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Abstract

We define a new class of pushdown systems where the pushdown is a tree instead of a word. We

allow a limited form of lookahead on the pushdown conforming to a certain ordering restriction,

and we show that the resulting class enjoys a decidable reachability problem. This follows from

a preservation of recognizability result for the backward reachability relation of such systems.

As an application, we show that our simple model can encode several formalisms generalizing

pushdown systems, such as ordered multi-pushdown systems, annotated higher-order pushdown

systems, the Krivine machine, and ordered annotated multi-pushdown systems. In each case, our

procedure yields tight complexity.
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1 Introduction

Context. Modeling complex systems requires to strike the right balance between the

accuracy of the model, and the complexity of its analysis. A successful example is given

by pushdown systems, which are a popular class of infinite-state systems arising in diverse

contexts, such as language processing, data-flow analysis, security, computational biology, and

program verification. Many interesting analyses reduce to checking reachability in pushdown

systems, which can be decided in PTIME using, e.g., the popular saturation technique [5, 13]

(cf. also the recent survey [10]). Pushdown systems have been generalized in several directions.

One of them are tree-pushdown systems [14], where the pushdown is a tree instead of a word.

Unlike for ordinary pushdown systems, non-destructive lookahead on the tree pushdown

leads to undecidability. In this work we propose an ordering condition permitting a limited

non-destructive lookahead on a tree pushdown.

A seemingly unrelated generalization is ordered multi-pushdown systems [6, 3, 2], where

several linear pushdowns are available instead of just one. Since already two unrestricted
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linear pushdowns can simulate a Turing machine, an ordering restriction is put on popping

transitions, requiring that all pushdowns smaller than the popped one are empty. Reachability

in this model is 2-EXPTIMEc [3].

Higher-order pushdown systems provide another type of generalization. Here pushdowns

can be nested inside other pushdowns [22, 19]. Collapsible pushdown systems [20, 16]

additionally enrich pushdown symbols with collapse links to inner sub-pushdowns. This

allows the automaton to push a new symbol and to save, at the same time, the current

context in which the symbol is pushed, and to later return to this context via a collapse

operation. Annotated pushdown systems [7] (cf. also [18]) provide a simplification of collapsible

pushdown systems by replacing collapse links with arbitrary pushdown annotations1. The

Krivine machine [23] is a related model which evaluates terms in simply-typed λY -calculus.

Reachability in all these models is pn ´ 1q-EXPTIMEc [7, 23] (where n is the order of nesting

pushdowns/functional parameters), and one exponential higher in the presence of alternation.

Even more general, ordered annotated multi-pushdown systems [15] have several annotated

pushdown systems under an ordering restriction similar to [3] in the first-order case. They

subsume both ordered multi-pushdown systems and annotated pushdown systems. The

saturation method (cf. [10]) has been adapted to most of these models, and it is the basis

of the prominent MOPED tool [12] for the analysis of pushdown systems, as well as the

C-SHORe model-checker for annotated pushdown systems [8].

Contributions. Motivated by a unification of the results above, we introduce ordered tree-

pushdown systems. These are tree-pushdown systems with a limited destructive lookahead

on the pushdown. We introduce an order between pushdown symbols, and we require that,

whenever a sub-pushdown is read, all sub-pushdowns of smaller order must be discarded.

The obtained model is expressive enough to simulate all the systems mentioned above,

and is still not Turing-powerful thanks to the ordering condition. Our contributions are:

i) A general preservation of recognizability result for ordered tree-pushdown systems. ii) A

conceptually simple saturation algorithm working on finite tree automata representing sets of

configurations (instead of more ad-hoc automata models), subsuming and unifying previous

constructions. iii) A short and simple correctness proof. iv) Direct encodings of several

popular extensions of pushdown systems, such as ordered multi-pushdown systems, annotated

pushdown systems, the Krivine machine, and ordered annotated multi-pushdown systems.

v) Encoding of our model into Krivine machines with states, that in turn are equivalent to

collapsible pushdown automata. vi) A complete complexity characterization of reachability

in ordered tree-pushdown systems and natural subclasses thereof.

Related work. Our work can be seen as a generalization of the saturation method for

collapsible pushdown automata [7] to a broader class of rewriting systems. This method has

been already generalized in [15] to multi-stack higher-order systems; in particular for ordered,

phase-bounded, and scope-bounded restrictions. Another related work is a saturation method

for recursive program schemes [9]. Schemes are equivalent to λY -calculus, so our formalism

can be used to obtain a saturation method for schemes.

Ordered tree-pushdown systems proposed in the present paper unify these approaches.

1 Collapsible and annotated systems generate the same configuration graphs when started from the
same initial configuration, since new annotations can only be created to sub-pushdowns of the current
pushdown. However, annotated pushdown systems have a richer backward reachability set which
includes non-constructible pushdowns.
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The encodings of the above mentioned systems are direct and work step-to-step. By contrast,

the encoding of the Krivine machine to higher-order pushdowns is rather sophisticated [16, 25],

and even more so its proof of correctness. The converse encoding of annotated higher-order

pushdowns into Krivine machines is conceptually easier, but technically quite long for at

least two reasons: a state has to be encoded by a tuple of terms, and transitions of the

automaton need to be implemented with beta-reduction.

Concerning multi-pushdown systems, there exist restrictions that we do not cover in this

paper. In [15] decidability is proved for annotated multi-pushdowns with phase-bounded

and scope-bounded restrictions. For standard multi-pushdown systems, split-width has been

proposed as a unifying restriction [11].

Outline. In Sec. 2 we introduce common notions. In Sec. 3 we define our model and we

present our saturation-based algorithm to decide reachability. In Sec. 4 we show that ordered

systems can optimally encode several popular formalisms. In Sec. 5 we discuss the notion of

safety from the Krivine machine and higher-order pushdown automata, and how it relates to

our model. In Sec. 6 we conclude with some perspectives on open problems.

2 Preliminaries

We work with rewriting systems on ranked trees, and with alternating tree automata. The

novelty is that every letter of the ranked alphabet will have an order. A tree has the order

determined by the letter in the root. The order itself is used to constrain rewriting rules.

An alternating transition system is a tuple S “ xC, Ñy, where C is the set of configurations

and ÑĎ C ˆ 2C is the alternating transition relation. For two sets of configurations A, B Ď C

we define A Ñ1 B iff, for every c P A, either c P B, or there exists C Ď B s.t. c Ñ C, and

we denote by Ñ˚
1

its reflexive and transitive closure. The set of predecessors of a set of

configurations C Ď C is Pre
˚pCq “ tc | tcu Ñ˚

1
Cu.

Ranked trees. Let N be the set of non-negative integers, and let Ną0 be the set of strictly

positive integers. A node is an element u P N
˚
ą0

. A node u is a child of a node v if u “ v ¨ i

for some i P Ną0. A tree domain is a non-empty prefix-closed set of nodes D Ď N
˚
ą0

s.t., if

u ¨ pi ` 1q P D, then u ¨ i P D for every i P Ną0. A leaf is a node u in D without children. A

ranked alphabet is a pair pΣ, rankq of a set of symbols Σ together with a ranking function

rank : Σ Ñ N. A Σ-tree is a function t : D Ñ Σ, where D is a tree domain, s.t., for every

node u in D labelled with a symbol tpuq of rank k, u has precisely k children. For a Σ-tree

t : D Ñ Σ and a label a P Σ, let t´1paq “ tu P D | tpuq “ au be the set of nodes labelled

with a. For a tree t and a node u therein, the subtree of t at u is defined as expected. We

denote by T pΣq the set of Σ-trees.

Order of a tree. In this paper we will give a restriction on a tree rewriting system guaran-

teeing that Pre
˚pCq is regular for every regular set C. This restriction will use the notion of

an order of a tree. The order of a tree is simply determined by the order of the symbol in

the root. Therefore, we suppose that our alphabet Σ comes with a function ord : Σ Ñ N.

The order of a tree t is ordptq :“ ordptpεqq.

Rewriting. Let V0, V1, . . . be pairwise disjoint infinite sets of variables; and let V “
Ť

n Vn.

We consider the extended alphabet Σ Y V where a variable x P Vn has rank 0 and order n.

We will work with the set T pΣ, Vq of pΣ Y Vq-trees. For such a tree t, let Vptq be the set
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of variables appearing in it. We say that t is linear if each variable in Vptq appears exactly

once in t. For some pΣ Y Vq-tree u, t is u-ground if Vptq X Vpuq “ H. A substitution is a

finite partial mapping σ : V Ñ T pΣ Y Vq respecting orders, i.e., ordpσpxqq “ ordpxq. Given a

pΣ Y Vq-tree t and a substitution σ, tσ is the pΣ Y Vq-tree obtained by replacing each variable

x in t in the domain of σ with σpxq. A rewrite rule over Σ is a pair l Ñ r of pΣ Y Vq-trees l

and r s.t. Vprq Ď Vplq and l is linear.2

Alternating tree automata. An alternating tree automaton (or just tree automaton) is a

tuple A “ xΣ, Q, ∆y where Σ is a finite ranked alphabet, Q is a finite set of states, and

∆ Ď Q ˆ Σ ˆ p2Qq˚ is a set of alternating transitions of the form p
a

ÝÑ P1 ¨ ¨ ¨ Pn, with a of

rank n. We say that A is non-deterministic if, for every transition as above, all Pj ’s are

singletons, and we omit the braces in this case. An automaton is ordered if, for every state p

and symbols a, b s.t. p
a

ÝÑ ¨ ¨ ¨ and p
b

ÝÑ ¨ ¨ ¨ , we have ordpaq “ ordpbq. We assume w.l.o.g.

that automata are ordered, and we denote by ordppq the order of state p. The transition

relation is extended to a set of states P Ď Q by defining P
a

ÝÑ P1 ¨ ¨ ¨ Pn iff, for every p P P ,

there exists a transition p
a

ÝÑ P
p
1

¨ ¨ ¨ P p
n , and Pj “

Ť

pPP P
p
j for every j P t1, . . . , nu. It

will be useful later in the definition of the saturation procedure to define run trees not just

on ground trees, but also on trees possibly containing variables. A variable of order k is

treated like a leaf symbol which is accepted by all states of the same order. Let P Ď Q

be a set of states, and let t : D Ñ pΣ Y Vq be an input tree. A run tree from P on t is

a 2Q-tree3 s : D Ñ 2Q over the same tree domain D s.t. spεq “ P , and: i) if tpuq “ a

is not a variable and of rank n, then spuq
a

ÝÑ spu ¨ 1q ¨ ¨ ¨ spu ¨ nq, and ii) if tpuq “ x then

@p P spuq, ordppq “ ordpxq. The language recognized by a set of states P Ď Q, denoted by

LpP q, is the set of Σ-trees t s.t. there exists a run tree from P on t.

3 Ordered tree-pushdown systems

We introduce a generalization of pushdown systems, where the pushdown is a tree instead of

a word. An alternating ordered tree-pushdown system (AOTPS) of order n P Ną0 is a tuple

S “ xn, Σ, P, Ry where Σ is an ordered alphabet containing symbols of order at most n, P is

a finite set of control locations, and R is a set of rules of the form p, l Ñ S, r s.t. p P P and

S Ď P . Moreover, l Ñ r is a rewrite rule over Σ of one of the two forms:

(shallow): apu1, . . . , umq Ñ r or (deep): apu1, . . . , uk, bpv1, . . . , vm1 q, uk`1, . . . , umq Ñ r

where each ui, vj is either r-ground or a variable, and for the second form we require

(ordering condition): if ordpuiq ď ordpbq, then ui is r-ground; for i “ 1, . . . , m.

