 0, 0α κ= = =γ  and 
2 0κ = . The resulting constitutive theory is given by 

( )( ) ( )( )( ) ( )( ) ( )( )( )0 1 1 1
2 trs s

d d
λ η κ+ = + Iσ σ γ γ             (8.6) 

This is a linear viscoelastic Maxwell model. 

Oldroyd-B model: Compressible 

To derive this constitutive model we also use (8.5) with 10, 0α κ= =  and 
2 0κ =  to obtain a quasilinear viscoelastic model (nonlinearity due to ( )2 γ ). 

( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )( )0 1 1 2 1

22 2 trs s
d d

λ η ηλ κ+ = + + Iσ σ γ γ γ       (8.7) 

Giesekus model: Compressible 

In this constitutive model we use (8.5) and set 1

2 0, 0λ κ= =  and 2 0κ =  to 

obtain the Giesekus constitutive model. 

( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( )( )2
0 1 1 1 0

= 2 trs s s
d d d

λ
λ η κ α

η
+ + +Iσ σ γ γ σ    (8.8) 

Remarks 

1) The constitutive models (8.5)-(8.8) are valid in case of non-classical as well 

as classical continuum theories. 

2) The constitutive theory (8.5) is valid for Maxwell model, Oldroyd-B model 

as well as Giesekus model based on classical continuum theory with appropriate 

choice of material coefficients. Thus, there is no need for (8.6)-(8.8). When cali-

brating (8.5), for dilute or dense polymeric fluids the material coefficients that 

are not applicable for the physics under consideration will automatically assume 

zero or small values. 

3) In case of constitutive theories for non-classical continuum mechanics in 

addition to (8.5) we also need constitutive theory(ies) for the moment ten-

sor(s). 
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8.2. Constitutive Theory for ( )
s m
0

 

Consider dependent variable 
( )1

s m  and its argument tensors in (8.1). As men-

tioned earlier, the constitutive theory based on integrity will require too many 

material coefficients. If we consider 

( ) ( )( )
( ) ( )( )

2
0 01 2 3

01 2

, ,

tr , tr

t
s i s s

t
s i s

m m m

s s s

m m

s sI I

Θ

Θ

= = =

= =

G J G m G m

J m

  

 

              (8.9) 

then we can obtain the following from (7.21) (based on assumptions 1) - 5) 

stated in Section 8). 

( ) ( )( ) ( )( )( ) ( )
( ) ( )( )

1 0

1 2 1

2
0(0)

2 3

tr tr
t t

s i s s i

s s

m m m

s s s s

m m

s s

a a b

b b

Θ Θ= + +

+ +

m J I m I J

m m

       (8.10) 

We transfer ( )( )0

2
sm

sb m  term to the left side in (8.10) and divide the entire 

equation by ( )2
smb−  and define 

( )

( ) ( )

1 1

2 2 2

13 2

2 2

1
, 2 ,

,

s s

s s s

s s s

s ss

s s

s s s

m m
m m m

m m m

m mm
m m

m m m

b a

b b b

b a

b b

λ η κ

λ
α κ

η

     
= − = − = −     
     

   
= − = −    

  

       (8.11) 

then, (8.10) can be written as 

( ) ( )( ) ( )( ) ( )( )
( ) ( )( )( ) ( ) ( )( )

0 1

2
0 01

2 tr

tr

t t
s s i s i

s

s s

s

m m m

s s s s

m
m m

s sm

λ η κ

λ
κ α

η

Θ Θ+ = +

+ +

m m J J I

m I m

    (8.12) 

Maxwell and Oldroyd-B models 

Following the derivation of constitutive theory for deviatoric symmetric 

Cauchy stress tensor, in (8.12) if we set ( )1 0sm κ =  and 0smα = , then we ob-

tain 

( ) ( )( ) ( )( ) ( )( )0 1
2 tr

t t
s s i s im m m

s s s sλ η κΘ Θ+ = +m m J J I        (8.13) 

