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Abstract

Ordering and topological defects in solids with quenched randomness

by

Thomas Chapman Proctor

Adviser: Professor Eugene M. Chudnovsky

We explore multiple different examples of quenched randomness in systems with a con-

tinuous order parameter. In all these systems, it is shown that understanding the effects of

topology is critical to the understanding of the effects of quenched randomness.

We consider n-component fixed-length order parameter interacting with a weak random

field in d = 1, 2, 3 dimensions. Relaxation from the initially ordered state and spin-spin

correlation functions have been studied on lattices containing hundreds of millions sites.

At n − 1 < d presence of topological structures leads to metastability, with the final state

depending on the initial condition. At n − 1 > d, when topological objects are absent, the

final, lowest-energy, state is independent of the initial condition. It is characterized by the

exponential decay of correlations that agrees quantitatively with the theory based upon the

Imry-Ma argument. In the borderline case of n − 1 = d, when topological structures are

non-singular, the system possesses a weak metastability with the Imry-Ma state likely to be

the global energy minimum.

We study random-field xy spin model at T = 0 numerically on lattices of up to 1000 ×

1000 × 1000 spins with the accent on the weak random field. Our numerical method is

physically equivalent to slow cooling in which the system is gradually losing the energy and

relaxing to an energy minimum. The system shows glass properties, the resulting spin states

depending strongly on the initial conditions. Random initial condition for the spins leads to

the vortex glass (VG) state with short-range spin-spin correlations defined by the average
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distance between vortex lines. Collinear and some other vortex-free initial conditions result

in the vortex-free ferromagnetic (F) states that have a lower energy. The energy difference

between the F and VG states correlates with vorticity of the VG state. Correlation functions

in the F states agree with the Larkin-Imry-Ma theory at short distances. Hysteresis curves

for weak random field are dominated by topologically stable spin walls raptured by vortex

loops. We find no relaxation paths from the F, VG, or any other states to the hypothetical

vortex-free state with zero magnetization.

XY and Heisenberg spins, subjected to strong random fields acting at few points in

space with concentration cr ≪ 1, are studied numerically on 3d lattices containing over

four million sites. Glassy behavior with strong dependence on initial conditions is found.

Beginning with a random initial orientation of spins, the system evolves into ferromagnetic

domains inversely proportional to cr in size. The area of the hysteresis loop, m(H), scales

as c2r. These findings are explained by mapping the effect of strong dilute random field onto

the effect of weak continuous random field. Our theory applies directly to ferromagnets

with magnetic impurities, and is conceptually relevant to strongly pinned vortex lattices in

superconductors and pinned charge density waves.

The random-anisotropy Heisenberg model is numerically studied on lattices containing

over ten million spins. The study is focused on hysteresis and metastability due to topological

defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are

interested in the limit when ferromagnetic correlations extend beyond the size of the grain

inside which the magnetic anisotropy axes are correlated. In that limit the coercive field

computed numerically roughly scales as the fourth power of the random anisotropy strength

and as the sixth power of the grain size. Theoretical arguments are presented that provide

an explanation of numerical results. Our findings should be helpful for designing amorphous

and nanosintered materials with desired magnetic properties.
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Chapter 1

Introduction

This thesis hopes to answer some of the questions related the effects of quenched disorder

on long range order in a system with a continuous order parameter. While the effect of

quenched randomness that strongly interacts with the order parameter is in most cases

trivial, the effects of weakly interacting disorder are not obvious and have had a history of

controversy and disagreement. In 1970 Larkin[1] first proposed that a random field may be

behind amorphous structure in the Abrisokov vortex lattice in type II superconductors. A

few years later, Imry and Ma[2] came up with a qualitative argument which extended Larkin’s

findings to any dimension. They found that a random field will destroy long range order no

matter how weak the random field is, as long as the number of dimensions of the system are

less than four. They also produced a prediction for the scaling of the finite correlation length

with respect to the random field strength for dimensions less than four. Their argument was

also sufficiently general that it can be directly applied to random anisotropy systems as well.

Aizman and Wehr[3] provided a rigorous proof of Imry and Ma’s claim that random fields

and anisotropy will destroy ferromagnetic order for dimensions less than four.

Along with these theoretical developments, it was shown that random field and random

anisotropy models have multitudes of applications beyond the super conducting systems [4,

1
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5, 6], in which Larkin first encountered them. The random field model has been applied to

charge density waves[7–13], disordered antiferromagnets[14], Josephson Junction arrays[15],

magnetic bubbles in two-dimensional arrays [16, 17], superfluid .3He-A aerogel [18, 19],

amorphous and sintered ferromagnets[20–24]

However, in the 1980s, the validity of the Imry-Ma-Larkin argument was questioned

by renormalization group treatments[25–27]. Furthermore, scaling and replica symmetry

breaking arguments[13, 28–32], as well as a variational method[33, 34] led to a power-law

dependence of correlations at large distances, contradicting the prediction of the destruction

of long range order. This quasi-ordered state was named a Bragg glass.

Further complicating the issue, results for decoration[5] and neutron scattering[6] exper-

iments in superconductors have not been conclusive

This thesis hopes to resolve these issues. Our main method is to study various random

field and random anisotropy models numerically, by relaxing from an initial state to find a

local minima.

In Section 1.1, we present the important argument of Imry and Ma[2], which argues that

quenched disorder should destroy long range order in dimmensions less than four.

In Section 1.2 we explain our numerical method and show that it is effective at finding

physically relevant states.

In Chapter 2, we have tested a possible explanation for confusing behavior of the random

field model: conserved topological structures provide significant energy barriers such that

the system is dominated by the metastable states created by these energy barriers. How-

ever, these topological structures are dependent on the dimensionality of the system. For a

model with nu number of components of the order parameter and d dimensions, conserved

topological structures exist if n ≤ d + 1, however no such topological structures exist for

models where n > d + 1. By comparing the behavior of models with different n and d,

we find metastability in systems where conserved topological structures can exist, but no
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metastability for models where there are no such topological structures.

In Chapter 3 we focus on a specific physically relevant model, the random field XY model

in three dimensions, i.e. a random field model where n = 2 and d = 3. We explore the model’s

behavior under various numerical experiments, and look at the specifics of magnetization,

energy, and vortices, the conserved topological structures in this model.

In Chapter 4, we look at a strong random field that only interacts with the order pa-

rameter at a few dilute points. We find that this problem can be explained well using

the understanding that we have gained from the previous chapters, as the problem can be

re-scaled to ones we have previously explored.

In Chapter 5, we look another type of quenched randomness, random anisotropy, which

is particularly relevant to micromagnetics. We focus on aspects experimentally relevant to

magnetism, correlation functions and hysteresis curves.

1.1 The Imry-Ma-Larkin Argument

Here, we will give a general qualitative statistical argument following the argument of Imry

and Ma[2]. For this argument, our energy has an exchange term,

Eex =

∫

ddr α

(

∂S

∂ri

∂S

∂rj

)

(1.1)

For the sake of this discussion, we will consider S(r) to be a unitless order parameter. We

also have a random potential energy,

Eran = −β

∫

ddr Vran (S(r), r) (1.2)

where Vran (S(r), r) is the unitless portion of a random potential. It is a random function of

r correlated over some length Ra, but not random in S(r). β is a constant which contains all
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quantities in the potential with units, and thus has units of energy density. For the purposes

of this discussion, we can remain agnostic to the exact character of Vran (S(r), r). Examples

we will study in detail in later chapters include a random field given by

Vran (S(r), r) = h(r) · S(r), (1.3)

where h(r) is a dimensionless vector field of unit length and random direction, and random

anisotropy,

Vran (S(r), r) = (n(r) · S(r))2 , (1.4)

where n(r) is a dimensionless random vector field of unit length.

Important to our discussion is that βR2
a ≪ α. Without this condition, behavior of the

order parameter is dominated by the random potential and in general much simpler than

the problem we will explore here. For example, for the potential given in Eq. (1.3), the order

parameter will simply follow the direction of the random field h(r).

With β ≪ αR2
a, the result is far from obvious. If the system were to disorder, than the

order parameter must be correlated on a scale Rf ≫ Ra, as disorder on any smaller scale

will be prohibited by both strong exchange energy and the random potential. The scaling

of the exchange energy over a volume V will be

Eex ∝ α
V

R2
f

, (1.5)

Within the volume over which the order parameter is correlated, Rd
f , the order parameter

cannot be well correlated with any local value of the random potential. Over an infinite

volume, this would mean that the average contribution to the energy will simply be the

mean value independent of the configuration of the order parameter. However, over the

finite volume Rd
f , the deviation of the sample average from this mean will be the standard
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deviation of the sample average given by the central limit theorem, i.e. ∝
√

1
N
, where N is

the number of elements in our sample. Within the volume Rd
f , this number is the number

of independent random instances of our random potential,

N ∝
(

Rf

Ra

)d

. (1.6)

Thus, we expect the energy contribution from the random field to be

Eran ∝ −βV

(

Rf

Ra

)−d/2

, (1.7)

and our total energy is given by

E ∝ α
V

R2
f

− βV

(

Rf

Ra

)−d/2

. (1.8)

Extremal values of this energy for Rf are

Rf

Ra

∝





√

α
β

Ra





4

4−d

. (1.9)

In order to check to make sure we have found a minimum, we can do the second derivative

test, and find

d2E
dR2

f

= −(d2 + 2d− 24)

4
V
(

α−d+4β8R4d
a

)
1

4−d (1.10)

For d < 4, d2E
dR2

f
is positive, implying we have found an energy minimum. For d ≥ 4, d2E

dR2

f

we find we have found a maximum or inflection point, and no disordered energy minimum

exists. We can then generally state that for d < 4, an arbitrarily weak random potential will

destroy long range order, while for d ≥ 4, it will not.



CHAPTER 1. INTRODUCTION 6

1.1.1 Hysteresis in the Imry-Ma Picture

Based off this information, we can look at the qualitative behavior of any hysteresis that we

might observe. While we would not expect hysteresis based off what we have discussed so

far, we will see evidence for hysteresis in later chapters. If we treat each Imry-Ma domain

independently, we would expect the coercive field to scale with the effective random field of

the domain,

Hc ∝ βeff . (1.11)

The effective field βeff will be given by Eq. (1.7), and plugging in Eq. (1.9), we find

Hc ∝ β





Ra
√

α
β





2d
4−d

. (1.12)

It should be mentioned that these results are on valid for a ≤ Ra ≪ Rf ≪ L. This is

clear from the structure of the argument. If Ra is less than the site separation of the lattice,

a, it is no longer meaningful and Ra can be replaced by a. We must have Ra ≪ Rf , as we

require statistical averaging for Eq. (1.7), and Rf ≪ L is required or else the system will be

dominated by boundary effects.

1.2 The numerical method of relaxation and “over-

relaxation”

The task is to find energy minima of a Hamiltonian with quenched randomness by a numeri-

cal algorithm starting from an initial state (IC) and using some relaxation protocol. It turns

out that there are multitudes of local energy minima and the situation resembles that of a

spin glass. At the end of relaxation the system ends up in one of them. We do not attempt
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Figure 1.1: Efficiency of the weak-damping (slow-cooling) method for glassy systems.

to search for the ground state of the system, which would require different numerical meth-

ods. Rather, we are interested in representative local minima obtained by relaxation from

typical IC such as random and collinear initial conditions. This corresponds to experimental

situations, and the results for physical quantities in the final state are reproducible up to

statistical noise due to different realizations of the random field and different realizations

of the relaxation protocol that may have a stochastic part. The larger the system size, the

smaller the fluctuations. For smaller sizes, averaging of the results over realizations of the

random field is necessary.

One could use the Landau-Lifshitz equation of motion with damping (with no precession

term for the xy model) to find local energy minima. One can expect an even faster relaxation

if one rotates every spin, sequentially, straight in the direction of the effective magnetic field

Hi,eff =
∑

j

Jijsj + hj +H (1.13)

that is [35]

si,new = Hi,eff/ |Hi,eff .| (1.14)
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We call this the finite rotation (FR) method. Although this method works very well in cases

when there is only one energy minimum (such as the collinear state for pure ferromagnetic

models), it leads to slow relaxation in the case of glassy behavior characterized by many

local minima. The problem is that the relaxation described by Eq. (1.14) is initially too

fast and the system falls into the nearest local minimum that is not the deepest and not

the most representative. As in the multi-dimensional space of our model there are narrow

valleys rather than simple local minima, the system quickly falls into one of these valleys

and then begins a long travel along it.

To counter this slow relaxation, it is convenient to combine the FR method with so-called

over-relaxation [36] that is, in fact, a conservative pseudo-dynamics described by

si,new =
2 (si,old ·Hi,eff)Hi,eff

H2
i,eff

− si,old. (1.15)

Here spins are sequentially flipped onto the other side of the effective field (half of the

precession period for the Heisenberg model) and the energy is conserved. This method

is very convenient to quickly explore the hypersurface of constant energy of the system.

Whereas the FR method searches for a minimal energy, the over-relaxation method searches

for the maximal entropy. It is a standard numerical method for classical spin systems, usually

combined with Monte Carlo updates (see, e.g., Ref. [37]).

For instance, starting from the collinear state and using the over-relaxation method,

one can describe FR-induced transition of the system from the initial state that has the

minimal statistical weight to a more disordered state having the same energy but a much

higher statistical weight. This process describes an irreversible relaxation in which the

magnetization value m decreases from 1 to a smaller value. The resulting final state is above

the ground state, so it can be interpreted as a thermal state with some small temperature.

Adding the energy-lowering evolution described by Eq. (1.14) one can find the lowest-energy
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state in this particular region of phase space.

Practically it is convenient to combine both methods. In the main method we used, Eq.

(1.14) is applied with the probability α while Eq. (1.15) is applied with the probability 1−α.

The optimal value of α that plays the role of a relaxation constant is in the range 0.1− 0.01,

typically 0.03. Physically this corresponds to slow cooling the system. Such a choice results

in convergence acceleration by factors greater than 10 in comparison to α = 1. The efficiency

of the combined weak damping method for glassy systems is shown in Fig. 1.1, assuming

that deeper minima have broader basins of attraction.

Starting from the collinear state, we also used a two-stage relaxation method. The

first stage, which we call “chaotization”, is the conservative pseudo-dynamics given by Eq.