The rules in R where l Ñ r is of the first form are called shallow, the others are deep. The

tree bpv1, . . . , vm1 q in a deep rule is called the lookahead subtree of l. A rule l Ñ r is flat if each

ui, vj is just a variable. Let Rordpbq be the set of deep rules, where the lookahead symbol b is

of order ordpbq. For example, apx, yq Ñ cpapx, yq, xq is shallow and flat, but apbpxq, yq Ñ cpx, yq

is deep (and flat); here necessarily ordpyq ą ordpbq. Finally, apc, d, xq Ñ bpxq is not flat since c

2 Notice that we require that all the variables appearing on the r.h.s. r also appear on the l.h.s. l. All our
results carry over even by allowing some variables on the r.h.s. r not to appear on the l.h.s. l, but we
forbid this for simplicity of presentation.

3 Strictly speaking 2
Q does not have a rank/order. It is easy to duplicate each subset at every rank/order

to obtain an ordered alphabet, which we avoid for simplicity.
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and d are not variables. In Sec. 4 we provide more examples of such rewrite rules by encoding

many popular formalisms. While l must be linear, r may be non-linear, thus sub-trees can be

duplicated. The size of S is |S| :“ |Σ|`|P |`|R|, where |R| :“
ř

pp,lÑS,rqPR
p1`|l|`|S|`|r|q.

Rewrite rules induce an alternating transition system xCS , ÑSy by root rewriting. The

set of configurations CS consists of pairs pp, tq with p P P and t P T pΣq, and, for every

configuration pp, tq, set of control locations S Ď P , and tree u, pp, tq ÑS S ˆ tuu if there

exists a rule ppp, lq Ñ pS, rqq P R and a substitution σ s.t. t “ lσ and u “ rσ.

Let A “ xΣ, Q, ∆y be a tree automaton s.t. P Ď Q. The language of configurations

recognized by A from P is LpA, P q :“ tpp, tq P C | p P P and t P Lppqu. Given an initial

configuration pp0, t0q P C and a tree automaton A recognizing a regular set of target

configurations LpA, P q Ď C, the reachability problem for S amounts to determining whether

pp0, t0q P Pre
˚pLpA, P qq.

3.1 Reachability analysis

We present a saturation-based procedure to decide reachability in AOTPSs. This also shows

that backward reachability relation preserves regularity.

§ Theorem 1 (Preservation of recognizability). Let S be an order-n AOTPS and let C be regular

set of configurations. Then, Pre
˚pCq is effectively regular, and an automaton recognizing it

can be built in n-fold exponential time.

Let S “ xn, Σ, P, Ry be an AOTPS. The target set C is given as a tree automaton A “

xΣ, Q, ∆y s.t. LpA, P q “ C. W.l.o.g. we assume that in A initial states (states in P ) have

no incoming transitions. Classical saturation algorithms for pushdown automata proceed

by adding transitions to the original automaton A, until no more new transitions can be

added. Here, due to the lookahead of the l.h.s. of deep rules, we need to also add new

states to the automaton. However, the total number of new states is bounded once the

order of the AOTPS is fixed, which guarantees termination. We construct a tree automaton

B “ xΣ, Q1, ∆1y recognizing Pre
˚pLpA, P qq, where Q1 is obtained by adding states to Q, and

∆1 by adding transitions to ∆, according to a saturation procedure described below.

For every rule pp, l Ñ S, rq P R and for every subtree v of l we create a new state pv of

the same order as v recognizing all Σ-trees that can be obtained by replacing variables in v

by arbitrary trees, i.e., Lppvq “ tvσ | σ : V Ñ T pΣq, vσ P T pΣqu; recall that the substitution

should respect the order. Let Q0 be the set of such pv’s, and let ∆0 contain the required

transitions. Notice that |Q0| , |∆0| ď |R|.

In order to deal with deep rules we add new states in the following stratified way. Let

Q1
n`1 “ Q Y Q0. We define sets Q1

n, . . . , Q1
1 inductively starting with Q1

n. Assume that Q1
i`1

is already defined. We make Q1
i contain Q1

i`1
. Then we add to Q1

i states for every deep

rule g P Ri of the form p, apu1, . . . , uk, bp. . . q, uk`1, . . . , umq Ñ S, r, with ordpbq “ i. For

simplicity of notation, let us suppose that u1, . . . , uk are of order at most ordpbq, and that

uk`1, . . . , um are of order strictly greater than ordpbq4. We add to Q1
i states:

pg, Pk`1, . . . , Pmq P Q1
i for all Pk`1, . . . , Pm Ď Q1

i`1.

In particular, to Qn we add states of the form pgq since n is the maximal order. We define

the set of states in B to be Q1 :“ Q1
1.

4 This assumption is w.l.o.g. since one can always add shallow rules to reorder subtrees and put them in
the required form.
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We add transitions to B in an iterative process until no more transitions can be added.

During the saturation process, we maintain the following invariant: For 1 ď i ď n, states

in Q1
izQ1

i`1
recognize only trees of order i. Therefore, B is also an ordered tree automaton.

Formally, ∆1 is the least set containing ∆ Y ∆0 and closed under adding transitions according

to the following procedure. Take a deep rule

g “ pp, apu1, . . . , uk, bpv1, . . . , vm1 q, uk`1, . . . , umq Ñ S, rq P Rordpbq

and assume as before that the order of uj is at most ordpbq for j ď k, and strictly bigger

than ordpbq otherwise. We consider a run tree t from S on r in B. For every j “ 1, . . . , m

we set: P t
j “ tpuj u if uj is r-ground, and P t

j “
Ť

tpr´1pxqq if uj “ x is a variable appearing

in r. The set
Ť

tpr´1pxqq collects all states of B from which the subtree for which x can

be replaced must be accepted. Moreover, for the lookahead subtree bpv1, . . . , vm1 q, we let

P t
b “ tpg, P t

k`1
, . . . , P t

mqu. Analogously, we define St
1, . . . , St

m1 considering v1, . . . , vm1 instead

of u1, . . . , um. Then, we add two transitions:

p
a

ÝÑ P t
1 ¨ ¨ ¨ P t

kP t
b P t

k`1 ¨ ¨ ¨ P t
m and pg, P t

k`1, . . . , P t
mq

b
ÝÑ St

1 . . . St
m1 . (1)

Thanks to the ordering condition, P t
k`1

, . . . , P t
m Ď Q1

ordpbq`1
, so pg, P t

k`1
, . . . , P t

mq is indeed a

state in Q1
ordpbq. For a shallow rule g the procedure is the same but ignoring the part about

the bpv1, . . . , vm1 q component; so only one rule is added in this case.

§ Lemma 2 (Correctness of saturation). For A and B be as above, LpB, P q “ Pre
˚pLpA, P qq.

The correctness proof, even though short, is presented in App. A. The right-in-left inclusion

is by straightforward induction on the number of rewrite steps to reach LpA, P q. The

left-in-right inclusion is more subtle, but with an appropriate invariant of the saturation

process it also follows by a direct inspection.

3.2 Complexity

The reachability problem for AOTPSs can be solved using the saturation procedure from

Theorem 1. For an initial configuration pp0, t0q P C and an automaton A recognizing a regular

set of target configurations LpA, P q, we construct B as in the previous section, and then test

pp0, t0q P LpB, P q. In this section we will analyze the complexity of this procedure in several

relevant cases. All lower-bounds follow from the reductions presented in Sec. 4.

Let m ą 1 be the maximal rank of any symbol in Σ. Using the notation from the

previous subsection, we have that
ˇ

ˇQ1
n`1

ˇ

ˇ ď |Q| ` |R|, |Q1
n| ď

ˇ

ˇQ1
n`1

ˇ

ˇ ` |R|, and for every

k P t1, . . . , n ´ 1u, |Q1
k| ď

ˇ

ˇQ1
k`1

ˇ

ˇ ` |R| ¨ 2
pm´1q¨|Q1

k`1| ď O
´

|R| ¨ 2
pm´1q¨|Q1

k`1|
¯

, and thus

|Q1| ď expn´1pOppm ´ 1q ¨ p|Q| ` |R|qqq, where exp0pxq “ x and, for i ě 0, expi`1pxq “

2expipxq. The size of the transition relation is at most one exponential more than the number

of states, thus |∆1| ď expnpOppm ´ 1q ¨ p|Q| ` |R|qqq. This implies:

§ Theorem 3. Reachability in order-n AOTPSs is n-EXPTIMEc.

We identify four subclasses of AOTPSs, for which the reachability problem is of progressively

decreasing complexity. First, we can save one exponential if we consider control-state

reachability for the class of non-deterministic, flat AOTPSs. A system is non-deterministic

when for every rule p, l Ñ S, r, the set S is a singleton. A system is flat when its rules

p, l Ñ S, r are flat (defined on page 4). Control-state reachability of a given set of locations

T Ď P means that the language of final configurations is T ˆ T pΣq. A proof of the theorem

below is presented in App. B.
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§ Theorem 4. Control-state reachability in order-n non-deterministic flat AOTPSs is

pn ´ 1q-EXPTIMEc, where n ě 2.

Second, we consider the class of linear non-deterministic systems. Suppose that we consider

non-deterministic reachability, i.e., that A is non-deterministic. When S is linear, i.e.,

variables in the r.h.s. of rules in R appear exactly once, then all P t
i ’s and St

i ’s in (1) are

singletons, and thus B is also non-deterministic. Consequently, the only states from Q1
izQ1

i`1

that are used by rewriting rules have the form pg, tpk`1u, . . . , tpmuq for pk`1, . . . , pm P Q1
i`1

.

Therefore, there are at most Opp|Q| ` |R|qpm´1qn

q states and Op|R| ¨ |Q1|
m

q transitions, and

B is thus doubly exponential in n.

§ Theorem 5. Non-deterministic reachability in linear non-deterministic AOTPSs is 2-EXPTIMEc.

The next simplification is when the system is shallow in the sense that it does not have

deep rules. In this case we do not need to add states recursively (Q1 :“ Q Y Q0), and we

thus avoid the multiple exponential blow-up. Similarly, when the system is unary, i.e., the

maximal rank is m “ 1, only polynomially many states are added.

§ Theorem 6. Reachability in shallow as well as in unary AOTPSs is EXPTIMEc.

If moreover the system is non-deterministic, then we get PTIME complexity, provided the

rank of the letters in the alphabet is bounded.

§ Theorem 7. Non-deterministic reachability in unary non-deterministic AOTPSs and in

shallow non-deterministic AOTPSs of fixed rank is in PTIME.

3.3 Expressiveness

In the next section we give a number of examples of systems that can be directly encoded in

AOTPSs. Before that, we would like to underline that AOTPSs can themselves be encoded

into collapsible pushdown systems. We formally formulate this equivalence in terms of

Krivine machines with states, which are defined later in Sec. 4.3. The details of this reduction

are presented in App. E.

§ Theorem 8. Every AOTPS of order n can be encoded in a Krivine machine with states of

the same level s.t. every rewriting step of the AOTPS corresponds to a number of reduction

steps of the Krivine machine.

Since parity games over the configuration graph of the Krivine machine with states are

known to be decidable [24], this equivalence yields decidability of parity games over AOTPSs.

However, in this paper we concentrate on reachability properties of AOTPSs, which are

decidable thanks to our simple saturation algorithm from Sec. 3.1. No such saturation

algorithm was previously known for the Krivine machine with states.

4 Applications

In this section, we give several examples of systems that can be encoded as AOTPSs. Ordinary

alternating pushdown systems (and even prefix-rewrite systems) can be easily encoded as

unary AOTPSs by viewing a word as a linear tree; the ordering condition is trivial since

symbols have rank ď 1. Moreover, tree-pushdown systems [14] can be seen as shallow

AOTPSs. By Theorem 6, reachability is in EXPTIME for both classes, and, by Theorem 7, it

reduces to PTIME for the non-alternating variant (for fixed maximal rank).
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In the rest of the section, we show how to encode four more sophisticated classes of systems,

namely ordered multi-pushdown systems (Sec. 4.1), annotated higher-order pushdown systems

(Sec. 4.2), the Krivine machine with states (Sec. 4.3), and ordered annotated multi-pushdown

systems (Sec. 4.4), and we show that reachability for these models (except the last one) can

be decided with tight complexity bounds using our conceptually simple saturation procedure.

