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Abstract

Background: Age-related macular degeneration (AMD) is a complex disorder that is responsible
for the majority of central vision loss in older adults living in developed countries. Phenotypic and
genetic heterogeneity complicate the analysis of genome-wide scans for AMD susceptibility loci.
The ordered subset analysis (OSA) method is an approach for reducing heterogeneity, increasing
statistical power for detecting linkage, and helping to define the most informative data set for
follow-up analysis. OSA assesses the linkage evidence in subsets of potentially more homogeneous
families by rank-ordering family-specific lod scores with respect to trait-associated covariates or
phenotypic features. Here, we present results of incorporating five continuous covariates into our
genome-wide linkage analysis of 389 microsatellite markers in 62 multiplex families: Body mass
index (BMI), systolic (SBP) and diastolic (DBP) blood pressure, intraocular pressure (IOP), and
pack-years of cigarette smoking. Chromosome-wide significance of increases in nonparametric
multipoint lod scores in covariate-defined subsets relative to the overall sample was assessed by
permutation.

Results: Using a correction for testing multiple covariates, statistically significant lod score
increases were observed for two chromosomal regions: 14q13 with a lod score of 3.2 in 28 families
with average IOP < |5.5 (p = 0.002), and 6q14 with a lod score of 1.6 in eight families with average
BMI > 30.1 (p = 0.0004). On chromosome 16p12, nominally significant lod score increases (p <
0.05), up to a lod score of 2.9 in 32 families, were observed with several covariate orderings. While
less significant, this was the only region where linkage evidence was associated with multiple
clinically meaningful covariates and the only nominally significant finding when analysis was
restricted to advanced forms of AMD. Families with linkage to 16p12 had higher averages of SBP,
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IOP and BMI and were primarily affected with neovascular AMD. For all three regions, linkage
signals at or very near the peak marker have previously been reported.

Conclusion: Our results suggest that a susceptibility gene on chromosome 16p 12 may predispose
to AMD, particularly to the neovascular form, and that further research into the previously
suggested association of neovascular AMD and systemic hypertension is warranted.

Background

Age-related macular degeneration (AMD) affects the cen-
tral region of the retina (macula), which has the highest
concentration of cone photoreceptors and is responsible
for central visual acuity. In developed nations, it is the
most common cause of irreversible blindness in older
adults. Approximately 4% of individuals over 60 years of
age and 10% of those over 75 years of age have advanced
stages of the disorder, which include geographic atrophy
(dry AMD) and neovascular (wet) AMD [1]. While both
forms lead to loss of central vision, it is more common
and occurs more rapidly with neovascular AMD. It is
unknown whether the two clinical subtypes have a dis-
tinct etiology, but longitudinal studies have shown that
the presence of large soft drusen, which are extensive
extracellular protein/lipid deposits in the macula,
increases the risk of progressing to either form of
advanced AMD [2-4].

AMD has a complex etiology likely to result from the
interplay of several risk factors, both genetic and environ-
mental. A contribution of genetic susceptibility is sup-
ported by epidemiologic [5-7] and twin studies [8,9], as
well as segregation analyses [10]. Candidate gene associa-
tion studies have examined many genes responsible for
retinal disorders with Mendelian inheritance, with gener-
ally negative results. One of the most intensely studied
genes has been the ABCA4 gene on chromosome 1p,
which causes juvenile-onset autosomal-recessive Stargardt
disease. An initial study reporting an increased risk of
AMD for carriers of two particular ABCA4 sequence vari-
ants [11] was followed by only one positive replication
study [12] and multiple studies reporting an absence of
this association [13-19]. At this point, the ABCA4 gene is
not believed to be a major susceptibility gene for AMD,
although it may account for a small proportion of the dis-
ease, possibly only the dry form. A candidate gene that has
consistently been reported to be associated with AMD in
multiple independent studies is the apolipoprotein E
(APOE) gene on chromosome 19q. The APOE-4 allele, or
a nearby allele in linkage disequilibrium with APOE-4,
appears to be protective for AMD [20-28]. To date, only
two studies failed to confirm this finding in a Caucasian
[29] and a Chinese sample [30]. The APOE-2 allele may
increase AMD risk in smokers [31].