(1.15). The second stage is the combined relaxation process described above. In some cases

during chaotization damped oscillating behavior was observed. In this case suppression

of oscillations and a faster convergence can be achieved by performing Eq. (1.15) with a

probability 1 − η and leaving the spin unchanged with the probability η. The constant

η that has the optimal value about 0.01 plays the role of a decoherence constant in the

numerical method.

As we have seen, at h < Js, the regions that are ferromagnetically ordered can be quite

large. A system of size L < Rf will always exhibit ferromagnetic order. Thus, it may be

difficult to numerically test the Imry-Ma statement that a random field, however weak it

may be, destroys the long-range order in three dimensions. Even when Rf is small compared

to L it may not be easy to distinguish between spontaneously magnetized states and zero-

magnetization states because of the magnetization arising from statistical fluctuations. The

problem is similar to that of a finite-size paramagnet: N spins randomly distributed between

spin-up and spin-down states will have an average total magnetization proportional to
√
N

and thus average magnetization per spin proportional to 1/
√
N .
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The magnetization of the system is given by

m =
1

N

∑

i

si, (1.16)

where N is the total number of spins. The absolute value of m is related to the spin

correlation function of Eq. (3.5) as

m2 = C(∞) +
1

V

∫

ddR [C(R)− C(∞)] , (1.17)

where C(∞) describes long-range order (LRO) and V = L3 is the system volume. Plotting

m2 vs 1/V shows if there is a LRO in the system in the limit V → ∞.

This means that the systems solved numerically must have a size L ≫ Rf , must be

strongly fulfilled in order to properly make conclusions on the absence of long range order

in these systems.



Chapter 2

Topology and random fields

In this chapter, we will focus on the random field model described by the Hamiltonian

H =

∫

ddr
[α

2
(∇S(r))2 − h(r) · S(r)−H · S(r)

]

, (2.1)

where S(r) is an n component continuous symmetry order parameter, h(r) is an n component

random field, and H is an external field. The random field may be correlated on some scale

Ra, in this case,

〈hα(r
′)hβ(r

′′)〉 = 1

n
h2adδαβδ(r

′ − r′′), (2.2)

where Γ(r) rapidly goes to zero at r ≫ Ra, e.g., Γ(r) = exp(−r/Ra) or Γ(r) = exp(−r2/R2
a).

The random field may also be uncorrelated, as we will focus on for our numerical computa-

tions, in which case Γ(r) = δ(r). This behavior can be generated by drawing realizations of

the random field h(r) from the Gaussian distribution[39],

P [h(r)] ∝ exp

[

− 1

h2

∫

ddr

ad
h2(r)

]

. (2.3)

This chapter is based on work originally presented in Ref. [38]

11
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In Section 1.1, we presented the argument that the random field h(r) should destroy long-

range order, regardless of its strength. However, we will see here that the actual situation is

more complicated and that the long-range behavior of random-field systems is controlled by

topology. Our emphasis is on glassy vs reversible behavior. The condition S2 = S2
0 = const

leaves n− 1 components of the field independent. At n ≤ d, mapping of n− 1 independent

parameters describing the field S onto spatial coordinates provides topological defects with

singularities. They are vortices in the xy model (n = 2) in 2d, vortex loops in the xy model

in 3d, and hedgehogs in the Heisenberg model (n = 3) in 3d. Energy barriers associated with

creation/annihilation of these topological defects and their pinning by the random field make

the final state of the system strongly dependent on the initial condition, thus invalidating

the Imry-Ma argument. Moreover, as we shall see, the Imry-Ma state necessarily contains

singularities that make its energy higher than that of the ordered state.

In the opposite case of n−1 > d a mapping of the S-space onto the r-space that generates

topological objects is impossible. In the absence of these topological objects, they do not

create energy barriers and cannot be pinned. The stable state of the system is unique and

independent of the initial condition. In this case the long-range order is destroyed in a

manner that agrees quantitatively with the Imry-Ma picture. This applies to the Heisenberg

model with n = 3 (and greater) in one dimension, n = 4 (and greater) in two dimensions,

and n = 5 (and greater) in 3d. The case of n = d+1 is the borderline between the above two

cases. This corresponds to models with non-singular topological objects: Kinks in the xy

model in 1d, skyrmions in the Heisenberg model with n = 3 in 2d, and similar non-singular

solutions for n = 4 in 3d. They are characterized by a topological charge, Q = ±1,±2, .... Its

conservation is important as it is only weakly violated by the discreteness of the lattice and

by a weak random field. Possession of a pinned topological charge by the IM state prevents

the system from relaxing to this state from any initial state that has a different topological

charge.
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To illustrate the validity of the above arguments, we have numerically studied the discrete

counterpart of the Hamiltonian (2.1)

H = −1

2

∑

ij

Jijsi · sj −
∑

i

hi · si −H ·
∑

i

si, (2.4)

on lattices containing hundreds of millions spins si of length s. The relation between pa-

rameters of the continuous and discrete models is αe = Jad+2, S0 = s/ad, where a is the

lattice parameter. We will consider the discrete version of uncorrelated disorder given by

Γ(r) = δ(r) in Eq. (2.2),

〈hiαhjβ〉 =
h2

n
δαβδij. (2.5)

We consider hypercubic lattices with periodic boundary conditions containing Ld spins; L

being the linear size of the system. In computations we use J = s = a = 1 and h = HR.

Our numerical method combines sequential rotations of spins towards the direction of the

local effective field, in this case, Hi,eff =
∑

i Jijsj +hj +H, with energy-conserving spin flips

described by Eq. (1.15) in accordance with the method described in 1.2. Relaxation of the

per-site magnetization, m =
√
m ·m , where m = (sN)−1

∑

i Si, out of a collinear state is

shown in Fig. 2.1. For each process it was checked that the running time was sufficient to

have no further relaxation in the final state.

2.1 Relaxation

In one dimension, numerical analysis of different spin configurations shows that for n =

d + 1 = 2 the IM-like state with m = 0 has the lowest energy. This state, however, cannot

be achieved through relaxation from the initially ordered state without forming non-singular

kinks or antikinks associated with the full clockwise or counterclockwise rotations of the

spin as one moves along the spin chain. While the system tends to disorder it cannot do so
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Figure 2.1: Relaxation of the magnetization of the random-field spin system from fully
ordered initial state for different d and n: (a) d = 1, n = 2, 3; (b) d = 2, n = 2, 3, 4; (c)
d = 3, n = 2, 3, 4, 5. MCS means a full spin update, as in Monte Carlo simulations.
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completely because it requires changing the topological charge given by the difference in the

number of kinks and antikinks pinned by the random field. However, for three-component

spins in one dimension, topologically stable objects are absent and the system disorders

completely as is illustrated by Fig. 2.1a.

Two-component spins in two dimensions form well-known topological singularities – vor-

tices in the xy model [35, 40, 41]. Here again the system wants to relax to the IM-like state

with m = 0 but cannot do it without forming vortices that cost energy, which explains the

curve in Fig. 2.1b for the xy model in 2d. In the marginal case of d = 2, n = 3 the model

possesses non-singular topological objects – skyrmions [40]. In the absence of the random

field the difference in the number of skyrmions and antiskyrmions is a conserved topological

charge. Skyrmions on the lattice tend to collapse [42]. However, pinning by the random field

stabilizes them. We have numerically checked that for d = 2, n = 3 the IM state with m = 0

has the lowest energy. However, conservation of the topological charge prevents the system

from relaxing to this state from almost any initial condition. This effect is responsible for

a small but finite magnetization obtained by the relaxation from the initially ordered state,

see Fig. 2.1b. However, for a four-component spin in two dimensions, topological objects

are absent and the system relaxes to the state with m = 0, see Fig. 2.1b.

Relaxation in a three-dimensional case is illustrated by Fig. 2.1c. For n = 2 the system

possesses vortex lines or loops that in the lattice model are singular pancake vortices in 2d

planes stuck together, see Fig. 2.2a. Similarly, the model with three-component spins in 3d

has singular hedgehogs, where all spins around a singular point are directed either towards

or away from the singularity, see Fig. 2.2b. The energy cost of vortex loops and hedgehogs

prevents the 3d system of spins from relaxing to the m = 0 state, as is shown in Fig. 2.1c.

Starting from random orientation of spins one obtains states of vortex or hedgehog glasses

with m = 0 and energies higher than those of the ordered states. In the marginal case

of n = 4 the 3d random-field model has non-singular topological structures pinned by the
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Figure 2.2: Topological simgularities in the random-field spin model in three dimensions
obtained by relaxation from random initial orientation of spins: (a) Pinned vortex loops of
the xy (n = 2) model; (b) Pinned hedgehogs of the Heisenberg (n = 3) model. fS is fraction
of the lattice interstitial (body centered) sites occupied by singularities.
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Figure 2.3: Hysteresis curves of the random field spin model in two dimensions for n = 2, 3, 4.

random field which are similar to skyrmions in 2d. In this case the final magnetic moment

is still non-zero but small, see Fig. 2.1c. We again find that the energy of the Imry-Ma-like

state m = 0 state for d = 3, n = 4 is lower than that of the m 6= 0 state. However, the

difference in the topological charge prevents the system from relaxing to the Imry-Ma state

from almost any initial state.

The model with five-component spins in 3d does not possess any topologically stable

structures. The relaxation of the system from the ordered initial state is unobstructed by

any topological arguments and the system ends up in the state with m = 0, Fig. 2.1c.

2.2 Hysteresis

The relation between topology and metastability in, e.g., two spatial dimensions is further

illustrated by the hysteresis curves in Fig. 2.3. The model with n = 2, that possesses xy

vortices with singularities, is characterized by a sizable hysteresis loop which is indicative

of strong metastability. The loop becomes thin for n = 3 when non-singular skyrmions are

present. It disappears completely, resulting in a reversible magnetic behavior, at n = 4 when

topological objects are absent. Similar behavior for different n has been observed in 3d.
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2.3 Defects in the Imry-Ma Picture

Applying the Imry-Ma argument given in Section 1.1, Eq. (1.9) becomes Rf ∝ (Js/h)2/(4−d).

For R & Rf correlations should be completely destroyed, thus the state of the system should

be disordered. This famous argument, however, does not account for the energy associated

with unavoidable singularities at n ≤ d. To show their existence in the IM state, consider

components of the averaged random field h̄β, β = 1, . . . , n. Since h̄β are sums of many

random numbers, they are statistically independent and have Gaussian distribution. In

about a half of the space h̄β > 0, in the other half h̄β < 0. Boundaries between these

regions are subspaces of dimension d− 1, where h̄β = 0. Their intersection, that is, h̄ = 0, is

unavoidable and forms a subspace of dimension d−n if n ≤ d. It is easy to see that subspaces

with h̄ = 0 are singularities in the spin field S. Since S2 = const, crossing subspaces h̄ = 0

makes all components of S change direction. For n = 2 in 2d subspaces h̄ = 0 are points

and the corresponding singularities are vortices or antivortices. A spin field in the 2d xy

model generated in accordance with the IM prescription is shown in Fig. 2.4. The red line

corresponds to h̄x = 0 and thus spins directed along the y-axis. The blue line corresponds

to h̄y = 0 and thus spins directed along the x-axis. At the intersections of red and blue lines

the spins can look neither in the x nor in the y-direction. This generates topological defects

– vortices or antivortices. For n = 2 in 3d subspaces h̄ = 0 are lines and the singularities

are vortex lines or loops. For n = 3 in 3d subspaces h̄ = 0 are points and the singularities

are hedgehogs. They emerge at the intersection of surfaces corresponding to h̄x = 0, h̄x = 0,

and h̄x = 0, see Fig. 2.5.

By order of magnitude the number of singularities equals the number of IM domains,

(L/Rf )
d. The lowest energy of an xy vortex in a 2d IM state would be 2πJs2 ln(Rf/a)[40].

The energy of the vortex loop in 3d contains an additional factor Rf/a. Consequently,

the exchange energy per spin goes up by ln(Rf/a) as compared to the IM argument that
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Figure 2.4: Emergence of vortices and antivortices at the intersections of lines corresponding
to h̄x = 0 (red) and h̄y = 0 (blue) in the random-field 2d xy model. Picture reflects numerical
averaging of h within finite range according to the prescription of the Imry-Ma model for
a particular realization of the random field. Arrows show spins on lattice sites. Similar
structures emerge after relaxation from random orientation of spins, with the positions of
vortices depending on the initial state.

Figure 2.5: Emergence of hedgehogs (black) at the intersection of three surfaces (shown in
different color) corresponding to h̄x = 0, h̄y = 0, and h̄z = 0 respectively in the n = 3
random-field model in three dimensions.
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Figure 2.6: Spin-spin correlation function of the random-field model for n = 2, 3, 4 in three
dimensions.

neglects vortices. The energy of a hedgehog would be 4πJs2(Rf/a). It changes the exchange

energy by a numerical factor of order unity. Thus, topological defects only modify the IM

argument by making Rf go up logarithmically in the xy model and by a factor of order

unity in the Heisenberg model. However, the energies of topological defects that are needed

to form the IM state as the system disorders are high compared to the Curie temperature.

This prohibits relaxation to m = 0 even at elevated temperatures. However, for the case

of n > d, the averaged random field is non-zero everywhere and the spin field S is non-

singular. Still at n = d+1 the presence of non-singular topological objects and conservation

of topological charge prevents the ordered state from relaxing to the IM state. However, for

n > d, the averaged random field is non-zero everywhere and the spin field S is non-singular.

Consequently, at n > d the m = 0 state has the lowest energy in accordance with the Imry-

Ma argument and the Aizenman-Wehr theorem which assume continuity of the spin field[3,

43]. Still at n = d + 1 the presence of non-singular topological objects and conservation of

topological charge prevents the ordered state from relaxing to the m = 0 Imry-Ma state.

Only at n > d + 1, when the spin-field is continuous and topological objects are absent the

system relaxes to the Imry-Ma state.
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Figure 2.7: Theoretical (see text) and numerical spin-spin correlation functions of the 3d
random-field model at n = 5.
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Figure 2.8: Dependence of Rf on h computed numerically (points) for the n = 5 random-field
model in three dimensions and given by Eq. (2.16) (solid line) at n = 5.

2.4 Correlation Functions

We have computed spin-spin correlation functions in the final state obtained through relax-

ation from the initially ordered state. Fig. 2.6 shows the 3d spin-spin correlation function

for n = 2, 3, 4. At n ≤ d + 1 and Rf ≪ L the ferromagnetic order persists: The correlation

function at large distances falls to a plateau that coincides with m2 of the plateau in Fig. 2.1.