4.1 Ordered multi-pushdown systems

In an ordered multi-pushdown system there are n pushdowns. Symbols can be pushed on

any pushdown, but only the first non-empty pushdown can be popped [6, 3, 2]. This is

equivalent to saying that to pop a symbol from the k-th pushdown, the contents of the

previous pushdowns 1, . . . , k ´ 1 should be discarded. Formally, an alternating ordered

multi-pushdown system is a tuple O “ xn, Γ, Q, ∆y, where n P Ną0 is the order of the system

(i.e., the number of pushdowns), Γ is a finite pushdown alphabet, Q is a finite set of control

locations, and ∆ Ď Q ˆ On ˆ 2Q is a set of rules of the form pp, o, P q with p P Q, P Ď Q, and

o a pushdown operation in On :“ tpushkpaq, popkpaq | 1 ď k ď n, a P Γu. We say that O is

non-deterministic when P is a singleton for every rule. A multi-pushdown system induces an

alternating transition system xCO, ÑOy where the set of configurations is CO “ QˆpΓ˚qn, and

the transitions are defined as follows: for every pp, pushkpaq, P q P ∆ there exists a transition

pp, w1, . . . , wnq ÑO P ˆ tpw1, . . . , a ¨ wk, . . . , wnqu, and for every pp, popkpaq, P q P ∆ there

exists a transition pp, w1, . . . , a ¨ wk, . . . , wnq ÑO P ˆ tpε, . . . , ε, wk, ¨ ¨ ¨ , wnqu. For c P CO

and T Ď Q, the (control-state) reachability problem for O asks whether c P Pre
˚pT ˆ pΓ˚qnq.

Encoding. We show that an ordered multi-pushdown system can be simulated by an

AOTPS. The idea is to encode the k-th pushdown as a linear tree of order k, and to

encode a multi-pushdown as a tree of linear pushdowns. Let K and ‚ be two new sym-

bols not in Γ, let ΓK “ Γ Y tKu, and let Σ “ pΓK ˆ t1, . . . , nuq Y t‚u be an ordered

alphabet, where a symbol pa, iq P ΓK ˆ tiu has order i, rank 1 if a P Γ and rank 0 if

a “ K. Moreover, ‚ has rank n and order 1. For simplicity, we write ai instead of

pa, iq. A multi-pushdown w1, . . . , wn, where each wj “ aj,1 . . . aj,nj
is encoded as the

tree encpw1, . . . , wnq :“ ‚pa1
1,1pa1

1,2p. . . K1qq, . . . , an
n,1pan

n,2p. . . Knqqq. For an ordered multi-

pushdown system O “ xn, Γ, Q, ∆y we define an equivalent AOTPS S “ xn, Σ, Q, Ry with Σ

defined as above, and set of rules R defined as follows (we use the convention that variable

xk has order k): For every push rule pp, pushkpaq, P q P ∆, we have a rule pp, ‚px1, . . . , xnq Ñ

P, ‚px1, . . . , akpxkq, . . . , xnqq P R, and for every pop rule pp, popkpaq, P q P ∆, we have

pp, ‚px1, . . . , akpxkq, . . . , xnq Ñ P, ‚pK1, . . . , Kk´1, xk, xk`1, . . . , xnqq P R. Both kinds of rules

above are linear, and the latter one satisfies the ordering condition since lower-order variables

x1, . . . , xk´1 are discarded. It is easy to see that pp, w1, . . . , wnq Ñ˚
O P ˆ tpw1

1, . . . , w1
nqu if,

and only if, pp, encpw1, . . . , wnqq Ñ˚
S P ˆ tencpw1

1, . . . , w1
nqu. Thus, the encoding preserves

reachability properties. By Theorem 3, we obtain an n-EXPTIME upper-bound for reachabil-

ity in alternating multi-pushdown systems of order n. Moreover, since S is linear, and since

S is non-deterministic when O is non-deterministic, by Theorem 5 we recover the optimal

2-EXPTIMEc complexity proved by [3] (cf. also [2]).

§ Theorem 9 ([3]). Reachability in alternating ordered multi-pushdown systems is in n-EXPTIME.

Reachability in non-deterministic ordered multi-pushdown systems is 2-EXPTIMEc.

Reachability for the alternating variant of the model (in n-EXPTIME) was not previously

known.
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4.2 Annotated higher-order pushdown systems

Let Γ be a finite pushdown alphabet. In the following, we fix an order n ě 1, and we

let 1 ď k ď n range over orders. For our purpose, it is convenient to expose the topmost

pushdown at every order recursively.5 We define Γk, the set of annotated higher-order

pushdowns (stacks) of order k, simultaneously for all k P t1, . . . , nu, as the least set containing

the empty pushdown x y, and, whenever u1 P Γ1, . . . , uk P Γk, vj P Γj for some j P t1, . . . , nu,

then xavj , u1, . . . , uky P Γk. Similarly, if we do not consider stack annotations vj ’s, we obtain

the set of higher-order pushdowns of order k. Operations on annotated pushdowns are as

follows. The operation pushb
k pushes a symbol b P Γ on the top of the topmost order-1 stack

and annotates it with the topmost order-k stack, pushk duplicates the topmost order-pk ´ 1q

stack, popk removes the topmost order-pk ´ 1q stack, and collapsek replaces the topmost

order-k stack with the order-k stack annotating the topmost symbol:

pushb
kpxau, u1, . . . , unyq “ xbxau,u1,...,uky, xau, u1y, u2, . . . , uny,

pushkpxau, u1, . . . , unyq “ xau, u1, . . . , uk´1, xau, u1, . . . , uky, uk`1, . . . , uny,

popkpxau, v1, . . . , vk´1, xbv, u1, . . . , uky, uk`1, . . . , unyq “ xbv, u1, . . . , uny,

collapsekpxaxbv,v1,...,vky, u1, . . . , unyq “ xbv, v1, . . . , vk, uk`1, . . . , uny.

Let On “
Ťn

k“1
tpushb

k, pushk, popk, collapsek | b P Γu be the set of stack operations. Similarly,

one can define operations pushb and popk on stacks without annotations (but not collapsek, or

pushb
k). An alternating order-n annotated pushdown system is a tuple P “ xn, Γ, Q, ∆y, where

Γ is a finite stack alphabet, Q is a finite set of control locations, and ∆ Ď Q ˆ Γ ˆ On ˆ 2Q

is a set of rules. An alternating order-n pushdown system (i.e., without annotations) is as P

above, except that we consider non-annotated stack and operations on non-annotated stacks.

An annotated pushdown system induces a transition system xCP , ÑPy, where CP “ Q ˆ Γn,

and the transition relation is defined as pp, wq ÑP P ˆ tw1u whenever pp, a, o, P q P ∆ with

w “ xau, ¨ ¨ ¨y and w1 “ opwq. Thus, a rule pp, a, o, P q first checks that the topmost stack

symbol is a, and then applies the transformation provided by the stack operation o to the

current stack (which may, or may not, change the topmost stack symbol a). Given c P CP

and T Ď Q, the (control-state) reachability problem for P asks whether c P Pre
˚pT ˆ Γnq.

Encoding. We represent annotated pushdowns as trees. Let Σ be the ordered alphabet

containing, for each k P t1, . . . , nu, an end-of-stack symbol Kk P Σ of rank 0 and order

k. Moreover, for each a P Γ and order k P t1, . . . , nu, there is a symbol xa, ky P Σ of

order k and rank k ` 1 representing the root of a tree encoding a stack of order k. An

order-k stack is encoded as a tree recursively by enckpx yq “ Kk and enckpxau, u1, . . . , ukyq “

xa, kypencipuq, enc1pu1q, . . . , enckpukqq, where i is the order of u. Let P “ xn, Γ, Q, ∆y be an

annotated pushdown system. We define an equivalent AOTPS S “ xn, Σ, Q, Ry, where Σ is

as defined above, and R contains a rule p, l Ñ P, r for each rule in pp, a, o, P q P ∆ and orders

m, m1, where l Ñ r is as follows (cf. also Fig. 1 in the appendix for a pictorial representation).

We use the convention that a variable subscripted by i has order i, and we write xi..j for

pxi, . . . , xjq, and similarly for zi..j :

5 Our definition is equivalent to [7].
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xa, nypym, x1..nq Ñ xb, nypxa, kypym, x1..kq, xa, 1ypym, x1q, x2..nq if o “ pushb
k,

xa, nypym, x1..nq Ñ xa, nypym, x1..k´1, xa, kypym, x1..kq, xk`1..nq if o “ pushk,

xa, nypz1
m1

, z1..k´1, xb, kypym, x1..kq, xk`1..nq Ñ xb, nypym, x1..nq if o “ popk,

xa, nypxb, kypym, x1..kq, z1..k, xk`1..nq Ñ xb, nypym, x1..nq if o “ collapsek.

The last two rules satisfy the ordering condition of AOTPSs since only higher-order variables

xk`1, . . . , xn are not discarded. It is easy to see that pp, wq Ñ˚
P P ˆ tw1u if, and only if,

pp, encnpwqq Ñ˚
S P ˆtencnpw1qu. Consequently, the encoding preserves reachability properties.

Since an annotated pushdown system of order n is simulated by a flat AOTPS of the same

order, the following complexity result is an immediate consequence of Theorems 3 and 4.

§ Theorem 10 ([7]). Reachability in alternating annotated pushdown systems of order n and

in non-deterministic annotated pushdown systems of order n ` 1 is n-EXPTIMEc.

4.3 Krivine machine with states

We show that the Krivine machine evaluating simply-typed λY -terms can be encoded as

an AOTPS. Essentially, this encoding was already given in the presentation of the Krivine

machine operating on λY -terms from [23], though not explicitly given as tree pushdowns. In

this sense, this provides the first saturation algorithm for the Krivine machine, thus yielding

an optimal reachability procedure. Moreover, in App. E we present also a converse reduction

(as announced earlier in Theorem 8), thus showing that the two models are in fact equivalent.

A type is either the basic type 0 or α Ñ β for types α, β. The level of a type is levelp0q “ 0

and levelpα Ñ βq “ maxplevelpαq ` 1, levelpβqq. We abbreviate α Ñ ¨ ¨ ¨ Ñ α Ñ β as αk Ñ β.

Let V “ txα1

1
, xα2

2
, . . . u be a countably infinite set of typed variables, and let Γ be a ranked

alphabet. A term is either (i) a constant a0
kÑ0 P Γ, (ii) a variable xα P V , (iii) an abstraction

pλxα.MβqαÑβ , (iv) an application pMαÑβNαqβ , or (v) a fixpoint pY MαÑαqα. We sometimes

omit the type annotation from the superscript, in order to simplify the notation. For a given

term M , its set of free variables is defined as usual. A term M is closed if it does not have any

free variable. We denote by ΛpMq be the set of sub-terms of M . An environment ρ is a finite

type-preserving function assigning closures to variables, and a closure Cα is a pair consisting

of a term of type α and an environment, as expressed by the following mutually recursive

grammar: ρ ::“ H | ρrxα ÞÑ Cαs and Cα ::“ pMα, ρq. We say that a closure pM, ρq is valid

if ρ binds all variables which are free in M (and no others), and moreover ρpxαq is itself a

valid closure for each free variable xα in M . Sometimes, we need to restrict an environment ρ

by discarding some bindings in order to turn a closure pM, ρq into a valid one. Given a term

M and an environment ρ, the restriction of ρ to M , denoted ρ
ˇ

ˇ

M
, is obtained by removing

from ρ all bindings for variables which are not free in M . In this way, if pM, ρq is a closure

where ρ assigns valid closures to at least all variables which are free in M , then pM, ρ
ˇ

ˇ

M
q is

a valid closure. In a closure pM, ρq, M is called the skeleton, and it determines the type and

level of the closure. Let ClαpMq be the set of valid closures of type α with skeleton in ΛpMq.