Several research groups have collected multiplex families
(2+ sampled family members with AMD) to perform a
genome-wide screen for AMD susceptibility loci [32-37].
Despite variable phenotype definitions and different anal-
ysis approaches, these genome scans identified remarka-
bly consistent regions of linkage on several chromosomes,
including chromosome 1q25-31, 10925-26, 12q21-23
and 16p11-12. None of the genes responsible for these
linkage signals have thus far been identified. The hemi-
centin-1 (FIBL6) gene, located on 1q31, has been pro-
posed as a rare cause of AMD [38], but awaits
confirmation by other research groups.

We recently genotyped 62 multiplex AMD families ascer-
tained through Duke University Medical Center (DUMC)
and Vanderbilt University Medical Center (VUMC) for
389 microsatellite markers distributed at 10 <M density
across the human genome. These families were screened
for the first time and were not included in previously pub-
lished genome screens for AMD [32-37]. For all individu-
als enrolled in our study, an extensive array of clinical,
anthropometric, demographic and environmental covari-
ates were collected. The ordered subset analysis method
[39] is one approach for incorporating such covariate
information into nonparametric linkage analysis. The
goal of the method is to test whether the evidence for link-
age is significantly influenced by a trait-related covariate,
which may define a genetically more homogeneous sub-
set of families. In addition to family history and increas-
ing age, there are several well-established risk factors for
AMD. Smoking is considered a major modifiable risk fac-
tor and appears to increase the risk of both the atrophic
and neovascular disease type [40]. Systemic hypertension
is another risk factor, particularly for the neovascular form
of AMD [41], and is potentially associated with increased
intraocular pressure in some racial groups [42,43].
Increased systolic blood pressure (SBP) was shown to be a
significant predictor of AMD incidence in two large pro-
spective studies [44,45]. Other factors associated with an
increased risk of hypertension can be considered indirect
risk factors for AMD, but some of them have also been
implicated as independent predictors of risk, such as obes-
ity [46]. A recent study reported that overall obesity
(measured as body mass index, BMI) and abdominal
obesity (measured by waist-to-hip ratio and waist circum-
ference) were the most significant variables associated
with an increased risk of progressing from early to
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Table I: Clinical and demographic characteristics of study population. Data for 147 AMD patients (grade 3, 4 or 5) in 62 multiplex
families included in genome screen are shown. 26 individuals with grade I, 7 with grade 2 and 5 without available fundus photographs

were also genotyped (n = 185 individuals total).

AMD Grade All

3 (early AMD)

4 (geographic atrophy)

5 (neovascular AMD)

N (%) 29 (19.7) 31 21.1) 87 (59.2) 147 (100)
Age at exam: Mean (SD) 70.6 (9.2) 76.6 (8.1) 75.6 (7.7) 74.8 (8.3)
N (%) Female 22 (75.9) 19 (61.3) 54 (62.1) 95 (64.6)

advanced stages of AMD [2]. On the basis of these
reported clinical associations, this study focused on incor-
porating the above covariates into a nonparametric link-
age analysis of our multiplex families to reduce the
phenotypic and genetic heterogeneity of AMD and poten-
tially improve our ability to detect linkage.

Results

OSA analysis of multiplex families with early or advanced
AMD

Descriptive characteristics of the study population are
shown in Table 1. OSA-defined family subsets with lod
score increases meeting uncorrected statistical significance
(p £0.05) are shown in Table 2. When a corrected signif-
icance level of 0.006 was used, only regions on chromo-
some 14q13 and 6q14 produced significant increases in
lod scores. When ordering families by ascending average
IOP, a maximum lod score of 3.2 was obtained between
markers D14S608 and D14S599 (33 cM) in 28 families
with average IOP < 15.5. This was a significant increase
from the baseline lod score for all families (0.31; p =
0.002). When ordering families by descending average
BMI, a maximum lod score of 1.6 in eight families with
average BMI > 30.1 was obtained at marker D6S1031 (90
cM; p = 0.0004). While the third region of interest, chro-
mosome 16p12, did not reach the corrected statistical sig-
nificance level of 0.006, it met all of the other criteria for
judging the clinical relevance of OSA results mentioned in
the Methods section: Consistency across several clinically
meaningful covariates, agreement with previously
reported linkage signals, and continued significance when
using a more stringent phenotype definition. A maximum
lod score of 2.2 at marker D16S403 (44 cM) was obtained
for a subset of six families with average SBP > 153.5 (p =
0.04). Ordering families by descending average IOP pro-
duced a nominally significant lod score increase in a sub-
set of 35 families with average IOP > 15.4 very close to this
map position (39 ¢cM, p = 0.04). The peak marker
(D16S403) is located only 7 <M distal to D16S769, which
was reported as a significant marker (p = 0.009) in a
genome-wide analysis of AMD as a quantitative trait in
102 nuclear families from Beaver Dam, Wisconsin [34],