Meanwhile, at n > d+1 the order is fully destroyed in accordance with the IM picture. The

3d correlation function for n = 5 is shown in Fig. 2.7.

In 3d, we can enforce the constraint that S2 = S2
◦ = const. by adding a Lagrange
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multiplier term to the Hamiltonian

Hλ = H−
∫

d3r λ(r)S2. (2.6)

The extremal configurations of this Hamiltonian give

α∇2S+ h+ 2λS = 0. (2.7)

Multiplying by S, we find

λ = − 1

2S2
◦

(

αS · ∇2S+ S · h
)

(2.8)

α∇2S− α

S2
◦

S(S · ∇2S) + h− 1

S2
◦

S(S · h) = 0 (2.9)

In the second term of Eq. (2.9)

S · ∇2S = ∂u(S · ∂uS)− ∂uS · ∂uS = −∂uS · ∂uS (2.10)

as

S · ∂uS =
1

2
∂uS

2 = 0 (2.11)

At small volumes, S is approximately aligned. This term is quadratic in the small change in

alignment, while the other terms are only linear, so it can safely be ignored. The solution to

the remaining equation is given by Green’s theorem as

S(r) = − 1

α

∫

d3r′ G(r− r′)

[

h(r′)− S(r′) (S(r′) · h(r′))
S2
◦

]

(2.12)



CHAPTER 2. TOPOLOGY AND RANDOM FIELDS 23

with G(r) = −1/4π|r| the Green function of the Laplace equation in 3d. Then

1

2S2
◦

〈[S(r1)− S(r2)]
2〉 =

1

2α2S2
◦

∫

d3r′
∫

d3r′′ [G(r1 − r′)−G(r2 − r′)] [G(r1 − r′′)−G(r2 − r′′)] 〈q(r′) · q(r′′)〉,

(2.13)

where g ≡ h− S(S · h)/S2
◦ .

Assuming that there is no correlation between h and S and using the uncorrelated version

of Eq. (2.2), we find

〈q(r′) · q(r′′)〉 = h2

n
(n− 1)a3δ(r′ − r′′) (2.14)

and

1

2S2
◦

〈[S(r1)− S(r2)]
2〉 =

h2a3

2α2S2
◦

(

1− 1

n

)∫

d3r [G(r1 − r)−G(r2 − r)]2 =
|r1 − r2|

Rf

(2.15)

with

Rf

a
=

8π

1− 1/n
·
(

αS◦

ha2

)2

. (2.16)

This gives a general form for the short distance correlation function in 3d as

〈S(r1) · S(r2)〉 = S2
◦

(

1− |r1 − r2|
Rf

)

(2.17)

This short-range form of the correlation function agrees with our numerical results for all n

in 3d. For n ≥ 5 the spin-spin correlation function at all distances can be very well fitted

by 〈s(r1) · s(r2)〉 = exp (−|r1 − r2|/Rf ). The good agreement with this formula is illustrated

by Fig. 2.7. So far we have been able to prove analytically the numerically confirmed
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exponential decay of the correlation function in 3d only for the mean-spherical model which

corresponds to n = ∞ [44]. However, the observed exponential behavior of 〈s(r1) · s(r2)〉

and the observed 1/h2 dependence of Rf on the strength of the random field for small h at

n = 5, d = 3 (see Fig. 2.8) present clear evidence of the onset of the Imry-Ma state in the

absence of topological objects.

2.5 Discussion

We have demonstrated that topology of the order parameter controls whether the random-

field system exhibits reversible or irreversible behavior. For the n-component spin in d

dimensions the presence of topological structures at n ≤ d+1 gives rise to vortex, hedgehog,

and skyrmion glasses. These structures can be pinned by the random field, creating metasta-

bility. Furthermore, the Imry-Ma state requires the creation of defects, which increases its

energy.

Meanwhile, for n > d + 1, when topological structures are absent, the behavior of the

system is reversible and spin-spin correlations agree quantitatively with the Imry-Ma picture.

These findings provide the guiding principle for assessing the long-range behavior of various

systems with quenched randomness and continuous-symmetry order parameter, which we

will use in our studies of various systems in the following chapters.



Chapter 3

Random field XY model in three

dimensions

In this chapter, we will build on the understanding gained in the previous chapter on random

fields, focusing on the case of n = 2, d = 3, otherwise known as the XY model in 3d.

This model is especially convenient for doing analytic calculations, as the configuration of

the order parameter at a given point in space can be described using a single angle. Writing

s(r) = s[sinφ(r), cosφ(r)] (3.1)

h(r) = h[sinϕ(r), cosϕ(r)] (3.2)

and assuming that H is directed along the x axis, H = (H, 0), one obtains from Eq. (2.1)

H = s

∫

ddr

ad

[

Jsa2

2
(∇φ)2 − h cos(φ− ϕ)−H cosφ

]

. (3.3)

This chapter is based on work originally presented in Ref. [41] and Ref. [45]

25



CHAPTER 3. RANDOM FIELD XY MODEL IN 3D 26

Thus we can re-write the Hamiltonian of Eq. (2.4) as

H =
Js2

2

∑

ij

cos(φi − φj)− hs
∑

i

cos(θi − φj)−H
∑

i

cosφi (3.4)

where φ is the angle of our order parameter and ϕ is the angle of the random field. We will

calculate analytically and numerically the correlation function (CF) defined by

C(R) =
1

N

∑

i

〈s(ri) · s(ri +R)〉 , (3.5)

where N is the total number of spins. In analytical calculations, there is no averaging over i

and 〈. . .〉 mean averaging over realizations of the random field. In numerical work, 〈. . .〉 can

be dropped for large enough system sizes where there is a sufficient self-averaging.

3.0.1 Energy scaling

Writing out Eq. (1.9) in terms of the Hamiltonian Eq. (3.3),

Rf ∼ a

(

sJ

h

)2/(4−d)

. (3.6)

Finiteness of Rf for any d < 4 supports the initial assumption that spins follow the averaged

RF and thus the state is disordered, m = 0. The resulting energy of the IM state is

E − E0 ∼ −s2J

(

h

sJ

)4/(4−d)

(3.7)

that yields E − E0 ∼ −h4/J3 in 3d. However, the main contribution to the adjustment

energy arizes at the atomic scale and is given by E − E0 ∼ −h2/J in all dimensions.

One can modify the IM argument by taking into account adjustment of spins to the RF

at all length scales. For this purpose, consider a reference state perfectly ordered in some
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direction. Spins will turn away from this state under the influence of the RF. More precisely,

groups of spins of linear size R will rotate by an adjustment angle φ (considered as small

to begin with) under the influence of the RF averaged over this region. The corresponding

energy per spin is given by the equation

E − E0 ∼ −sh
( a

R

)d/2

φ+ s2J
( a

R

)2

φ2. (3.8)

Minimizing this expression with respect to φ, one obtains

φ ∼ h

sJ

(

R

a

)(4−d)/2

(3.9)

that grows with the distance R, as expected. The square of the angular deviation increases

as φ2 ∼ (R/Rf )
4−d, where Rf is given by Eq. (3.6). This defines the spin CF at small

distances

C(R) = s2 cosφ ∼= s2
(

1− 1

2
φ2

)

= s2

[

1− A

(

R

Rf

)4−d
]

, (3.10)

where A is a number.

The energy per spin corresponding to spin adjustment at the distance R is

E − E0 ∼ −h2

J

( a

R

)d−2

. (3.11)

One can see that the highest energy gain is provided by spin adjustments at the atomic scale,

R ∼ a. In this case one obtains

E − E0 ∼ −h2/J. (3.12)

Spin misalignments grow large, φ ∼ 1, at R ∼ Rf . Substituting Rf into Eq. (3.11), one

recovers the IM energy of Eq. (3.7). It should be stressed that the IM energy is much smaller

than the main short-distance energy contribution and it is not accessible numerically.
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It has been speculated [46] that at R > Rf , when φ becomes large, it is distributed

with a Gaussian probability, making the energy associated with the random field scale as

sh(a/R)d/2 exp(−φ2/2) instead of −sh(a/R)d/2φ for small φ. Then the minimum of the

total energy that includes the exchange energy s2J(a/R)2φ2, would correspond to φ2 ∼

(4− d) ln(R/Rf ) in accordance with the Bragg glass result. [13, 29, 30]

3.1 Analytical results

If the random field is sufficiently strong, then in the absence of a strong external field, a

strong local Zeeman interaction should align the spins with the random field at each site

independently. The case of a weak random field is less straightforward. On one hand, such

a field cannot destroy the parallel alignment of neighboring spins created by the strong

ferromagnetic exchange. On the other hand, neither the exchange nor the local random field

can determine the direction of the local magnetization. The latter can, therefore, wander

around the sample, with some characteristic ferromagnetic correlation length that can be,

in principle, either finite or infinite. This non-obvious effect of the weak random field will

be the main focus of our investigation.

3.1.1 Angular correlations

At H = 0 the correlation function of the spin angles φ can be computed by noticing that

the extremal configurations of φ(r) with the Hamiltonian (3.3) satisfy

Jsa2∇2φ = h sin(φ− ϕ) = hx sinφ− hy cosφ (3.13)
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where hx = h cosϕ and hy = h sinϕ. This equation has an implicit solution

φ(r) =
1

Jsa2

∫

ddr′Gd(r− r′)×

[hx(r
′) sinφ(r′)− hy(r

′) cosφ(r′)], (3.14)

where Gd(r) is the Green function of the Laplace equation in d dimensions: G2(r) =

−(2π)−1 ln |r| and G3(r) = −1/(4π|r|). Its Fourier transform is Gd(q) = −1/q2 for all

d. Eq. (3.14) then gives

〈[φ(r1)− φ(r2)]
2〉 = 1

J2s2a4

∫

ddr′
∫

ddr′′ ×

[Gd(r1 − r′)−Gd(r2 − r′)][Gd(r1 − r′′)−Gd(r2 − r′′)]

×[〈hx(r
′)hx(r

′′)〉〈sinφ(r′) sinφ(r′′)〉

+〈hy(r
′)hy(r

′′)〉〈cosφ(r′) cosφ(r′′)〉

−〈hx(r
′)hy(r

′′)〉〈sinφ(r′) cosφ(r′′)〉

−〈hy(r
′)hx(r

′′)〉〈cosφ(r′) sinφ(r′′)〉] (3.15)

Here we used the fact that for a weak random field the direction of the spin at a particular

site must have very weak correlation with the direction of the random field at that site,

leading to 〈hx(r
′)hx(r

′′) sinφ(r′) sinφ(r′′)〉 ≈ 〈hx(r
′)hx(r

′′)〉〈sinφ(r′) sinφ(r′′)〉 and so on.

With the help of Eq. (2.2), one obtains in three dimensions at H = 0

〈[φ(r1)− φ(r2)]
2〉 =

h2

2J2s2a

∫

d3r[G3(r1 − r)−G3(r2 − r)]2 =

h2

J2s2a

∫

d3q

(2π)3
1− cos[q · (r1 − r2)]

q4
=

h2

8πJ2s2a
|r1 − r2| (3.16)
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and, finally,

〈[φ(r1)− φ(r2)]
2〉 = 2

|r1 − r2|
Rf

,
Rf

a
= 16π

(

Js

h

)2

, (3.17)

where Rf is the ferromagnetic correlation length. As we shall see later, this formula is in

excellent agreement with numerical results. The linear decay of short-range correlations due

to the random field was first obtained by Larkin in the application to translational corre-

lations in flux lattices. [1] Extrapolating Eq. (3.17) to greater distances, one should expect

that the spin field would rotate significantly at distances |r1 − r2| ∼ Rf . The long-range

behavior of spin-spin correlations has been, however, subject of a significant controversy in

the last forty years.

3.1.2 Spin correlations

At short distances the spin correlation function directly follows from the angular-deviation

correlator computed above:

〈s(r1) · s(r2)〉 = s2〈cos[φ(r1)− φ(r2)]〉

= s2
(

1− 1

2
〈[φ(r1)− φ(r2)]

2〉
)

= s2
(

1− |r1 − r2|
Rf

)

, (3.18)

in accordance with Eq. (3.10) in 3d. More generally, one can write

〈s(r1) · s(r2)〉 = s2〈cos[φ(r1)− φ(r2)]〉

= s2 exp

{

−1

2
〈[φ(r1)− φ(r2)]

2〉
}

. (3.19)
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Substituting here Eq. (3.17), in 3d one obtains

〈s(r1) · s(r2)〉 = s2 exp

(

−|r1 − r2|
Rf

)

. (3.20)

Equation (3.20) can be obtained in the whole range of distances by the functional inte-

gration over the distribution of the random field given by Eq. (2.3). The calculation in 3d

proceeds as follows

〈s(r1) · s(r2)〉 = s2〈exp i[φ(r1)− φ(r2)]〉

= s2
[∫

D{hx}D{hy} exp
{

−
∫

d3r (h2
x + h2

y)

h2a3

}]−1

×
∫

D{hx}D{hy} exp
{

i

∫

d3r[
1

Jsa2
[G3(r− r1)−

G3(r− r2)][hx sinφ(r)− hy cosφ(r)]−
h2
x + h2

y

h2a3
]
}

= s2 exp

{

− h2

4J2s2a

∫

d3r [G3(r− r1)−G3(r− r2)]
2

}

= s2 exp

{

− h2

2J2s2a

∫

d3q

(2π)3
1− cos[q · (r1 − r2)]

q4

}

= s2 exp

(

−|r1 − r2|
Rf

)

, (3.21)

where we have used Eq. (3.14).

The increase of spin misalignments with distance according to Eq. (3.17) is unquestion-

able and it is also true that at some distance misalignments become large. It was questioned

by many researchers, however, whether the averaging employed to obtain Eq. (3.21) pro-

vides correct description of the behavior at large distances. Theory based upon scaling and

replica-symmetry breaking arguments [13, 30] yielded 〈[φ(r1) − φ(r2)]
2〉 = A ln |r1 − r2| at

R ≫ Rf , with A depending on the dimensionality only. While this theory was initially

developed for flux lattices, it was later argued that the result must be relevant for the xy

random-field spin model as well. [34, 47–49] This would imply universal power law decay of
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long-range correlations,

〈s(r1) · s(r2)〉 ∼
1

|r1 − r2|
(3.22)

in 3d according to Eq. (3.20). Such a quasiordered phase, presumed to be vortex-free in spin

systems and dislocation-free in flux lattices, received the name of Bragg glass. As we shall

see below neither Imry-Ma argument nor the Bragg glass argument provides the correct

description of the random-field system that would agree with numerical results. Crucial

for its behavior is magnetic hysteresis, which implies that energy barriers and metastable

states play an important role regardless of the strength of the random field. We shall also

demonstrate that the behavior of the random-field system cannot be understood without

invoking topological defects.