An alternating Krivine machine6 with states of level l P Ną0 is a tuple M “ xl, Γ, Q, K0, ∆y,

where xΓ, Q, ∆y is an alternating tree automaton (in which a constant a0
kÑ0 P Γ is seen

as a letter a of rank k), and K0 is a closed term of type 0 s.t. the level of any sub-term in

ΛpK0q is at most l. In the following, let α “ α1 Ñ ¨ ¨ ¨ Ñ αk Ñ 0. The Krivine machine M

induces a transition system xCM, ÑMy, where in a configuration pp, Cα, Cα1

1
, . . . , Cαk

k q P CM,

6 Cf. also [21] for a definition of the Krivine machine in a different context.



L. Clemente, P. Parys, S. Salvati, I. Walukiewicz 11

p P Q, Cα P ClαpK0q is the head closure, and Cα1

1
P Clα1 pK0q, . . . , Cαk

k P Clαk pK0q are the

argument closures. The transition relation ÑM depends on the structure of the skeleton

of the head closure. It is deterministic except when the head is a constant in Γ, in which

case the transitions in ∆ control how the state changes (cf. also Fig. 2 in the appendix for a

pictorial representation):

pp, pxα, ρq, Cα1

1
, . . . , Cαk

k q ÑM tpp, ρpxαq, Cα1

1
, . . . , Cαk

k qu,

pp, pMαNα1 , ρq, Cα2

2
, . . . , Cαk

k q ÑM tpp, pMα, ρ
ˇ

ˇ

Mα q, pNα1 , ρ
ˇ

ˇ

Nα1
q, Cα2

2
, . . . , Cαk

k qu,

pp, pY MαÑα, ρq, Cα1

1
, . . . , Cαk

k q ÑM tpp, pMαÑα, ρq, ppY Mqα, ρq, Cα1

1
, . . . , Cαk

k qu,

pp, pλxα0 .Mα, ρq, Cα0

0
, . . . , Cαk

k q ÑM tpp, pMα, ρrxα0 ÞÑ Cα0

0
sq, Cα1

1
, . . . , Cαk

k qu,

pp, pa0
kÑ0, ρq, C0

1 , . . . , C0

kq ÑM pP1 ˆ tC0

1 uq Y ¨ ¨ ¨ Y pPk ˆ tC0

kuq

for every p
a

ÝÑ P1 ¨ ¨ ¨ Pk P ∆.

We say that M is non-deterministic if xΓ, Q, ∆y is non-deterministic and all letters in Γ have

rank at most 1. Given c P CM and T Ď Q, the (control-state) reachability problem for M

asks whether c P Pre
˚pT ˆ p

Ť

α“α1Ñ¨¨¨ÑαkÑ0
ClαpK0q ˆ Clα1 pK0q ˆ ¨ ¨ ¨ ˆ Clαk pK0qqq.

Encoding. Following [23], we encode valid closures and configurations of the Krivine

machine as ranked trees. Fix a Krivine machine M “ xl, Γ, Q, K0, ∆y of level l. We assume

a total order on all variables xx
β1

1
, . . . , xβn

n y appearing in K0. For a type α, we define

ordpαq “ l ´ levelpαq. We construct an AOTPS S “ xl, Σ, Q1, Ry of order l as follows. The

ordered alphabet is

Σ “ tNα | Nα P ΛpK0q ^ levelpαq ă lu Y trNαs | Nα P ΛpK0qu Y tKi | i P t1, . . . , nuu.

Here, Nα is a symbol of rankpNαq “ n and ordpNαq “ ordpαq. Moreover, if α “ α1 Ñ ¨ ¨ ¨ Ñ

αk Ñ 0 for some k ě 0, then rNαs is a symbol of rankprNαsq “ n ` k and ordprNαsq “ l

(in fact, ordprNαsq is irrelevant, as rNαs is used only in the root). Finally, Ki is a leaf

of order i. The set of control locations is Q1 “ Q Y
Ť

pp
a

ÝÑP1¨¨¨PkqP∆
tp1, P1q, . . . , pk, Pkqu.

A closure pNα, ρq is encoded recursively as encpNα, ρq “ Nαpt1, . . . , tnq, where, for every

i P t1, . . . , nu, i) if xi P FVpNαq then ti “ encpρpxiqq, and ii) ti “ Kordpβiq otherwise (recall

that βi is the type of xi). A configuration c “ pp, pNα, ρq, Cα1

1
, . . . , Cαk

k q is encoded as the

tree encpcq “ rNαspt1, . . . , tn, encpCα1

1
q, . . . , encpCαk

k qq, where the first n subtrees encode the

closure pNα, ρq, i.e., encpNα, ρq “ Nαpt1, . . . , tnq. The encoding is extended point-wise to

sets of configurations. Notice that K0 uses only variables of level at most l ´ 1 (the subterm

λxα.N introducing xα is of level higher by one), so all skeletons in an environment are of

order at most l ´ 1. Similarly, skeletons in argument closures are of level at most l ´ 1;

only the head closure may have a skeleton of level l. Thus we do not need symbols Nα for

levelpαq “ l.

Below, we assume that α “ α1 Ñ ¨ ¨ ¨ Ñ αk Ñ 0, that variable yj has order ordpαjq

for every j P t0, . . . , ku, and that variables xi and zi have order ordpβiq for every i P

t1, . . . , nu. Notice that ordpαq ă ordpα1q, . . . , ordpαkq. Moreover, we write x “ xx1, . . . , xny,

z “ xz1, . . . , zny, and y “ xy1, . . . , yky. Finally, by x

ˇ

ˇ

M
we mean the tuple which is the same

as x, except that positions corresponding to variables not free in M are replaced by the
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symbol Kordpβiq. R contains the following rules:

p, rxα
i spz1, . . . , zi´1, Mαpxq, zi`1, . . . , zn, yq Ñ tpu, rMαspx, yq,

p, rMαNα1 spx, y2, . . . , ykq Ñ tpu, rMαspx
ˇ

ˇ

Mα , Nα1 px
ˇ

ˇ

Nα1
q, y2, . . . , ykq,

p, rY MαÑαspx, yq Ñ tpu, rMαÑαspx, Y MαÑαpxq, yq,

p, rλxα0

i .Mαspx, y0, yq Ñ tpu, rMαspx1, . . . , xi´1, y0, xi`1, . . . , xn, yq,

p, ra0
kÑ0spx, yq Ñ tp1, P1q, . . . , pk, Pkqu, ra0

kÑ0spx, yq @pp
a

ÝÑ P1 ¨ ¨ ¨ Pkq P ∆,

pi, Piq, ra0
kÑ0spz, y1, . . . , yi´1, M0

i pxq, yi`1, . . . , ykq Ñ Pi, rM0

i spxq.

The first rule satisfies the ordering condition since the shared variables yi are of order strictly

higher than ordpMαq. A direct inspection of the rules shows that, for a configuration c and a

set of configurations D, we have c Ñ˚
M D if, and only if, encpcq Ñ˚

S encpDq. Therefore, the

encoding preserves reachability properties. Since a Krivine machine of level n is simulated by

a flat AOTPS of order n, the following is an immediate consequence of Theorems 3 and 4.

§ Theorem 11 ([1]). Reachability in alternating Krivine machines with states of level n and

in non-deterministic Krivine machines with states of level n ` 1 is n-EXPTIMEc.

4.4 Ordered annotated multi-pushdown systems

Ordered annotated multi-pushdown systems are the common generalization of ordered multi-

pushdown systems and annotated pushdown systems [15]. Such a system is comprised of

m ą 0 annotated higher-order pushdowns arranged from left to right, where each pushdown is

of order n ą 0. While push operations are unrestricted, pop and collapse operations implicitly

destroy all pushdowns to the left of the pushdown being manipulated, in the spirit of [6, 3, 2].

[15] has shown that reachability in this model can be decided in mn-fold exponential time, by

using a saturation-based construction leveraging on the previous analysis for the first-order

case [6, 3, 2]. In App. F, we provide a simple encoding of an annotated multi-pushdown

system with parameters pm, nq into an AOTPS of order mn. It is essentially obtained by

taking together our previous encodings of ordered (cf. Sec. 4.1) and annotated systems (cf.

Sec. 4.2). As a consequence of this encoding, by using the fact that an AOTPS of order mn

can be encoded by a Krivine machine of the same level (by Theorem. 8), and by recalling the

known fact that the latter can be encoded by a 1-stack annotated multi-pushdown system

of order mn [25], we deduce that the concurrent behavior of an ordered m-stack annotated

multi-pushdown system of order n can be sequentialized into a 1-stack annotated pushdown

system of order mn (thus at the expense of an increase in order). The following complexity

result is a direct consequence of Theorem 3.

§ Theorem 12 ([15]). Reachability in alternating ordered annotated multi-pushdown systems

of parameters pm, nq is in pmnq-EXPTIME.

We remark that our result is for alternating systems, while in [15] they consider

non-deterministic systems and obtain pmpn ´ 1qq-EXPTIME complexity. It seems that

their method can be extended to alternating systems, and then the complexity becomes

pmnq-EXPTIME as well.

5 Safety

The notion of safety has been made explicit by Knapik, Niwiński, and Urzyczyn [19] who

identified the class of safe recursive schemes. They have shown that this class defines the
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same set of infinite trees as higher-order pushdown systems, i.e., the systems from Sec. 4.2

but without annotations. Blum and Ong [4] have extended the notion of safety to the

simply-typed λ-calculus in a clear way. Then [25] adapted it to λY -calculus, and have shown

that safe λY -terms correspond to higher-order pushdown automata without annotation.

There is a simple notion of safety for AOTPSs that actually corresponds to safety for

pushdown systems and terms. We say that a pΣ Y Vq-tree is safe when looking from the root

to the leafs the order does never increase. Formally, a tree u is safe if every subtree t thereof

has order ordptq ď ordpuq and it is itself safe. A rewrite rule l Ñ r is safe if both l and r are

safe. We say that S is safe if all its rules are safe.

As a first example, let us look at the encoding of annotated higher-order pushdown

systems from Sec. 4.2. If we drop annotation then higher-order pushdowns are represented by

safe trees, and all the rules are safe in the sense above. The case of Krivine machines is more

difficult to explain, because it would need the definition of safety from [25]. In particular,

one would have to partition variables into lambda-variables and Y -variables, which we avoid

in the current presentation for simplicity. In the full version of the paper we will show that

safe terms are encoded by safe trees, and that all the rules of the encoding of the Krivine

machine preserve safety. Finally, we remark that the translation from AOTPSs to the Krivine

machine with states previously announced in Theorem 8 can be adapted to produce a safe

Krivine machine with states from a safe AOTPS.

6 Conclusions

We have introduced a novel extension of pushdown automata which is able to capture several

sophisticated models thanks to a simple ordering condition on the tree-pushdown. While

ordered tree-pushdown systems are not more expressive than annotated higher-order push-

down systems, or than Krivine machines, they offer some conceptual advantages. Compared

to Krivine machines, they have states, and typing is replaced by a lighter mechanism of

ordering; for example, the translation from our model back to the Krivine machine is much

more cumbersome. Compared to annotated pushdown automata, the tree-pushdown is more

versatile than a higher-order stack; for example, one can compare the encoding of the Krivine

machine into our model to its encoding to annotated pushdown automata. We hope that

ordered tree-pushdown systems will help to establish more connections with other models, as

we have done in this paper with multi-pushdown systems.