and was also significant (p = 0.005) in a second sample of
34 extended pedigrees ascertained from the same geo-
graphic region [37]. In both studies, the Wisconsin Age-
Related Maculopathy Grading System, which is a 16-level
severity scale for the extent of macular damage, was used
as the trait in a Haseman-Elston regression applied to all
genotyped sibling pairs [47].

OSA analysis of multiplex families with advanced AMD
To implement a more stringent binary phenotype defini-
tion for further evaluation of our OSA results, we excluded
individuals with early AMD (grade 3) from the set of
affected individuals, which reduced the number of fami-
lies with at least one sampled affected relative pair to 45.
When the OSA procedure was repeated on the chromo-
somes where lod score increases met nominal statistical
significance in the initial analysis (Table 2), only the result
for chromosome 16p12 maintained nominal signifi-
cance. The maximum lod score for the IOP-defined subset
of 32 families increased to 2.9 at 39 ¢<M (p = 0.008). The
maximum lod score for the SBP-defined subset was 2.3
near the same map position (44 cM, p = 0.05), and the
number of families in this subset increased from 6 in the
previous analysis to 25 (with average SBP > 133). In addi-
tion, a nominally significant lod score increase at 44 cM
was observed when families were rank-ordered by average
BMI (9 families with average BMI > 28.6 and lod score 2.0
at D16S403, p = 0.04). Eight of the nine families in the
BMI subset and 20 of the 25 families in the SBP subset
were part of the IOP subset. Multipoint lod score curves
for the BMI, SBP and IOP subsets with significantly
increased linkage evidence to chromosome 16p12, along
with the baseline lod score for the data set, are displayed
in Figure 1. Similar plots for chromosomes 14 and 6 are
shown in Figures 2 and 3.

Clinical features of families identified by OSA

The clinical features of family subsets identified by OSA
are shown in Table 3. The eight families in the BMI-
defined subset linked to chromosome 6q14 were charac-
terized by higher mean BMI (31.4) and pack-years
(PKYRS) of cigarette smoking (24.5), compared to the
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Table 2: OSA results with nominally significant lod score increases in covariate-based subgroup (p < 0.05). Significant results after
correcting for testing multiple covariates on the same chromosome are shown in bold (p < 0.05/8 = 0.006). "Max LOD" denotes
maximum lod score in covariate-based subgroup of families identified by OSA. Baseline lod score in entire data set is difference between
"Max LOD" and "Change from Baseline" columns. See text for covariate abbreviations.

62 families: 2+ sampled relatives with early 45 families: 2+ sampled relatives with late

or late AMD AMD
Chrom. Kosambi cM Nearest Variable and Max Change P-value  No. of Max Change  P-value No. of
marker(s) rank order LOD from families  LOD from families in
baseline in subset baseline subset
2 87 D25441 BMI Ascending 22 2.1 0.03 20 - - >0.05 -
6 90 D6S1031  BMI Descending 1.6 1.6 0.0004 8 - - >0.05 -
9 129 D95934 IOP Descending 1.7 1.2 0.05 42 - - >0.05 -
12 50 DI12S1042  PKYRS Descending 1.5 1.5 0.04 12 - - >0.05 -
14 33 D14S608, IOP Ascending 3.2 2.9 0.002 28 - - >0.05 -
D14S599
15 106 D15S657 IOP Ascending 1.6 1.6 0.05 7 - - >0.05 -
16 39 D16S403 IOP Descending 23 1.7 0.04 35 2.9 2.1 0.008 32
44 D165403 SBP Descending 22 2.0 0.04 6 2.3 1.7 0.05 25
44 D165403 BMI Descending - - >0.05 - 20 |.4 0.04 9
17 I D1751298  PKYRS Descending 1.5 1.3 0.03 14 - - >0.05 -
20 67 D20S481 PKYRS Ascending 1.9 1.5 0.03 26 - - >0.05 -
21 40 D21S2055  DBP Descending 1.6 1.6 0.04 I - - >0.05 -