Giesekus model 

Consistent with the derivation of constitutive model for classical continuum 

theory, we set ( )1 0sm κ =  to obtain the following constitutive model from 

(8.12). 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )2
0 1 0

2 tr
st t

s s i s i s

s

m
m m m m

s s s s sm

λ
λ η κ α

η
Θ Θ+ = + +m m J J I m  (8.14) 

Remarks 

1) It is rather obvious that (8.13) and (8.14) are a subset of (8.12). When cali-

brating (8.12), the material coefficients not contributing to the physics will au-

tomatically be zero (or small values). 
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2) Thus, we see that for symmetric Cauchy moment tensor also we need to 

consider only a single constitutive model (8.12). 

8.3. Constitutive Theory for ( )
a m
0

 

Consider the constitutive variable 
( )1

am  and its argument tensors in (8.1). Since 
( )0

a m  and two of its four argument tensors are antisymmetric tensors of rank 

two, the combined generators of the argument tensors and invariants are quite 

limited. Thus, for this constitutive theory we consider integrity first before any 

simplification. Based on (8.1) we have the following combined generators and 

invariants  

( ) ( ) ( )0 0 01 2 3, ,
t t t

a i a a i im m m

a a a a a aJ m m J
Θ Θ Θ      = = = −      

G J G m G
  

    (8.15) 

and 

( ) ( )( ) ( )( )2 2
0 01 2 3tr , tr , tr

t t
a i a a im m m

a a a aI I I J m
Θ Θ       = = =       
J m

  
   (8.16) 

This constitutive theory will naturally lead to a large number of material coef-

ficients ( )3, 3
a am mN M= = . The choice of which generators and invariants to 

retain is not simple as neglecting nonlinear and product terms in this case is 

quite detrimental. For illustrative purposes we consider a constitutive theory that 

is linear in 
t
i
a

Θ
J  and 

( )0

a m  and contains the product of these terms as well, i.e., 

we consider all three generators but only invariant 3amI


. In this theory products 

of the generators and the invariant 3amI


 is not admissible as this would contain 

a quadratic term in 
t
i
a

Θ
J  and 

( )0

a m . Thus we can write (following (8.10), neg-

lecting ( )θ θ
Ω

−  terms) 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )( )1 0 0 0

1 2 3

t t t
a i a a i im m m

a a a a a a ab b b
Θ Θ Θ= + + −m J m J m m J    (8.17) 

transferring ( )( )0

2
am

ab m  to the left side of (8.17) and dividing the whole equa-

tion by 
2

amb−  and defining 

( ) 31
1 2

2 2 2

1
; 2 ;

aa

a a a

a a a

mm
m m m

m m m

bb

b b b
λ η η

  
= − = − = −    

   
       (8.18) 

we obtain 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( )( )0 1 0 0

1 22
t t t

a a i a i im m m

a a a a a a aλ η ηΘ Θ Θ+ = + −m m J J m m J  (8.19) 

The constitutive theory (8.19) is linear in 
t
i
a

Θ
J  and 

( )0

a m  but contains their 

product terms. 

Maxwell model 

This following constitutive model, similar to Maxwell model for classical me-

chanics, is easily deduced from (8.19) by setting 2 0amη = . 

( ) ( )( ) ( )( )0 1

12
t

a a im m

a a aλ η Θ+ =m m J                 (8.20) 

Oldroyd-B and Giesekus models 

Derivation of these models (parallel to those based on classical continuum 
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mechanics) from (8.19) is not clear as this model (8.19) does not have second 

convected time derivative of the rotation gradient tensor (needed for Oldroyd-B 

model) and ( )( )2
0

a m  term needed for Giesekus model. Even the constitutive 

model based on integrity does not contain these terms. We simply leave with 

(8.19) at this stage. 