There exist restrictions of multi-pushdown systems that we do not cover in this paper.

Reachability games are decidable for phase-bounded multi-pushdown systems [26]. We can

encode the phase-bounded restriction directly in our tree-pushdown systems, but we do

not know how to deal with the scope-bounded restriction. Encoding the scope-bounded

restriction would give an algorithm for reachability games over such systems, but we do not

know if the problem is decidable.

Our general saturation algorithm can be used to verify reachability properties. We plan

to extend it to the more general parity properties, in the spirit of [17]. We leave as future

work implementing our saturation algorithm, leveraging on subsumption techniques to keep

the search space as small as possible.
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A Proof of Lemma 2

Let A be the automaton recognizing the target set of configurations, and let B be the

automaton obtained at the end of the saturation procedure (cf. page 5).

§ Lemma 2 (Correctness of saturation). For A and B be as above, LpB, P q “ Pre
˚pLpA, P qq.

We prove the two inclusions of the lemma separately.

§ Lemma 13 (Completeness). For A and B as above, Pre
˚pLpA, P qq Ď LpB, P q.

Proof. Let pp, tq be a configuration in Pre
˚pLpA, P qq. We show pp, tq P LpB, P q by induction

on the length d ě 0 of the shortest sequence of rewrite steps from pp, tq to LpA, P q. If d “ 0,

then pp, tq P LpA, P q. Since the saturation procedure only adds states and transitions to

A, we directly have pp, tq P LpB, P q. Inductively, assume that the property holds for all

configurations reaching LpA, P q in at most d ě 0 steps, and let configuration pp, tq be at

distance d ` 1 ą 0 from LpA, P q. There exists a rule pp, l Ñ S, rq P R and a substitution σ

s.t. t “ lσ and from every configuration in S ˆ trσu we can reach LpA, P q in at most d steps.

Let l “ apu1, . . . , umq and t “ apt1, . . . , tmq. By induction hypothesis, S ˆ trσu Ď LpB, P q,

thus B has a run tree β from S on rσ. Its part, also denoted β, is a run tree from S on

r. Suppose first that our rule is shallow, and consider the transition p
a

ÝÑ P1 ¨ ¨ ¨ Pm added

to ∆1 in the saturation procedure because of this rule p, l Ñ S, r and this run tree β. This

transition can be used in the root of t, so it suffices to show that t1 P LpP1q, . . . , tm P LpPmq.

If ui is r-ground, then Pi “ tpui u and ti P Lppui q by construction. If ui “ x is a variable

appearing in r, then by definition Pi “
Ť

βpr´1pxqq. Since β is a run tree on the whole rσ,

we have ti “ σpxq P LpPiq. The case of a deep rule is similar. Let uk “ bpv1, . . . , vm1 q be the

lookahead subtree of l that is neither r-ground nor a variable, and let tk “ bps1, . . . , sm1 q.

Then in the root of tk we use the second added transition pg, Pk`1, . . . , Pmq
b

ÝÑ S1 ¨ ¨ ¨ Sm1 .

It suffices to show s1 P LpS1q, . . . , sm1 P LpSm1 q, which is done as above. đ

§ Lemma 14 (Soundness). For A and B as above, LpB, P q Ď Pre
˚pLpA, P qq.

The soundness proof requires several steps. First, we assign a semantics JpK Ď T pΣq to all

states p in B. For a set of states S Ď Q1, JSK :“
Ş

pPSJpK. For p P Q1
n`1 we take

JpK :“

$

&

%

tt | pp, tq P Pre
˚pLpA, P qqu if p P P,

LAppq if p P QzP,

LBppq if p “ pv P Q0.

Then by induction on n ´ i we define JpK for p “ ppq, l Ñ S, rq, Pk`1, . . . , Pmq P Q1
izQ1

i`1
.

Let l “ apu1, . . . , umq, where uk is the lookahead subtree. As JpK we take the set of

trees tk P JpukK s.t. for all t1 P Jpu1K, . . . , tk´1 P Jpuk´1K and all tk`1 P JPk`1K, . . . , tm P

JPmK it holds pq, apt1, . . . , tmqq P Pre
˚pLpA, P qq. Notice that Pk`1, . . . , Pm Ď Q1

i`1
, so

JPk`1K, . . . , JPmK as well as Jpu1K, . . . , JpukK are already defined. Second, we define sound

transitions as those respecting the semantics. Formally, a transition p
a

ÝÑ P1 ¨ ¨ ¨ Pm is sound

iff @pt1 P JP1K, . . . , tm P JPmKq, apt1, . . . , tmq P JpK.

§ Proposition 1. If all transitions are sound, then Lppq Ď JpK for every p P Q1.

Proof. Let t P Lppq. We proceed by complete induction on the height of t. Let t “

apt1, . . . , tmq (possibly m “ 0 if t “ a is a leaf). There exists a sound transition p
a

ÝÑ

P1 ¨ ¨ ¨ Pm s.t. t1 P LpP1q, . . . , tm P LpPmq. By induction hypothesis, t1 P JP1K, . . . , tm P JPmK,

and thus by the definition of sound transition, apt1, . . . , tmq P JpK. đ
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§ Proposition 2. Transitions in ∆ Y ∆0 are sound.

Proof. Let pp
a

ÝÑ P1 ¨ ¨ ¨ Pmq P ∆, and let t1 P JP1K, . . . , tm P JPmK. Since we assume

that there are no transitions back to the initial states in P , we have P1, . . . , Pm Ď QzP ,

and thus t1 P LApP1q, . . . , tm P LApPmq by the definition of the semantics. Consequently,

t :“ apt1, . . . , tmq P LAppq. If p R P we are done, since JpK “ LAppq in this case. Otherwise,

if p P P then pp, tq P LpA, P q, which is included in Pre
˚pLpA, P qq, and thus we have t P JpK

by definition.

For ∆0 the situation is even simpler. Let p
a

ÝÑ P1 ¨ ¨ ¨ Pm P ∆0, and let t1 P JP1K, . . . , tm P

JPmK. By the definition of the semantics we have t1 P LBpP1q, . . . , tm P LBpPmq which

implies that t :“ apt1, . . . , tmq P LBppq “ JpK. đ

§ Proposition 3. The saturation procedure adds only sound transitions.

Proof. This is induction on the order in which transitions are added by the procedure.

Let g “ pp, l Ñ S, rq with l “ apu1, . . . , umq, and let t be a run tree in B from S on

r. Since all transitions used in t were present in B earlier, they are sound. We show

that the transition p
a

ÝÑ P1 ¨ ¨ ¨ Pm as added by saturation is sound. To this end, let

t1 P JP1K, . . . , tm P JPmK, and we show t1 :“ apt1, . . . , tmq P JpK. Since p P P , this amounts to

showing that pp, t1q P Pre
˚pLpA, P qq.

First, assume that g is shallow. Observe that t1 “ lσ for some substitution σ (if ui is

r-ground then Pi “ tpui u, so ti P JPiK means that ti “matches” to ui; if ui “ x is a variable

appearing in r then Pi is nonempty and contains states of order ordpxq, so ti is of the same

order as x). Thus the system has a transition from pp, t1q to S ˆ trσu, and it thus suffices

to show S ˆ trσu Ď Pre
˚pLpA, P qq. Every node of r labeled by a variable x is labelled in

the run tree t by a subset of Pi “
Ť

tpr´1pxqq for some i, and simultaneously σpxq “ ti

(recall that all variables of r have to appear in l). Since t uses only sound transitions

and t1 P JP1K, . . . , tm P JPmK, by induction on its height we have rσ P JSK, which implies

S ˆ trσu Ď Pre
˚pLpA, P qq by the definition of the semantics since S Ď P .

If g is deep, then Pk “ tpg, Pk`1, . . . , Pmqu. Recall our assumption that u1, . . . , uk´1 have

order at most ordpukq; due to the ordering condition they are r-ground. It follows that P1 “

tpu1 u, . . . , Pk´1 “ tpuk´1 u, so t1 P Jpu1K, . . . , tk´1 P Jpuk´1K. Since tk P JPkK, . . . , tm P JPmK,

we deduce directly from the definition of JPkK that pp, t1q P Pre
˚pLpA, P qq.

When g is deep, the transition pg, Pk`1, . . . , Pmq
b

ÝÑ S1 ¨ ¨ ¨ Sm1 is additionally added for

this rule, and we have to show that this transition is sound too. Let w1 P JS1K, . . . , wm1 P

JSm1K, and we show tk :“ bpw1, . . . , wm1 q P Jpg, Pk`1, . . . , PmqK. To this end, let t1 P

Jpu1K, . . . , tk´1 P Jpuk´1K and tk`1 P JPk`1K, . . . , tm P JPmK, and we show pp, apt1, . . . , tmqq P

Pre
˚pLpA, P qq. The proof is as for a shallow rule, noticing that a node labeled in r by a

variable x is labeled in t either by a subset of Pi for some i P tk ` 1, . . . , mu (and then

σpxq “ ti), or by a subset of Sj for some j P t1, . . . , m1u (and then σpxq “ wj); we can again

conclude that rσ P JSK by induction on the height of t. đ

Proof of Lemma 14. By Proposition 2, the initial transitions in ∆ Y ∆0 are sound, and

by Proposition 3, all transitions in ∆1 are sound. Let pp, tq P LpB, P q. Thus, t P Lppq. By

Proposition 1, t P JpK. Since p P P , by the definition of the semantics, pp, tq P Pre
˚pLpA, P qq.

đ
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B Complexity of control-state reachability for flat non-deterministic

AOTPSs

While control-state reachability (reachability of a configuration having a particular con-

trol location) for order-n annotated pushdown systems is n-EXPTIMEc (cf. Theorem 10)—

and similarly for the Krivine machine (cf. Theorem 11)—it is known that if we consider

non-deterministic annotated pushdown systems of order n, the complexity goes down to

pn ´ 1q-EXPTIMEc (similarly for an analogous restriction on the Krivine machine). As we

will show below, this is also the case for flat AOTPSs.

§ Theorem 4. Control-state reachability in order-n non-deterministic flat AOTPSs is

pn ´ 1q-EXPTIMEc, where n ě 2.

In fact, we prove a stronger statement (cf. Theorem 15 below). Instead of control-state

reachability, we consider reachability of target sets defined by a restricted class of alternating

tree automata, which we call non-n-alternating alternating tree automata. Intuitively, this

class of tree automata will be defined in such a way that

it is preserved by the saturation procedure, and

allows a faster running time of the procedure by saving one exponential in the number of

states (and, consequently, transitions).

Formally, an alternating tree automaton A “ xΣ, Q, ∆y is non-n-alternating7 if its state

space Q can be partitioned into two sets Q´ and Q` so that:

for every transition p
a

ÝÑ P1 . . . Pm P ∆ with p P Q´ it holds Pi Ď Q´ for all i,

for every transition p
a

ÝÑ P1 . . . Pm P ∆ with p P Q` it holds
ř

i |Pi X Q`| ď 1, and

in Q´ there is exactly one state of order n, call it pn, and the set of transitions from pn

is tp
a

ÝÑ H . . . H | ordpaq “ nu.

That is, states in Q´ are closed under the transition relation. Moreover, they are either of

order ď n ´ 1, or trivially accept every order-n tree (i.e, pn is the unique such state in Q´).

On the other side, a state p in Q` can be of order n, but then it can non-trivially accept at

most one subtree of order n (by staying in Q`). When this happens, there is no alternation

when doing so, i.e., this unique subtree of order n is accepted by a single state in Q`.

§ Theorem 15. Reachability of a target set defined by a non-n-alternating alternating tree

automaton in order-n non-deterministic flat AOTPSs is pn ´ 1q-EXPTIMEc, where n ě 2.