entire data set of 62 multiplex families (averages of 26.2
and 21.1, respectively). They also included a higher pro-
portion of early AMD (33.3%, versus 19.7% in the entire
data set). The nine families in the BMI-defined subset
linked to 16p12 were also characterized by higher mean
BMI (29.3) and PKYRS (25.5), compared with the entire
data set of 45 multiplex families (averages of 25.7 and
22.5, respectively). Only three families were in the BMI-
defined subset contributing to both linkage signals on
6q14 and 16p12. Due to the opposite rank ordering of the
IOP covariate in OSA (lowest to highest for 14q13 and
highest to lowest for 16p12), the 28 families with linkage
to 14q13 and the 32 families with linkage to 16p12 had
IOP averages below (13.9) and above (17.3) the popula-
tion average of about 15.0, as expected. Seven families
with IOP averages between 15 and 15.5 contributed to
both linkage signals. Finally, the 25 families in the SBP-
defined subset with linkage to 16p12 had higher mean
SBP (145.0) than the entire data set of 45 multiplex fami-
lies (137.8). As mentioned above, most of these families
(20/25) were also part of the IOP-defined subset. In all
three covariate-based subsets with linkage to 16p12, as
well as the baseline data set of 45 multiplex families with
advanced AMD, the proportion of neovascular AMD was
much higher than the proportion of geographic atrophy
(71-83%). While there is some overlap in families
included in the various covariate-based subsets, the five
variables used for OSA showed limited correlation in the
AMD patient data set included in this analysis. Only the
Pearson correlations of IOP and BMI (r = 0.20, p = 0.03),

and, as expected, SBP and DBP (r=0.51, p <0.0001) were
statistically significant. BMI was inversely correlated with
age at exam (r = -0.26, p = 0.004), while IOP (r=-0.12, p
=0.18), SBP (r=0.19, p = 0.06), DBP (r=-0.03, p = 0.77)
and PKYRS (r=-0.11, p = 0.25) were not significantly cor-
related with age.

Discussion

Our analysis supports the possibility of distinct AMD sus-
ceptibility loci on three chromosomal regions: 6q14, with
alod score of 1.6 in a subset of eight overweight families;
14q13, with a lod score of 3.2 in 28 families with lower-
than-average IOP values; and 16p12, with a lod score of
2.9 in 32 families with higher-than-average IOP values,
most of which also had above-average values of SBP and
BMI. Of these three regions, we believe that the 16p12
linkage is the most interesting finding since there is con-
sistency across several clinically meaningful covariates,
agreement with prior studies, and increased statistical sig-
nificance with a more stringent phenotype definition.
Based on our results, a gene on 16p12 may be associated
with an increased risk of primarily neovascular AMD. The
peak marker, D16S403, is located very close to marker
D16S769, which was implicated in two prior genome
screens of the Beaver Dam Study based on different phe-
notype definitions and statistical analysis methods (p =
0.009 and p = 0.005, respectively). However, the families
included in these prior screens were not described with
respect to the vascular risk factors we have evaluated here.
It is possible that the significant result for the 16p12
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Multipoint lod scores for chromosome 16. The baseline score for 45 multiplex families (2+ sampled relatives affected
with late AMD, grade 4 and 5) and scores for OSA subsets defined by IOP, SBP and BMI (ordered from highest to lowest family

average, see text and Table 2) are shown.

marker in the Beaver Dam Study is primarily due to a con-
trast in identity-by-descent sharing of individuals with
neovascular versus other forms of AMD, although a more
detailed analysis would be necessary to confirm this
hypothesis.