9. Complete Mathematical Model 

In the following we provide complete mathematical model including the consti-

tutive theories for non-classical thermoviscoelastic fluids in simplified forms 

that contain the constitutive theories based on classical continuum theories as 

subset. The constitutive theories for classical case are easily obtained by elimi-

nating the moment tensor and the constitutive theories for it and recognizing 

that for this case the Cauchy stress tensor is symmetric. In the following we as-

sume that the balance of moment of moments is not a balance law, hence 

Cauchy moment tensor is not symmetric. 

Conservation and balance laws 

( ) 0
t

ρ
ρ

∂
+ ⋅ =

∂
v∇                        (9.1) 

( )( )0
0bi

j i ji

j j

v
v

t x x
ρ ρ ρ σ

∂∂ ∂
+ − − =

∂ ∂ ∂
v

F              (9.2) 

( ) ( )0 0

, 0pk p ijk ijm σ− =                     (9.3) 

( )( ) ( )( ) ( )( )0 0 0
tr tr tr 0

t t
i i

s s s a a

D
e D m J m J

Dt
ρ σ Θ Θ         + ⋅ − − − =         

q∇  (9.4) 

( )( ) ( )( ) ( )( )0 0 0
tr tr tr 0

t t
i i

s s s a aD m J m Jσ
θ

Θ Θ⋅          − − − ≤         
q g

   (9.5) 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )0 0 0 0 0 0 0 0
; ; m

s a s s s s ai
e d

b= + = + = +m mσ σ σ σ σ σ    (9.6) 

Constitutive theories using general constitutive theories (8.5), (8.12), 

(8.19), and (7.30) applicable to dilute as well as dense polymers 

( )( ) ( )
( )

0
, ; compressible

=
; incompressible

s
e

p

p

ρ θ

θ





I

I
σ                (9.7) 

( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

( )( )( ) ( )( )( )( ) ( )( )( )

0 1

2
1 2 0

2

1 0 21 2

2 2

tr tr tr

s s
d d

s
d

s
d

λ

λ
η ηλ α

η

κ κ κ

+

= + +

+ + +I I I

σ σ

γ γ σ

γ σ γ

         (9.8) 

( ) ( ) ( )( ) ( )( )
( ) ( )( )( ) ( ) ( )( )

0 (1)

2
0 01

= 2 tr

tr

t t
s s i s i

s

s s

s

m m m

s s s s

m
m m

s sm

λ η κ

λ
κ α

η

Θ Θ+ +

+ +

m m J J I

m I m

     (9.9) 
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( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( )( )0 1 0 0

1 22
t t t

a a i a i im m m

a a a a a a aλ η ηΘ Θ Θ+ = + −m m J J m m J  (9.10) 

( ) ( )1 2k k k θ θΩΩ Ω Ω
= − − ⋅ − −q g g g g g              (9.11) 

We show that this mathematical model has closure for compressible as well as 

incompressible non-classical polymeric fluids. 

Compressible: 

For this case thermodynamic pressure ( ),p ρ θ  is defined by an equation of 

state and ( ) ( ), , ,e e p eρ θ ρ θ= =  is also known, hence p  and e  are not 

dependent variables in the mathematical model. Thus we have (number in the 

brackets is the count of the number of variables):  

( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
1 , 3 , 6 , 3 , 3 , 1 , 6 , 3s a s a

d
ρ θv q m mσ σ , a total of 26 de-

pendent variables. The number of equations in this mathematical model are: 

continuity (1), balance of linear momenta (3), balance of angular momenta (3), 

energy equation (1), constitutive theories for:  
( )( )( ) ( ) ( ) ( ) ( ) ( )0 0 0

6 , 6 , 3 , 3s s a
d

m m qσ , a total of 26, hence this mathematical model 

has closure. 

Incompressible: 

In this case 0 constantρ ρ= = , hence known, but the pressure ( )p p θ=  is 

not known, hence the number of equations as well as the number of variables for 

this case also remains 26 but instead of known ( ) ( ), ,p pρ θ θ  becomes an 

unknown dependent variable. 