3.1.3 Short-range energy due to random field

The random field contributes to the energy of the system through Zeeman interaction with

the spin field and through the exchange energy associated with the non-uniformity of the

spin field. The latter can be computed as

〈Hex〉 =
1

2
J
∑

ij

〈s2 − si · sj〉 =
1

4
Js2

∑

ij

〈(φi − φj)
2〉, (3.23)

where the summation is over N sites i and the nearest neighbors j of each i-site, with six

such neighbors in a 3d cubic lattice, separated by |ri − rj| = a. According to Eq. (3.17), for

the nearest neighbors 〈(φi − φj)
2〉 = h2/(8πJ2s2), so that per spin

〈Hex〉
N

=
1

4
Js26

h2

8πJ2s2
=

3h2

16πJ
. (3.24)

The total energy is a sum of the exchange energy and Zeeman energy, given by Eq. (2.1).

Let us consider the case of H = 0. The contribution of the weak random field to the energy
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is a sum of almost independent contributions from small volumes inside which the deviation,

δφ(r), from the local ferromagnetic alignment of spins is small. Thus, to obtain the main

part of the energy due to random field, one can replace φ in Eq. (2.1) with δφ(r) ≪ 1,

HSR = s

∫

d3r

a3

[

1

2
Jsa2(∇δφ)2 − hδφ sinϕ

]

. (3.25)

Low temperature behavior is dominated by the extremal configurations satisfying

Jsa2∇2δφ = −h sinϕ (3.26)

Substituting sinϕ from this equation into Eq. (3.25) and integrating by parts one obtains

HSR = s

∫

d3r

a3

{

1

2
Jsa2(∇δφ)2 + Jsa2δφ∇2φ

}

= s

∫

d3r

a3

{

1

2
Jsa2(∇δφ)2 − Jsa2(∇δφ)2

}

. (3.27)

It is clear from this expression that the short-range Zeeman energy is twice the short-range

exchange energy with a minus sign,

〈HZ〉
N

= −2
〈Hex〉
N

= − 3h2

8πJ
. (3.28)

The total short-range energy per spin is

〈H〉
N

=
〈Hex〉+ 〈HZ〉

N
= − 3h2

16πJ
, (3.29)

in accordance with Eq. (3.12). It is insensitive to the long-range behavior of the spin field,

that is, to the spatial scale of the rotation of the direction of the local magnetization over

the sample. This is because for a weak random field such rotations involve large distances,
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and therefore they contribute much less to the exchange energy then the weak misalignment

of the neighboring spins due to the random field. As we shall see below, equations (3.24),

(3.28), and (3.29) are in excellent agreement with numerical results. Small deviations are

due to the contribution of vortices to the short-range behavior.

3.1.4 Approach to saturation

In the presence of the external magnetic field the extremal configurations satisfy

Jsa2∇2φ−H sinφ = h sin(φ− ϕ). (3.30)

Let the field H be sufficiently large to ensure a small deviation of spins from the x axis, that

is, small angle φ(r). Then Eq. (3.30) can be approximately written as

∇2φ− k2
Hφ = − h

Jsa2
sinϕ, (3.31)

where

1

k2
H

= R2
H =

(

Js

H

)

a2. (3.32)

The solution of Eq. (3.31) is

φ(r) =
h

Jsa2

∫

d3r′
e−kH |r−r

′|)

4π|r− r′| sinϕ(r
′). (3.33)

Consequently,

〈φ2〉 =
(

h

Jsa2

)2 ∫

d3r′
∫

d3r′′
e−kH |r−r

′|e−kH |r−r
′′|

16π2|r− r′||r− r′′| × 〈sinϕ(r′) sinϕ(r′′)〉. (3.34)
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With the help of Eq. (2.2) one obtains for kHa ≪ 1 (RH ≫ a)

〈φ2〉 = a3

32π2

(

h

Jsa2

)2 ∫

d3r
e−2kHr

r2

=
1

16π

(

h

Js

)3/2 (
h

H

)1/2

. (3.35)

The above formulas describe the approach to saturation on increasing the field:

1− m

s
= 〈1− cosφ〉 = 1

2
〈φ2〉 = 1

32π

(

h

Js

)3/2 (
h

H

)1/2

(3.36)

The square root dependence on H, Eq. (3.36), must hold as long as the field satisfies

RH > a, which translates into H < Js. At H > Js the length RH becomes small compared

to a and the exchange-generated Laplacian in Eq. (3.31) is no longer relevant because the r

in the Green function of that equation cannot be smaller than a. In this case the approach to

saturation is dominated by the spin torque of the external field H against the local field h(r).

The Laplacian in Eq. (3.31) can be safely dropped and one ends up with φ = (h/H) sinϕ.

This gives

1− m

s
=

1

2
〈φ2〉 = h2

2H2
〈sin2 ϕ〉 = h2

4H2
. (3.37)

Eqs. (3.36) and (3.37) are confirmed by numerical results with high accuracy, see below.

3.1.5 Zero-field susceptibility

To have some reference point for comparison with numerical results, it is important to have

the zero-field susceptibility of the Imry-Ma state. Application of a small field H → 0 in the

x direction slightly perturbs φ(r) created by the random field,

φ(r) → φ(r) + δφ(r). (3.38)
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Linearization of Eq. (3.30) gives

Jsa2∇2δφ−H sinφ = hδφ cos(φ− ϕ). (3.39)

Neglecting the rapidly oscillating small term in the right-hand-side of this equation we obtain

in 3d

δφ(r) = − H

Jsa2

∫

d3r′
sin(r′)

4π|r− r′| . (3.40)

The magnetization per spin in the direction of the field is given by

〈m〉
s

= 〈cosφ〉 = −〈δφ sinφ〉

=
H

Jsa2

∫

d3r′
〈sinφ(r) sinφ(r′)〉

4π|r− r′| . (3.41)

This can be related to

〈s(r) · s(r′)〉 = s2〈cosφ(r) cosφ(r′) + sinφ(r) sinφ(r′)〉

= 2s2〈sinφ(r) sinφ(r′)〉. (3.42)

Consequently,

m

s
=

H

2Js3a2

∫

d3r′
〈s(r) · s(r′)〉
4π|r− r′|

=
H

2Jsa2

∫

d3r′
exp(|r− r′|/Rf )

4π|r− r′| . (3.43)

Integration gives

m

s
=

H

2Js

(

Rf

a

)2

. (3.44)
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Zero-field susceptibility defined through

m

s
= χ

H

Js
(3.45)

is given by

χ =
1

2

(

Rf

a

)2

= 128π2

(

Js

h

)4

. (3.46)

In the limit of small h this is very large, which may have prompted some statements in

the past about infinite susceptibility of the Imry-Ma state. [50] As we shall see below, the

actual zero-field susceptibility in a zero magnetization state is dominated by the dynamics

of vortices and is much smaller.

Note that the initial magnetization of the Imry-Ma state in the limit of a very weak field

and the approach to saturation at a higher field can be presented as

m

s
=

1

2

(

Rf

RH

)2

, RH ≫ Rf (3.47)

1− m

s
=

1

2

(

RH

Rf

)

, RH ≪ Rf , (3.48)

where RH and Rf are given by equations (3.32) and (3.20) respectively. Both formulas

provide m ∼ s at RH ∼ Rf , which translates into

H

Js
∼ 1

256π2

(

h

Js

)4

. (3.49)

For a weak random field, h < Js, this gives a very small value of H. It has the following

physical meaning. If one studies the full hysteresis loop of the random-field system then

the state close to saturation must have no vortices. In this case Eq. (3.48) is exact. Thus,

the field in Eq. (3.49) provides the estimate of the maximal width of the hysteresis loop.

In the limit of small h the loop must be very narrow, which is confirmed by our numerical
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results. For small h one should use a very small field step in order not to confuse a very steep

magnetization curve with a discontinuity in the magnetization curve. When the width of the

hysteresis loop is so small that it cannot be resolved in either real or numerical experiment,

its slope may well be described by Eq. (3.46).

3.1.6 Average magnetization of a finite system

As described in Section 1.2, we must be careful to distinguish between states with ferromag-

netic order and those with a small magnetization due to statistical fluctuations in a finite

system. Eq. (1.17) gives an equation for the magnetization of a finite system in terms of the

correlation function, C(R).

Substituting C(R) = s2 exp(−R/Rf ) (no long-range order) into Eq. (1.17) in 3d, one

obtains

m = s

(

8πR3
f

V

)1/2

=
√
8π s

(

Rf

L

)3/2

, (3.50)

where L is the size of the system, N = (L/a)3. At, e.g., h = 0.5Js, the Imry-Ma correlation

length is Rf ≈ 200a. For L = 1000a this gives m ≈ 0.45s. Such a large value of m for a

not very weak random field in a system of the maximum size that we can access numerically

suggests that any evidence of the long-range ferromagnetic order based upon finite m should

be dealt with with care. However, LRO, if it is present, reduces the value of the 1/V term

in Eq. (1.17).

3.1.7 Correlated random field

All the above formulas have been written for the uncorrelated random field described by Eq.

(2.2) and Γ(r) = δ(r). Meanwhile, in physical problems involving flux lattices and random

magnets, the static randomness can be correlated over a certain distance ρ > a. It is easy
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to see that this leads to the following modification of Rf in Eq. (3.17):

Rf

a
=

16πa3

Ω

(

Js

h

)2

, (3.51)

where

Ω =

∫

d3rΓ(r) (3.52)

is the correlated volume, with Γ(r) describing the short-range correlations of the random

field.

For uncorrelated random field one has Ω = a3 and Eq. (3.51) goes back to Eq. (3.20). In

the case of a correlated random field Ω > a3 and Rf is reduced. For, e.g., Γ = exp(−r/ρ),

one obtains Ω = 8πρ3 and

Rf

a
= 2

(

a

ρ

)3 (
Js

h

)2

. (3.53)

Notice that the reduction in Rf is by a factor 8π(ρ/a)3 which can be quite significant. This,

in principle, may allow one to test the effect of a very small h in a finite-size system. When

the above formulas produce Rf < ρ, this means that Rf = ρ.

While we do not do a detailed numerical analysis with correlated random fields, a similar

argument can be made for random anisotropy, which we analyze in detail with correlated

randomness in Chapter 5.

3.2 Numerical results

3.2.1 General results

Our main finding is that for a weak random field the state of the system is always a glassy

state with many local energy minima, so that the final state that we find depends on the

initial state or initial condition, as well as somewhat on the details of the relaxation protocol.
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Figure 3.1: Magnetization relaxation curves starting from a collinear initial condition. The
method with a small damping constant, α = 0.01− 0.03 is most efficient.

This to a some degree disqualifies earlier attempts to describe the random-field system by

a unique magnetic state. Instead, the system exhibits magnetic hysteresis similar to that in

conventional ferromagnets with pinning of the domain walls.

Starting from random initial condition we find states having small values ofm (decreasing

to zero in the large-size limit) and substantial vorticity. For Rf ≫ 1 there is a strong short-

range order everywhere except the vicinity of vortex loops. The correlation function in this

state decays to zero but the correlation length is defined by the average distance between

the vortices rather then by Rf , the former being much shorter. We call this state a vortex

glass (VG).

Starting from collinear initial condition, for HR . 2 we find only partially disordered

states with m remaining of order 1 (stable in the large-size limit) and zero or extremely

small vorticity. In this state, the correlation function follows Eq. (3.20) at short distances

but reaches a plateau at longer distances, thus showing a long-range order. As the system

does not order spontaneously upon cooling, but instead freezes into the vortex glass state

described above, this behavior is analogous to a traditional permanent magnet with defects.

We call this state ferromagnetic, but like a permanent magnet, accessing the magnetized
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Figure 3.2: Two-stage relaxation starting from a collinear state for HR = 1.5 and L = 800
and one-stage relaxation for HR = 0.5 and L = 1000, our largest system size. Note a slow
relaxation for HR = 0.5.

state requires field cooling.

For HR & 2, starting from the collinear initial state, vortex loops are spontaneously

generated and magnetization is strongly reduced.

The energy of the VG state is always higher than the energy of the ferromagnetic state.

(This holds for both xy and Heisenberg models in 1d, 2d, and 3d, as well as for random-

anisotropy models.) Thus the vortex glass state is a metastable state that could, in principle,

relax to the ferromagnetic state by eliminating vortex loops that cost energy. However, this

does not happen because vortex loops are pinned by the random field. It is possible that the

ferromagnetic state is also a metastable state, while there is a true ground state with m = 0,

in accordance with the implicit theorem by Aizenman and Wehr[3, 43]. It should be noted

that other work[51] has found a lower energy state with m = 0 for the Heisenberg model in

three dimensions. However, accessing this state requires sweeping the external field many

times, slowly lowering the width of the sweep to zero, so it is not accessible by simple means.

We have been unable to find such a state using this method or any other. In fact, sampling

local energy minima shows that, starting with a low m state, it is easier to find lower energy

states with higher m than with lower m.
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Figure 3.3: Relaxation starting from differently oriented collinear states for the same real-
ization of the random field, showing glassy nature of the RF magnet.

3.2.2 Relaxation from the collinear state leading to the “ferro-

magnetic state”

During relaxation from any of the initial states we have tried, the system’s energy decreases.

Starting from collinear initial condition, m decreases until it reaches a constant value for

HR . 2 and goes to zero at HR & 2. Direction of the magnetization vector m practically

does not deviate from the initial direction. Fig. 3.1 shows relaxation curves forHR = 1.5 with

m approaching a nonzero constant and for HR = 3 with m going to zero. One MCS (Monte

Carlo Step) means one complete spin update of the system. We use this standard notation

although we are not using Monte Carlo. One can see that the pure finite rotation method

(α = 1) is slow for our problem in comparison to the combined method predominantly using

over-relaxation (α = 0.03). For HR = 3, the system gets stuck in a metastable state with

m ≈ 0.3 and ∆E = −0.668. However, the combined method finds the state with a very

small m and the lower energy ∆E = −0.671. Here ∆E ≡ E − E0, where E0is the exchange

energy of the collinear state, −3J for the 3d model with periodic boundary conditions (pbc).