In particular we can realize control-state reachability, since one can build a non-n-alternating

automaton that only checks the control-state and accepts every tree. The better complexity

bound described by Theorem 15 is realized by almost the same saturation procedure as in

the general case; we only perform two small modifications. First, for different variables x

of order n, we have separate states px. All these states do the same: they just check that

the order of the node is n. Moreover, we already have such state in A: it is called pn in the

definition of a non-n-alternating automaton. This redundancy should be eliminated: instead

of using all these states we glue them together into this single state pn. Second, we have

created states pv for every subtree v of the l.h.s. l of every rule. But we need such states

only for v other than the whole l, and, for a deep rule, than the lookahead subtree of l.

7 A similar notion for collapsible pushdown systems was proposed in [7].
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For convenience, let us keep only such pv and remove all other. It is easy to see that these

modifications do not influence correctness. Thus, we only need to analyze the complexity.

First, we observe that the automaton obtained at any step of the saturation procedure

is non-n-alternating, and we will later analyze its size depending on this assumption. We

divide the states of B in Q1 into Q1
´ and Q1

` as follows (as required in the definition of a

non-n-alternating automaton). The original automaton A by assumption is non-n-alternating,

which by definition gives us a partitioning of states from Q into Q` and Q´. Recalling that

we can assume that in A we do not have transitions leading to initial states (we already made

and justified this same assumption when describing the saturation procedure), we assume

that all initial states are in Q`. We inherit this partitioning for states in Q1. The states from

Q0 are all taken to Q1
´. Because the system is flat, none of states pv is of order n (we have

such states only for v being a variable of order ď n ´ 1), and thus xΣ, Q Y Q0, ∆ Y ∆0y is non-

n-alternating for this division of states. Next, by induction on n´ i we classify states from Q1
i.

Consider a state pg, Pk`1, . . . , Pmq P Q1
izQ1

i`1
. We put it into Q1

` if Pk`1 Y ¨ ¨ ¨ Y Pm Ď Q1
´;

otherwise (some state from some Pi is in Q1
`), we put it into Q1

´. In particular, for i “ n the

state is always taken to Q1
`, as necessarily k “ m. Recall that the states in the sets Pj come

from Q1
i`1

, so for them we already know whether they are in Q1
` or in Q1

´. We have not

added any transitions, so xΣ, Q1
1, ∆ Y ∆0y is still non-n-alternating for the above division of

states.

Now we should see that a single step of the saturation procedure preserves the property

that the automaton is non-n-alternating for our division of states. We only need to check

that the newly added transitions satisfy the required properties. By induction assumption

we know that the automaton before the considered step is non-n-alternating. Moreover the

system is non-deterministic, so |S| “ 1 in the considered rule p, l Ñ S, r. This ensures the

following property of the run tree t from S on r: State sets on only one path may contain

states from Q1
`, each set at most one such state. In particular at most one leaf is labelled by

such state set. Thus, at most one among the sets
Ť

tpr´1pxqq contains a state from Q1
`, and

it contains at most one such state; the sets tpxu do not contain states from Q1
`. For a shallow

rule this is the end, as all P t
j ’s are of this form (with different variables for different j’s).

For a deep rule we also have the special child with P t
b “ tpg, P t

k`1
, . . . , P t

mqu. When none

of the P t
j ’s for j ‰ k has a state from Q1

`, then by definition pg, P t
k`1

, . . . , P t
mq P Q1

`; the

transition from p is fine (recall that the initial state p belongs to Q1
`), and the transition from

pg, P t
k`1

, . . . , P t
mq is also fine since at most one among St

j ’s has a state from Q1
`. Suppose that

some P t
j for i ‰ k has a state from Q1

`. This is only possible when the corresponding subtree

of l is not r-ground, so it is of order greater than the special deep subtree bpv1, . . . , vm1 q of l

thanks to the ordering condition. Thus, this set P t
j is listed in the state pg, P t

k`1
, . . . , P t

mq,

and the latter by definition belongs to Q1
´. Then the transition from p is fine, and the

transition from pg, P t
k`1

, . . . , P t
mq is also fine since none of the St

j ’s has a state from Q1
`.

Let us now analyze the complexity of the algorithm. The original saturation algorithm

by definition uses states in Q1
1, . . . , Q1

n`1. We show that in fact a subset of those states is

actually needed, by constructing a sequence Q2
1, . . . , Q2

n`1 which is pointwise included in the

former, and such that Q2
1 Y ¨ ¨ ¨ Y Q2

n`1 is one exponential smaller than Q1
1 Y ¨ ¨ ¨ Y Q1

n`1. We
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define the following sets:

Q2
n`1 “ Q1

n`1, Q2
n “ Q1

n,

Q2
n´1 “ Q2

n Y tpg, Pk`1, . . . , Pmq P Q1
n´1 | @i.|Pi| ě 1,

ÿ

i

|Piztpnu| ď 1u,

Q2
i “ Q2

i`1 Y
ď

gPRi

tgu ˆ
´

2
Q2

i`1

¯m´k

for 1 ď i ď n ´ 2,

where g “ pp, apu1, . . . , uk, bpv1, . . . , vm1 q, uk`1, . . . , umq Ñ S, rq and ordpbq “ i. Thus to

Q2
n´1 we only add those states pg, Pk`1, . . . , Pmq where all Pi except one are equal to tpnu,

and the remaining one is either a singleton or a pair tq, pnu for some state q. We can see

that all transitions in ∆1 will only use states from Q2
1. To prove this, recall that ∆1 is

the least set containing ∆ Y ∆0 and closed under applying the saturation procedure. The

initial set ∆ Y ∆0 only uses states from Q1
n`1 Ď Q2

1. Thus, suppose that the current set of

transitions uses only states from Q2
1; we should prove that transitions added by (one step of)

the saturation procedure also use only states from Q2
1. Notice that all states in the considered

run tree t on r appear in some transition, so they come from Q2
1. The only “new” state is

pg, Pk`1, . . . , Pmq created for a deep rule. Let b be the root of the special subtree of the left

side of g. If ordpbq ‰ n ´ 1, then we have pg, Pk`1, . . . , Pmq P Q2
ordpbq Ď Q2

1, since, as already

observed, Pk`1, . . . , Pm Ď Q2
1 X Q1

ordpbq`1
“ Q2

ordpbq`1
. For ordpbq “ n ´ 1, we recall that each

of the sets Pk`1, . . . , Pm describes a subtree of order n, so it is either of the form tpnu or
Ť

tpr´1pxqq for some variable x of order n. But, as observed previously, at most one of these

sets may contain a state from Q1
`. However (as required in an non-n-alternating automaton)

all states of order n except pn are from Q1
`. Thus

řm

j“k`1
|Pjztpnu| ď 1, and in consequence

pg, Pk`1, . . . , Pmq P Q2
n´1 Ď Q2

1. This finishes the proof that only states from Q2
1 are used.

Notice that |Q2
n´1| ď |Q1

n| ` |R| ¨ 2pm ´ 1q ¨ |Q1
n| (while |Q1

n´1| is exponential in |Q1
n|),

where m is the maximal rank of any symbol in Σ. Consequently, |Q2
1| ď expn´2pOpp|Q| `

|R|q ¨ m ¨ |R|qq and |∆1| ď expn´1pOpp|Q| ` |R|q ¨ m ¨ |R|qq.

C The translation for annotated pushdown systems

We present graphically the rewrite rules of the resulting ordered tree transition system. The

rules in Figure 1 are the same as in the main text. We hope that the graphical presentation

better conveys the intuition behind them.

D The translation for Krivine machines

We present graphically the rewrite rules of the resulting ordered tree transition system. The

rules in Figure 2 are the same as in the main text. We hope that the graphical presentation

better conveys the intuition behind them.
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p,
xa, ny

ym x1..n

ÝÑ P,
xb, ny

xa, ky

ym x1..k

xa, 1y

ym x1

x2..n

if o “ pushb
k

p,
xa, ny

ym x1..n

ÝÑ P,
xa, ny

ym x1..k´1 xa, ky

ym x1..k

xk`1..n

if o “ pushk

p,
xa, ny

z1
m1

z1..k´1 xb, ky

ym x1..k

xk`1..n

ÝÑ P,
xb, ny

ym x1..n

if o “ popk

p,
xa, ny

xb, ky

ym x1..k

z1..k xk`1..n

ÝÑ P,
xb, ny

ym x1..n

if o “ collapsek

Figure 1 Translation from annotated higher-order pushdown systems to AOTPSs

E Encoding AOTPS into the Krivine machine with states

§ Theorem 8. Every AOTPS of order n can be encoded in a Krivine machine with states of

the same level s.t. every rewriting step of the AOTPS corresponds to a number of reduction

steps of the Krivine machine.

The encoding is performed in four steps.

Step 1: Flattening the AOTPS

In this step we show that the l.h.s. of rewrite rules of AOTPSs can be flattened, in the sense

that the only lookahead that the system has is in deep rules, and all other subtrees are

just variables. We recall that a rule p, l Ñ S, r is flat if l is either of the form apx1, . . . , xmq

(shallow rule) or apx1, . . . , xk´1, bpy1, . . . , ym1 q, xk`1, . . . , xmq (deep rule); an AOTPS is flat

when all its rules are flat.

§ Theorem 16. Every AOTPS S can be converted into an equivalent flat AOTPS S 1 of

exponential size.

Fix an AOTPS S “ xn, Σ, P, Ry. We create an equivalent flat AOTPS S 1 “ xn, Γ, P, R1y

as follows. Let subpRq contain all proper (that is, other than the whole tree) subtrees of l

for all rules p, l Ñ S, r in R. The intuition is that the new system will store in each node

with k children a tuple consisting of k subsets of subpRq; the i-th of them will contain these

patterns that match to the tree at the i-th child. In this way, when a rule p, l Ñ S, r is

applied, it is sufficient to read in the root whether appropriate subpatterns of l match to

subtrees starting in children of the root, instead of testing a longer part of the tree. Thus, as
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p,
rxα

i s

z1 ¨ ¨ ¨ zi´1Mα

x

zi`1 ¨ ¨ ¨ zn y

ÝÑ tpu,
rMαs

x y

(var)

p,
rMαNα1 s

x y2 ¨ ¨ ¨ yk

ÝÑ tpu,
rMαs

x

ˇ

ˇ

Mα Nα1

x

ˇ

ˇ

Nα1

y2 ¨ ¨ ¨ yk

(app)

p,
rY MαÑαs

x y

ÝÑ tpu,
rMαÑαs

x Y M

x

y

(fix)

p,
rλxα0

i .Mαs

x y0 y

ÝÑ tpu,
rMαs

x1 ¨ ¨ ¨ xi´1 y0 xi`1 ¨ ¨ ¨ xn y

(abs)

p,
ra0

kÑ0s

x y

ÝÑ tp1, P1q, . . . , pk, Pkqu,
ra0

kÑ0s

x y

@pp
a

ÝÑ P1 ¨ ¨ ¨ Pkq P ∆ (const1)

pi, Piq,
ra0

kÑ0s

z y1 ¨ ¨ ¨ yi´1 M0
i

x

yi`1 ¨ ¨ ¨ yk

ÝÑ Pi,
M0

i

x

(const2)

Figure 2 Translation from the Krivine machine to AOTPSs
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the new alphabet Γ we take
Ť

aPΣ
tau ˆ p2subpRqqrankpaq, where the rank and the order of a

symbol in Γ is inherited from its Σ coordinate. For a Σ-tree t we obtain the Γ-tree encptq

by labelling each node u with the tuple of rankptpuqq sets where the i-th set contains those

trees l1 P subpRq that match the subtree rooted at the i-th child of u (that is, for which this

subtree equals l1σ for some substitution σ).