Remarks 

1) When balance of moment of moments is considered as a balance law [75] [76] 

[77], then Cauchy moment tensor ( )0
m  becomes symmetric, i.e., ( ) ( )0 0

s =m m  and 
( )0

0a =m . This eliminates 
( )0

a m , three as dependent variables in the mathemati-

cal model as well as three constitutive equations for 
( )0

a m . Thus, for this case we 

have 23 dependent variables and 23 equations. 

2) The mathematical model uses basis independent measures, i.e.,  
( )( ) ( ) ( ) ( )0 0 0 0

, , , , , etcs a s a
d

m m σ σ . This mathematical model can easily be made ba-

sis dependent by choosing these measures in contravariant basis or covariant ba-

sis or using Jaumann measure keeping in mind that if these measures are con-

travariant then the corresponding conjugate quantities are covariant or 

vice-versa. 

3) These polymeric fluids have elasticity, dissipation mechanism, as well as 

memory. Elasticity is due to stretching of long chain polymer molecules, dissipa-

tion is due to both short chain molecules of solvent as well as long chain mole-

cules of polymer and their interactions and memory is due to relaxation pheno-

menon inherent in these fluids because of stretched polymer molecules resuming 

their unstressed (or relaxed state). 

4) Dissipation and memory mechanism in these non-classical polymeric fluids 

are due to ( )( ) ( )0 0
,s s

d
mσ  as well as 

( )0

a m  (when balance of moment of mo-

ments is not used as a balance law). These are fully accounted for in the consti-

tutive theories based on integrity as well as their simplified general forms ((9.8), 
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(9.9), and (9.10)) and their specific forms that are only valid for Maxwell, Ol-

droyd-B, and Giesekus constitutive models respectively. 

10. Retardation and Memory Moduli 

Using (9.8)-(9.10) and discarding ( )( ) ( )0 0
,s s

d
mσ  and 

( )0

a m  terms on the right 

hand sides and defining , ms s

σ
Q Q  and m

aQ  

( )( ) ( )( ) ( )( )( ) ( )( )( )1 2 1 22

22 2 tr trs

σ η ηλ κ κ= + + +Q I Iγ γ γ γ     (10.1) 

( )( ) ( )( )2 tr
t t

s i s im mm

s s sη κΘ Θ= +Q J J I             (10.2) 

( )( )12
t

a imm

a aη Θ=Q J                     (10.3) 

We can write (9.8)-(9.10) as follows 

( )( ) ( )( )( )0 1

s s s
d d

σλ+ = Qσ σ                  (10.4) 

( ) ( )( )0 1m ms
s s sλ+ =m m Q                   (10.5) 

( ) ( )( )0 1m ma
a a aλ+ =m m Q                   (10.6) 

Equations (10.4)-(10.6) are first order differential equations in time in 
( )( ) ( )0 0

,s s
d

mσ  and 
( )0

a m , hence can be integrated using the following: The dif-

ferential equation 

( ) ( )d

d
P x Q x

x

φ
φ+ =                     (10.7) 

has the solution 

( ) ( ) ( )d d
e e d

P x x P x x
Q x x Cφ −∫ ∫ = + ∫              (10.8) 

where C is a constant of integration. We consider (10.4) and rewrite 

( )( ) ( )( )1 01 1
s s s

d d

σ

λ λ
+ = Qσ σ                 (10.9) 

Hence using (10.7) and (10.8) we can write 

( )( ) ( )

( )

( )( )

0 1 d 1 d1
e e d

1
e e d

1
e d

e
e

t t

s s
d

t t

s

t
t

s

t

t

t

t

t t

λ λσ

λ σ λ

σ λ

λ
λ

λ

λ

λ

−

′−

′

−−∞

∫ ∫ = +  
 ′= +  

′ ′
= +

∫

∫

∫

Q C

Q C

Q

C

σ

         (10.10) 