These results are in accordance with the mechanism of relaxation sketched in Fig. 1.1.

In fact, already the pure over-relaxation method (α = 0) provides a fast relaxation of m
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Figure 3.4: Relaxation from collinear states for different realization of the random field.
Statistical scatter decreases with the system size due to self-averaging. a) L = 128; b)
L = 256.

at a constant energy. For this reason in some computations we used the two-stage method, as

shown in Fig. 3.2. The idea is that the conservative over-relaxation method has a potential

for the maximal possible disordering since it leads to states that can be interpreted as thermal

states with a small T (the over-relaxation plateau in Fig. 3.2). As the energy-relaxation

mechanism is switched on, this temperature goes to zero and ordering in the system increases,

as is seen in the Fig. 3.2. The states obtained in these computations are vortex free.

Fig. 3.3 obtained by multiple relaxation events of a system with the same realization of

the RF from differently oriented collinear states shows different local energy minima achieved

in different cases. This confirms glassy nature of a random-field magnet. All these states are

vortex-free, as above.

Fig. 3.4 shows similar computations with different realization of the RF. One can see

that Fig. 3.4a is similar to Fig. 3.3. Comparison of the two panels of Fig. 3.4 shows that the

statistical scatter decreases with the system size because of self-averaging. For the standard

deviation ∆m of the magnetization in the final state one has ∆m ≈ 0.025 for L = 128 and

∆m ≈ 0.0097 for L = 256. On the other hand, ∆mL3/2 ≈ 36 for L = 128 and ∆mL3/2 ≈ 39

for L = 256 that are nearly the same. This is in accord with the picture of correlated regions
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Figure 3.5: Spin configuration obtained for HR = 1 from the collinear initial condition

of linear size Rf that are oriented independently from each other, leading to

∆m ∝
(

Rf

L

)3/2

. (3.54)

Using Rf of Eq. (3.17) and the numerical factor from the computational results above, one

can estimate the statistical scatter in all other cases.

The structure of the ferromagnetic state shown in Fig. 3.5 has no singularities.

With increasing the system size the numerically found m does not decrease to zero,

as one can see by comparing Figs. 3.1 and 3.2. The stability of the ferromagnetic state

is clearly seen from the finite-size analysis shown in Fig. 3.6. Here all points except for

L = 800 have been obtained by averaging over realizations of the random field, the number

of realizations indicated by the italicized numbers. Although there is self-averaging in the

system, averaging over realizations allows to further reduce data scatter. One can see that

the points fall on straight lines with a finite offset, in accordance with Eq. (1.17). The error

bars are the uncertainties of the average values computed as ∆m/
√
n , where ∆m is the
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Figure 3.6: Magnetization squared in the ferromagnetic state vs system volume V = N .
Italicized numbers are those of RF realizations used to compute the averages of m. Upright
numbers below points indicate the systems’ linear size L. Straight dashed lines are guides
for the eye.

standard deviation defined by Eq. (3.54) and n is the number of realizations.

3.2.3 Relaxation from the wavy state

One can argue that the ferromagnetic state obtained from the collinear initial state is an

artefact and ferromagnetism here is preselected. An argument in support of ferromagnetic

state can be obtained by starting from a special kind of initial state that has m = 0 and no

vortices or helicity. In this state, which we call a wavy state, spins rotate in one direction

and then in the opposite direction when the observer is moving in any of the three directions

in the cubic lattice. It is defined by

(sx, sy) = (cos (Φ) , sin (Φ)) , (3.55)

where

Φ =
2πkxnx

Nx

(−1)[kxnx/Nx] + (x ⇒ y) + (x ⇒ z) . (3.56)
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Figure 3.7: Wavy state of spins in the xy plane

Figure 3.8: Magnetization relaxation from the collinear and wavy initial states.
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Figure 3.9: Local energy minima, labelled by the corresponding magnetization values, ob-
tained by evolution from wavy states, Eq. (3.55), with kx,y,z = 0, 1, 2, 3.

Here Nx,y,z are lattice sizes, nx,y,z = 1, . . . , Nx,y,z are lattice positions, kx,y,z are corresponding

wave vectors and [x] means integer part. The wavy state is topologically equivalent to the

collinear state because it can be transformed into the latter by continuous deformations

without changing the topology. This state resembles a spring that tends to straighten when

released. Its energy is ∼ J(a/L)2 above that of the collinear state. An example of a wavy

state is shown in Fig. 3.7. Fig. 3.8 shows magnetization relaxation curves starting from the

collinear and wavy initial conditions that lead to the same final state with a high m. It must

be noted that restoration of a large m out of the wavy state does not always take place.

For HR & 2 vortices are generated spontaneously out of any vortex-free state, including the

wavy state, so that the final state is a vortex glass with m close to zero. Even for HR = 1.5

the system randomly lands in (vortex-free) states with small and large m, see Fig. 3.9. Note

that states with higher m in Fig. 3.9 typically have a lower energy.

3.2.4 Vortex-glass state

The vortex-glass state contain singularities, vortices and antivortices, shown in Fig. 3.10. In

our 3d case these are vortex lines going through the sample and vortex loops.
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Figure 3.10: Spin configuration obtained for HR = 1 from a random initial conditions.
Vortices/antivortices are shown by blue/red circles.

For largerHR vortex loops are created by the random field even starting from the collinear

initial condition. For any system size, there is a critical value HR,c ≈ 2 above which vortex

loops emerge. Slightly above HR,c these vortex loops are short, as shown in Fig. 3.11

(top). With increasing HR, vortices quickly proliferate into the system and the number and

length of vortex loops increase. It is difficult to prove whether there exists a size-independent

threshold value HR,c. Computations show that HR,c slowly decreases with the size. However,

this question seems to be not very important because the vorticity increases with a very small

slope above the threshold. It may be that in the bulk there are vortex loops at any finite

HR but the vorticity for small HR is extremely low.

Meanwhile, starting from random initial conditions one arrives at states with long vor-

tex lines that typically do not close into loops but cross the system’s boundaries, see Fig.

3.11(bottom). As vortices and antivortices can exist in all three available planes, different

singularities may exist at nearly the same point, e.g., a vortex in the xy plane may occupy
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the same point as an antivortex in the yz plane. For this reason, some points in the figure

may contain both black and red paints.

Obtaining VG states with our algorithm amounts to slow cooling the system. We have

checked with Monte Carlo simulations that slow lowering the temperature leads to the same

effect: the system does not order ferromagnetically but rather freezes into the VG state that

for HR < HR,c has a higher energy than the ferromagnetic state.

3.2.5 Magnetization and vorticity

The magnetization m and vorticity fV as functions of HR are shown in Fig. 3.12. Here

the same realization of the random field was used and only its strength HR was changed in

small steps, using final states for a given HR as initial conditions for the next value of HR.

Different random-field realizations result in slightly different curves.

At HR = 5 vorticity is very high and it decreases upon lowering HR. The magnetization

remains very small as the system enters the vortex glass phase with a small but nonzero fV .

For L = 216 the number of vortex lines in the system becomes small below HR = 1 [see Fig.

3.11(bottom)] and m starts to increase. For larger L, this happens at smaller HR. In some

cases the system reaches a collinear state with m = 1 at HR = 0. In other cases, as in Fig.

3.12, the system ends up in a topologically stable state with nonzero helicity (for pbc) and

m < 1.

The magnetization in the ferromagnetic state decreases with HR as shown in Fig. 3.12,

starting from the pure limit m = 1 at HR = 0. For HR < 1.8 this state is vortex-free.

Proliferation of vortices for HR > 1.8 results in the shoulder of this curve and full destruction

of the order at HR > 4.

The magnetization of the VG state for HR < HR,c is small and it scales as m ∝ 1/L3/2,

in accordance with Eq. (3.50), as shown in Fig. 3.13. Putting together data obtained for

different L and HR data, averaged over many RF realizations, one obtains the dependence
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Figure 3.11: Vortex loops in 3d xy RF model. Collinear (top) and random (bottom) initial
conditions. Vortices/antivortices are shown by black/red.
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Figure 3.12: Magnetization vs the random field strength HR for the model with pbc of the
size L = 216.

Figure 3.13: Finite-size analysis of the magnetization in the vortex-glass phase
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of the correlation radius of the VG phase RV that replaces Rf of Eq. (3.17). The result is

RV ∝ 1/H1.2
R (3.57)

that is much shorter than Rf at small HR. The numerical factor in this formula cannot be

found by this method because the form of the CF in the VG state is different from the simple

exponential. The precise form of RV will be found in the section on correlation functions

below.

On the other hand, vorticity data in the VG state in Fig. 3.12 can be roughly fitted to

the form

fV ≈ 0.002(HR/J)
2.4. (3.58)

Combining the two formulas above yields

RV ∝ 1/f
1/2
V . (3.59)

It is clear that vortices are the main reason for the decay of spin-spin correlations in the

vortex glass for RV ≪ Rf . Thus there must be a relation between RV and the vorticity

fV defined as the fraction of unit plaquettes with vortices or antivortices. Naively one could

expect that RV is proportional to the distance between the singularities, so that in 3d one has

RV ∝ 1/f
1/3
V . As vortex lines are linear objects, RV is proportional to the average distance

between vortex lines. This makes the situation effectively two dimensional.

3.2.6 Energy

Fig. 3.14 obtained from the same computation as Fig. 3.12 shows that the energy of the

vortex-glass state is higher than the energy of the ferromagnetic state everywhere except
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Figure 3.14: Energy vs the random field strength HR in the ferromagnetic and vortex-glass
states. The dashed green line labelled “theory” is Eq. (3.29). Inset: Fitting the energy in
the vortex-glass state.

Figure 3.15: Energies of metastable vortex-glass states sampled vs their magnetization.
Energy values in the vortex-glass state show a perfect correlation with their vorticities.
Energies of vortex-free ferromagnetic states are comparable to those in Fig. 3.22.



CHAPTER 3. RANDOM FIELD XY MODEL IN 3D 54

for HR > 2.5 where creation of vortices becomes energetically favorable. However, at these

large values of HR the destruction of the ferromagnetic state begins, see Fig. 3.12. Thus the

vortex-glass state is metastable in the most interesting region of small HR. The energy of

the ferromagnetic state follows Eq. (3.29) in the range HR . J . The energy per spin in the

vortex-glass state can be fitted to

E − E0 ≈ −0.042J(HR/J)
2.4 ≈ −21fV J, (3.60)

where Eq. (3.58) was used. Note that by forming vortices the system is lowering its energy

with respect to the energy of the collinear state. At the same time, creating vortices in the

ferromagnetic state costs energy.

We have studied the correlation between the energies of metastable states and their

magnetizations and vorticities. For this purpose, for HR = 1.5 and L = 120, we first allowed

the system to relax towards states with a preset value of mz by applying a self-adjusting

field H as a Lagrange multiplier. Doing so, we moved from mz = 0 to mz = 1 starting

from the random state at mz = 0 and using the state with the preceding value of mz as the

initial condition for finding the state with the next value of mz. In another computation,

we moved from mz = 1 to mz = 0 starting from the collinear state at mz = 1. For each of

these states with preset mz, we set H to zero so that the system falls into the nearest local

energy minimum, using the larger-than-usual relaxation constant α = 0.1. The energies and

vorticities of the found metastable states are plotted in Fig. 3.15 vs m. While increasing

preset mz, we obtain VG states the vorticity of which perfectly correlates with their energy.

While decreasing preset mz, we obtain vortex-free ferromagnetic states with lower energies.

An interesting finding is that there are no local energy minima for m & 0.65 in this plot,

so that for all preset mz above this value the system typically slides into the deepest energy

minimum with m ≈ 0.65.
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These results seem to be in contradiction with the theorem of Aisenman and Wehr [3, 43]

stating that the system must have m = 0 in the ground state. One possibility to reconcile

our findings with that theorem is this. Starting from a vortex-free state, such as the states

with m ≈ 0.65, one can argue that there can be very rare configurations of the random field

that would energetically favor the formation of vortices. The vorticity in these states is very

small and locally they are very close to the vortex-free states. However, even a very small

but finite vorticity could destroy spin correlations at large distances and render m = 0. Such

states are not found if one starts with the collinear initial condition because they require

surmounting energy barriers. On the contrary, starting from random initial conditions one

ends up in the states with a much larger vorticity and higher energy.

This argument is quite plausible in 2d, where vortices are point objects. However, it is

less transparent in 3d, where there are vortex loops and vortex lines traversing the entire

system. Configurations of the random field that favor long vortex lines should be statistically

very rare and there must be many more short vortex loops. However, the concentration of

such vortex loops should be very small so that they would not disturb the magnetic order

at large distances as the vortex lines do. Thus it is not clear whether a very diluted gas of

vortex loops in an infinite sample destroys the long-range order. If it does it would be more

along the lines of the Bragg glass theory.

3.2.7 Approach to saturation, hysteresis and memory

Fig. 3.16, which shows approach to saturation for large H, is in accord with Eq. (3.36).

For a strong random field, such as HR = 3 in Fig. 3.17, hysteresis curves have a standard

form. The irreversibility is related to the energy barriers at the atomic scale that changes

the systems’ vorticity. The relation between vorticity and hysteresis is clearly seen in the

Fig. 3.17. In the course of the reversal the magnetization m decreases down to zero and

then grows in magnitude again (not shown).
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Figure 3.16: Approaching saturation in the 3d RF xy model. Dashed line is Eq. (3.36).

Figure 3.17: Hysteresis curves for 3d RF xy model for HR = 3. Irreversibility is clearly
related to vorticity.
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Figure 3.18: Hysteresis curves for 3d RF xy model for HR = 1.5. The straight dashed line
labeled “Theory” is based on Eq. (3.46). Dense and rarified points are results for different
realizations of the random field. They overlap because of a sufficient self-averaging in the
system.

Figure 3.19: Walls of spins opposite to the field, pinned by the random field.
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Figure 3.20: Walls of spins raptured by vortices (black points)

Fig. 3.18 shows hysteresis curves of a random-field xy magnet for HR = 1.5 and L = 216.

The initial magnetization curve that begins with mz = 0 at H = 0 has a rather small slope,

in a striking disagreement with large zero-field susceptibility that follows from the Green-

function method, Eq. (3.46). This high rigidity of the vortex-glass state is due to the pinning

of vortices that Imry-Ma scenario does not account for.