The BMI-defined subgroup with linkage to 16p12 fits the
definition of being overweight. Increased BMI has previ-
ously been associated with a greater risk of AMD [48,49].
It was proposed that overweight and obese individuals
may have lower macular pigment optical density
(MPOD), which is a measure of retinal levels of the caro-
tenoids lutein and zeaxanthin [50]. Carotenoids may be
protective for AMD, implying that lower MPOD may con-
fer a greater risk of AMD [51]. Our results suggest that
individuals in the BMI-defined subset with linkage to

16p12 were also heavier smokers, as indicated by a greater
average of pack-years of smoking. Epidemiologic studies
have consistently reported an increased risk of both dry
and wet AMD due to smoking [40], but little is known
about the underlying mechanism. A recent study reported
that nicotine increased the size and severity of experimen-
tal choroidal neovascularization in a mouse model of wet
AMD and suggested that nicotinic receptor activation may
mediate this harmful effect [52].

The SBP-defined subset of families meets the definition of
systemic hypertension (SBP > 140 mmHG or DBP > 90
mmHG according to the Joint National Committee on
Prevention, Detection, Evaluation, and Treatment of High
Blood Pressure, [53]). Elevated SBP is a more important
predictor of cardiovascular risk than elevated DBP in per-
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Multipoint lod scores for chromosome 14. The baseline score for 62 multiplex families (2+ sampled relatives affected
with early or late AMD, grade 3, 4 and 5) and the score for the OSA subset defined by IOP (ordered from lowest to highest

family average, see text) are shown.

sons older than 50 years. Consistent with our results, the
Beaver Dam Study reported that higher SBP at baseline
and longitudinal increase of SBP were significantly associ-
ated with the 10-year incidence of neovascular, but not
atrophic AMD [45]. The Rotterdam Study reported an
increased incidence of early AMD with higher baseline
SBP [44]. The shorter follow-up time precluded the assess-
ment of whether SBP specifically influenced the progres-
sion of early to neovascular, rather than atrophic, AMD. A
large case-control study also reported a positive associa-
tion of hypertension and neovascular, but not atrophic
AMD [41]. The 16p12 region harbors genes for mono-
genic forms of hypertension (SCNN1B [MIM 600760],
SCNN1G [MIM 600761]). However, until the region
responsible for the linkage signal in our data set can be
substantially narrowed down by association mapping, we

believe it would be premature to consider these particular
genes as promising locational candidate genes for neovas-
cular AMD.

The IOP-defined subgroup with linkage to 16p12 is more
difficult to interpret, since there is little evidence to sug-
gest that elevated IOP is a risk factor for AMD. In African-
American samples, cross-sectional associations between
SBP and IOP as well as positive associations of elevated
SBP and DBP at baseline with longitudinal IOP increases
have been reported [42,43]. However, the general rela-
tionship of systemic hypertension and IOP is not well
documented, and in the data set used here, IOP was only
significantly correlated with BMI. It is unknown whether
the mechanisms that contribute to hypertension or
increased IOP have anything in common with the ang-
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Multipoint lod scores for chromosome 6. The baseline score for 62 multiplex families (2+ sampled relatives affected with
early or late AMD, grade 3, 4 and 5) and the score for the OSA subset defined by BMI (ordered from highest to lowest family

average, see text) are shown.

iogenic processes observed in neovascular AMD. It is con-
ceivable that both IOP and SBP values in the subgroup of
families linked to 16p12 may be correlated with unmeas-
ured markers of retinal vascular or choroidal blood flow
characteristics. Correlations between elevated systemic
blood pressure and retinal microvascular changes have
been reported in multiple large-scale studies [54-56]. Ret-
inal arteriolar narrowing in particular has been associated
with increased risk of coronary heart disease [57] and with
AMD progression in the Blue Mountains Eye Study [58].
Due to the limited size of our study, further interpretation
of the SBP- and IOP-related results from this analysis
awaits replication in a larger study population.