Based on reference [46] choice of −∞  is arbitrary. Some other value could 

result in different value of C . If we prescribe that the stress in the fluid is finite 

at t = −∞ , we must choose C  to be zero. We must also check the first term in 

(10.10), since both numerator and denominator go to zero as t goes to −∞ . Us-

ing L’Hôpital’s rule we get: 
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( )( )
( )( )

( )0

1
e

lim lim
1

e

t

s

s s
t td t

tσ λ

σ

λ

λ

λ
→−∞ →−∞

= = −∞
Q

Qσ        (10.11) 

Thus, if ( )s

σ −∞Q  is finite, the stress is finite at t = −∞ , hence (10.10) re-

duces to 

( )( ) ( ) ( )0 1
e d

t
t t

s s
d

t t
λ σ

λ
′− −

−∞

  ′ ′=  
 ∫ Qσ           (10.12) 

The quantity in the bracket in the integrand in (10.12) is called “retardation 

modulus” for ( )( )0

s
d

σ . When s

σ
Q  only contains ( )( )1

2η γ  term, we can ob-

tain relaxation modulus for ( )( )0

s
d

σ  from (10.12). This is straight forward. We 

omit this here as it requires approximating s

σ
Q . Retardation modulus is as 

good a measure of rheology as relaxation modulus. Using similar approach we 

can also derive the following from (10.5) and (10.6), first by rewriting them by 

dividing by smλ  and amλ  respectively. 

( ) ( ) ( )1 01 1

s s

m

s s sm mλ λ
   

+ =   
   

m m Q               (10.13) 

( ) ( ) ( )1 01 1
and

a a

m

a a am mλ λ
   

+ =   
   

m m Q            (10.14) 

and then following the derivation for ( )( )0

s
d

σ  

( ) ( ) ( )0 1
e d

ms

s

t
t t m

s sm
t t

λ

λ
′− −

−∞

 
′ ′=  

 
∫m Q             (10.15) 

( ) ( ) ( )0 1
e d

ma

a

t
t t m

a am
t t

λ

λ
′− −

−∞

 
′ ′=  

 
∫m Q             (10.16) 

The terms in the brackets in (10.15) and (10.16) are called retardation mod-

ulus for 
( )0

s m  and 
( )0

a m , respectively. 

Remarks 

1) We observe that the non-classical polymeric fluids have relaxation me-

chanism due to ( )( )0

s
d

σ  as well as 
( )0

s m  and 
( )0

a m  when balance of moments 

of moments is not considered as a balance law. 

2) When the balance of moments of moments is used as a balance law ( )0
m  

is symmetric, hence 
( ) ( )0 0

s =m m  and 
( )0

0a =m . Thus in this case the relaxation 

mechanism is only due to ( )( )0

s
d

σ  and 
( )0

s m . 

11. Summary and Conclusions 

This paper considers conservation and balance laws for non-classical continuum 

theory for fluent continua to present derivations of the constitutive theories for 

thermoviscoelastic fluids, both compressible and incompressible. The non-classical 

continuum theory and the corresponding constitutive theories incorporate 

symmetric as well as antisymmetric parts of the velocity gradient tensor. The ro-

tation rates defined by the antisymmetric part of the velocity gradient tensor 
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(referred to as internal rotation rates) act about the axes of a triad located at each 

material point (or a location). The axes of the triad are parallel to the axes of the 

fixed x-frame. The constitutive variables are determined from the entropy in-

equality as well as other conservation and balance laws. The argument tensors of 

the constitutive variables are decided using conjugate pairs in the entropy in-

equality as well as by considering other desired physics that is not obvious from 

the entropy inequality. The constitutive theories are derived using representa-

tion theorem. All constitutive theories are based on integrity. Simplified linear, 

quasilinear, and nonlinear forms of the constitutive theories are presented and 

compared with parallel constitutive theories for such fluent continua in classical 

continuum theories. In the following we present a summary of the significant 

aspects of the work presented in this paper. 