There is a large m at H = 0 along the H-down branch in Fig. 3.18 that does not depend

strongly on the system size, which is in accord with Fig. 3.6. While the dependence of mz

on H along the hysteresis curve is rather steep at small fields, it is nearly smooth and has

only small Barkhausen jumps (not seen in the figure), with the slope in the ball park of

that given by Eq. (3.46). The magnetization of the sample does not rotate as a whole from

positive to negative values of mz. Instead, on average, the deviations of spins to the right

and to the left from the positive z direction in different regions of space increase smoothly

as H grows negative. In the process of spin reversal the regions with right and left spin

deviations occupy rather large volumes separated by transient regions where spins are still
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directed in the positive z direction. Such transient regions form walls of topological origin,

see the cross-section of the sample in Fig. (3.19). They are pinned by the random field.

As the magnetization reversal proceeds along the hysteresis curve, the walls rapture, with

the raptured area bounded by the vortex loop, as shown in Fig. 3.20. The loops then grow

and eat the walls away, completing the reversal. This happens at H = −HV ≈ 0.075 in Fig.

3.18, where mz has a shoulder and vorticity has a peak. Such a behavior is typical for the

xy random magnet of size large compared to the ferromagnetic correlation length. Systems

of smaller sizes typically switch their magnetization via rotation as a whole that leads to a

jump from positive to negative values at a coercive field. This behavior is similar to that of

a single-domain magnetic particle.

For H > −HV , the upper hysteresis branch is quasi-reversible: Removing the field leads

to partial restoration a large magnetization of the ferromagnetic state in H = 0, which can

interpreted as a memory effect. The simulated relaxation curves are shown in Fig. 3.21.

The recovery happens because the ferromagnetic state with spin walls exhibits elasticity. As

the field is reversed, it stores energy and tends to return to the initial state when the stress

due to the opposite field is removed. This behavior is a good evidence of the stability of

the ferromagnetic state. The incomplete restoration of the magnetization in this experiment

should be due to energy barriers not related to vortices.

The magnetization-recovery experiment provides an access to more ferromagnetic states

than just relaxation from a collinear state. Because of small barriers there is a big number

of metastable ferromagnetic states that differ by energy and magnetization m, shown in Fig.

3.22. States with smaller m occur due to relaxation from states with smaller mz in the upper

hysteresis branch in Fig. 3.18. This is also seen in Fig. 3.21. The rightmost state in Fig.

3.22 is obtained by relaxation from any state with m & 0.7 because there are no local energy

minima in this range. There is a significant interval of m values in the ferromagnetic states

in Fig. 3.22, all having very close energies, in contrast with much larger energy differences
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Figure 3.21: Magnetization recovery from the quasi-reversible branch of the hysteresis curve
(H > −HV in Fig. 3.18), computed after setting H = 0. The red curve corresponding to
the initial value mz = −0.8 does not go into the positive region because this initial state is
beyond the quasi-reversible branch and has a large vorticity.

Figure 3.22: Energies of vortex-free ferromagnetic states (local energy minima) obtained by
magnetization recovery of the type shown in Fig. 3.21. The rightmost state is obtained by
relaxation from any state with m & 0.7.
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Figure 3.23: Energies of the states created by the external field H vs mz (with the energy
due to H subtracted). The lowest-energy state corresponds to mz = 0 for HR & 2.6 and to
mz > 0 for HR . 2.6.

between vortex-glass states in Fig. 3.15. One can clearly see that the lowest-energy state is

at m ≈ 0.5, a value that varies a bit depending on the random field realization. The energy

values in Fig. 3.22 are comparable to those of the ferromagnetic states for L = 216 in Fig.

3.15 and the states in Fig. 3.9.

Another method of accessing the energies of the states vs their magnetization is to plot

the energy obtained in the computation of the hysteresis (with the energy due to the external

magnetic field H subtracted) vsmz. In this way one can access not only local energy minima,

as in Fig. 3.22 but also the energies of all unstable states supported by the external field.

Fig. 3.23 shows the computed energies for different values of HR. A striking feature is the

transition between the energy minimum at m = 0 to an energy munimum at m > 0 on

HR that occurs at HR ≈ 2.6. One can see that for HR = 1.5 the results are very close

to those for the local energy minima in Fig. 3.22 but also contain unstable states with

m & 0.7. Suppression of ferromagnetic states at large HR was already seen in Fig. 3.12.

The energy maximum at mz ≈ −0.8 corresponds to the shoulder at this mz in Fig. 3.18.

On decreasing HR, its increasing part is due to the energy input into compressed spin walls

while its decreasing part and it is due to rapture of spin walls by vortex loops.
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Figure 3.24: Magnetization vs decreasing magnitude of a rotating field H

3.2.8 Ordering by decreasing rotating field

Another type of numeric experiment showing ferromagnetic ordering is relaxation in the

presence of a rotating external field H with the magnitude slowly decreasing to zero. This is

a version of the method of stimulated annealing that helps the system to overcome barriers

preventing it from relaxing to states with a lower energy. If there were states with a small

or zero magnetization having a lower energy that in our other numerical experiments, these

states were likely to be reached by this method.

Numerical results shown in Figs. 3.24 and 3.25 show that also in the decreasing rotating

field experiment ferromagnetically ordered states are reached. For the field magnitude H

large enough, the direction of m follows that of H, while both H and m are decreasing.

As H goes below 0.015 (see Fig. 3.24), direction of m decouples from that of H and, after

oscillations around an energy minimum corresponding to a significant value of m, the system

reaches this energy minimum. In the above numerical experiment, the final magnetization

value is m = 0.5148. It turns out that our method leads to the energy values very close to

those of Fig. 3.22. Thus, no states with a smaller m and lower energy have been found, that

again proves robustness of the ferromagnetically ordered state.
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Figure 3.25: Components of the magnetization vector m in the rotating-field experiment

In another type of numerical experiment, a field slowly oscillating parallel to a fixed

direction with the amplitude slowly decreasing to zero had been applied. Here one could

obtain states with a small magnetization. However, the energy of such states was higher

than the energy of the F state because of the vorticity generated by rapturing spin walls,

see Sec. 3.2.7.

3.2.9 Correlation functions

We have computed correlation functions in the energy minima of our system that we have

found by our relaxation algorithm. After computing CFs we averaged them over directions

of R ≡ r1 − r2.

In the vortex-glass state obtained from random initial conditions, correlation functions

shown in Fig. 3.26 decay to zero but their form and correlation radius is different from Eqs.

(3.20) and (3.17). The results can be fitted by the stretched exponential
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Figure 3.26: Correlation functions of the 3d RF xy model in the vortex glass state obtained
starting from random initial conditions. Natural (top) and scaled (bottom) presentations.
RV is given by Eq. (3.61).

Figure 3.27: Correlation functions of the 3d RF xy model in the ferromagnetic state obtained
starting from collinear initial conditions.
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〈s(r1) · s(r2)〉 = s2e−(|r1−r2|/RV )3/2 , RV ≃ 14 (Js/HR)
1.2 . (3.61)

Note that the dependence of RV on HR is much weaker than Rf ∝ 1/H2
R of Eq. (3.17) and

thus RV ≪ Rf at small HR. Using the vorticity dependence of Eq. (3.58), one can express

the VG correlation length RV as

RV ≃ 0.6/f
1/2
V , (3.62)

c.f. Eq. (3.59). This dependence is in agreement with the 2d nature of vortices discussed

below Eq. (3.59).

If the initial state is collinear and HR is not too large, the correlation functions have

plateaus at large distances. At R . Rf they exactly follow Eq. (3.20). The results for our

largest size L = 800 are presented in Fig. 3.27. For HR = 1 and 1.5 there is enough self-

averaging and we show correlation functions obtained for only one random-field realization.

They have well-defined plateaus with small fluctuations. For HR = 0.7, correlation functions

obtained with one random-field realization are too bumpy and averaging over realizations is

needed. The bumps at R = 800 and
√
2 × 800 are artifacts of periodic boundary conditions.

The length of the plateaus show that the large magnetization in the ferromagnetic state is

not a fluctuational magnetization.

The perfect plateau for HR = 2.5 shows that the appreciable vorticity fV = 0.01766 in

this state does not yet disrupt ferromagnetic order at long distances. This should be the

consequence of vortices forming small closed loops such as in Fig. 3.11(top). Meanwhile, one

can expect that even a small concentration of vortex lines that go through the whole sample,

as is the case in the vortex-glass state, see Fig. 3.11(bottom), will destroy the long-range

order.
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3.3 The Imry-Ma argument and vortices

Surprising robustness of the ferromagnetic state found in our different calculation requires

an explanation. According to the Imry-Ma scenario, starting from collinear state, spins

would relax towards directions of the random field averaged over correlated regions of linear

size Rf , so that the magnetization would go to zero if Rf is small compared to the size of

the system. In our computations we indeed observe a fast initial disordering but then the

magnetization stops to decrease at an appreciable value, Figs. 3.1 and 3.2. What could be

the factor that prevents it from relaxing to zero?

The answer to this question seems to be that the magnetization cannot smoothly follow

the average random field without the formation of vortices in 2d and vortex loops in 3d.

The latter cost energy that prevents relaxation towards a completely disordered state. Thus

ferromagnetically ordered state is topologically protected.

This can be demonstrated by considering the average of the random field over the corre-

lated region around each point r, the so-called moving average, for instance,

h̄(r) =
1

Vf

∫

|r′|≤Rf

ddr′h(r′ + r), (3.63)

where Vf is the correlated volume, Vf = (4π/3)R3
f in 3d. This is exactly a mathematical

implementation of the original Imry-Ma argument. The averaged random field h̄(r) describes

a disorder correlated at length Rf . Since its components h̄x(r) and h̄y(r) are sums of many

random variables, they have a Gaussian distribution at any point r and are statistically

independent. Spin field in the Imry-Ma state, aligned with h̄(r), should be of the form

sIM(r) =
h̄(r)
∣

∣h̄(r)
∣

∣

. (3.64)

Now, it can be shown that such defined spin field has singularities. This happens when



CHAPTER 3. RANDOM FIELD XY MODEL IN 3D 67

Figure 3.28: (Top) Domains of positive and negative hx(r) in a xy plane. (Bottom) Singu-
larities at the crossings of domain boundaries for hx(r) and hy(r) in a xy plane.
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Figure 3.29: Formation of vortices and antivortices at the crossings of domain boundaries
for hx(r) and hy(r).

∣

∣h̄(r)
∣

∣ = 0, that is, both components of h̄(r) turn to zero. Regions of positive and negative

sx(r) in a xy plane, generated by Eq. (3.64) are shown on Fig. 3.28. The areas of positive

and negative sx(r) are on average the same and the boundaries between domains are random

lines shown in Fig. 3.28(top). Domain boundaries for sy(r) are also random lines statistically

independent from the former. Thus domain boundaries for sx(r) and sy(r) will cross at some

points, as shown in Fig. 3.28(bottom). At these points vortices or antivortices will be

generated because of the denominator in Eq. (3.64), as illustrated in Fig. 3.29. In 3d there

will be vortex loops that cost much more energy than a vortex in 2d.

Let us now estimate the energy gain in the IM state with vortices. There is about one

vortex per IM domain with size Rf , having the energy

EV ∼ Js2
(

Rf

a

)

ln

(

Rf

a

)

. (3.65)

The corresponding exchange energy per spin is

Eex−V ∼ Js2
(

a

Rf

)2

ln

(

Rf

a

)

(3.66)



CHAPTER 3. RANDOM FIELD XY MODEL IN 3D 69

that should replace the first term in Eq. (1.8). Minimization with respect to Rf in the

resulting energy expression gives

Rf ∼ a

(

Js

h

)2

ln2

(

Js

h

)

(3.67)

that is longer than the IM correlation radius because of the large lorarithm. The correspond-

ing energy gain

E − E0 ∼ −Js2
(

h

Js

)4 [

ln

(

Js

h

)]−3

∼ ∆EIM

ln3(Js/h)
(3.68)

is the IM energy gain divided by a large logarithmic term.

On the other hand, the ferromagnetic state we have found numerically can be understood

as an incompletely disordered IM state, in which the energy gain is ∆EIM reduced by a

numerical factor of order one rather than by a large logarithmic term. The energy of this

ferromagnetic state should be lower than that of the IM state with vortices, in accordance

with our numerical results (see, e.g., Figs. 3.14 and 3.15). The rapid relaxation out of the

collinear state followed by a plateau in Figs. 3.1 and 3.2 can be explained as follows. Spins

are readily relaxing in the direction of the net RF in the regions of linear size Rf until their

further rotation toward the totally disordered IM state requires creation of vortices. As the

latter costs energy, relaxation stops at this point.

Of course, there is a non-zero probability that the random field at the location of the

vortex is vortex-like and almost parallel to the spin field. In this case the energy gain from

the vortex will be significantly higher. However, since the Imry-Ma state in which the spin

field follows the direction of the average local random field is unique for every choice of

the correlated volume Vf , so should be the positions of the vortices. The fraction of the

lucky vortices mentioned above is determined by the probability of the corresponding lucky

configuration of the random field, which is small. Consequently, it cannot affect the above

argument .
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3.4 Discussion

We have studied states of local energy minima of the random-field xy model focusing on weak

random fields. The minimal random-field value h ≡ HR in our work is defined by h/J = 0.3,

see Fig. 3.26. This should be considered weak for the following reason. In the cubic lattice

each spin has six nearest neighbors that are nearly collinear for small h, the exchange field

is J0 ≡ 6J . Thus, physically it makes more sense to consider the dimensionless parameter

h/J0 that in our computations has the minimal value h/J0 = 0.05 being manifestly small.

In terms of J0 formulas of the LIM theory do not contain large numbers. For instance, Rf

in Eq. (3.17) can be rewritten as Rf/a = (4π/9)(J0s/h)
2.

Computations have been performed on lattices up to 1000×1000×1000 spins. Our main

finding is that completely disordered (m ∼= 0) states are dominated by vortices and have

higher energy than vortex-free ferromagnetically ordered states. There are unsurpassable

energy barriers between different states even in the case of a weak random field because

switching between different spin configurations involves large groups of correlated spins.

This makes the magnetic states depend strongly on the initial conditions. At first glance

this may appear conceptually similar to the behavior of a conventional ferromagnet with

pinning of domain walls. Prepared with random orientations of spins, it would freeze in a

state with small magnetic domains and high energy due to many domain walls. In a similar

fashion, the random-field magnet freezes in a high-energy state due to many vortices pinned

by the random field. When prepared with collinear spins, the conventional ferromagnet would

remain in a magnetized state because pinning prevents domain walls from proliferating into

the sample and achieving the ground state with zero total magnetization. Similarly, the

random-field magnet prepared with collinear spins relaxes to a state with non-zero magnetic

moment.