Consider some rule p, l Ñ S, r. Thanks to the additional labeling of encptq, seeing only

the label in the root of t we know whether l matches to t. This allows us to replace every

r-ground subtree of l by an r-ground variable, and obtain l in one of the two forms allowed

in a flat rule. On the other hand, we have to ensure that r creates a tree with the correct

labelling. This is possible since our labelling is compositional: the tuple in a node can be

computed basing on labels of its children.

More precisely, for each rule p, l Ñ S, r we create new rules as follows. Let l “

apu1, . . . , umq, and, if the rule is deep, let uk “ bpv1, . . . , vm1 q be the lookahead subtree

of l. For all sets X1, . . . , Xm Ď subpRq such that u1 P X1, . . . , um P Xm, and (in the case of a

deep rule) for all sets Y1, . . . , Ym1 Ď subpRq such that v1 P Y1, . . . , vm1 P Ym1 there will be one

new rule.8 If p, l Ñ S, r is shallow, as the new left side we take pa, X1, . . . , Xmqpx1, . . . , xmq,

where we leave xi “ ui if ui is a variable, and we take a fresh variable xi R Vprq of or-

der ordpuiq otherwise (when ui is r-ground). If p, l Ñ S, r is deep, as the new left side we

take pa, X1, . . . , Xmqpx1, . . . , xk´1, pb, Y1, . . . , Ym1 qpy1, . . . , ym1 q, xk`1, . . . , xmq, where again we

leave subtrees being variables and we replace other subtrees by fresh variables. The choice of

X1, . . . , Xm and Y1, . . . , Ym1 assigns sets of “matching patterns” to all variables:

mppxiq “ Xi, mppyiq “ Yi.

Then in a bottom-up manner we can assign such sets to all subtrees of r:

mppcpw1, . . . , wjqq “ tz P subpRq | ordpzq “ ordpcquY

Y tcpw1
1, . . . , w1

jq P subpRq | w1
1 P mppw1q, . . . , w1

j P mppwkqu.

The new right side of the rule is JrK with J¨K defined by:

JwK “ pc, mppw1q, . . . , mppwjqqpJw1K, . . . , JwjKq if w “ cpw1, . . . , wjq,

JwK “ w if w is a variable.

We remark that in order to recover correct marking of the right side of a rule it was necessary

to mark a node by patterns matching to children of that node instead of patterns matching

to the node itself (the latter marking would be insufficient). It is easy to see that each

transition of xCS , ÑSy can be faithfully simulated by a transition of xCS1 , ÑS1 y.

Step 2: Eliminating control locations

To ease the presentation in step 3, we now remove control locations from the AOTPS. To

allow alternation, we have to extend slightly the definition of an AOTPS. The rules will be

now of the form l Ñ R, where R is a set of trees r such that l Ñ r is a rewrite rule. The

resulting alternating transition system xCS , ÑSy has Σ-trees as configurations, and, for every

8 Some sets in subpRq are “inconsistent”, as well as some sets Y1, . . . , Ym1 may be “inconsistent” with Xk.
New rules using such sets are redundant, but it also does not hurt to add them, as anyway they cannot
be applied to any tree of the form encptq.
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configuration t, and set of configurations U there is a transition t ÑS U if there exists a rule

l Ñ R of S and a substitution σ s.t. t “ lσ and U “ trσ | r P Ru.

Control locations can be encoded in the root symbol of the pushdown tree. The new

alphabet is Σ1 “ Σ Y pΣ ˆ P q, where new symbols in Σ ˆ P inherit order and rank

from the Σ-component. Let p, l Ñ S, r be a shallow rule of the original system, with

l “ apx1, . . . , xmq and r “ cps1, . . . , skq (the case for a deep rule is analogous). Then, the

new system has a rule l1 Ñ R (with no control locations), with l1 “ pa, pqpu1, . . . , umq and

R “ tpc, qqps1, . . . , skq | q P Su. There is a problem when r is just a variable x (necessarily

occurring in l). In this case, we use a deep rule by guessing the root symbol c at the

(unique) position of x in l (below a). That is, for every shallow rule p, l Ñ S, xk of the

original system, and for every symbol c of rank h, we introduce a deep rule l1 Ñ R, where

l1 “ pa, pqpx1, . . . , xk´1, cpy1, . . . , yhq, xk`1, . . . , xmq and R “ tpc, qqpy1, . . . , yhq | q P Su. We

can assume that in the original system there are no deep rules of the form p, l Ñ S, x, as

those can be broken down into two rules, a deep one where the r.h.s. is not a variable, and

a shallow one where the r.h.s. is a variable. Thus, we do not have consider any other case

when removing control locations.

Notice that while starting from a flat AOTPS, the obtained AOTPS without control

locations is also flat.

Step 3: From AOTPSs to higher-order recursion schemes

After the first two steps we have a flat AOTPS without control locations (where rules are of

the form l Ñ R with R a set of trees). Our goal is to translate an AOTPS of this form into

a Krivine machine, thus proving Theorem 8. In order to obtain a more natural translation,

we use recursion schemes, a model quite similar to the Krivine machine.

We first define alternating higher-order recursion schemes with states. We use types

as defined in Sec. 4.3. However, instead of λY -terms, we use applicative terms, where

moreover we can use typed nonterminals from some set N . An applicative term is either

(i) a constant a0
rankpaqÑ0 P Γ, (ii) a variable xα P V, (iii) a nonterminal Aα P N , (iv) an

application pMαÑβ Nαqβ . An alternating recursion scheme with states of level n P Ną0

is a tuple G “ xn, Γ, Q, N , R, ∆y, where xΓ, Q, ∆y is an alternating tree automaton, N

is a finite set of nonterminals of level at most n, and R is a function assigning to each

nonterminal A in N of type α1 Ñ ¨ ¨ ¨ Ñ αk Ñ 0 a rule of the form A xα1

1
. . . xαk

k Ñ M ,

where M is an applicative term of type 0 with free variables in txα1

1
, . . . , xαk

k u, constants

from Γ, and nonterminals from N . A recursion scheme G induces an alternating transition

system xCG , ÑGy, where in a configuration pp, Mq P CG we have p P Q and M is a closed

applicative term of type 0 using constants from Γ and nonterminals from N . We have

two kinds of transitions. First, for each rule A xα1

1
. . . xαk

k Ñ M in R we have a transition

pp, A M1 . . . Mkq ÑG tpp, M rM1{x1, . . . , Mk{xksqu. Second, for every pp
a

ÝÑ P1 . . . Pkq P ∆

we have a transition pp, a M1 . . . Mkq ÑG pP1 ˆ tM1uq Y ¨ ¨ ¨ Y pPk ˆ tMkuq.

Fix a flat AOTPS S “ xn, Σ, Ry without control locations. An extended letter is a pair

pa, oq where a P Σ and o : t1, . . . , rankpaqu Ñ t1, . . . , nu. The meaning is that the letter is

a and its children have orders op1q, . . . , oprankpaqq. For each extended letter pa, oq we will

have a corresponding nonterminal Aa,o. A first approximation of the encoding is that a

tree apu1, . . . , ukq will be represented as Aa,o to which encodings of u1, . . . , uk are applied

as arguments. Then the rule for the nonterminal Aa,o can simulate all shallow rules of our

system S, constructing any term having u1, . . . , uk as subterms. Notice that rules of S are

flat, so we need not to look inside u1, . . . , uk; however we need to know their orders—that is

why we assign nonterminals to extended letters not just to letters.
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Nevertheless, there are also deep rules. In order to handle them, each tree apu1, . . . , ukq

will be represented in multiple ways. One representation will handle shallow rules. Moreover,

for each extended letter pb, o1q and ı̂ we will have a nonterminal Ab,o1 ,̂ı
a,o , and apu1, . . . , ukq will

be represented as Ab,o1 ,̂ı
a,o with applied representations of u1, . . . , uk. This nonterminal will be

still waiting for subtrees of a potential parent of our a, having label b; when they will be

applied, the nonterminal will simulate deep rules of S having bp. . . , ap. . . q, . . . q on the left

side, where the a is on the ı̂-th position. As we have multiple encodings of a tree, we need to

keep them in parallel. Thus Aa,o (and similarly Ab,o1 ,̂ı
a,o ) instead of taking one argument for

each subtree, takes multiple arguments for each subtree, one for each encoding of the subtree.

Let Σk be the set of all triples pb, o1, ı̂q, where pb, o1q is an extended letter for b P Σ, and

o1p̂ıq “ k. Let us fix some (arbitrary) total order on elements of Σk, that will be used to order

arguments of our terms. Using the product notation α ˆ β Ñ γ for the type α Ñ β Ñ γ, we

define types

Ψk “ 0 ˆ
ź

pa,o,̂ıqPΣk

αa,o,ąk,

where the pa, o, ı̂q are ordered according to our fixed order on Σk. We have used here the

types

αa,o,ąk “ Ψopi1q Ñ ¨ ¨ ¨ Ñ Ψopimq Ñ 0,

where i1 ă ¨ ¨ ¨ ă im is the list of all i P t1, . . . , rankpaqu for which opiq ą k. In particular we

have αa,o,ąn “ 0. Notice that αa,o,ąk and types in Ψk are of level at most n ´ k. We are

now ready to define the type of our nonterminals: Aa,o has type

Ψop1q Ñ ¨ ¨ ¨ Ñ Ψoprankpaqq Ñ 0

and Ab,o1 ,̂ı
a,o has type

Ψop1q Ñ ¨ ¨ ¨ Ñ Ψoprankpaqq Ñ αb,o1,ąordpaq.

Recall that the resulting higher-order recursion scheme has to use constants and an

alternating tree automaton to simulate alternation. We will have two kinds of constants in

Γ: _i of type 0i Ñ 0, and ^i of type 0i Ñ 0, defined for appropriate numbers i P N (we

need only finitely many of them). The constant _i simulates nondeterministic choice, and

^i simulates universal choice. The tree automaton xΓ, Q, ∆y is defined in the natural way:

Q consists of a single state q, and we have transitions

q
_iÝÝÑ H . . . HQH . . . H, q

^iÝÝÑ Q . . . Q.

In particular there is no transition reading _0, and we have the transition q
^0ÝÝÑ ε.

Next, we define our encoding of trees into applicative terms. In the definition below we

use tuples just as a shorthand: M pN1, . . . , Nkq is intended to mean M N1 . . . Nk. A tree is

encoded as a tuple of applicative terms:

Encpuq “ pencpuq, encb1,o1 ,̂ı1 puq, . . . , encbk,ok ,̂ık puqq

where pb1, o1, ı̂1q ă ¨ ¨ ¨ ă pbk, ok, ı̂kq are all the elements of Σordpuq ordered according to the

fixed order on Σordpuq. We have here one basic encoding:

encpapu1, . . . , umqq “ Aa,o Encpu1q . . . Encpukq where @i ¨ opiq “ ordpuiq.
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Additionally for each pbj , oj , ı̂jq P Σordpaq we have

encbj ,oj ,̂ıj papu1, . . . , umqq “ Abj ,oj ,̂ıj
a,o Encpu1q . . . Encpukq where @i ¨ opiq “ ordpuiq.

It remains to define rules for the nonterminals from the rules of S. Let us use the

convention on variable naming that every left side of a rule in R is of the form apx1, . . . , xmq

or bpy1, . . . , yı̂´1, apx1, . . . , xmq, yı̂`1, . . . , xkq. Recall that S is flat, so every left side is of such

form. A right side R “ tr1, . . . , rlu of a rule is encoded as

encpRq “ ^l encpr1q . . . encprlq,

where encpriq is defined as for normal trees, with the encoding of variables given by:

encpxiq “ xi, enca,o,̂ıpxiq “ x
a,o,̂ı
i ,

encpyiq “ yi, enca,o,̂ıpyiq “ y
a,o,̂ı
i .