A linkage signal on 14q13 near the peak markers in our
data set (D14S608, D14S599) was previously reported by

one other study with a two-point parametric lod score of
1.5 [35]. While we observed the highest subset-based lod
score in our data set (3.2) in this region, it is not clear
whether the particular subset of 28 families with lower-
than-average IOP values is defined by a clinically mean-
ingful covariate. As mentioned above, little is known
about the relationship of IOP and AMD risk. A statistically
significant heritability of IOP was recently reported by the
Beaver Dam Study [59], which gives some support to the
use of IOP as a family covariate. In general, IOP is known
to be influenced by many factors, including age, sex,
refractive error, serum cholesterol, SBP, DBP, and BMI
[60], although in our data set, IOP was only significantly
correlated with BMI. The IOP-defined subset with linkage
to 14q13 may represent individuals with a distinct profile
of AMD risk factors that were not captured by the covari-
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Table 3: Clinical features of family subsets identified by OSA. For chromosome 16p12, OSA-defined subsets were obtained from an
analysis of 45 multiplex families (at least 2 sampled relatives with late AMD, grade 3 not considered affected). For the other two regions,
OSA-defined subsets were obtained from an analysis of all 62 multiplex families (at least 2 sampled relatives with early or late AMD).

Region OSA No.fams  Avg. no. No. Grade 3 Grade4 Grade5 Average covariate value in affected individuals
covariate  in subset affecteds/ affected
family indiv.
Age BMI SBP DBP IOP  PKYRS

6ql4 BMI 8 23 18 6(33.3) 1(5.6) I 70.3 314 133.9 74.5 16.8 24.5
6l1.1)

14q13 (0] 28 23 65 17 12 36 75.8 25.9 1352 75.1 13.9 249
(26.2) (18.5) (55.4)

16pl2 SBP 25 2.4 6l - 18 43 75.0 25.6 145.0 782 16.2 21.3
(29.5) (70.5)

IOP 32 2.5 79 - 19 60 75.7 26.2 139.6 77.7 17.3 19.6
(24.1) (75.6)

BMI 9 2.7 24 - 4(16.7) 20 74.5 293 137.2 744 17.2 25.5
(83.3)

62 families: 2+ sampled relatives with early or late AMD

2.4 147 29 31 87 74.8 26.2 136.8 76.6 16.0 21.1

(19.7) 21.1) (59.2)
45 families: 2+ sampled relatives with late AMD

2.4 106 - 27 79 76.3 25.7 137.8 76.4 16.1 225

(25.5) (74.5)

ates considered here, but could be correlated with lower
IOP. Alternatively, this result may be due to type I error,
despite the correction for multiple testing we applied.

A linkage signal on 6q14 for the same peak marker as in
our data set (D651031) was reported by two prior genome
screen studies, with a p-value of 0.04 in Haseman-Elston
regression [34] and an NPL, ;. p-value of 0.00001 [35].
However, since the number of families contributing to the
linkage evidence in our data set is very small, it is difficult
to speculate about the plausibility of our finding. The
observation of a higher proportion of early AMD in the
BMI-defined subset linked to 6q14, relative to the overall
data set, is consistent with previous reports of an increased
risk of early, but not late, AMD for both underweight and
overweight individuals [61] and of a specific association
between RPE abnormalities and BMI [62]. Alternatively,
the lod score in this region may reflect identity-by-descent
sharing of a gene that predisposes to obesity, rather than
to AMD itself. One of the most consistently reported
regions linked to BMI as a quantitative trait is chromo-
some 6q23-25 [63], however, this region is located at least
50 ¢cM away from our region. It has been suggested that
the incorporation of continuous covariates into binary
trait linkage analysis may identify linkage signals that are
distinct from those detected by analyzing such covariates
as quantitative traits [64,65], but more methodological
research is needed to further explore this question.

Conclusions

Our results, particularly those for chromosome 16p12,
illustrate the utility of OSA for incorporating continuous
covariates into linkage analysis of complex traits. The
method is a conceptually and computationally simple
approach to evaluating linkage evidence in subsets of fam-
ilies that are more homogeneous with respect to clinical
features and/or non-genetic risk factors for the disease
under study [64,66].

Phenotypically more similar families may be genetically
more homogeneous as well, in which case OSA can greatly
improve the power of linkage analysis. In contrast to the
admixture test for parametric lod score analysis imple-
mented in the program HOMOG [67], which simply
allows for a proportion of families to be unlinked to a par-
ticular region under study, OSA may provide insight into
the reasons for the underlying heterogeneity. It can have
better power than the admixture test to detect linkage in
subsets of families when the overall genetic effect is low or
when the families are small, while the admixture test
tends to be more powerful when the families are larger
and provide more variability in family-specific lod scores
[39]. It may also provide better localization of the putative
susceptibility gene. The reduction of genetic heterogeneity
is especially important in the analysis of complex disor-
ders, for which AMD is a prime example. Limitations of
OSA include the inability to incorporate more than one
covariate at a time. The power of the method largely
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depends on the degree of correlation between the evi-
dence for linkage and the levels of the OSA covariate, i.e.,
on the extent to which phenotypic heterogeneity between
families, as measured by averaged covariate values of
affected family members, reflects underlying genetic het-
erogeneity [39].