There is an essential difference between the two systems though. While the conventional
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ferromagnet tends to relax toward an m = 0 state via diffusion of domain walls out of local

energy minima, the random-field magnet in our computations does not have this tendency

to relax to the zero-magnetization state out of the magnetized state. In fact the energies of

zero-magnetization states found in our various types of computations are always higher than

the energies of magnetized states. One possibility is that the zero-magnetization state is not

the ground state. Another possibility is that there are energy barriers to relaxation out of

the magnetized state that involve collective behavior of large volumes of spins and they are

actually greater for a weaker random field. This would be very different from shallow local

energy barriers for the diffusion of domain walls in conventional ferromagnets.

The bottom line of our analysis is that the Imry-Ma state in which the system breaks into

finite-size domains providing zero total magnetic moment is impossible without formation

of vortex loops. They become very long and possess very large energy when the random

field becomes very small. This makes the barriers associated with the formation of the zero-

magnetization state unsurpassable at any temperature even in the limit of weak random

field. The above argument is based upon h-dependence of Rf and it stands as long as Rf

is small compared to the size of the system. One can ask how close the vortex-glass state is

to the Imry-Ma state. To address this question, for HR = 1.5 we have created an Imry-Ma

state of Eq. (3.64) and let it relax. As the result, the vorticity decreased from fV ≈ 0.008

in the Imry-Ma state to fV ≈ 0.0006 in the vortex-glass state. This means that the system

tries to annihilate vortices to reduce its energy but it cannot do it completely because some

vortices are pinned. Similar conclusion regarding dislocations in two-dimensional pinned flux

lattices has been reached in Ref. [52].

On the other hand, it must be stressed that the ground state of the system was not

systematically searched for, and, moreover, it is of little relevance in glassy systems. A

single vortex loop going across the whole sample will totally destroy magnetic order while

its excess energy, as well as its vorticity, will be vanishingly small. It cannot be excluded
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that such type of states has the lowest possible energy. However, these states are exotic and

they were not studied here. Consequently, we cannot rule out the existence a completely

disordered vortex-free ground state in our computations. However, finding such a state may

require a special initial condition or a more sophisticated numerical argorithm anticipating

the result.

It is generally believed, see, e.g., Refs. [46, 48], that in the presence of quenched random-

ness the elastic interactions, like the ones in the atomic or vortex lattices, or exchange in spin

lattices, provide the elastic-glass ground state that is characterized by the power law decay

of correlations at large distances. We have not found such a behavior for the random-field

xy spin model in three dimensions. The relation between that model and randomly pinned

flux lattices in superconductors has been discussed in some detail in Ref. [47]. The role of

topological defects in flux lattices is played by dislocations as compared to vortices in spin

models. Large areas of defect-free flux lattices have been observed in experiment, see, e.g.,

Ref. [6]. When analyzing such experiments, one should remember, however, that for weak

disorder the correlation length in 3d can be very large, making it difficult to distinguish large

defect-free slightly disordered domains from the Bragg glass. While it is possible that some

of the conclusions of this paper apply to pinned flux lattices the latter requires a separate

study because the two models have different symmetry and different kinds of interaction

with the random field.



Chapter 4

The effect of a dilute random field on

a continuous-symmetry order

parameter

In this chapter, we focus on a variation of the random field problem that is particularly

relevant to real-world systems. Random fields themselves generally don’t arise naturally in

pure ferromagnetic systems[54], but there are many systems where dilute impurities may

create fields, creating quenched randomness in the system. In this case, Eq. (2.1) is altered

so that the random field h(r) is zero, except at N · cr points in space where impurities are

located. For the sake of numerical work in this chapter, we will assume h ≫ J and h ≫ H,

but we will see that, as long as the fraction of sites with impurities cr ≪ 1, the system will

show non-trivial behavior.

73
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Figure 4.1: Snapshot of XY spins in one layer of a 3d lattice after relaxation from random
initial orientation in the presence of dilute random field. Spins whose orientations are frozen
by the random field are shown in red.

4.1 Numerical Results

We begin with the evolution of the system from random initial orientation of spins. The

randomly chosen cr fraction of spins remain frozen in random directions, while other spins

are allowed to rotate and relax to some final state in which the total magnetization is no

longer changing. A snapshot of such a state is shown in Fig. 4.1. The presence of topological

defects and short-range order is apparent. The corresponding spin-spin correlation function

and its fit by the exponential are shown in Fig. 4.2. This fit allows one to extract the

ferromagnetic correlation length Rf . Its dependence on the concentration of impurities, cr,

is shown in Fig. 4.3. The 1/cr dependence of Rf provides a good fit to the numerical data

for both the XY model with two spin components and the Heisenberg model with three spin

components.

The state obtained by the relaxation from collinear initial conditions (with all spins

This chapter is based on work originally presented in Ref. [53]
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Figure 4.2: Spin-spin correlation function (dashed lines) after relaxation from random initial
orientation of spins in the presence of dilute random field. Solid lines provide the corre-
sponding fit by the exponential. Distances are given in lattice units, with L being the size
of the L× L× L system. a) 3d XY spin model. b) 3d Heisenberg spin model.
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Figure 4.3: Dependence of the ferromagnetic correlation length on the concentration of
random field sites for the state obtained by evolution from random initial orientation of
spins. a) 3d XY spin model. b) 3d Heisenberg spin model.
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Figure 4.4: Hysteresis loops for the 3d XY model with dilute strong random field for different
concentrations of the random-field sites, cr. a) Unscaled per-spin magnetization mz vs H.
b) Scaled per-spin magnetization mz vs H/c2r, in accordance with Eq. (4.2).
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Figure 4.5: Hysteresis loops for the 3d Heisenberg model with dilute strong random field for
different concentration of the random-field sites, cr. a) Unscaled per-spin magnetization mz

vs H. b) Scaled per-spin magnetization mz vs H/c2r, in accordance with Eq. (4.2).
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initially oriented in one direction) always has non-zero magnetization. This is an indication

of metastability and glassy behavior caused by the dilute random field. There may be as

little profit in looking for the “needle-in-the-haystack” ground state of such a system as in

looking for the ground-state configuration of domains of a conventional permanent magnet

with a macroscopic number of defects that pin domain walls. We, therefore, turn to the

magnetic hysteresis as a measure of metastability. We compute the magnetization per spin

mz induced by the field applied in the Z-direction. Hysteresis loops for XY and Heisenberg

models are shown in Figs. 4.5 and 4.4. The scaling in terms of H/c2r is very good, implying

that the coercive field and the area of the hysteresis loop roughly scale as c2r.

4.2 Qualitative Explanation

Our findings can be explained in a simple manner by employing the Imry-Ma argument given

in Section 1.1. It is convenient to rescale the problem to subvolumes of size rh ∼ 1/c
1/3
r ,

which represents the average distance between the random-field sites. In the lattice units,

the effective random field per spin inside such a volume is of order hrh ∼ h/r3h. Our rescaled

Hamiltonian is then
∫

d3r
Ja2

2
(∇ · S)2 − h

r3h
n · S. (4.1)

Plugging in these rescaled parameters into Eq. (1.9), we find Rf ∝ r3h(J/h)
2 ∝ 1/cr, in

accordance with our numerical results.

Plugging the same rescaled parameters from Eq. (4.1) into Eq. (1.12), we find

Hc ∝
h4c2r
J3a6

(4.2)

This scaling of the coercive field and, consequently, of the area of the hysteresis loop is in

agreement with our numerical results.
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4.3 Discussion

Our model directly applies to a ferromagnet with magnetic impurities having strong single-

ion anisotropy that freezes their spins in random directions. We assume that such impuri-

ties interact strongly via ferromagnetic or antiferromagnetic exchange with the surrounding

spins. Note that every magnetic system also has relativistic interactions, such as dipole-

dipole and magneto-crystalline anisotropy terms in the Hamiltonian, that would break the

system into domains even in the absence of the spin impurities generating strong random

fields[54]. However, for sufficiently large concentration of magnetic impurities the formation

of the short-range order would be dominated by their strong exchange interaction with the

surrounding spins rather than by the weak relativistic interactions in the system. In general,

magnetic impurities must be of practical significance if the short-range-order ferromagnetic

correlation length, Rf ∝ 1/cr, that they are responsible for, is smaller than the would-be

average domain size without the magnetic impurities.

While the spin problem does not map exactly onto the flux-lattice problem or the CDW

problem (see discussion of these issues in, e.g., Refs. [47] and [11]), all three problems are

conceptually similar. Consequently, our study supports statements of Refs. [10] and [11]

that the correlation length in the CDW problem with diluted strong pinning centers is large

compared to the average distance between the centers. Our prediction for the correlation

length is Rf ∼ 1/cr ≫ rh ∼ 1/c
1/3
r . It would be interesting to test this prediction in

NbSe2. It can also be tested on flux lattices that are pinned by strong pinning centers with

concentration cr ≪ 1. Scaling of the critical current as jc ∼ 1/R2
f [4] would then imply

jc ∝ c2r.



Chapter 5

Scaling of coercivity in a 3d random

anisotropy model

5.1 Introduction

The random anisotropy model was introduced by Harris, Plischke, and Zuckermann[56] to

describe magnetic properties of amorphous ferromagnets. The problem is subtle when local

magnetic anisotropy is weak compared to the exchange interaction, which is usually the case

due to the relativistic nature of the anisotropy. In this case the exchange interaction creates

extended ferromagnetic ordering.

In a crystalline ferromagnet the ordered regions would correspond to ferromagnetic do-

mains separated by thin domain walls, with the magnetization inside the domains aligned

with the directions of the global anisotropy axes. If one neglects the magnetic dipole inter-

action, the ground state corresponds to the infinite size of the domain, that is, to the global

ferromagnetic ordering. It is the magnetic dipole interaction that breaks ferromagnetic crys-

tal into domains, with the ground state corresponding to zero total magnetic moment. In

This chapter is based on work originally presented in Ref. [55]
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practice, however, pinning of domain walls by disorder results in the magnetic hysteresis

that permits permanent magnets.

In a random-anisotropy ferromagnet the global directions of the anisotropy are absent,

and the analysis given in Section 1.1 applies. For any practical purpose, this makes random

field and random anisotropy systems not very different from a conventional ferromagnet,

having high metastability and magnetic hysteresis that only disappears at sufficiently high

temperature or exponentially long times.

Similarly to the random field model, we would expect the formation of the Imry-Ma state

to require the creation of topological defects, although there are peculiarities which we will

discuss in Section 5.4.

In this chapter we study the random anisotropy Heisenberg model on lattices in excess of

ten million spins. The emphasis is on measurable quantities, such as magnetic hysteresis, the

coercive field, and their dependence on the anisotropy strength and the size of the volume

inside which the anisotropy axes are correlated. The latter is relevant to the magnets sintered

from randomly oriented nanoscopic ferromagnetic grains. We find very strong dependence

of the magnetic properties on parameters, which we believe is important for synthesizing

materials with desired magnetic properties.

This chapter is structured as follows: The model is formulated in Section 5.2, where

some analytical results are also obtained. The numerical method and results are presented

in Section 5.3. We begin by analyzing the case of site disorder. Section 5.3.1 compares

short-range correlations computed numerically with analytical results, and provides spin-

spin correlation functions for different initial conditions. Section 5.3.2 presents computed

hysteresis curves and obtains their scaling with the strength of the random anisotropy. The

role of hedgehogs in the magnetic state is discussed in Section 5.3.3. Section 5.3.4 presents

numerical results and their interpretation in the random anisotropy system that has short

range correlations in the distribution of the anisotropy axes. Section 5.4 contains some final
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remarks and suggestions for experiment.

5.2 Model and Analytical Results

The three-dimensional Heisenberg model with random anisotropy is described by the Hamil-

tonian

H = −J

2

∑

i,j

si · sj −DR

∑

i

(ni · si)2 −H ·
∑

i

si, (5.1)

where the first sum is over nearest neighbors, si is a three component spin of constant

length s, H is the external field, DR is the strength of the random anisotropy, and ni is

a three-component unit vector having random direction at each lattice site. We assume

ferromagnetic exchange, J > 0. The factor of 1/2 in front of the first term is needed to

count the exchange interaction Js2 between each pair of spins once. In our numerical work

we consider a cubic lattice. For the real atomic lattice of cubic symmetry the single-ion

anisotropy of the form −(n · s)2 would be absent, the first non-vanishing anisotropy terms

would be of the form s2xs
2
y + s2xs

2
z + s2ys

2
z. However, in our case the choice of a cubic lattice

is merely a computational tool that should not affect our conclusions.

In a cubic lattice the effective exchange field acting on each spin is 6Js due to six nearest

neighbors. In our model it competes with the anisotropy field of strength 2sDR. The case of

a large random anisotropy, 2sDR ≫ 6Js, that is, DR ≫ 3J , is obvious, corresponding to a

system of weakly interacting randomly oriented single-domain particles. At T = 0 each spin

aligns with the local n. At T = 0, due to the two equivalent directions along the easy axis,

the system possesses magnetic hysteresis with a coercive field, HC , of the order of the local

anisotropy field HC ∝ 2sDR. For the more subtle case of weak random anisotropy, DR ≪ 3J ,

correlations would be expected to follow the predictions of the Imry-Ma argument (Section

1.1), and Rf/a ∝ (3J/DR)
2, in accordance with Eq. (1.9).

This famous argument[2] provides an estimate of the size of the Imry-Ma domain, i.e. the
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distance Rf on which the magnetization rotates by a significant angle. It leaves open the

question whether the ground state of the random anisotropy system possesses a non-zero

magnetization M . Even if it does, as is the case in the domain state of a conventional

macroscopic ferromagnet, the state with M = 0 may have no practical significance because

the presence of topological defects and their pinning by disorder will always result in metasta-

bility and magnetic hysteresis. The coercive field in the weak random anisotropy case must

be proportional to Deff on the scale Rf , which gives HC ∝ D4
R/J

3. The proportionality of

HC to the fourth power of DR gives a very soft magnet in the limit of small DR. This can

be extended to the limit of a Heisenberg ferromagnet with no anisotropy at all, which has

infinite susceptibility.