Here, xi is a variable of the AOTPS, while xi is a variable in an applicative term of the

recursion scheme, and similarly for the other variables. In order to define a rule for a

nonterminal Aa,o we look at all rules with apx1, . . . , xmq on the left side with ordpxiq “ opiq

for all i. Let R1, . . . , Rl be the right sides of these rules. Then we take

Aa,o Encpx1q . . . Encpxmq Ñ _l`m encpR1q . . . encpRlq deep1 . . . deepm

with

deepı̂ “ x
a,o,̂ı
ı̂ Encpxi1

q . . . Encpxid
q,

where i1 ă ¨ ¨ ¨ ă id are all the i P t1, . . . , mu for which opiq ą op̂ıq. In order to define a rule for

a nonterminal Ab,o1 ,̂ı
a,o we look at all rules having on the left side bpy1, . . . , yı̂´1, apx1, . . . , xmq, yı̂`1, . . . , xkq

with ordpyiq “ o1piq and ordpxiq “ opiq for all i, and ordpaq “ o1p̂ıq (in particular for nonter-

minals Ab,o1 ,̂ı
a,o with ordpaq ‰ o1p̂ıq there are no such rules). Let R1, . . . , Rl be the right sides

of these rules (when ordpaq ‰ o1p̂ıq, we always have l “ 0). Then we take

Ab,o1 ,̂ı
a,o Encpx1q . . . Encpxmq Encpyi1

q . . . Encpyid
q Ñ _l encpR1q . . . encpRlq,

where i1 ă ¨ ¨ ¨ ă id are all the i P t1, . . . , ku for which o1piq ą ordpaq.

Let us briefly see the correspondence between steps of S and steps of G. Consider a tree

u “ apu1, . . . , umq. Its encoding encpuq is Aa,o Encpu1q . . . Encpumq where opiq “ ordpuiq for

each i. The first step of G performed from encpuq results in the right side of the rule for Aa,o

where we substitute encpuiq for xi and encb,o1 ,̂ıpuiq for x
b,o1 ,̂ı
i for each i, b, o1, ı̂ (denote this

substitution as rϕs). The resulting tree starts with some _j , so then G nondeterministically

chooses one of its subtrees. There is a subtree encpRqrϕs for each shallow rule apx1, . . . , xmq Ñ

R of S where ordpxiq “ opiq “ ordpuiq for each i. These are exactly all shallow rules that can

be applied to u. By applying this rule to u we obtain the set trσ | r P Ru where σ maps xi

to ui for each i. Notice that encpRqrϕs starts with ^|R| and has as children encprqrϕs for

each r P R. Thus G in the next step will transit into the set tencprqrϕs | r P Ru. Finally, we

see that encprσq “ encprqrϕs.

Another possibility for G in the second step is to transit for some ı̂ P t1, . . . , mu to

deepı̂rϕs “ pxa,o,̂ı
ı̂ Encpxi1

q . . . Encpxid
qqrϕs “ enca,o,̂ıpuı̂q Encpui1

q . . . Encpuid
q “

“ A
a,o,̂ı
b,o1 Encpv1q . . . Encpvkq Encpui1

q . . . Encpuid
q,
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where uı̂ “ bpv1, . . . , vkq, and o1piq “ ordpviq for each i, and i1 ă ¨ ¨ ¨ ă id are all i P t1, . . . , mu

for which opiq ą op̂ıq. The next three steps of G simulate exactly all deep rules of S

having on the left side apy1, . . . , yı̂´1, bpx1, . . . , xkq, yı̂`1, . . . , ymq with ordpyiq “ opiq and

ordpxiq “ o1piq for all i (in the same way as it was for shallow rules and for the nonterminal

Aa,o). It is important that the right sides of such rules use only those variables yi for which

ordpyiq “ opiq ą op̂ıq “ ordpbq. We conclude that xCS , ÑSy and xCG , ÑGy faithfully simulate

each other.

Step 4: From higher-order recursion schemes to the Krivine machine

It is well-known how to translate from one formalism to the other; cf. [25].

F Ordered annotated multi-pushdown systems

We encode ordered annotated multi-pushdown systems [15] into AOTPSs. Formally, an

alternating ordered annotated multi-pushdown system is a tuple R “ xm, n, Γ, Q, ∆y, where

m P Ną0 is the number of higher-order pushdowns, n P Ną0 is the order of each of the m

higher-order pushdowns, Γ is a finite pushdown alphabet containing a distinguished initial

symbol e, Q is a finite set of control locations, and ∆ Ď Q ˆ t1, . . . , mu ˆ Γ ˆ On ˆ 2Q is

a set of rules, where On “
Ťn

k“1
tpushb

k, pushk, popk, collapsek | b P Γu. Intuitively, a rule

pp, l, a, o, P q can be applied when the control location is p and the topmost symbol on the

l-th stack is a, and it applies the stack operation specified by o to this stack. Pop and

collapse operations are called consuming. An alternating ordered annotated multi-pushdown

system R induces an alternating transition system xCR, ÑRy, where CR “ Q ˆ Γm
n , and

pp, w1, . . . , wmq ÑR P ˆ tpw1
1, . . . , w1

mqu if, and only if, there exists a rule pp, l, a, o, P q P ∆

s.t.

1) wl “ xaul , ¨ ¨ ¨y,

2) if o is consuming, then w1
1 “ ¨ ¨ ¨ “ w1

l´1
“ xex y, x y, . . . , x yy,

3) if o is not consuming, then w1
1 “ w1, . . . , w1

l´1
“ wl´1,

4) w1
l “ opwlq, and

5) w1
l`1

“ wl`1, . . . , w1
m “ wm.

For c P CR and T Ď Q, the (control-state) reachability problem for R asks whether c P

Pre
˚pT ˆ Γm

n q.

Encoding. Let Σ be an ordered alphabet containing, for every pushdown index l P t1, . . . , mu

and order k P t1, . . . , nu, 1) an end-of-stack symbol pl, k, Kq of order pl ´1q ¨n`k and rank 0,

2) a symbol pl, kq of order pl ´1q ¨n`k and rank k `2, 3) a symbol pl, ‚q of order pl ´1q ¨n`1

and rank n ` 2. Moreover, Σ contains a symbol ‚ of order 1 and rank m ¨ pn ` 1q, and, for

every pushdown index l P t1, . . . , mu and every a P Γ, a symbol pl, aq of order pl ´ 1q ¨ n ` 1

and rank 0. Thus Σ has order mn. Notice that the size of Σ is |Σ| “ Opm ¨ pn ` |Γ|qq. Fix a

pushdown index l. An empty order-k pushdown is encoded as the tree encl,kpx yq “ pl, k, Kq.

A nonempty order-k pushdown xaû, u1, . . . , uky is encoded as the tree

encl,kpxaû, u1, . . . , ukyq “
pl, kq

pl, aq enc‚
l pûq encl,1pu1q ¨ ¨ ¨ encl,kpukq

,
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and

enc‚
l pxbû, u1, . . . , unyq “

pl, ‚q

pl, bq enc‚
l pûq encl,1pu1q ¨ ¨ ¨ encl,npunq

.

To simplify the encoding, we assume w.l.o.g. that collapse links are always of order n (collapse

to a lower order is still allowed though). An m-tuple of nonempty order-n pushdowns

w “ pxaû1

1
, u1,1, . . . , u1,ny, . . . , xaûm

m , um,1, . . . , um,nyq

is encoded as the following tree encpwq

‚

p1, a1q t‚
1

t1,1 ¨ ¨ ¨ t1,n ¨ ¨ ¨ pm, amq t‚
m tm,1 ¨ ¨ ¨ tm,n

,

where t‚
l “ enc‚

l pûlq for every l “ 1, . . . , m, and tl,k “ encl,kpul,kq for every l “ 1, . . . , m

and k “ 1, . . . , n. We can observe here two differences when comparing to the encoding of

annotated higher-order pushdown systems. First, we do not put the topmost stack symbol

in the root, but in an additional child of the form pl, aq just below the root. This allows to

avoid an alphabet of exponential size containing all m-tuples of letters from Γ (the rest of

the stack is encoded in an analogous way, but this is only for uniformity). Second, at the

beginning of each collapse link we use a special letter pl, ‚q instead of pl, kq. This letter has a

fixed order, and thanks to that we can use a variable of this fixed order to match the subtree

encoding a collapse link. Recall that for annotated higher-order pushdown systems we have

created separate rules for each possible order of the collapse links, but here such a solution

would result in an exponential blowup since we have m collapse links of independent orders.

Let xm, n, Γ, Q, ∆y be an ordered annotated multi-pushdown system. We define an

equivalent AOTPS S “ xmn, Σ, Q, RSy of order mn, where Σ and Q are as defined above,

and RS contains a rule for each rule in ∆. We use the convention that variables xl,k, zl,k

have order pl ´ 1q ¨ n ` k, and variables yl, y1
l, tl, are of order pl ´ 1q ¨ n ` 1. We write x

i..j
l

(with i ď j) for the tuple of variables pxl,i, . . . , xl,jq. If pp, l, a, pushb
k, P q P ∆, then there is

the following shallow rule in RS :

p, ‚

x1..n
mymtm¨ ¨ ¨x1..n

lylpl, aq¨ ¨ ¨x1..n
1y1t1

ÝÑ P, ‚

x1..n
mymtm¨ ¨ ¨x2..n

lpl, 1q

xl,1ylpl, aq

pl, ‚q

x1..n
lylpl, aq

pl, bq¨ ¨ ¨x1..n
1y1t1

.
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If pp, l, a, pushk, P q P ∆, then there is the following shallow rule in RS :

p,
‚

t1 y1 x1..n
1

¨ ¨ ¨ pl, aq yl x1..n
l

¨ ¨ ¨ tm ym x1..n
m

ÝÑ P,
‚

t1 y1 x1..n
1

¨ ¨ ¨ pl, aq yl x1..k´1

l
pl, kq

pl, aq yl x1..k
l

xk`1..n
l

¨ ¨ ¨ tm ym x1..n
m

.

If pp, l, a, popk, P q P ∆, then there is the following deep rule in RS :

p,
‚

t1 y1 x1..n
1

¨ ¨ ¨ pl, aq y1
l z1..k´1

l
pl, kq

pl, bq yl x1..k
l

xk`1..n
l

¨ ¨ ¨ tm ym x1..n
m

ÝÑ P,
‚

p1, eq p1, 1, Kq ¨ ¨ ¨ pl´1, n, Kq pl, bq yl x1..n
l

¨ ¨ ¨ tm ym x1..n
m

This deep rule satisfies the ordering condition since pl, kq has order pl ´ 1q ¨ n ` k, and

all variables xk`1..n
l that appear also on the r.h.s. have order strictly higher than pl, kq.

Notice that y1
l has relatively low order, but it does not appear on the r.h.s. Finally, if

pp, l, a, collapsek, P q P ∆, then there is the following deep rule in RS :

p,
‚

t1 y1 x1..n
1

¨ ¨ ¨ pl, aq pl, ‚q

pl, bq yl x1..k
l

z1..k
l xk`1..n

l
¨ ¨ ¨ tm ym x1..n

m

ÝÑ P,
‚

pl, eq p1, 1, Kq ¨ ¨ ¨ pl´1, n, Kq pl, bq yl x1..n
l

¨ ¨ ¨ tm ym x1..n
m

.

The deep rule above satisfies the ordering condition since pl, ‚q has order pl ´ 1q ¨ n ` 1, and

all variables xk`1..n
l , tl`1, yl`1, x1..n

l`1
, . . . , tm, ym, x1..n

m that appear also on the r.h.s. have

strictly higher order.

§ Lemma 17 (Simulation). We have that pp, wq Ñ˚
R P ˆ tw1u if, and only if, pp, encpwqq Ñ˚

S

P ˆ tencpw1qu. Thus, the (control-state) reachability problem for R is equivalent to the

reachability problem for S.
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