In summary, our data support the presence of an AMD
susceptibility locus on chromosome 16p12 that may pre-
dispose primarily to neovascular AMD. While it would be
premature to speculate about biological relationships
between SBP, IOP, and genetic predisposition in AMD eti-
ology, our findings suggest that further research into the
previously suggested association of neovascular AMD and
systemic hypertension is warranted. The question of
whether wet and dry AMD may have a different pathogen-
esis has long been debated. Distinct risk factor associa-
tions for the two disease forms were recently reported by
the Beaver Dam Study [45]. At the genetic level, our data
provide some support of a distinct etiology. Larger family
data sets with sufficiently large proportions of both dry
and wet AMD, particularly those for which baseline
linkage results already exist, should be characterized with
respect to the clinical variables considered here to further
investigate the possibly distinct genetic basis of the two
advanced stages of AMD.

Methods

Family ascertainment

Multiplex AMD families were ascertained at DUMC and
VUMC via a proband with early or advanced AMD, as pre-
viously described [26]. All individuals included in this
analysis were white, and their demographic and clinical
characteristics are shown in Table 1. The assignment of
AMD affection status was based on the clinical evaluation
of stereoscopic color fundus photographs of the macula
(EAP, AA, MADLP), according to a system described pre-
viously [5,68]. This system is a slight modification of the
Age-Related Eye Disease Study (AREDS) grading system
[69], using example slides from the Wisconsin Grading
System [70] and the International Classification System
[71] as guides. Briefly, individuals were assigned an AMD
grade ranging from 1 through 5 based on the macular
characteristics found within a 3000 pm-radius centered
on the fovea. Eyes with extensive (> 15) small drusen (<
63 pm), non-extensive intermediate (> 63 pm) drusen or
pigment abnormalities were assigned grade 2; eyes with
extensive intermediate or any large (= 125 um) drusen,
with or without drusenoid (non-fluid) RPE detachments,
were assigned grade 3; eyes with geographic atrophy were
assigned grade 4, and eyes with serous or hemorrhagic
RPE detachments, or choroidal neovascular membrane,
were assigned grade 5. Eyes without any drusen and pig-
ment abnormalities, or only small non-extensive drusen,
were assigned grade 1.

http://www.biomedcentral.com/1471-2156/5/18

For the purposes of performing a genome-wide screen for
AMD susceptibility loci, multiplex families were defined
as those with at least two sampled first- or second-degree
relatives with grade 3 (early AMD/ARM), grade 4
(atrophic AMD), or grade 5 (neovascular AMD) in at least
one eye. The resulting data set included 62 families, 147
affected individuals, 38 additional family members, and a
total of 119 affected sibling pairs. Sixteen families had
three or more affected siblings. Only three families had
affected relative (avuncular) pairs other than sibling pairs.
The number of affected siblings ranged from 2 to 5, with
an average of 2.4.

Laboratory and statistical analysis

A total of 389 microsatellite markers spaced at an average
10 cM density across the human genome were genotyped
on 185 individuals by the Center for Inherited Disease
Research (CIDR). Prior to removal of genotypes that were
inconsistent with Mendelian inheritance, pedigree rela-
tionships were verified with the programs RELPAIR [72]
and PREST [73], both of which use multipoint identity-
by-descent sharing estimates to infer the most likely rela-
tionship between pairs of individuals in the data set. No
misspecified relationships were detected. For analysis,
inconsistent genotypes detected by the program PED-
CHECK [74] were removed. Inter-marker distances and
marker order were obtained from the genetic linkage
maps developed by the Marshfield Medical Research
Foundation [75].