The qualitative arguments presented above can be refined using a continuous field theory

version of the Hamiltonian given in Eq. (5.1),

H =

∫

d3r

[

α

2
(∂µS) · (∂µS)−

βR

2
(n · S)2 −H · S

]

, (5.2)

where α = Ja5, βR = 2DRa
3, S(r) is a three-component spin field of length S0 = s/a3, and

n(r) is a three-component random field of unit length. Adding a Lagrange multiplier term,

−
∫

d3r λ(r)S2, to Eq. (5.2) which accounts for the S2(r) being constant, one obtains the

following equation for the extremal S(r) configurations:

α∇2S+ βn(n · S) + 2λS = 0 (5.3)

Multiplying by S0, one obtains an equation for λ. At R ≪ Rf it gives

α∇2S = −βn(S · n) + β

S2
0

S(S · n)2 (5.4)
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S(r) = −β

α

∫

d3r′G(r− r′)×
{

n(r′)[S(r′) · n(r′)] − 1

S2
0

S(r′)[S(r′) · n(r′)]2
}

(5.5)

where G(r) = −1/(4π|r|) is the Green function of the Laplace equation. Then

1

2S2
0

〈[S(r1)− S(r2)]
2〉 = 1− 1

S2
0

〈S(r1) · S(r2)〉 =

=
β2

2α2

∫

d3r′
∫

d3r′′[G(r1 − r′)−G(r2 − r′)][G(r1 − r′′)−G(r2 − r′′)]〈u(r′) · u(r′′)〉

(5.6)

where u = n(σ · n)− σ(σ · n)2.

At Rf ≫ a the direction of S is roughly uncorrelated with the direction of n at the same

lattice site. This gives

〈u(r′) · u(r′′)〉 = 〈n′
αn

′
βn

′′
γn

′′
δ〉 × σ′

βσ
′′
δ (σ

′
ασ

′
µ − δαµ)(σ

′′
γσ

′′
µ − δγµ)〉, (5.7)

where n′ = n(r′),n′′ = n(r′′) and the same for σ. The general form of the anisotropy

correlator is

n′
αn

′
βn

′′
γn

′′
δ〉 =

1

5
[A(r′, r′′)δαβδγδ +B(r′, r′′)(δαγδβδ + δαδδβγ)] (5.8)

The condition n2 = 1 gives A = B = 1 at r′ = r′′, and A = 5/3, B = 0 at |r′ − r′′| → ∞.

It is easy to see that the A-term in Eq. (5.8) does not contribute to Eq. (5.7). Replacing B

with a3δ(r′ − r′′), one obtains

1

2S2
0

〈[S(r1)− S(r2)]
2〉 = 1− 1

S2
0

〈S(r1) · S(r2)〉 =

=
β2a3

15α2

∫

d3r[G(r1 − r)−G(r2 − r)]2

=
β2a3

60πα2
|r1 − r2| =

|r1 − r2|
Rf

(5.9)
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at |r1 − r2| ≪ Rf , where

Rf

a
=

60πα2

β2a4
= 15π

(

J

DR

)2

(5.10)

in accordance with the Imry-Ma argument.

5.3 Numerical Results

Our numerical method follows the one given in Section 1.2. However, unlike the case of

the random field model, the overrelaxation given in Eq. (1.15) does not conserve energy.

Substituting Eq. (1.15) into the original Random anisotropy Hamiltonian given by Eq. (5.1),

we find that the energy with the overrelaxed spin is

Hi,new ≈ −mJsi·sext−2DR(ni·si)2−Hi−DR

(

2si · sext
s2ext

)2

(ni·sext)2−
2DR

s2ext
(ni·sext)(ni·si)(si·sext),

(5.11)

where sext ≡ ∑

i si/m, summing over nearest neighbors, with m the number of nearest

neighbors. When Rf ≫ a, nearest neighbor spins will be approximately aligned, and

Hi,new ≈ Hi −
2DR

sext

(

2(ni · sext)2
sext

+ (ni · sext)(ni · si)
)

. (5.12)

The first term that is added to the original Hamiltonian is obviously negative. As si and

sext are approximately aligned, ni · sext and ni · si will have the same sign, so (ni · sext)(ni · si)

is positive, and the term that contains it keeps the negative sign.

Thus, when the nearest-neighbor spins are approximately aligned, overrelaxation reduces

the energy. At each site, we randomly choose between the two processes, and continue do

so throughout the lattice, repeating until we reach convergence. This overrelaxation method

has been found to produce much faster convergence than the ordinary relaxation. The

combination of relaxation and overrelaxation converges to a representative local energy min-
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imum that is typical of a glassy system. All our computations are done at zero temperature

and therefore are relevant to the hysteretic behavior of the random anisotropy system at

temperatures well below the Curie temperature of the local ferromagnetic ordering.

5.3.1 Correlation Functions
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Figure 5.1: Correlation functions from random initial conditions (RIC) and collinear initial
conditions (CIC). Full color online.

We have computed spin-spin correlation functions, defined by CF (R) ≡ 〈s(r) · s (r−R)〉.

Two initial conditions have been used. Collinear initial conditions (CIC) physically corre-

spond to the state obtained by placing the sample in a strong magnetic field which is then

turned off. Random initial conditions (RIC) physically correspond to fast cooling followed

by relaxation in zero magnetic field. Correlation functions are shown in Fig. 5.1. As would

be expected, the curves differ significantly depending on initial conditions. Under collinear

initial conditions, the CF levels off to a finite value, in agreement with the significant mag-

netization that remains. However, correlations go to zero for random initial conditions,

consistent with zero magnetization.

It is interesting to compare the linear decrease of the CF at very small R with the

prediction of the analytical theory, CF = s2(1 − R/Rf ). The dependence of Rf on DR
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Figure 5.2: Short-range Correlation lengths for CIC and RIC

extracted from the linear dependence of the CF on R at R ≪ Rf is shown in Fig. 5.2. It is

consistent with Eq. (5.10), although the agreement is not exact. This is not surprising since

the analytical theory did not account for topological defects, which we discuss in Section 5.4.

At greater R the correlation function for the state obtained from the RIC roughly follows

exp(−R/R′
f ) with R′

f given by R′
f/a ≈ 22 (J/DR)

2. While R′
f is slightly shorter than Rf , it

also follows the 1/D2
R dependence, in agreement with the Imry-Ma argument.
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Figure 5.3: Correlation lengths for RIC
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5.3.2 Hysteresis
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Figure 5.4: Hysteresis curves. Full color online.
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Figure 5.5: Hysteresis curves scaled. Full color online

We have numerically computed hysteresis curves using the above method. The results

for different DR are shown in Fig. 5.4. They can be reasonably well scaled by dividing H by

a certain power of DR as is shown in Fig. 5.5. This scaling allows one to approximate the

coercive field, HC , i.e. the field required to bring magnetization to zero from saturation, by

HC ≈ D4.4
R /118. The area of the hysteresis loop scales similarly. This is roughly consistent

with the expectation that HC scales as the fourth power of DR, given by Eq. (1.12), although

the agreement is not precise.
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5.3.3 Hedgehogs

3d Heisenberg model has topological defects – “hedgehogs”– which correspond to the mag-

netization vector field going into a point or sticking out of a point. Hedgehogs possess ±1

topological charge and thus appear in pairs. In the absence of random anisotropy, hedge-

hogs and anti-hedgehogs would be attracted to each other and would annihilate. However,

random anisotropy can stabilize hedgehogs even at T = 0. Random initial conditions au-

tomatically introduce hedgehogs. Relaxation from RIC annihilates some of the hedgehog

pairs but leaves the system with a finite residual number of hedgehogs which depends on the

strength of the random anisotropy. This must be one of the reasons why predictions of the

continuous model deviate from numerical results.

We can find hedgehogs in our computed states using a simple method: we look for

points between lattice sites where spins on opposite sides of the point are aligned in opposite

directions. This method consistently finds hedgehogs; all other configurations that satisfy

this condition are forbidden by theory, so there is no risk for false positives. Except for

very high strengths of the random anisotropy, collinear initial conditions generally do not

produce any singularities. Random initial conditions, however, do produce singularities.

Fig. 5.6 shows the density of hedgehogs, ρH , i.e. the ratio between the number of points

where hedgehogs have been found and the total number of sites, versus the strength of the

random anisotropy, DR.

We have found that ρH ≈ (0.19DR/J)
6. Combining this result with Eq. (5.10), we obtain

ρH ≈ 2.1
4
3
π(Rf/a)3

, (5.13)

i.e. there are approximately two Hedgehogs per Imry-Ma domain. This finding is in ac-

cordance with the topological argument presented in Chapter 2: the Imry-Ma state with

zero total magnetization requires singularities at n < d + 1, where n is the number of spin
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Figure 5.6: Hedgehog density vs DR.

components and d is dimensionality of space.

5.3.4 Correlated disorder

So far we have studied the site disorder, i.e. the direction of the anisotropy was chosen

randomly at each lattice site. Meanwhile, amorphous and sintered magnets would have

anisotropy axes correlated on some scale Ra > a, and the coercive field will be given by

Eq. (1.12). This sixth power dependence of the coercive field on the grain size is confirmed

by numerical results. These numerical results are obtained by using cubic correlated chunks,

where all sites within a cubic region with volume R3
a have aligned anisotropy axes. This

corresponds to the physical conditions in sintered magnets. Fig. 5.7 shows the dependence

of HC on Ra for Ra = a, 2a, 3a, 4a, 5a. Note that Rf is proportional to the inverse third

power of Ra, which invalidates the condition Ra ≪ Rf very fast with increasing Ra, limiting

numerical studies of a finite-size system to just a few grain sizes.
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5.4 Discussion

Using 3d lattices containing over 10 million spins, we have numerically studied the magnetic

properties of the random-anisotropy Heisenberg model in the limit when the anisotropy is

sufficiently weak compared to the exchange to provide a ferromagnetic correlation length

that is greater than the scale on which anisotropy axes are correlated. This limit will be

satisfied by many amorphous magnets, as well as by sintered magnets in which the size

of the grain, Ra, is sufficiently small. Taking Rf/a = 15π(a/Ra)
3(J/DR)

2 in accordance

with our analytical and numerical results, one obtains that the condition Ra ≪ Rf requires

Ra/a ≪ (J/DR)
1/2. Had DR been the magneticrystalline anisotropy, (J/DR)

1/2a would have

represented the scale of the domain wall width. Consequently, if the magnet was sintered

from ferromagetic nanocrystals, the condition Ra ≪ Rf would correspond to the condition

that the size of the nanocrystal was small compared to the domain wall width in the magnetic

material. This is practically feasible and, in fact, reflects the direction in which the magnetic

industry is going.

Under the above condition, we found, in accordance with theoretical expectation, that
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the coercive field and the area of the hysteresis loop roughly scale as D4
R and R6

a. This strong

dependence on parameters shows that decreasing DR and Ra by even a small factor could

drastically reduce the coercive field, paving the way to extremely soft magnetic materials.

One obstacle could be the coherent anisotropy which is inevitably present in any sample

due to its non-spherical shape and/or the anisotropy of the process of sample preparation.

Let such anisotropy have strength DC . Its effect on the magnetic state will be small if it is

weak compared to the effective anisotropy stemming from DR. The latter, as our theoretical

argument suggests and numerical work confirms, scales as Deff ∼ D4
R/J

3. Consequently, the

condition DC ≪ Deff translates into DC/J ≪ (DR/J)
4. Thus, in the case of a weak random

anisotropy, a much weaker coherent anisotropy would destroy the softness of the magnet

and will convert it into a more conventional ferromagnet with domain walls of the width

∼ (J/DC)
1/2 pinned by disorder.

An interesting question is the physical origin of metastability. We have seen that, similar

to the random field model,[38] the metastability comes in large part from hedgehogs, whose

concentration strongly depends on DR and corresponds to about two hedgehogs per volume

of size Rf . However, there is a difference from the random-field model. In a random field

system the metastability and hysteresis disappear for n > d + 1 when topological defects

are absent. In contrast, magnetic anisotropy in the random anisotropy model introduces

bistability, creating topological defects – domain walls – regardless of the relation between

n and d. In principle, one can think of domain walls of width ∼ (J/Deff)
1/2a. However,

substitution of Deff ∼ D4
R/J

3 into this expression gives a width, ∼ (J/DR)
2a, which scales

as Rf , making the concept of a domain wall separating domains useless. Nevertheless, the

topology of the random-anisotropy model remains different from the topology of the random-

field model. We observed this by numerically studying the 3d random-anisotropy model with

a five-component spin. Although the agreement with analytical results becomes more precise

when the hedgehogs are absent, hysteresis persists, unlike the behavior found in the random
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field model.



Chapter 6

Conclusion

Throughout this work, we have explored a wide range of models with various forms of

quenched randomness. We have numerically found local energy minima on lattices of between

forty thousand and ten million spins, and explored the correlation functions of these energy

minima, along with hysteresis created by sweeping an external field. In Chapter 2, we showed

what became our guiding principle in later chapters: systems with quenched randomness are

dominated by topological effects. We found that random field models with dimensionality

n > d + 1 show behavior that is perfectly consistent with the Imry-Ma picture given in

Section 1.1, but models with n < d+ 1 models have topological defects that complicate the

picture.

We then focused in on a particular random field model, the XY model, and studied the

details of this complicated picture. We looked at two metastable states of this model, one

where we found correlations are determined by the density of pinned topological charges,

and one that looks like the Imry-Ma picture at short ranges, but has some long range

order. Hysteresis curves also showed evidence of metastability, with domains persisting in

the hysteresis curve which require the creation of topological defects to destroy.

A dilute random field model was studied, and we focused on some of aspects that are
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most experimentally applicable. We found that both the short-range correlation functions

and the scaling of the hysteresis curves are consistent with the Imry-Ma picture, despite the

complications from topology.

Finally, we looked at a random anisotropy model. This model adds the complication of

domain walls to the topological picture, but we find that the hysteresis cures and short-range

correlations are still consistent with the Imry-Ma picture.

The models studied here do not cover the infinite number of possible models with

quenched randomness, and there are probably a large number remaining that are physically

relevant However, our conclusions show that the topology of the system is very important,

and that random models with n < d + 1 can be expected to have extensive metastability.

Despite these complicating factors, the Imry-Ma picture remains a good starting point. In

all of the systems we have studied, there is some aspect of the Imry-Ma picture that remains

relevant, most notably the scaling of the hysteresis curve.
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