1) The constitutive theories for stress and moment tensors are ordered rate 

constitutive theories up to any desired orders. That is, the constitutive theories 

utilize convected time derivatives of the constitutive variables (up to any desired 

orders) as well as convected time derivatives of their argument tensors (also up 

to any desired orders). 

2) All constitutive theories are based on integrity, hence utilize complete basis. 

The only assumption is in the Taylor series expansion of the coefficients in the 

linear combination (truncated after linear terms) about a known configuration. 

These theories provide more comprehensive description of the constitution of 

the deforming matter. 

3) The derivations of the constitutive theories are basis independent due to 

basis independent choice of the constitutive variables as well as their argument 

tensors. By appropriate choices of the bases for the constitutive variables and 

their argument tensors, the constitutive theories can be easily made basis specific. 

For example, if ( )( ) ( )0 0
,s s

d
mσ  and 

( )0

a m  are chosen as contravariant measures 

( ( )( ) ( )0 0
,s s

d
mσ  and ( )0

am ), then their conjugates must be in covariant basis 

and vice-versa. 

4) In the non-classical thermoviscoelastic fluids considered in this paper, the 

mechanisms of energy storage, dissipation of mechanical work, and rheology are 

due to ( )( ) ( )0 0
,s s

d
mσ  and 

( )0

a m , whereas in the case of classical thermoviscoe-

lastic fluids, these mechanisms are only due to ( )( )0

s
d

σ . 

5) It has been shown by Yang et al. [75] and Surana et al. [76] [77] that the 

balance of moment of moments is a necessary balance law in non-classical con-

tinuum theories to ensure that the deforming volume of matter is in equilibrium. 

In the presence of this balance law, the Cauchy moment tensor becomes sym-

metric. In this paper we have presented derivations of the constitutive theories 

when the balance of moment of moments is not a balance law. This is a more 

general case. When the balance of moment of moments is a balance law, the 

Cauchy moment tensor becomes symmetric, i.e., ( ) ( )0 0

s=m m  and 
( )0

0a =m . 

6) Retardation moduli are derived for ( )( ) ( )0 0
,s s

d
mσ  and 

( )0

a m . It can be 

shown that with some assumptions relaxation moduli can be derived from these. 
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When comparing with classical continuum theories for polymers, we find addi-

tional mechanisms of dissipation and rheology in the non-classical thermovis-

coelastic fluids. 

7) As shown in this paper, the constitutive theories based on integrity are al-

most always nonlinear in their argument tensors. Their linearizations are per-

fectly valid if limited physics is of interest, however the conclusions that may be 

drawn from the superposition of linear constitutive theories are obviously 

invalid for the constitutive theories based on integrity. An example would be li-

near constitutive theories for 
( )0

a m  and 
( )0

a m , suggesting a constitutive theory 

for ( ) ( )( )0 0

s a+m m , a non-symmetric tensor in terms of non-symmetric argument 

tensors is obviously invalid. 

8) Simplified form of the rate constitutive theories are derived to show that 

currently used Maxwell, Oldroyd-B, and Giesekus constitutive theories in clas-

sical continuum mechanics are in fact a subset of the more general non-classical 

theories presented in this paper. 

In conclusion the work presented in this paper utilizes a consistent thermo-

dynamic framework for non-classical fluent continua and presents derivations of 

constitutive theories for thermoviscoelastic fluids with memory, compressible 

and incompressible, by incorporating internal rotation rates due to the velocity 

gradient tensor at a material point. The paper contains thermodynamically con-

sistent derivations of constitutive theories in which all possible mechanisms of 

energy storage, dissipation, and rheology are considered. Memory (or rheology) 

mechanism is incorporated by considering rate constitutive theories in terms of 

the rates of constitutive variables. 
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