Motivated by successful applications of the ordered subset
analysis (OSA) method in studies of other complex disor-
ders [64,66], the primary goal of the analyses presented
here was to incorporate AMD-associated clinical covari-
ates into the nonparametric linkage analysis of the
genome screen data. Given the extensive phenotypic het-
erogeneity of AMD, this may help identify more homoge-
neous subsets of families for follow-up analysis and has
the potential to replicate previously published linkage sig-
nals that could be obscured in an analysis of the entire
data set. To this end, the OSA method [39] was applied as
follows: First, families were rank-ordered by the average
covariate value of affected family members. Family-spe-
cific multipoint lod scores, which can in principle be par-
ametric or nonparametric, were added one at a time in the
covariate-based rank order, at each position on the chro-
mosome map. Since the vast majority (59 of 62, 95%) of
our multiplex families were nuclear families with two or
more affected siblings, but no other affected relative pairs,
we used the nonparametric MLS method for affected sib-
ling pair data [76] to compute family-specific lod scores.
This method has been implemented in the program SIB-
LINK [77]. Families with n affected siblings were weighted
by a factor of n-1, and an additive model was assumed. For
each ordered subset of families, the maximum lod score
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anywhere on the chromosome was determined, the next
family was added, and the procedure was repeated until
all families had been analyzed in this way. The maximum
subset-based lod score for each covariate ordering, along
with the map position at which it occurred, was obtained.
To evaluate whether the covariate-based subset of families
provided significantly increased evidence of linkage, the
observed maximum OSA lod score was compared to an
empirical distribution of lod scores. This distribution was
generated by randomly permuting the order in which
families with available covariate information were added
and computing the maximum lod score for each permuta-
tion as described above. The empirical p-value thus com-
puted indicates how likely it is to obtain a subset-based
lod score of the same or greater size than the observed
OSA maximum lod score. It corresponds to a test of the
null hypothesis of no increase in linkage evidence by
rank-ordering families with respect to their covariate val-
ues. For the results presented here, we used a minimum of
10,000 permutations to compute empirical p-values.

We applied the OSA procedure with the following covari-
ates: Body mass index (BMI), defined as self-reported
weight (in kilograms) divided by squared height (in
meters); systolic (SBP) and diastolic (DBP) blood pres-
sure, defined as the average of two sequential measure-
ments taken with the Hawksley random zero
sphygmomanometer at the time of the clinical exam;
intraocular pressure (IOP), measured by Goldmann
applanation tonometry; and pack-years of self-reported
cigarette smoking (PKYRS). To compute this combined
measure of duration and dosage of cigarette smoking
prior to study enrollment, we asked study participants (i)
whether they had ever smoked cigarettes at least once per
week, (ii) at which age they started and, if applicable,
stopped smoking, and (iii) how many cigarettes, on aver-
age, they smoked per day. From this information, pack-
years of cigarettes were computed as the product of smok-
ing duration (in years), relative to a reference age 10 years
prior to study enrollment, and dosage (number of ciga-
rettes per day divided by 20). For never-smokers, zero
pack-years were used. For BMI, IOP and PKYRS, we
applied OSA with two independent ranking orders, lowest
to highest and highest to lowest. For the two blood
pressure variables, it was not clear how to best correct for
the potential use of anti-hypertensive medication. We felt
that only the presence of higher blood pressure at the time
of the clinical exam indicated possible hypertension,
while lower pressures may be observed for true normoten-
sives as well as hypertensives on blood pressure-lowering
medication. Therefore, we only applied the highest to
lowest covariate ordering for SBP and DBP in OSA. Thus,
eight maximum nonparametric lod scores, corresponding
to two covariates with one ranking order and three covari-
ates with two ranking orders, were obtained for each of
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the 22 autosomes, and a corrected chromosome-wide sig-
nificance level of 0.006 (= 0.05/8) was used. Results with
p-values < 0.0003 (= 0.006/22) may be considered as
having genome-wide significance. In addition to correct-
ing for multiple testing, we applied the following consid-
erations to help identify the most promising results of our
OSA analysis: (i) Consistency of results across multiple
clinically plausible covariates; (ii) agreement with prior
published genome screens of AMD; (iii) increase or per-
sistence in statistical significance when using a more strin-
gent phenotype definition. Clinical features for family
subsets with a statistically significant increase in nonpara-
metric lod score were analyzed with the Statistical Analy-
sis System (SAS Institute, Cary, NC, version 8).
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